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Improved CRB for Millimeter-Wave Radar with 1-bit ADCs
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Millimeter-wave is widely used for consumer radar applications like driver assistance systems in automated vehicles and gesture

recognition in touch-free interfaces. To cope with the increased hardware complexity, higher costs and power consumption of wideband
systems at millimeter-wave frequencies, we propose a fully digital architecture with low-resolution analog-to-digital converters (ADCs)
on each radio-frequency chain. The effect of the low-resolution ADCs on radar parameter estimation is characterized by the Cramér-
Rao bound (CRB) under the proposed hardware constraints. Prior work has shown that at low signal-to-noise ratio, a radar system
with 1-bit ADCs suffers a performance loss of 2dB in parameter estimation compared to a system with ideal infinite resolution
ADCs. In this paper, we design an analog preprocessing unit that beamforms in a particular direction and improves the system
performance in terms of the achievable CRB. We optimize the proposed preprocessing architecture and show that the optimized
network is realizable through low-cost low-resolution phase-shifters. With the optimized preprocessor network in the system, we
reduce the gap to 1.16dB compared to a system with ideal ADCs. We demonstrate the potential of the proposed architecture to
meet the requirements of high-resolution sensing through analytical derivation and numerical computation of an improved CRB
and show its achievability through a correlation-based estimator.

Index Terms—1-bit ADC, Analog preprocessing, Bussgang decomposition, Cramér-Rao bound, Fisher information, Radar

I. INTRODUCTION

The larger bandwidths available at millimeter-wave
(mmWave) frequencies have the potential to enable high
data rate communications and high-resolution sensing. The
communication data rate and the radar resolution improve
linearly with the signal bandwidth [1]. The excessive power
consumption and increased cost of high-resolution ADCs at
these larger bandwidths is a limiting factor [2]. In addition, the
implementation of power amplifiers and low noise amplifiers
on a radio-frequency (RF) chain behind each antenna element
is practically prohibitive at mmWave frequencies. To enable
practical implementation, we propose a new radar architecture
with 1-bit ADCs while maintaining a separate RF chain per-
antenna. In addition to driving the cost and power consumption
low, 1-bit ADCs reduce complexity at the RF level, making the
fully digital architecture a viable option for further research.

There is limited work on low-resolution ADCs for mmWave
radar. Compressive sensing based solutions for a single-input
single-output (SISO) 1-bit radar have been proposed [3],
[4]. The results, however, were limited only to numerical
examples with no theoretical comparison in terms of the
mean squared error (MSE). Similarly, a maximum a posteriori
(MAP) approach applied to 1-bit radar has been demonstrated
through examples [5]. A low-rank matrix recovery problem
based solution for 1-bit radar parameter estimation was numer-
ically evaluated in [6]. The lack of a theoretical performance
benchmark, against which the different proposed algorithms
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for 1-bit ADC radar can be evaluated, motivates our study of
the effect of 1-bit ADCs on the radar parameter estimation
performance.

Low signal-to-noise ratio (SNR) reduction of channel ca-
pacity by a factor of 2/π (≈ 2dB) in 1-bit constrained
communication systems is a well-studied problem [7]. The
loss in SISO channel capacity in an additive white Gaussian
noise (AWGN) setting at low SNR due to 1-bit quantization
may be reduced by asymmetric quantization and oversam-
pling [8], [9]. A similar reduction in channel capacity loss
for 1-bit systems at low SNRs was also observed under a
correlated noise model based on a Toeplitz noise covariance
matrix [10]. This line of research has also gathered interest
in recent years. The 2dB loss in channel phase estimation
was shown to be reduced to 0.9dB by 6× oversampling
[11]. The CRB of channel parameter estimation for a 1-bit
system was improved by oversampling the received signal
for three different types of channel models [12]. Similar
observations have also been made in the context of positioning
and navigation systems. Optimization of the antialiasing filter
bandwidth and oversampling factor was shown to reduce
the root mean squared error (RMSE) in delay estimation
for a 1-bit GPS system from 2dB to 1dB [13], with the
biggest improvements coming from oversampling. Similarly,
time of flight and attenuation gain estimation errors were
shown to surpass the 2dB limit by oversampling the received
signal [14]. Similar improvements for a general signal model
were demonstrated by oversampling and antialiasing filter
optimization [15]. The common observation across [7]–[15] is
that oversampling and antialiasing filter optimization, both of
which make the noise correlated, improve the performance of
1-bit systems. Nonetheless, this ability incurs a computational,
power and memory cost in addition to higher cost of ADCs
capable of ≈ 10× oversampling.

