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Abstract—Millimeter-wave (mmWave) joint communication-
radar (JCR) will enable high data rate communication and high-
resolution radar sensing for applications such as autonomous
driving. Prior JCR systems that are based on the mmWave
communications hardware, however, suffer from a limited an-
gular field-of-view and low estimation accuracy for radars
due to the employed directional communication beam. In this
paper, we propose an adaptive and fast combined waveform-
beamforming design for the mmWave automotive JCR with
a phased-array architecture that permits a trade-off between
communication and radar performances. To rapidly estimate
the mmWave automotive radar channel in the Doppler-angle
domain with a wide field-of-view, our JCR design employs a
few circulant shifts of the transmit beamformer and apply two-
dimensional partial Fourier compressed sensing technique. We
optimize these circulant shifts to achieve minimum coherence in
compressed sensing. We evaluate the JCR performance trade-offs
using a normalized mean square error (MSE) metric for radar
estimation and a distortion MSE metric for data communication,
which is analogous to the distortion metric in the rate-distortion
theory. Additionally, we develop a MSE-based weighted average
optimization problem for the adaptive JCR combined waveform-
beamforming design. Numerical results demonstrate that our
proposed JCR design enables the estimation of short- and
medium-range radar channels in the Doppler-angle domain with
a low normalized MSE, at the expense of a small degradation in
the communication distortion MSE.

Index Terms—Automotive radar, millimeter-wave vehicular
communication, joint communication-radar, partial Fourier com-
pressed sensing, adaptive waveform and beamforming design

I. INTRODUCTION

Millimeter-wave (mmWave) communication and radar are
key technologies for many next-generation applications, such
as autonomous driving. MmWave automotive radars provide
high-resolution sensing with a wide field of view (FoV) [1],
while mmWave communications will enable a high data rate
solution for the next-generation connected vehicles [2]. The
combination of these two technologies into a single joint
communication-radar (JCR) enables hardware reuse and a
common signaling waveform. This leads to benefits in power
consumption, spectrum efficiency, and market penetrability.
Unfortunately, a fully-digital multiple-input-multiple-output
mmWave JCR with high-speed, high-resolution analog-to-
digital converters will result in huge power consumption and
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high hardware complexity due to the wide available bandwidth
and high dimensions.

To mitigate these issues, we propose an adaptive and fast
combined waveform-beamforming design for the mmWave
automotive JCR that uses a phased-array architecture. Such an
architecture is used in the mmWave WLAN IEEE 802.11ad
standard [3]. In this design, we exploit all the transmit (TX) an-
tennas during the data transmission mode to generate a narrow
coherent beam for communication and constant gain sidelobes
in other directions for radar sensing. Then, the transmitter
applies a few circulant shifts of the designed TX beamformer,
and employs two-dimensional (2D) partial Fourier compressed
sensing (CS) technique to rapidly estimate the Doppler-angle
domain radar channel. To achieve better radar channel re-
construction with CS, we optimize the sequence of circulant
shifts used at the TX. Additionally, we use a generic JCR TX
waveform structure with tunable preamble length to increase
the range for automotive radar sensing. Then, we develop a
mean square error (MSE)-based adaptive combined waveform-
beamforming design for the mmWave automotive JCR to find
the optimal mainlobe gain for communication and the optimal
preamble length to achieve high channel estimation accuracy
for medium-range radar (MRR) and short-range radar (SRR),
at the cost of a small reduction in the vehicle-to-vehicle (V2V)
communication rate.

Most prior work on mmWave automotive JCR systems are
either radar-centric or communication-centric [4], [5]. In the
radar-centric JCR, the communication messages are modulated
on top of the radar waveforms [6], or the communication
information is embedded in the TX beamforming vectors [7].
These systems, however, do not support high data rates as
the communication signal must be spread to avoid disturbing
the radar required properties and they employ analog pre-
processing in the time-domain. In [8], a communication-
centric mmWave automotive JCR with fully-digital time-
domain processing was developed by exploiting the preamble
of the IEEE 802.11ad standard [3]. Using simulations, it was
shown that IEEE 802.11ad-based JCR can simultaneously
achieve high range/velocity resolution for automotive long-
range radar (LRR) sensing and gigabits-per-second data rates
for V2V communications. The IEEE 802.11ad standard, how-
ever, supports single-stream analog beamforming that leads
to a large trade-off between communication and radar perfor-
mances.

Prior approaches to increase the radar FoV for mmWave
automotive JCR can be categorized into three types: (a) JCR
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during the communication beam training mode, (b) JCR with
an adaptive beamforming design during the data transmis-
sion mode, and (c) multiple-input-multiple-output JCR with
low resolution analog-to-digital converters. In the first ap-
proach [9], [10], the communication beam training mode was
proposed for radar sensing. In [9], the IEEE 802.11ad beam
scanning algorithm was exploited for radar detection/estima-
tion with a wide FoV. In [10], a new MAC configuration
for vehicle-to-infrastructure JCR application was proposed
that employed beam switching pattern with dedicated sectors
for radar and communication. In the second approach [11],
the IEEE 802.11ad SC PHY frames along with the adap-
tive random switching (RS) of TX antennas during the data
transmission mode was proposed. In the RS-JCR, a coherent
beam is formed towards the communication receiver, while
simultaneously perturbing the grating lobes of the resulting
beam pattern for angle-of-arrival (AoA) estimation in SRR
applications. In the last approach [12], a mmWave multiple-
input-multiple-output JCR with 1-bit analog-to-digital con-
verters per RF chain was proposed to achieve a high range
and AoA estimation accuracy. The RS-JCR has a higher
radar update rate than the first approach, and is based on a
commercially available mmWave hardware unlike the third
approach. The RS-JCR, however, employs TX antenna subsets
instead of using all antennas, which decreases the net TX
power for JCR operation under a per-antenna power constraint.
Additionally, the RS-JCR was developed for SRR channel
estimation in the angular domain only.

In this paper, we develop an adaptive combined waveform-
beamforming design for mmWave automotive JCR that ex-
ploits all the TX antennas during the data transmission mode
to perform a highly accurate SRR/MRR Doppler-angle do-
main channel estimation, at the cost of a small reduction in
the communication data rate. We assume that the location
and relative velocity of a target remain constant during a
coherent processing interval (CPI). This is justified by the
small enough acceleration and velocity of a target relative
to the radar sensor, as found in automotive applications [1].
We also assume full-duplex radar operation due to the recent
development of systems with sufficient isolation and self-
interference cancellation [13]. Lastly, we assume perfect data
interference cancellation on the training part of the received
JCR waveform because the transmitted data is known at the
radar receiver, similar to [14]. The main contributions of this
paper are summarized as follows:

• We propose a novel formulation for a mmWave au-
tomotive JCR system that performs automotive MRR
and SRR sensing in a wide FoV without reducing the
communication data rate much. This formulation cap-
tures the nuances of the sparse mmWave JCR channel
with multiple targets in the Doppler-angle domain. Our
proposed JCR system employs a generic TX waveform
structure and uses a tunable TX beamforming design that
can be optimized to achieve enhanced JCR performance
using sparse sensing techniques.

• We develop a convolutional CS (CCS)-JCR technique
to estimate the 2D-radar channel in the Doppler-angle

domain. In this technique, the transmitter applies fewer
circulant shifts of the JCR TX beamformer to acquire
distinct CS measurements at the radar receiver. We trans-
form our CS problem into a partial Fourier CS problem in
2D [15]. We show that the space-time sensing constraints
in our problem allows only fewer configurations of the
subsampling locations in partial Fourier CS.

• We propose an optimized CCS (OCCS)-JCR approach
by carefully designing the circulant shifts applied at the
transmitter for superior Doppler-angle domain channel
reconstruction. The optimized circulant shifts result in
a space-time sampling pattern that achieves minimum
coherence in partial Fourier CS under the space-time
sensing constraints of our developed JCR system model.

• We investigate the JCR performance trade-off using the
NMSE metric for radar and a comparable DMSE metric
for communication using analysis and simulations. Addi-
tionally, we formulate a MSE-based weighted average op-
timization problem for an adaptive combined waveform-
beamforming mmWave JCR design in automotive appli-
cations that meets the Pareto-optimal bound. We solve
the MSE-based optimization problem for our proposed
OCCS-JCR approach in different target scenarios.

• Numerical results demonstrate that the proposed OCCS-
JCR combined waveform and beamforming design esti-
mates the MRR and SRR radar channel in the Doppler-
angle domain with low NMSE, at the cost of small
reduction in the communication DMSE. The proposed
OCCS-JCR performs the best, followed by the random
CCS (RCCS)-JCR that uses random circulant shifts, and
the RS-JCR extended for the Doppler-angle domain radar
channel estimation performs the worst.