Inspired by the improvements observed under a correlated
noise model in 1-bit ADC based systems, we introduce
another dimension to optimize the design process for 1-bit

https://orcid.org/0000-0001-8760-391X
https://orcid.org/0000-0002-7625-9436
https://orcid.org/0000-0002-4666-5628


2

radar systems. The proposed modification is also applicable
to positioning/navigation and communication systems. We
propose a simple analog preprocessor that is introduced in
each RF chain before quantization and derive the CRB for the
1-bit radar parameter estimation problem with the proposed
analog preprocessor based on the Bussgang decomposition
[16]. The proposed analog preprocessor, which is a [1 α]T

spatial filter, beamforms in a particular direction and makes
the noise correlated across consecutive RF chains. The main
result of the paper is the improvement in the 2dB loss due
to 1-bit quantization through the introduction of the proposed
preprocessor. We evaluate this improvement in terms of the
CRB and compare the proposed architecture with and without
the analog preprocessor present in the system, and also to the
ideal ADCs with ∞ resolution. Our results suggest that the
proposed architecture is an appropriate low-cost low-power
radar solution capable of meeting the high-resolution sensing
requirements. The main contributions of this paper can be
summarized as:

• We derive the CRB for a fully digital radar architecture
with 1-bit ADCs on each RF chain and demonstrate
its tightness to a lower bound on Fisher information
introduced in prior work [17].

• We propose an analog preprocessing unit that can im-
prove upon the 2dB loss due to 1-bit quantization at low
SNRs known in prior work [7]. Due to the intractability
of the CRB with the analog preprocessing unit and
the tightness of the lower bound established earlier, we
derive the CRB for the analog preprocessing architecture
using the lower bound in [17]. This results in a 0.84dB
improvement over the case without the proposed analog
preprocessor.

• We optimize the analog preprocessing unit (depending
on the application) over the design parameter α based on
the improved CRB. Of note, the optimized preprocessing
unit is realizable through low-resolution phase-shifters.
Moreover, we show that the optimized preprocessing can
get to within 1.16dB of ideal ∞-resolution ADCs.

• Our numerical evaluation of the CRB agrees with the
derived analytical results and demonstrates an improve-
ment over the prior known results. We also show that
the improved CRB can be achieved using a correlation-
based range and direction of arrival (DoA) estimator and
provide future directions for generalization of this work.

In our prior work [18], we explored the tradeoffs between
the communication and sensing requirements of a joint com-
munication radar (JCR) system using the same architecture
(without the preprocessor) as in this paper [19]. We concluded
that the proposed architecture is a potential solution for joint
high rate communication and high-resolution sensing and suf-
fers a 2dB loss in terms of channel capacity for communication
and parameter estimation error for radar at low SNRs. In [20],
we published initial results from the detailed study carried
out in this paper for a fixed spatial beamformer [1 1]T. Our
new work, however, is a significant extension of [18], [20]. In
addition to deriving the exact CRB for the 1-bit system and
showing its tightness to the lower bound to Fisher information

used in [18] and [20], we generalize the analog preprocessor
to a [1 α]T spatial filter. We then optimize the more general
preprocessing network to achieve maximum improvement in
terms of the CRB and show that the optimized preprocessor
can be implemented using low-resolution phase-shifters. Last
but not the least, the achievability of the improved CRB
demonstrated in this paper is another aspect missing from our
previous work [20].