The work in this paper is a significant extension of our
submitted conference papers [11], [16]. In addition to the de-
tailed exposition, we have included Doppler effect in the CCS-
JCR system model, joint Doppler-angle estimation, optimized
space-time sampling pattern, adaptive combined waveform and
beamforming design, a MSE-based weighted average opti-
mized JCR design, and numerical results to demonstrate and
evaluate the performance of our proposed CCS-JCR design.

The rest of this paper is organized as follows. We formulate
a JCR system model with a generic TX waveform structure
and beamformer design algorithm in Section II. In Section III,
we describe the CCS algorithm to estimate the radar channel
in the Doppler-angle domain. Then, we outline the space-time
sampling pattern optimization for the CCS-JCR in Section IV.
In Section V, we describe the performance metrics and adap-
tive combined-waveform beamforming design for the proposed
CCS-JCR. We present the numerical results in Section VI.
Finally, we conclude our work and provide direction for future
work in Section VII.

Notation: The operators (·)∗ stands for conjugate transpose
and (·)T for transpose of a matrix or a vector. N (µ, σ2) is
used for a complex circularly symmetric Gaussian random
variable with mean µ and variance σ2. The set of integers
is represented by Z and the set of real numbers is represented
by R. For a vector a, ak is a vector in which every entry of a
is raised to the power of k. A�B is defined as the element-
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Figure 1: An illustration of an automotive mmWave JCR
system that simultaneously perform SRR/MRR radar sensing
with a wide FoV and V2V communication with a narrow FoV.

wise multiplication of A and B. We use em,M ∈ CM×1 to
represent the mth standard basis vector for Euclidean space
of real numbers. We use phaseb(x) to denote the b-bit phase
quantized version of x. The matrix UN ∈ CN×N denotes the
unitary Discrete Fourier Transform (DFT) matrix.

II. SYSTEM MODEL

We consider the use case where a source vehicle sends a
mmWave JCR waveform to communicate with a recipient ve-
hicle at a distance dc moving with a relative velocity vc, while
simultaneously using the received echoes for automotive radar
sensing, as shown in Fig. 1. We consider closely separated
TX antenna array and RX antenna array mounted on both
source and recipient vehicles. For simplicity, we assume that
the antenna arrays are uniform linear arrays (ULAs) with N -
elements each. We assume a phased array architecture with
b-bit phase shifters at the TX and the RX, where the phase
shift alphabet is defined as Qb = {ej2nπ/2b

/
√
N : n ∈

{1, 2, 3, · · · 2b}}. We assume the JCR transmitter generates
a narrow beam towards the communication receiver without
any blockage and distributes the remaining energy uniformly
across the other directions for radar sensing.

A. Waveform design for JCR

We consider a CPI of T seconds. We consider a generic
TX waveform structure with M equi-spaced frames separated
by an inter-frame space (IFS) of TIFS. Each L-symbols frame
consists of a Lr-symbols preamble part and (L−Lr)-symbols
communication data segment. We assume that the training
sequences possess good correlation properties for communi-
cation channel estimation, and the training sequence length is
an integer multiple ρ of the building block size LBLK = Lr/ρ.
The mmWave WLAN standard [3] with Golay complementary
sequences can realize this JCR preamble structure. Addition-
ally, the IEEE 802.11ad standard can realize this multi-frame
approach using the block/no acknowledgment policy during
the communication between a dedicated pair of nodes in
the data transmission interval [3, Ch. 9]. Similar to [8], we
exploit the training sequences used in the preamble with good
properties for radar sensing.

To unambiguously estimate a maximum relative target ve-
locity vmax in a CPI, the mth frame is considered to be
located at an integer multiple, m, of the Doppler Nyquist
sampling interval TD. Here, TD ≤ λ/(4vmax). To enhance the

Data 
(𝐿 − 𝐿!	symbols)

…
Data

0 2𝑇𝐷 (𝑀 − 2)𝑇𝐷

Data Data                

𝑇𝐷

Data       Data

(𝑀 − 1)𝑇𝐷

Frame 
(𝐿	symbols)

Preamble 
(𝐿! = 𝜌𝐿"#$ symbols) IFS 

𝑇

Figure 2: A CPI of T seconds duration with M JCR equi-
spaced frames separated by an IFS of TIFS. Each L-symbols
frame consists of Lr = ρLBLK number of preamble symbols
and (L − Lr) number of communication data symbols. Each
frame is placed at an integer multiple of TD.

radar estimation performance of the mmWave JCR without
decreasing communication rate much, we propose to optimize
ρ and thereby the length of the training sequence. The analysis
in this paper can be extended to a virtual waveform design
structure with non-uniformly placed frames similar to [14].

We denote the unit energy TX pulse-shaping filter as gt(t),
the signaling bandwidth as W , and the symbol period as
Ts ≈ 1/W . The `th TX symbol corresponding to the mth

frame is denoted by sm,`[ρ], which satisfies the average power
constraint E

[
|sm,`[ρ]|2

]
= Es. Then, the generic complex-

baseband continuous-time representation of the single-carrier
TX waveform in a CPI is given as

x(t, ρ) =

M−1∑

m=0

L−1∑

`=0

sm,`[ρ]gt(t− `Ts −mTD), (1)

where L = (TD − TIFS)/Ts.

B. Beamformer design for JCR

In this subsection, we explain our approach to construct a
collection of beamformers that are well suited to the automo-
tive JCR application. Our method first constructs one sequence
for each of the TX and RX. These sequences are designed
according to the JCR specification. In this specification, a good
JCR beamformer is one that has a reasonable gain along the
communication direction and sufficient power along the sens-
ing directions for radar. The use of a single JCR beamformer,
however, may not be sufficient to detect multiple targets. To
this end, our method constructs a collection of beamformers
by circularly shifting the beamformers constructed at the TX
and the RX. As circulant shifts of a vector preserve the
magnitude of its DFT, the proposed method ensures that
the beams constructed according to our procedure achieve
the desired JCR specification. The collection of circularly
shifted beamformers is used to acquire distinct radar channel
measurements.

During a CPI, our JCR design uses an adaptive collection of
TX and RX beams to achieve a high-resolution radar sensing
in a wide FoV with a minimal reduction in the communication
data rate. We propose to use δ fraction of TX power along
the communication receiver direction, θ0, and 1 − δ fraction
of TX power along the other directions for radar sensing.
Within a CPI, the transmitter applies M different beamforming
vectors to acquire distinct radar channel measurements. The
source vehicle uses M unit norm TX beamforming vectors
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Figure 2: A CPI of T seconds duration with M JCR equi-
spaced frames separated by an inter-frame space (IFS) of TIFS.
Each frame contains a preamble of P symbols and a data
segment. Each frame is placed at an integer multiple of TD.

in the preamble with good properties for radar sensing. To
unambiguously estimate a maximum relative target velocity
vmax in a CPI, the mth frame is considered to be located
at an integer multiple, qm, of the Doppler Nyquist sampling
interval, TD  �/(4vmax).

We denote the unit energy TX pulse-shaping filter as pt(t),
the signaling bandwidth as W , and the symbol period as Ts ⇡
1/W . The transmitted symbol sequence corresponding to the
mth frame with L symbols is denoted by sm[n], which satisfies
the average power constraint E

⇥
|sm[n]|2

⇤
= Es. Then, the

generic complex-baseband continuous-time representation of
the single-carrier TX waveform in a CPI is given as

x(t) =
M�1X

m=0

L�1X

`=0

sm[`]pt(t� `Ts �mTD). (1)

where L = T/(MTs) number of symbols in a frame.

B. Beamformer design for JCR

In this subsection, we explain our approach to construct
a collection of beamformers that are well suited to the au-
tomotive JCR application. Our method first constructs one
sequence for each of the TX and RX. These sequences are
designed according to the JCR specification. Then, our method
constructs the collection of beamformers by circularly shifting
the sequences constructed at the TX and the RX. As circulant
shifts of a vector preserve the magnitude of its discrete
Fourier transform (DFT), the proposed method ensures that
the beams constructed according to our procedure achieve
the desired JCR specifications. The collection of circularly
shifted beamformers help to acquire distinct radar channel
measurements.

During a CPI, our JCR design uses an adaptive collection
of TX and RX beams to achieve a high-resolution radar
sensing in a wide FoV with a minimal reduction in the
communication data rate. We propose to use � fraction of TX
power along the communication receiver direction, �0, and
1 � � fraction of TX power along the other directions for
radar sensing. Within a CPI, the transmitter sends M different
combinations of TX precoder vectors to acquire distinct radar
channel measurements. The source vehicle uses M unit norm
TX beamforming vectors {f(m, �)}M�1

m=0 . The receiver at the
recipient vehicle employs a unit norm beamforming vector wc

and the receiver at the source vehicle uses as a unit norm RX
beamforming vector w. Therefore, the transmitted signal at
the source vehicle during a CPI is

xt(t) = f(m, �) x(t), 0  t  T. (2)

Now, we explain the key idea underlying the proposed
TX beamformer design technique. For tractability, we design
the beamformer by considering a DFT grid with N discrete
angles. For ease of exposition, we assume the communication
direction is 0�. The transmit beamformer design problem in
JCR is to design a sequence f̄ 2 QN

q whose beampattern
has an energy of � along 0�. The remaining energy in the
beamformer must be distributed to enable radar channel re-
construction with fewer channel measurements. Prior work has
shown that beamformers with close to uniform gain along the
desired sensing directions enable fast channel reconstruction
through compressed sensing [10]. To this end, the proposed
construction distributes the energy of 1�� “uniformly” across
the remaining DFT grid locations.
The Gerchberg-Saxton (GS) algorithm [12] to construct

the desired TX beamformer is shown in in Algorithm . We
define �rad = (1 � �)/(N � 1). The DFT magnitude vector
associated with the desired beamformer is then bmag =
[
p
�,
p
�rad,

p
�rad, · · · ,

p
�rad]. The inverse DFT of bmag,

however, may not be an element in QN
q . The GS algorithm

is an alternating projection method that finds a sequence in
QN

q such that the magnitude of its DFT is close to bmag.
�

�rad

Algorithm 1 GS algorithm to find f̄

1: Inputs: �, N , q, and TGS.
2: Initialize: Set titer = 1 and f̄ to a Zadoff-Chu sequence.
3: while titer < TGS do
4: bphase  phase

�
DFT(f̄)

�

5: Constraint on the discrete beam pattern:
b bmag � exp(jbphase)

6: Constraint on the antenna weights:
fphase  phaseq (IDFT(b))

7: f̄  exp(jfphase)/
p
N

8: end while
9: return f̄ .

The proposed GS-based beamformer design procedure can
be generalized for any communication direction ✓ 6= 0o. The
TX beamformer in such a case is defined as f0 � a(✓).
Fig. 3 compares the TX beampattern for ideal communica-

tion, our proposed JCR with � = 200/256, and the RS-JCR
proposed in [3] with the number of TX antennas switched
on as 200. We see that communication TX power achieved
by our proposed JCR using GS-algorithm improves by 1 dB
as compared to the RS-JCR. The mainlobe for both the JCR
beampatterns, however, has reduced gain compared to the ideal
communication beampattern. Therefore, the best communi-
cation rate would be achieved by the ideal communication,
followed by our JCR, and lastly the RS-JCR. The sidelobe
gains achieved by the ideal communication beampattern, how-
ever, is the lowest and results in the worst radar performance.
We observe random sidelobes with several grating lobes and
nulls for the RS-JCR, whereas we observe constant sidelobe
gain for our proposed JCR. Additionally, over an ensemble
of beamformers constructed according to our JCR design, the
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Figure 2: A CPI of T seconds duration with M JCR equi-
spaced frames separated by an inter-frame space (IFS) of TIFS.
Each frame contains a preamble of P symbols and a data
segment. Each frame is placed at an integer multiple of TD.

in the preamble with good properties for radar sensing. To
unambiguously estimate a maximum relative target velocity
vmax in a CPI, the mth frame is considered to be located
at an integer multiple, qm, of the Doppler Nyquist sampling
interval, TD  �/(4vmax).

We denote the unit energy TX pulse-shaping filter as pt(t),
the signaling bandwidth as W , and the symbol period as Ts ⇡
1/W . The transmitted symbol sequence corresponding to the
mth frame with L symbols is denoted by sm[n], which satisfies
the average power constraint E

⇥
|sm[n]|2

⇤
= Es. Then, the

generic complex-baseband continuous-time representation of
the single-carrier TX waveform in a CPI is given as

x(t) =
M�1X

m=0

L�1X

`=0

sm[`]pt(t� `Ts �mTD). (1)

where L = T/(MTs) number of symbols in a frame.

B. Beamformer design for JCR

In this subsection, we explain our approach to construct
a collection of beamformers that are well suited to the au-
tomotive JCR application. Our method first constructs one
sequence for each of the TX and RX. These sequences are
designed according to the JCR specification. Then, our method
constructs the collection of beamformers by circularly shifting
the sequences constructed at the TX and the RX. As circulant
shifts of a vector preserve the magnitude of its discrete
Fourier transform (DFT), the proposed method ensures that
the beams constructed according to our procedure achieve
the desired JCR specifications. The collection of circularly
shifted beamformers help to acquire distinct radar channel
measurements.

During a CPI, our JCR design uses an adaptive collection
of TX and RX beams to achieve a high-resolution radar
sensing in a wide FoV with a minimal reduction in the
communication data rate. We propose to use � fraction of TX
power along the communication receiver direction, �0, and
1 � � fraction of TX power along the other directions for
radar sensing. Within a CPI, the transmitter sends M different
combinations of TX precoder vectors to acquire distinct radar
channel measurements. The source vehicle uses M unit norm
TX beamforming vectors {f(m, �)}M�1

m=0 . The receiver at the
recipient vehicle employs a unit norm beamforming vector wc

and the receiver at the source vehicle uses as a unit norm RX
beamforming vector w. Therefore, the transmitted signal at
the source vehicle during a CPI is

xt(t) = f(m, �) x(t), 0  t  T. (2)

Now, we explain the key idea underlying the proposed
TX beamformer design technique. For tractability, we design
the beamformer by considering a DFT grid with N discrete
angles. For ease of exposition, we assume the communication
direction is 0�. The transmit beamformer design problem in
JCR is to design a sequence f̄ 2 QN

q whose beampattern
has an energy of � along 0�. The remaining energy in the
beamformer must be distributed to enable radar channel re-
construction with fewer channel measurements. Prior work has
shown that beamformers with close to uniform gain along the
desired sensing directions enable fast channel reconstruction
through compressed sensing [10]. To this end, the proposed
construction distributes the energy of 1�� “uniformly” across
the remaining DFT grid locations.
The Gerchberg-Saxton (GS) algorithm [12] to construct

the desired TX beamformer is shown in in Algorithm . We
define �rad = (1 � �)/(N � 1). The DFT magnitude vector
associated with the desired beamformer is then bmag =
[
p
�,
p
�rad,

p
�rad, · · · ,

p
�rad]. The inverse DFT of bmag,

however, may not be an element in QN
q . The GS algorithm

is an alternating projection method that finds a sequence in
QN

q such that the magnitude of its DFT is close to bmag.
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Algorithm 1 GS algorithm to find f̄

1: Inputs: �, N , q, and TGS.
2: Initialize: Set titer = 1 and f̄ to a Zadoff-Chu sequence.
3: while titer < TGS do
4: bphase  phase
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DFT(f̄)
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5: Constraint on the discrete beam pattern:
b bmag � exp(jbphase)

6: Constraint on the antenna weights:
fphase  phaseq (IDFT(b))

7: f̄  exp(jfphase)/
p
N

8: end while
9: return f̄ .

The proposed GS-based beamformer design procedure can
be generalized for any communication direction ✓ 6= 0o. The
TX beamformer in such a case is defined as f0 � a(✓).
Fig. 3 compares the TX beampattern for ideal communica-

tion, our proposed JCR with � = 200/256, and the RS-JCR
proposed in [3] with the number of TX antennas switched
on as 200. We see that communication TX power achieved
by our proposed JCR using GS-algorithm improves by 1 dB
as compared to the RS-JCR. The mainlobe for both the JCR
beampatterns, however, has reduced gain compared to the ideal
communication beampattern. Therefore, the best communi-
cation rate would be achieved by the ideal communication,
followed by our JCR, and lastly the RS-JCR. The sidelobe
gains achieved by the ideal communication beampattern, how-
ever, is the lowest and results in the worst radar performance.
We observe random sidelobes with several grating lobes and
nulls for the RS-JCR, whereas we observe constant sidelobe
gain for our proposed JCR. Additionally, over an ensemble
of beamformers constructed according to our JCR design, the
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Figure 3: The JCR TX ULA at the source vehicle in (a)
uses all the antennas to generate a narrow coherent beam for
communication and distribute the remaining energy uniformly
along the other directions for radar sensing. The radar RX
ULA at the source vehicle in (b) forms a constant gain beam
for radar sensing, while the communication RX ULA at the
recipient vehicle in (c) generates a narrow coherent beam
pointed towards the JCR source transmitter.