The rest of this paper is organized as follows. In Section
II, we describe the system model. In Section III, we derive
the CRB for the 1-bit architecture, introduce a lower bound
to Fisher information and demonstrate its tightness under
white noise to the analytical bound. Next in Section IV,
we introduce the analog preprocessing unit which is a main
contribution of this paper. In Section V, we derive the CRB for
the proposed architecture with the analog preprocessing unit.
The preprocessing unit is optimized in Section VI. The CRB
results and its achievability are presented in Section VII before
concluding the paper with potential directions for future work
in Section VIII.

Notation: B is a matrix, b is a vector and b is a scalar.
Bi and Bij denotes the ith row and ith, jth entry of the
matrix B. bi denote the ith entry of b. The operator (·)T

and (·)∗ denote the transpose and conjugate transpose of a
matrix/vector. b represents the fast Fourier transform (FFT)
of b. diag(B) denotes a diagonal matrix containing only the
diagonal elements of B. diag(b) denotes a diagonal matrix
with the elements of b on the main diagonal. The function
sgn(a) denotes the signum function applied component-wise
to the Re(a) (real) and Im(a) (imaginary) parts of a complex
number a. The operator � denotes the Hadamard product of
two vectors/matrices. ||b||p is the p-norm of b. The notations
| · |, (·)k and ∠(·) denote the absolute value, kthpower and
phase operation applied to a scalar or element-wise to a
vector/matrix. The matrix IN denotes an identity matrix of
size N ×N . FN is the FFT matrix of size N ×N normalized
by 1√

N
. ei is the N−dimensional canonical basis vector with

1 at the ith position and zeros elsewhere. N (µ,Σ) denotes
a complex Gaussian multi-variate distribution with mean µ
and covariance Σ. Q(·) denotes the cumulative tail probability
of a standard normal random variable as a function of its
argument (·). c is the speed of light. The sinc pulse is defined
as sinc(x) = sin(πx)

πx . The notations |S| denotes the cardinality
of the set S . A � B denotes the matrix property of positive
semi-definiteness given by xT(A−B)x ≥ 0 ∀x ∈ RN .

II. SYSTEM MODEL

Consider a radar system with co-located transmit (TX)
and receive (RX) antennas as shown in Fig. 1. The TX is
equipped with an NTX element antenna array that operates
in an analog beamforming manner and beamforms at θBF.
The beamforming angle θBF depends on the application. The
RX is equipped with a fully digital uniform linear array
(ULA) of NRX elements with an inter-element spacing of
d = λ

2 , where λ is the carrier frequency wavelength. Fully
digital radar architectures are becoming more common with
the development of multiple-input multiple-output (MIMO)
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radar [21]–[23]. While the presented results are for the ULA
geometry, however, the proposed methodology can easily be
extended to other array types such as uniform planar arrays
by making the appropriate changes to the proposed analog
preprocessor in Section IV. The presented analysis can be
similarly extended by accounting for the additional dimension.
The TX and RX arrays are closely separated by a distance of
dsi m such that they see the same target location parameters
while providing adequate isolation for full-duplex operation.
Further, the TX array is assumed to have a reduced gain in the
end-fire (θ = ±90◦) direction thus providing suppression of
self-interference. The residual self-interference from the TX
to the RX is incorporated into our signal model. We later note
that the proposed analog preprocessor reduces the constraints
on the TX antenna beam-pattern design.
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Fig. 1: The channel model with self-interference due to co-
located TX and RX antennas and reflection from K targets.
The TX array operates in analog beamforming mode (hence
shown as a single antenna). The RX array with NRX elements
operates in a fully digital beamforming mode. The extra
distance traveled by the planar wave between the antenna
elements (shown in red) is modeled by the RX array response
vector under the narrowband assumption.