{fm(δ)}M−1
m=0 . Therefore, the TX signal at the source vehicle

during a CPI is

xt(t, ρ) = fm(δ) x(t, ρ), 0 ≤ t ≤ T. (2)

To enhance the radar estimation performance of the mmWave
JCR without decreasing communication rate much, we also
propose to optimize δ under a per-antenna power constraint.

Now, we explain the key idea underlying the proposed
TX beamformer design technique. For tractability, we design
the beamformer by considering a DFT grid with N discrete
angles. For ease of exposition, we assume the communication
direction is 0◦. The JCR TX beamformer design problem
is to design a sequence ft(δ) ∈ QNb whose beampattern
has an energy of δ along 0◦. The remaining energy in the
beamformer must be distributed across the other directions to
enable radar channel reconstruction with fewer channel mea-
surements. Prior work has shown that beamformers with close
to uniform gain along the desired sensing directions enable
fast CS channel reconstruction [17]. To this end, the proposed
construction distributes the energy of 1−δ “uniformly” across
the remaining DFT grid locations, as shown in Fig. 3.

We use the Gerchberg Saxton (GS) algorithm [18] to
construct the desired JCR beamformer at the TX [See Al-
gorithm 1]. By the JCR specification, we seek an ft(δ) whose
discrete beam pattern has an energy of δ along 0◦ and

δr = (1− δ)/(N − 1) along the remaining N − 1 directions.
The discrete beam pattern is simply the N -point DFT of the
vector ft(δ). Therefore, the DFT magnitude vector associated
with the desired beamformer is

f̃mag(δ) = [
√
δ,
√
δr,
√
δr, · · · ,

√
δr]

T. (3)

A naive approach to construct the desired JCR beamformer
is to apply an inverse DFT over f̃mag(δ). The inverse DFT
of f̃mag(δ), however, may not be an element in QNb . The
GS algorithm is an alternating projection method that finds
a sequence in QNb such that the magnitude of its DFT is close
to f̃mag(δ).

Algorithm 1 GS algorithm to find ft(δ)

1: Inputs: δ, N , b, TGS, and f̃mag(δ).
2: Initialize: Set titer = 1 and ft(δ) to a Zadoff-Chu

sequence.
3: while titer < TGS do
4: f̃phase(δ)← phase (DFT(ft(δ)))
5: Constraint on the discrete beam pattern:

f̃(δ)← f̃mag(δ)� exp(jf̃phase(δ))
6: Constraint on the antenna weights:

fphase(δ)← phaseb

(
IDFT(f̃(δ))

)

7: ft(δ)← exp(jfphase(δ))/
√
N

8: end while
9: return ft(δ).

The proposed GS-based beamformer design procedure can
be generalized for any communication direction θ 6= 0o. For
an N -element ULA with elements half-wavelength spaced, we
define the array steering vector a(θ) ∈ CN×1 as

a(θ) =
[
1, ejπsinθ, ej2πsinθ, · · · , ej(N−1)πsinθ

]T
. (4)

The TX beamformer in such a case is defined as ft(δ)�a(θ).
The JCR beamformer fm(δ) is constructed by circulantly
shifting ft(δ). As there are N distinct circulant shifts of the N -
length vector ft(δ), there are N candidates for fm(δ) with our
design. The TX beam pattern achieved by the GS algorithm
for N = 256 and its comparison with RS-based JCR as well
as ideal communications are illustrated in our paper [16].

The receiver at the source vehicle uses a unit norm RX
beamforming vector fr, and the receiver at the recipient vehicle
employs a unit norm beamforming vector fc. For the radar
receiver at the source vehicle, a good CS-based beamformer
is one that has equal energy at all DFT-grid locations within
a desired sector [17]. We propose to use a ZC sequence in
QNq to be the RX combiner vector fr because the DFT of a
ZC sequence has a constant amplitude. For the communication
receiver at the recipient vehicle, we use a spatial matched filter
of the communication channel as the RX beamformer fc to
provide the maximum TX-RX array gain and thereby achieve
the highest communication spectral efficiency.

C. Received signal model

Within a CPI of T seconds, we assume that the acceleration
and the relative velocity of a moving target is small enough to
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assume constant velocity and that the target is quasi-stationary
(constant location parameters). After the RX matched filtering,
and symbol rate sampling, the communication/radar RX signal
model in a CPI can be formulated as follows.

Communication received signal model: To explore the per-
formance trade-off between communication and radar, we
consider an illustrative example of a line-of-sight, frequency-
flat mmWave communication channel between the source and
recipient vehicles [11]. Nonetheless, the approach developed
in this paper can be extended for different scattering scenarios
by including frequency-selective communication channels; the
extension is omitted because of space limitations. We assume
that the channel is time-invariant during a single frame because
the relative velocity between the source and target vehicles are
small. We do not include band-limited filters in the channel
model and instead include them in the TX/RX signal models.
The communication channel between the source and recipient
vehicle is characterized by its complex channel amplitude hc,
angle-of-departure (AoD) and AoA pair (θ0, φ0), path delay
dc/c with c being the speed of light.

Assuming perfect synchronization and additive noise
wc,m,` ∼ N (0, σ2

c ), the received communication signal with
the TX steering vector a(θ0), the RX steering vector a(φ0),
and the channel Hc = hca(φ0)a∗(θ0) is

yc,m,`(ρ, δ) = f∗c Hcfm(δ)sm,`[ρ] + wc,m,`. (5)

Assuming that the TX and RX beams are perfectly aligned
and directional beamforming with a spatial matched filter is
used at the RX to provide the maximum TX-RX array gain
for the considered line-of-sight channel model, (5) simplifies
as

yc,m,`(ρ, δ) =
√
δNhcsm,`[ρ] + wc,m,`. (6)

We define communication signal-to-noise ratio (SNR) corre-
sponding to the ideal beampattern for communication with
δ = 1 as ζc = Es|hc|2N2/σc

2. In this case, the net received
signal SNR increases linearly with the fraction of TX power
for communication and is given by δζc.

Radar received signal model: We represent the doubly se-
lective (time- and frequency-selective) mmWave radar channel
using virtual representation obtained by uniform sampling in
range, Doppler, and AoD dimensions [8]. Since the focus of
this paper is target detection/estimation in the Doppler-AoD
domain and not in the range domain, we describe radar signal
model for a particular dominant range bin with distance d [11].
The same algorithm can be applied to each range bin.

We assume that the range bin of interest consists of a few,
K, virtual target scattering centers. The kth virtual scattering
center is described by its Doppler-AoD pair (νk, θk) and
complex channel amplitude hk, which is a product of radar
cross-section and path-loss. After the RX beamfoming, after
the cross-correlation of the TX training sequences with the
mth received frame echo, and assuming perfect cancellation
of the data part on the received training signal [14], the radar
received signal corresponding to the training part with an

additive noise wm[ρ] is given as

ym(ρ, δ) =
K−1∑

k=0

hke−j2πνkmTDa∗(θk)fm(δ) + wm[ρ]. (7)

We assume the thermal noise in the receiver is an additive
white Gaussian noise with variance σ2. We denote γ[ρ] as
the product of the RX beamforming gain and the integration
gain due to the employed cross-correlation, which depends on
the training sequence length used within a frame. Then, the
additive noise wm[ρ] in (7) is distributed as N (0, σ2/Esγ[ρ]).

We denote the Doppler shift vector d(νk) as

d(νk) =
[
1, e−j2πνkTD , · · · , e−j2πνk(M−1)TD

]T
(8)

and the mth standard basis vector of length M as em,M ∈
CM×1 with eT

m,M = [0, . . . , 1, · · · , 0], where 1 is at the (m+

1)th place. For example, eT
0,M = [1, 0, 0, · · · , 0]. We represent

the radar channel in a CPI be expressed as

H =
K−1∑

k=0

hkd(vk)a∗(θk). (9)

We observe that e−j2πνkmTD in (7) can be expressed as
eT
m,Md(νk). Putting this observation in (7) and using the

definition of H, we can write

ym(ρ, δ) = eT
m,MHfm(δ) + wm[ρ]. (10)

We define the SNR of the received radar signal excluding the
preamble correlation gain and the TX beamforming gain as
ζ = Esβγ[0]/σ2 with average target channel power β. We
denote the SNR that includes the preamble correlation gain but
excludes the TX beamforming gain as ζp[ρ] = Esβγ[ρ]/σ2.