Self-interference due to co-located TX and RX antennas and
the reflection from the K targets result in the (K + 1)-path
channel model shown in Fig. 1. Assuming there is no blockage
between the TX and the targets, the RX receives a delayed
and attenuated copy of the transmitted signal after reflection
from the target along with residual self-interference. The self-
interference path is characterized by its complex channel gain
γ0, its delay τ0 = dsi

c , and its DoA θ0 = −90◦. Similarly,
the path reflected off of the kth target is characterized by its
complex channel gain γk, its delay τk = 2Rk

c , where Rk is the
distance of the kth target from the TX/RX and its DoA θk.
The end-to-end complex channel gains {γ0, γ1 . . . γK} include
the contribution of the TX/RX antenna gains, transmit power
Pt and distance-dependent path-loss. Additionally, the channel
coefficients corresponding to target reflections, {γ1 . . . γK},
incorporate the effect of the radar cross-section (RCS) area
ζk of each target as well. In this work, the radar targets
are assumed to be of Swerling type 0, each target with its
own constant RCS area ζk [1, Ch. 6]. The CRB is evaluated

given that the parameters are unknown but deterministic and
hence deterministic Swerling type 0 targets with no variations
are a good assumption here. For ease of exposition, we
only consider stationary targets in this paper and are thus
limited to the 2D range-DoA parameter space. The presented
analysis can be extended to include Doppler, with similar gains
expected for the Doppler dimension as for the range and DoA
dimensions.

A. Transmit signal model

Consider a coherent processing interval (CPI) of T sec-
onds in which L known independent and identically dis-
tributed (IID) symbols s[`], drawn from a zero mean circularly
symmetric unit variance complex Gaussian distribution (i.e.
E[|s[`]|2] = 1), are transmitted after being filtered through
the unit energy pulse shape g(t) with symbol period Ts. The
complex baseband signal at the TX is given by

x(t) =
√
Pt

L∑
`=1

s[`]g(t− `Ts). (1)

We use the sinc pulse filter in this paper with g(t) = sinc(Bt).
The bandwidth B of the pulse shaping filter is related to its
symbol period Ts as B = 1

Ts
. We note here that the given

transmit signal model is well suited for both radar and commu-
nication. In addition, the results that follow can be generalized
to other pulse shaping filters such as root raised cosine and
other radar waveforms such as orthogonal frequency division
multiplexing and frequency modulated continuous waveform.

B. Receive signal model

Under the narrowband assumption, the extra distance be-
tween the RX antenna elements (shown in red in Fig. 1)
traveled by a planar wave incident from a far-field source
can be modeled by the direction-dependent linear phase
change array response vector a(θ) ∈ CNRX×1 given by
[1 e

j2πd sin(θ)
λ e

j4πd sin(θ)
λ . . . e

j(NRX−1)2πd sin(θ)
λ ]T. Let τmax denote

the time of flight of the maximum feasible target determined
by the link budget or by the duty cycle of the radar and n(t)
the noise vector the elements of are assumed to be IID over a
zero-mean circularly symmetric complex Gaussian distribution
with covariance matrix σ2IN . With these definitions, the signal
received at the RX array for 0 ≤ t ≤ (T+τmax) can be written
as

y(t) =

K∑
k=0

γka(θk)x(t− τk)︸ ︷︷ ︸
s(t;ψ)

+n(t). (2)

The signal part of the observation, s(t;ψ), depends on
the deterministic yet unknown parameter vector ψ =
{|γ0|,∠γ0, θ0, τ0, |γ1| . . . τK} .The signal after sampling at the
Nyquist rate and 1-bit quantization is given by

q[n] = sgn (y(nTs))

= sgn(Re [y(nTs)])︸ ︷︷ ︸
u[n]

+ j sgn(Im [y(nTs)])︸ ︷︷ ︸
v[n]

, (3)
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for n ∈ T = {0 . . . N}. Here N = dT+τmax
Ts
e denotes the

number of samples captured at the RX during one CPI. From
this point onwards, we do not explicitly write the time index
for ease of exposition. All the derived formulas and bounds are
for a single time sample and capturing multiple time samples
leads to an accumulating effect because of the additivity of
Fisher information as a result of independence across time
samples [24]. The RX signal model with analog preprocessing
will be described in Section IV.