III. CONVOLUTIONAL COMPRESSED SENSING

The radar channel H ∈ CM×N encodes the Doppler shift
and AoD information of the targets. Due to the propagation
characteristics of the environment at mmWave frequencies,
the channel is approximately sparse when expressed in an
appropriate basis [19]. For instance, the 2D-DFT basis is
often chosen for the sparse representation of H [20]. Let
H̃ ∈ CM×N denote the inverse 2D-DFT of H such that

H = UMH̃UN . (11)

Equivalently, H̃ = U∗MHU∗N
1. The matrix H is the time-

antenna domain channel and H̃ is called as the Doppler-angle
domain channel. The sparse structure in H̃ at mmWave allows
the use of CS techniques to estimate H̃ from fewer radar
channel measurements.

In this paper, we use a special class of CS called convo-
lutional CS [21] for sparse radar channel estimation. In this
technique, the TX applies fewer circulant shifts of the JCR
beamforming vector ft(δ). We use c[m] to denote the circulant
shift used at the TX in the mth measurement slot. Here,
c[m] is an integer in {0, 1, · · · , N − 1}. The beamforming

1The usual convention in radar is that the Doppler-angle channel is the
Fourier transform of the time-antenna channel. In this paper, we use the inverse
Fourier transform for ease of notation.
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vector applied at the TX is then fm(δ) = Jc[m]ft(δ), where
Jc[m] ∈ CN×N is the right circulant-delay matrix correspond-
ing to a shift of c[m] units. For example, J1 ∈ C3×3 is

J1 =




0 1 0
0 0 1
1 0 0


 . (12)

In general, Ji = J1 × J1 × · · · (i times). J0 is the N × N
Identity matrix. We substitute the beamforming vector in (10)
to write

ym(ρ, δ) = eT
m,MUMH̃UNJc[m]ft(δ) + wm(ρ). (13)

The convolutional structure in the beamforming weights used
at the TX allows sparse recovery algorithms to exploit the fast
Fourier transform [17].

We show that ym(ρ, δ) in (13) can be interpreted as a 2D-
DFT measurement of another sparse matrix called the masked
Doppler-angle matrix. To define this matrix, we first simplify
UNJc[m]ft(δ) in (13). We define a diagonal matrix containing
the scaled DFT of ft(δ) on its diagonal as

Λ(δ) =
√
Ndiag(UN ft(δ)). (14)

By the property that circulantly shifting a vector modulates
the phase of its DFT representation, the DFT of fm(δ) =
Jc[m]ft(δ) can be expressed as

UNJc[m]ft(δ) = Λ(δ)UNec[m],N . (15)

We define Z̃(δ) = H̃Λ(δ) as the masked Doppler-angle
matrix. The mask is due to the multiplication effect induced
by Λ(δ) on the columns of H̃. The matrix Z̃(δ) is sparse as H̃
is sparse. As all the diagonal entries in Λ(δ) are non-zero with
our design in Algorithm 1, information about all the targets is
preserved in Z̃(δ). In this paper, we focus on estimating the
sparse matrix Z̃(δ) instead of the sparse H̃. Such an approach
allows a tractable CS matrix design. Denoting ec[m],N as a
standard basis vector in CN , the measurement in (13) can be
simplified using (15) as

ym(ρ, δ) = eT
m,MUM H̃Λ(δ)︸ ︷︷ ︸

Z̃(δ)

UNec[m],N + wm[ρ] (16)

= eT
m,M UM Z̃(δ)UN︸ ︷︷ ︸

2D−DFT of Z̃(δ)

ec[m],N + wm[ρ]. (17)

We observe from (17) that the mth channel measurement with
the circulant shift-based training is the (m, c[m])th entry of the
2D-DFT of Z̃(δ).

Now, we discuss how sparse recovery of Z̃(δ) is a partial
2D-DFT CS problem and explain the notion of a trajectory.
We observe from (17) that the RX acquires M radar channel
measurements when the TX applies M circulant shifts of ft(δ).
The measurements are subsamples from an M×N matrix Z(δ)
which is defined as

Z(δ) = UM Z̃(δ)UN . (18)

From (17) and (18), we notice that our approach obtains the
entries of Z(δ) at the 2D-coordinates {(m, c[m])}M−1

m=0 on an
M ×N grid. A trajectory is defined as a 2D-path on this grid

which traverses through (m, c[m])
M−1
m=0 in sequence. This set

of 2D coordinates is defined as Ω. An example of a trajectory
for M = 5 and N = 5 is shown in Fig. 4. As the goal is to
estimate the sparse matrix Z̃(δ) from the subsamples of its 2D-
DFT Z(δ), the sparse recovery problem is a partial 2D-DFT
CS problem [15].

𝑚 = 0

𝑚 = 1

Columns of 𝐙 𝛿

R
ow

s 
of

 𝐙
(𝛿
)

Figure 4: The sampling trajectory traverses through one el-
ement in every row of Z(δ) for the combined-waveform
beamforming design in the CCS-JCR approach.

The reconstruction performance with partial 2D-DFT CS
depends on the subsampling trajectory. Prior work has shown
that random subsampling trajectories can achieve sparse recov-
ery with partial 2D-DFT CS [22]. Trajectories that are fully
random in the M × N grid, however, cannot be used in the
sparse Doppler-angle estimation problem. We show that the
number of feasible 2D-trajectories in our problem is smaller
than the trajectories in a typical partial 2D-DFT CS problem.
For the measurement slot indexed m, the trajectory is at
(m, c[m]) where the row-coordinate is m. For every m, the TX
can choose c[m] from the N integers in {0, 1, 2, · · · , N − 1}.
Therefore, the number of feasible trajectories is NM . In a
typical partial 2D-DFT CS problem, however, the number
of feasible trajectories of length M on an M × N grid is
MN(MN−1)(MN−2) · · · (MN−(M−1)) which is greater
than NM . The problem now is to find those trajectories among
the NM feasible candidates that result in better sparse radar
channel reconstruction.

A reasonable choice for the subsampling trajectory is one
that is chosen at random from the NM feasible candidates.
But, is this the best strategy? The answer to this question
is not clear at this point. In Section IV, we propose a
novel deterministic subsampling trajectory that achieves better
channel reconstruction than a feasible random trajectory.

IV. HOW TO DESIGN A GOOD SUBSAMPLING TRAJECTORY?

A good subsampling trajectory is one that results in a CS
matrix with the smallest coherence [23]. This is because a
lower coherence results in better sparse recovery [23]. In this
section, we give an explicit form of the CS matrix and derive
the desired subsampling trajectory.

We use A ∈ CM×MN to denote the CS matrix correspond-
ing to the partial 2D-DFT measurement model in (17). The
mth row of A is defined as

A(m, :) = (eT
c[m],NUN )⊗ (eT

m,MUM ). (19)
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We rewrite (17) with the radar noise vector w[ρ] =
[w0[ρ], w1[ρ], · · · , wM−1[ρ]]T, the radar channel measurement
vector y(ρ, δ) = [y0(ρ, δ), y1(ρ, δ), · · · , yM−1(ρ, δ)], and the
masked Doppler-angle matrix z̃(δ) = vec(Z̃(δ)), as

y(ρ, δ) = Az̃(δ) + w[ρ], (20)

which is the standard CS linear measurement model.

The coherence of the CS matrix A in (19) is defined as [23]

µ = max
(i,`),i 6=`

|(A(:, i))∗A(:, `)|
‖A(:, i)‖‖A(:, `)‖ . (21)

Due to the partial 2D-DFT nature of A, the coherence µ
can also be expressed in terms of the point spread function
(PSF) [24]. To explain the PSF, we first define an M × N
binary subsampling matrix B where

B(m,n) =

{
1, if (m,n) ∈ Ω

0, if (m,n) /∈ Ω
. (22)

We define B̃, the 2D-DFT of B, as the PSF. Specifically, B̃ =
UMBUN . Now, µ in (21) can also be expressed as [24], [25]

µ =

√
MN

M
max

(p,q)6=(0,0)
|B̃(p, q)|. (23)

The focus of this section is to construct the subsampling set
Ω = {(m, c[m])}M−1

m=0 that results in the smallest µ under the
sampling constraints in our problem.

Now, we discuss the structure of the PSF B̃ under the
sampling constraints. We observe from (22) that the mth row
of B has a single one in the c[m]th column and has zeros at
the other locations for Ω = {(m, c[m])}M−1

m=0 . The M × N
binary subsampling matrix is

B =




eTc[0],N

eTc[1],N

...
eTc[M−1],N


 . (24)

We define ω = exp(−j2π/N) and compute the PSF B̃ from
B in (24). First, we find the N -point DFT of every row in B.
Since eTc[m],NUN = [1, ωc[m], ω2c[m], · · · , ω(N−1)c[m]]/

√
N ,

we can write

BUN =
1√
N




1 ωc[0] ω2c[0] · · · ω(N−1)c[0]

1 ωc[1] ω2c[1] · · · ω(N−1)c[1]

...
...

...
...

1 ωc[M−1] ω2c[M−1] · · · ω(N−1)c[M−1]


 .

(25)
To express (25) in compact form, we define g ∈ CM as

g = [ωc[0], ωc[1], · · · , ωc[M−1]]T . (26)

Then,
BUN = [g0,g1,g2, · · · ,gN−1]/

√
N. (27)

Note that g0 = 1, where 1 is an all-ones vector of length
M . Now, the PSF B̃ = UMBUN is obtained by taking the
M -point DFT of every column in BUN , i.e.,

B̃ = [UMg0,UMg1,UMg2, · · · ,UMgN−1]/
√
N. (28)

The problem now is to find a vector g of the form in (26)
such that the PSF in (28) achieves the smallest coherence.

We now examine the entries of the PSF. The first column
of B̃ in (28) is the DFT of 1/

√
N , which is the M length

vector
√
M/Ne0,M . As all the entries in the first column other

than B̃(0, 0) are 0, this column does not impact µ defined in
(23). The other columns of B̃ which have the form UMgq

for q 6= 0 determine µ. To achieve the smallest coherence,
the largest entry of |UMgq| must be minimized for every
q ∈ {1, 2, 3, ..., N − 1}. As ‖gq‖ =

√
M , it follows that

‖UMgq‖ =
√
M for every q. Under this norm constraint, the

largest entry of |UMgq| can be no smaller than 1. Therefore,
we seek a g such that

|UMgq| = 1, ∀q ∈ {1, 2, 3, ..., N − 1}, (29)

i.e., the DFT of every qth power of g must have a constant
magnitude for 1 ≤ q ≤ N − 1. Furthermore, g must be
expressible in the form of (26). Can we find such a g?

We discuss why the Zadoff-Chu (ZC) sequence is a reason-
able choice for the vector g. We use ξ ∈ CM to denote a ZC
sequence of root u and length M . Here, u is co-prime with
M . The mth entry of ξ is [26]

ξ[m] =





exp
(
−jπum(m+1)

M

)
, if M is odd

exp
(
−jπum

2

M

)
, if M is even

. (30)

An interesting property is that the DFT of a ZC sequence has
a constant magnitude, i.e., |UMξ| = 1 [27]. When g is set
to ξ, we observe that the unimodular DFT condition in (29)
holds when q = 1. Now, we notice from (30) that gq = ξq has
the same structure as ξ, but with root qu instead of u. When
qu is coprime with M , gq is a ZC sequence that satisfies
|UMgq| = 1. Therefore, the condition in (29) is met when
g is a ZC sequence of root u and when qu is coprime with
M for q ∈ {1, 2, 3, · · · , N − 1}. One way to ensure that the
co-prime condition is met is to set u = 1, and M to a prime
number that is not smaller than N . As the prime number M
is also an odd number, the ZC sequence g is such that

g[m] = exp

(
−j
πm (m+ 1)

M

)
. (31)

The subsampling design problem is solved when such a g can
also be expressed in the form of (26).

Now, we find conditions on M and N by setting g in (31)
to the one in (26). We observe that the phase of the g[m]
in (26) is −2πc[m]/N , while the phase of g[m] in (31) is
−πm(m+ 1)/M . The two vectors in (26) and (31) are equal
when
2πc[m]

N
=
πm (m+ 1)

M
+ 2πim, ∀m ∈ {0, 1, 2, · · · ,M − 1},

(32)
for some integers {im}M−1

m=0 . Equivalently,

c[m] =
m (m+ 1)N

2M
+Nim. (33)

Note that c[m] has to be an integer in {0, 1, 2, · · · , N − 1}
as it models the circulant shift applied at the TX for the mth

channel measurement. It can be observed that a circulant shift
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(a) Binary subsampling matrix
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Figure 5: An example of the optimized binary sampling matrix
and its corresponding PSF for M = N = 31. The PSF has
constant amplitude of 1/

√
31 in all the columns except the

first one. The first column in the PSF matrix is e0,31.

of N is equivalent to a zero circulant shift. As Nim is an
integer multiple of N , it does not contribute to c[m] in (33).
Therefore, for c[m] to be an integer, we set M = N in (33)
to obtain

c[m] =

[
m (m+ 1)

2

]

modN

. (34)

Note that the subsampling coordinates in partial 2D-DFT CS
are (m, c[m])M−1

m=0 . Such a subsampling technique achieves the
smallest coherence under the constraints in our problem. We
would like to mention that our result is valid when M is prime
and when M = N . Optimizing subsampling for other settings
is an interesting research direction.

We now discuss the practical aspects of the designed sub-
sampling technique. An example of the binary subsampling
matrix is shown in Fig. 5(a). We plot the PSF corresponding to
this matrix in Fig. 5(b). As |UMgq| = 1 with our construction,
we observe from (28) and (23) that µ = 1/

√
M . This is also

1/
√
N as M = N with our design. Note that the subsampling

ratio in our setting is M/(MN) which is 1/N . Prior work
has shown that the standard OMP algorithm can recover upto
0.5 (1 + 1/µ) sparse coefficients when the CS matrix has a
coherence of µ [28]. Therefore, the proposed partial 2D-DFT
CS technique that acquires subsamples defined by (34) can
recover

K <
1

2

(
1 +
√
N
)

(35)

targets in the Doppler-angle space. In the simulations section,
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Figure 6: Comparison between the radar NMSE obtained using
analysis in (37) and using simulations with varying net SNR
for a single-target scenario. The analytical NMSE closely
matches with those of simulations above a certain SNR value
that decreases with increasing M .

we will show that the OCCS-JCR with the designed subsam-
pling trajectory achieves better radar detection performance
than the RCCS-JCR with random subsampling trajectory.

V. ADAPTIVE JCR DESIGN

In this section, we quantity the JCR trade-off between
radar and communication for an adaptive combined waveform-
beamfoming design using MSE-based metrics. We first de-
scribe the NMSE metric for radar, followed by the DMSE met-
ric for communication. Additionally, we also present a MSE-
based adaptive combined waveform-beamforming design for
the mmWave automotive JCR.

A. Radar performance metric

We use the NMSE metric to evaluate the performance of the
CS-based radar channel estimation algorithm for our adaptive
JCR design. Without loss of generality, we assume the average
target channel power as one. The NMSE metric for a true
Doppler-angle domain radar channel h̃ = vec(H̃) and the
estimated Doppler-angle domain radar channel h̃est is defined
as

NMSE(ρ, δ) ,
1

K
E
[
||h̃− h̃est(ρ, δ)||2

]
, (36)

where K is the number of targets.
The NMSE for estimating the masked Doppler-angle chan-

nel vector z̃(δ) in (20) corresponding to the dominant channel
taps using the optimized sampling trajectory in (34) and the
OMP estimation can be approximated similar to the NMSE
derivation in [29]. From (3) and (14), we see that the amplitude
of all the diagonal elements in Λ(δ) is

√
Nδr except the

first one. Therefore, denoting AS as the matrix formed by
the support columns (defined as the final set of dominant
columns chosen from the dictionary), the pseudoinverse of
matrix AS as A+

S = (A∗SAS)−1A∗S, the net radar SNR as
ζnet(ρ, δ) = Nδrζp[ρ], the NMSE for estimating the Doppler-
angle channel vector h̃ corresponding to the MRR/SRR targets
can be approximated similar to [29] as

NMSE(ρ, δ) ≈ 1

Kζnet(ρ, δ)
Tr
[
A+

S (A+
S )∗
]
, (37)
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when the probability of success of OMP exceeds a certain
threshold. We see from (37) that the NMSE approximation is
inversely proportion to the net radar SNR, which is a linear
function of ρ and an approximate linear function of δ, where
the approximation to the linearity is because of the use of
phased array architecture and the GS algorithm.

Fig. 6 shows the comparison between the NMSE obtained
using (37) and the NMSE estimated using simulations with
varying net SNR ζnet(ρ, δ) for a single-target scenario. The
analytical NMSE closely matches above a certain net SNR
value. The net SNR value where the analytical and simulations
NMSE closely matches decreases with the increase in M .
In Section VI, we will further explore the relation between
the radar NMSE and radar SNR for different multi-target
scenarios.