III. CRAMÉR-RAO BOUND

The CRB is a lower bound on the estimation error per-
formance of any unbiased estimator [24, Ch. 3]. The CRB
of the ith element of a parameter vector ψ, [CRB(ψ)]i, is
given by the inverse of the Fisher information matrix (FIM)
F(ψ) as [CRB(ψ)]i = [F−1(ψ)]i,i [24]. Fisher information
is a measure of the amount of information conveyed by the
observed samples about the parameters to be estimated. The
ith, jth entry of the FIM for the output r(t;ψ) of a multivariate
system that depends on the unknown deterministic parameters
ψ through the likelihood function p(r|s(ψ)) is given by [24]

[Fr(ψ)]ij = Ep(r|s(ψ))

[(
∂ ln p(r|s(ψ))

∂ψi

)T

×(
∂ ln p(r|s(ψ))

∂ψj

)]
.

(4)

We first derive the exact CRB for the radar parameters ψ under
1-bit quantization using (4). We then discuss a lower bound
to the Fisher information measure [17] and demonstrate its
tightness to the exact CRB based on the Bussgang decompo-
sition [16] for the system with 1-bit quantization. This lower
bound is then used to derive the CRB for the system with the
proposed analog preprocessor in Section V.

A. Exact radar parameter CRB under1-bit quantization

For the signal model in (3), the likelihood function
p(q|s(ψ)) takes the product form because qi and qj for i 6= j
are conditionally independent given s(ψ). The likelihood
function p(q|s(ψ)) is given by

p(q|s(ψ)) =

NRX∏
k=1

p(qk|sk(ψ))

=

NRX∏
k=1

p(uk|sk(ψ))p(vk|sk(ψ)).

(5)

The positive orthant probability for uk is given by

p(uk = +1|sk(ψ)) =
1√
πσ

∫ ∞
−Re[sk(ψ)]

exp

(
−x

2

σ2

)
dx

= Q

(
−Re [sk(ψ)]

σ/
√

2

)
.

(6)

The corresponding negative orthant probability can be written
as

p(uk = −1|sk(ψ)) =
1√
πσ

∫ −Re[sk(ψ)]

−∞
exp

(
−x

2

σ2

)
dx

= Q

(
Re [sk(ψ)]

σ/
√

2

)
.

(7)

For uk ∈ {+1,−1}, (6) and (7) can be combined to compactly
write p(uk|sk(ψ)) as

p(uk|sk(ψ)) = Q

(
−ukRe [sk(ψ)]

σ/
√

2

)
. (8)

Similarly for vk ∈ {+1,−1}, the probability p(vk|sk(ψ)) is
given by

p(vk|sk(ψ)) = Q

(
−vkIm [sk(ψ)]

σ/
√

2

)
. (9)

Using (5) , (8) and (9), the log-likelihood ln(p(q|s(ψ))) of
the 1-bit quantized observation vector q can be written as

ln(p(q|s(ψ))) =

NRX∑
k=1

ln
(
Q

(
−ukRe [sk(ψ)]

σ/
√

2

))
+

ln
(
Q

(
−vkIm [sk(ψ)]

σ/
√

2

))
.

(10)

The contribution to the FIM Fq(ψ) from the real and
imaginary parts of the observation vector q can be split into
two parts, Fu(ψ) and Fv(ψ), because of the independence
of u and v conditioned on s(ψ) as [25]

Fq(ψ) = Fu(ψ) + Fv(ψ). (11)

From here onwards we restrict our attention towards deriving
Fu(ψ), the FIM for Re [q], while keeping in mind that Fv(ψ)

can be derived in an analogous manner. With ∂ln(Q(f(·)))
∂(·)

taking the form

∂ln (Q(f(·)))
∂(·)

= −
exp

(
−f2(·)/2

)
× ∂f(·)

∂(·)√
2πQ(f(·))

, (12)

the contribution of the kth component of u to the ith, jth entry
of the FIM , [Fuk(ψ)]ij , according to (4) is given by

[Fuk(ψ)]ij =
1

πσ2
Ep(uk|ψ)

 exp
(
−2Re [sk(ψ)]

2
/σ2
)

Q
(
−
√

2ukRe [sk(ψ)] /σ
)2×

∂Re [sk(ψ)]

∂ψi

∂Re [sk(ψ)]

∂ψj

]
.

(13)

The details of the derivatives ∂Re[sk(ψ)]
∂ψi

and ∂Im[sk(ψ)]
∂ψj

are
deferred to Section III-A. Combining (6), (7) and (13)

[Fuk(ψ)]ij =
1

πσ2

∂Re [sk(ψ)]

∂ψi

∂Re [sk(ψ)]

∂ψj
×

exp
(
−2Re [sk(ψ)]

2
/σ2
)

Q
(
−
√

2Re [sk(ψ)] /σ
)
Q
(√

2Re [sk(ψ)] /σ
) .
(14)
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Making use of the the additivity of the real and imaginary
parts in (11), the final FIM [Fq(ψ)]ij can be written as

[Fq(ψ)]ij =
1

πσ2

NRX∑
k=1

(
∂Re [sk(ψ)]

∂ψi

∂Re [sk(ψ)]

∂ψj
×

exp
(
−2Re [sk(ψ)]

2
/σ2
)

Q
(
−
√

2Re [sk(ψ)] /σ
)
Q
(√

2Re [sk(ψ)] /σ
) +

∂Im [sk(ψ)]

∂ψi

∂Im [sk(ψ)]

∂ψj
×

exp
(
−2Im [sk(ψ)]

2
/σ2
)

Q
(
−
√

2Im [sk(ψ)] /σ
)
Q
(√

2Im [sk(ψ)] /σ
)
 ,

(15)

where the summation is over the NRX samples captured across
the NRX RX antennas.

In the low per-antenna SNR regime (σ � |sk(ψ)|), which
is a valid assumption at mmWave frequencies, (15) can be
approximated (up to first order in terms of sk(ψ)/σ) as

[Fq(ψ)]ij ≈
4

πσ2

NRX∑
k=1

(
∂Re [sk(ψ)]

∂ψi

∂Re [sk(ψ)]

∂ψj

+
∂Im [sk(ψ)]

∂ψi

∂Im [sk(ψ)]

∂ψj

)
.

(16)

The FIM for the ideal infinite precision signal y in (2) from
[1]

[Fy(ψ)]ij =
2

σ2

NRX∑
k=1

(
∂Re [sk(ψ)]

∂ψi

∂Re [sk(ψ)]

∂ψj

+
∂Im [sk(ψ)]

∂ψi

∂Im [sk(ψ)]

∂ψj

)
.

(17)

Comparing (16) and (17), 1-bit sampling leads to a 2/π loss
(≈ 2dB) in Fisher information at low SNR compared to infinite
resolution sampling. This result has been observed before in
the context of capacity loss [7] and channel estimation [11].

B. Lower bound for Fisher information measure

The product form of the likelihood of the quantized ob-
servation vector q in (5) makes the computation of the exact
FIM in (4) tractable. Under a correlated noise model (which
will be the case with the proposed analog preprocessor), the
computation in (4) becomes very difficult. With this foresight,
we introduce an information measure that is a pessimistic
approximation of the exact FIM in (4) using only the first
moment µ(ψ) and the second central moment Σ(ψ) of the
likelihood function p(q|s(ψ)). It has been shown in prior
work that amongst all possible additive noise distributions with
fixed variance, the Gaussian distribution minimizes the Fisher
information measure and provides a conservative estimate
of the performance of any system [17]. For a parametric
probabilistic system p(r|s(ψ)) with unknown deterministic
parameters ψ ∈ Ψ and observed system output r(ψ), the FIM
Fr(ψ) dominates the FIM Fr̃(ψ) of an equivalent Gaussian
system q(r̃|s(ψ)) with first and second central moments
matched to the original system p(r|s(ψ)) and r(ψ) = r̃(ψ)