B. Communication performance metric

Assuming sm,`[ρ] is distributed as N (0, 1), the maximum
achievable communication spectral efficiency, r, for a JCR
system with ρ = 0 and TIFS = 0 is given by

r(δ) = log2 (1 + δζc) , (38)

where ζc = Es|hc|2N2/σ2
c . The channel capacity in bits per

second (bps) is given as C(δ) = Wr(δ), and the communi-
cation minimum MSE (MMSE) per symbol is given as [30,
Ch. 7]

MMSE(δ) =
1

1 + δζc
= 2−r(δ), (39)

and log2 MMSE(δ) = −r(δ) is a logarithmic function of δ.
When ρ > 0 or and TIFS > 0, the effective maximum

achievable communication spectral efficiency, reff , decreases
by a factor of α[ρ]

α[ρ] = 1− M(ρTs + TIFS)

T
, (40)

and we define the effective communication spectral efficiency
as [30, Ch. 7]

reff(ρ, δ) = α[ρ] log2 (1 + δζc) bits/s/Hz (41)

= r(δ)α[ρ] bits/s/Hz. (42)

The effective channel capacity in bps is given as Ceff(ρ, δ) =
Wreff(ρ, δ). We see from (41) that the effective communica-
tion spectral efficiency is linearly related to ρ, whereas it is
logarithmically related to δ.

C. JCR performance metric

The performance metrics of radar and communication are
dependent on ρ and δ, as can be seen from (36), (37), and
(41). With an increase in δ and a decrease in ρ, the information
rate improves, whereas the NMSE for radar channel estima-
tion degrades. Therefore, we focus on optimizing (ρ, δ) for
the adaptive mmWave automotive JCR combined waveform-
beamforming design. This requires the use of a comparable
metric to accurately quantify both radar and communication
system performances.

To use an effective scalar communication metric that paral-
lels the concept of the radar NMSE for JCR waveform design

optimization, we use an effective distortion MSE communi-
cation metric analogous to the distortion metric in the rate-
distortion theory [31, Ch. 10], which is defined as [14]

DMSEeff(ρ, δ) = 2−reff (ρ,δ) = (MMSE(δ))
α[ρ]

. (43)

According to (39) and (43), each bit of description reduces the
communication distortion MSE by a factor of 2. This implies
that as the effective spectral efficiency decreases by a factor
of α[ρ], the effective average DMSE increases exponentially
by the same factor. Since there is a simple one-to-one relation
between effective spectral efficiency and effective DMSE, and
the expressions (39) and (43) are analogous to the relation
between mean squared-error distortion and rate in the rate
distortion theory [31, Ch. 10], it is easy to use and understand.
Additionally, this metric is easily extendable to other auto-
motive JCR scenarios, such as the multi-target situation [14],
unlike the radar estimation rate metric in [32].

Since the communication DMMSE and the radar CRB
values are usually substantially different, the log-scale is
used to achieve proportional fairness similar to the problem
of resource allocation in multi-user communication [30, Ch.
7]. The performance trade-off between communication and
radar can then be quantified in terms of the following scalar
quantities: log(DMSEeff) and log(NMSE).

D. Weighted-average optimization-based JCR design

Now, we formulate an adaptive JCR combined waveform-
beamforning design to optimize the preamble block count
ρ and the fraction of communication TX gain δ. The JCR
performance optimization problem is a multi-objective (two-
objective) problem of simultaneously optimizing both the radar
performance, in terms of, for example, minimizing the radar
NMSE, and the communication performance, in terms of
minimizing the effective communication DMSE. We can see
from (43) that the communication DMSE metric denoted as
log DMSEeff is linear with respect to optimization variables ρ
and is logarithmic with the optimization variable δ. The radar
NMSE metric denoted as log NMSE, however, can be non-
convex sometimes with respect to the optimization variables,
as illustrated in Fig. 6 and later in Section VI. Therefore,
the region of achievable JCR objective values with the radar
NMSE and communication DMSE pairs corresponding to the
feasible values of ρ and δ can be non-convex. Then, the
optimal JCR performance is achieved by using the Pareto set
of the minimum convex set (termed the convex hull) of the
feasible non-convex JCR achievable objective values region,
thereby enhancing at least radar NMSE metric without degrad-
ing the communication DMSE metric, similar to multi-user
communication rate optimization [31, Ch. 15]. Additionally,
the convex solution is achievable by using time-sharing or
probabilistic occurrence techniques on the extreme points of
the convex hull [33].

The scalarization approach is known to achieve a Pareto
optimal point for multiple convex objectives [34, Ch. 4].
Therefore, the JCR performance optimization can be for-
mulated as the weighted average of a convex hull of
communication and radar MSE-based performance metrics.
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We denote the scalar communication DMSE metric as
ϕc(DMSEeff) , log DMSEeff and the scalar radar NMSE
metric as ϕr(NMSE) , Conv (log NMSE), which incorpo-
rates the convex hull operation with respect to the optimization
variables. For a given TX precoder codebook F(δ) and a
maximum preamble building block count of Pmax, the JCR
performance optimization problem can be formulated as

minimize
ρ,δ

ωrϕr(NMSE) + ωcϕc(DMSEeff)

subject to {T,K, d} = constants,

{fm(δ)}M−1
m=0 ∈ F(δ)

0 ≤ ρ ≤ Pmax, ρ ∈ Z
0 ≤ δ ≤ 1, δ ∈ R, (44)

where ωr ≥ 0 and ωc ≥ 0 are the normalizing and weighting
factors assigning the priorities for radar and communication
tasks, respectively. Note that the weights can be adjusted
adaptively with respect to the requirements imposed by dif-
ferent scenarios, such as varying radar SNR. Alternatively, the
problem in (44) can be modified as minimization of one of the
objectives with second as a constraint that would guarantee an
acceptable performance for one of the tasks.

VI. NUMERICAL RESULTS

In this section, the numerical results of the proposed adap-
tive combined waveform-beamforming design for mmWave
automotive JCR are presented. First, we evaluate and compare
the radar NMSE performance of OCCS-JCR, RCCS-JCR, and
RS-JCR with varying distance, target counts, and number of
frames/antenna elements. Then, we study the optimal JCR
designs for the weighted average based formulation. For
illustration purposes, we consider simulation parameters based
on the IEEE 802.11ad standard [3], [8] in application to
automotive scenarios [1], [35]. The TX and RX antenna arrays
are considered to be uniform linear arrays with 17, 31, and
257 elements. We assume 180◦ FoV, the recipient vehicle
distance dc = 100 m, the preamble building block size of
512 symbols, and a coherent processing interval of 5 ms.
To estimate the sparse radar channel, we employ the OMP
algorithm that exploits the partial 2D-DFT-based structure of
the measurement model [17]. Such an algorithm exploits the
fast Fourier transform and has a lower complexity than the
standard counterparts.

A. Radar performance

In this subsection, we investigate the radar NMSE perfor-
mance of our proposed CCS-JCR design. We also compare
our proposed OCCS-JCR design with optimized subsampling
trajectory developed in Section IV versus the RCCS-JCR tech-
nique with random sampling. Additionally, we compare the
performance of OCCS-JCR and RCCS-JCR designs against
the RS-JCR technique.

Figs. 7(a) and (b) show the radar performance of OCCS-
JCR and RCCS-JCR for different SNR ζ, number of targets
K, frame counts M , and number of TX antenna elements N
at δ = 0.5 and ρ = 2. In Fig. 7(a) the radar NMSE generally
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Figure 7: Comparison between OCCS-JCR and RCCS-JCR for
different M , N , SNR (ζ), and K at δ = 0.5 and 1024 training
symbols per frame with ρ = 2. The OCCS-JCR design with
optimized circulant shifts performed better than the RCCS-
JCR design, especially at high SNR and target counts.

decreases with SNR linearly in the logarithmic scale, as also
seen from (37). At high SNR and with a large number of
targets, however, we see the saturation effect where the radar
NMSE remains constant. The non-linearity of radar NMSE
with SNR is also observed at low SNR. In Fig. 7(b), the radar
NMSE remains almost the same with increasing number of
targets till a critical K. The number of targets that satisfies
the constraint in (35), do not suffer from the saturation effect
at high SNR. After crossing the critical K, the radar NMSE
degrades rapidly, and the critical ζ and K, where the saturation
happens, increase with M .