[17]. When ∂Σ(ψ)
∂ψ = 0, this equivalent pessimistic Gaussian

approximation is given by

Fr(ψ) � Fr̃(ψ) =

(
∂µ(ψ)

∂ψ

)T

Σ−1(ψ)

(
∂µ(ψ)

∂ψ

)
. (18)

The lower bound in (18) was derived under the assumption of
support of the random process r(ψ) on real numbers [17]. In
fact, (18) corresponds to the exact Fisher information of a real
Gaussian process when ∂Σ(ψ)

∂ψ = 0. Using the independence
of the real and imaginary parts of the observation r(ψ) under
which (11) holds true, the bound (18) can be extended to
complex numbers by using the Fisher information chain rule
[25]. The lower bound for complex random processes is then
given by the FIM of a complex Gaussian process [24]

Fr(ψ) � Fr̃(ψ) = 2Re
[(

∂µ(ψ)

∂ψ

)∗
Σ−1(ψ)

(
∂µ(ψ)

∂ψ

)]
.

(19)
In Section III-C, we use the Bussgang decomposition to
demonstrate the tightness of (19) to the exact FIM in (4) at
low SNRs.

C. Bussgang decomposition-based CRB

The Bussgang theorem [16] states that the output of the non-
linear 1-bit ADC q in (3) can be decomposed into a desired
signal component and an uncorrelated distortion e as

q = Dy + e. (20)

The linear transformation D is obtained from the linear
minimum mean squared error (LMMSE) estimate of q from
y given by

D = E[qy∗]E[yy∗]−1 = RqyR−1
yy . (21)

The correlation matrix of the uncorrelated distortion error e
can then be written as

Ree = E[(q−Dy)(q−Dy)
∗
] = Rqq −RqyR−1

yyRyq.
(22)

Based on this decomposition, the quantized observation vector
q[n] in (3) can be written as

q[n] = Dy[n] + e[n]

= D
K∑
k=0

γka(θk)x(nTs − τk) + Dn[n] + e[n]

= D
K∑
k=0

γka(θk)x(nTs − τk) + n′[n].

(23)

The covariance matrix of the effective non-Gaussian noise n′

is given by

Rn′n′ = Ree + DRnnD∗

= Rqq −RqyR−1
yyRyq + RqyR−1

yyRnnR−1
yyRyq.

(24)

Next, we assume that the noise term in (23) is Gaussian
distributed with the same covariance as Rn′n′ in (24) and use
(19) to get a lower bound on the Fisher information matrix.
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We note here that for the case of 1-bit ADCs, the matrix Rqq

is given by the classical arcsin law [10]

Rqq =
2

π

[
arcsin

(
diag(Ryy)−

1
2 Ryy diag(Ryy)−

1
2

)]
.

(25)
The arcsin operation is applied element-wise to the real and
imaginary parts of its matrix argument. The cross-correlation
matrix Rqy in case of 1-bit ADCs is given by [10]

Rqy =

√
2

π
diag(Ryy)−

1
2 Ryy. (26)

At low per-antenna SNR, the correlation matrix of the
RX signal Ryy is dominated by noise. For example, at
a per-antenna SNR ≤ −10dB (which is true for practical
applications at mmWave frequencies as shown in Section VII),
the approximation error is less than 10% in the Frobenius norm
sense. Under this approximation

Ryy ≈ Rnn = σ2I. (27)

Consequently Rqq = I in (25), Rqy =
√

2
πσI in (26) and

D =
√

2
π

1
σ I in (21). Combining these assertions with (24),

the central second-order moment of the quantized observation
vector q[n] in (23) is given by