From Figs. 7(a) and (b), we also see that our proposed
optimized CCS-JCR always performs the best. The perfor-
mance gap between the OCCS-JCR and RCCS-JCR grows
with increasing SNR and target count. The critical K, where
the saturation occurs, is larger in OCCS-JCR than the RCCS-
JCR. The performance gap, however, reduces with increasing
M = N . This reduction with M is because a random
trajectory-based sampling matrix results in a small coherence
for a large sample space [15]. As a result, RCCS-JCR ap-



FOR SUBMISSION TO IEEE XXX VERSION-7 11

1 2 3 4 5 6 7

Target Count

-70

-60

-50

-40

-30

-20

-10

0

10
N

M
S

E
 (

d
B

)

 = 20 dB

 = 30 dB
 = 40 dB

RS

RCCS

OCCS

Figure 8: Comparison between OCCS-JCR, RCCS-JCR, and
RS-JCR for different SNRs and varying target counts at M
= 31, δ = 30/31, and 1024 training symbols per frame. The
OCCS-JCR technique performs the best, followed by RCCS-
JCR, and RS-JCR performs the worst.

proaches the performance of OCCS-JCR for a large M .
Fig. 8 shows the comparison between the RS-JCR, RCCS-

JCR, and OCCS-JCR for different SNRs and varying target
counts at M = 31, δ = 30/31, and ρ = 2. The OCCS-JCR
technique performs the best, followed by RCCS-JCR, and RS-
JCR performs the worst. The performance gap between RS-
JCR and RCCS-JCR is much larger than the gap between
RCCS-JCR and OCCS-JCR at small number of targets. The
performance gaps between different JCR approaches start
decreasing at large K and high SNR. The poor performance of
random switching is observed because the CS matrix in this
approach has a low coherence in CS and suffer from SNR
loss under the per-antenna power constraint. Furthermore, the
RCCS-JCR technique suffers from a low SNR under the per-
antenna power constraint [16]. Since our proposed OCCS-JCR
technique performs the best, we will use this approach for the
numerical analysis on the optimal JCR design.

B. Optimal JCR designs

In this subsection, we explore the OCCS-JCR performance
trade-off curve between the radar NMSE and the commu-
nication NMSE with respect to ρ and δ. Additionally, we
investigate the optimal solutions for the weighted average
optimization-based JCR design for different SNRs, target
counts, and number of frames/antenna elements. We vary
the communication weighing 0 ≤ ωc ≤ 1. The preamble
building block length for channel estimation is considered as
512, similar to the IEEE 802.11ad standard. The maximum
preamble length is considered as the maximum frame length
for M = 257, which leads to Pmax = 53. In our optimization,
we do not consider δ = 0 because it is unfavorable for both
vehicular communication as well as LRR sensing.

Fig. 9 depict the performance trade-off between the radar
NMSE and communication DMSE metrics with respect to the
optimization variables ρ and δ for M = N = 257, SNR ζ
of -10 dB, K = 2, and ρ = [1, 3, · · · , 53]. Since K << M ,
and the SNR is high, the JCR trade-off curve between the
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Figure 9: The radar NMSE and the communication DMSE
pairs in the JCR trade-off region with respect to the optimiza-
tion variable ρ and δ along with their respective convex hulls
at M = N = 257, -10 dB SNR, and K = 2.

radar NMSE versus the communication DMSE is convex for
a given δ, as explained in Section V. The JCR trade-off curve
for a given ρ is almost convex with δ in logarithmic scale.
The deviation from the convex approximation is due to the
TX phased-array architecture and the phase shift constraint in
the GS algorithm to generate the desired ft(δ). Fig. 9 also
illustrates the convex hull of the 2D achievable JCR objective
values region, which is the smallest convex set containing
the achievable JCR objective values region. The convex hull
enables discarding the not so beneficial pairs of the radar
NMSE and the communication DMSE in the the 2D feasible
JCR achievable objective values region. The lower envelope
of the convex hull provides the Pareto-optimal set of the 2D
feasible JCR achievable objective values region.

Fig. 10(a) and (b) show the optimal δ and ρ versus ωc for the
optimal weighted average-based JCR design with different M
and K at an SNR ζ of -10 dB, -35 dB, and -50 dB. For small
number of targets, δ increases rapidly with communication
weighting. At ωc = 1, δ converges to 1 with maximum
communication spectral efficiency. At M = 31 and K = 7,
however, the optimal δ generally remains constant due to the
saturation effect and small communication SNR leading to
almost linear relation with δ.

The optimal ρ decreases faster than δ with respect to the
communication weighting for large M . This is due to the
fact that communication DMSE degrades much slower with
δ, whereas it decreases rapidly with ρ. For small M , however,
optimal ρ is 1 for even large values of communication weight-
ing because α[ρ] doesn’t change much with ρ. At ωc = 1, ρ
converges to minimum preamble length of 512. At ωc = 0,
ρ converges to Pmax for all the target scenarios, except for
M = 31 and K = 7 where it converges to a smaller value
due to the saturation effect.

Fig. 11(a) and (b) show the optimal radar NMSE and
communication NMSE versus communication weightings with
different M and K at an SNR (ζ) of -10 dB, -35 dB, and -50
dB. The optimal radar NMSE increases with communication
weighting, while the optimal communication DMSE decreases
with communication weighting. The saturation effect is ob-
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Figure 10: Optimal δ increases and optimal ρ decreases with
the communication weightings. The optimal ρ decreases faster
than δ with respect to the ωc for large M .

served for M = 31 and K = 7 for both the optimal radar
NMSE and the optimal communication DMSE. The radar
NMSE goes beyond 0 dB, and is therefore unusable for
automotive radar sensing applications, at ωc = 1 for ζ of -10
dB and -35 dB, whereas radar is unusable at lower ωc = 0.7
for ζ of -50 dB and M = 257. The weighted average of the
radar NMSE and the communication NMSE decreases with
increase in M for K = 2 and ζ = −10 dB. At M = 257,
the radar NMSE is much better with decreasing ζ, while the
communication NMSE is the same all ζ at low and high
communication weightings. This example demonstrates that
we can achieve high-resolution radar channel estimation in the
Doppler-angle domain with high accuracy, 180◦ field of view,
and 5 ms CPI, as desired in the MRR/SRR applications [1].

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed an adaptive and fast combined
waveform-beamforming design for the mmWave automotive
JCR with a phased-array architecture. Our proposed JCR de-
sign achieves a wide field of view by transmitting a fraction of
energy along the communication direction and distributing the
remaining energy “uniformly” along the other radar sensing
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Figure 11: Optimal radar NMSE increases and optimal com-
munication DMSE decreases with the communication weight-
ings. This example demonstrates that we can achieve high-
resolution SRR/MRR radar channel estimation in the Doppler-
angle domain with high accuracy, at the cost of a small
reduction in the communication rate.

directions. Our method uses a few circulant shifts of the
designed JCR beamformer and apply 2D partial Fourier CS
to rapidly estimate the radar channel in the Doppler-angle
domain. To enhance the radar performance, we also optimize
these circulant shifts by minimizing the coherence of the
compressed sensing matrix under the sampling constraints of
the proposed JCR system. Additionally, we develop a MSE-
based weighted average optimization-based JCR design with
tunable waveform and beamforming parameters that permits
a trade-off between the radar NMSE and the communication
DMSE metrics.

The results in the paper demonstrate that our proposed
JCR design estimated medium- and short-range automotive
radar channels in the range-Doppler angle domain with low
NMSE and a wide field of view, at the cost of a small
reduction in the communication rate. The proposed JCR design
with optimized circulant shifts performed better than the
random circulant shifts, especially at high SNR and large
target counts. Additionally, we observed the saturation effect
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in both the approaches at high SNR and target counts. The
random switching-based JCR design performed very poor
as compared to our proposed JCR design due to higher
coherence of the resultant CS matrix and the low transmit
power under the per-antenna power constraint. In the weighted
average optimization-based combined waveform-beamforming
JCR design, the optimal preamble length decreases faster than
the optimal fraction of communication TX array gain with
respect to the communication weightings for large number of
frames. The optimal preamble length and the optimal fraction
of communication TX array gain remains almost the same for
different SNRs at low and high communication weightings.

The results in this paper can be used to develop low-power,
small size, spectrum-efficient, and high-performance mmWave
devices that will enable next-generation automotive sensing
and communication needs. Future work includes an extension
of our work for simultaneous range, velocity, angle-of-arrival,
and angle-of-departure estimation. It would also be interesting
to experimentally evaluate the performance of our proposed
JCR design using a measurement platform similar to [36].
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