Rn′n′ = I. (28)

Since the distortion e in (20) is uncorrelated with the signal
component, the mean of the signal component in (23) for
the Gaussian system approximation to the non-Gaussian 1-bit
system, µq(ψ), is given by

µq(ψ) =

√
2

π

1

σ
I

K∑
k=0

γka(θk)x(nTs − τk)︸ ︷︷ ︸
µy(ψ)

.
(29)

Here µy(ψ) is the mean of the received signal y in (2) before
1-bit quantization. Combining the results of (28) and (29), the
lower bound to the FIM for the 1-bit quantized case under the
low SNR assumption, F1-bit, can be computed using (19) as

F1-bit � 2Re

[√
2

π

1

σ

(
∂µy(ψ)

∂ψ

)∗
I−1

√
2

π

1

σ

(
∂µy(ψ)

∂ψ

)]

=
2

π

2

σ2
Re
[(

∂µy(ψ)

∂ψ

)∗(
∂µy(ψ)

∂ψ

)]
(a)
=

2

π
Fideal,

(30)

where (a) follows from the matrix representation of (17) after
accounting for the 2

π factor. Fideal denotes the FIM for the case
of an ideal ADC with infinite resolution. The details of the
computation of the derivative ∂µy(ψ)

∂ψ are given in Appendix
A. Comparing (30) to (16) and (17) from Section III-A, it can
be seen that the FIM derived using the lower bound in (18)
equals the exact Fisher information obtained using (4) at low
SNRs for the 1-bit system with AWGN. The corresponding
1-bit CRB given by

CRB1-bit ≈
π

2
CRBideal, (31)
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Fig. 2: The functional TX and RX block diagram with the
proposed analog preprocessing structure using a simple addi-
tion of two consecutive RF chains after undergoing through a
complex gain α. The subscripts I and Q denote the in-phase
and quadrature parts of the RF chains.

gives the same result as Section III-A that 1-bit quantization
causes an estimation error performance loss of a factor of
2/π ≈ 2dB compared to an ideal unquantized system.

IV. ANALOG PREPROCESSOR

Improved performance as a result of correlated noise in 1-
bit ADC based communication and positioning systems has
been observed in prior work [10], [11], [13]. Inspired by this,
we design an analog preprocessing stage that beamforms in a
direction of interest depending on the radar operation. As a
result of the proposed preprocessor, the noise in the system
becomes correlated across consecutive RF chains. The TX and
RX structure with the proposed analog preprocessor are shown
in Fig. 2. The top part of Fig. 2 shows the functional block-
level description of TX side. We assume a perfect digital-
to-analog converters (DAC) and a single RF chain on the
TX side for now. The extension to multiple TX chains with
low-resolution DACs is deferred to future work. The bottom
part of Fig. 2 shows the detailed architecture of the RX side
where the neighboring RF chains yi for i ∈ 1, 2 . . . NRX after
down-conversion to baseband are passed through two analog
complex gains α1, α2 and then added together. We will show
in Section VI-C that the optimal complex gains α1 and α2

can be implemented using low resolution phase shifters thus
making the proposed preprocessor very easy to implement
in hardware. For î = mod(i + 1, NRX), the output of the
preprocessing stage zi for i ∈ 1, 2 . . . NRX is then given by

zi = α1yi + α2yî. (32)

The modulus operation is necessary for i = NRX, signifying
that the last output of the preprocessing stage is obtained from
the first and last RF chains.

Without loss of generality, the phase of the complex gain
α1 can be taken equal to 0 because it is the relative phase
difference of α1 and α2 that’s important and not their absolute
phases. Because of 1-bit quantization, the absolute magnitudes
of α1 and α2 are also not important. We fix α1 = 1 and restrict
0 ≤ |α2| ≤ 1. Having |α1| > 1 or |α2| > 1 would not change
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the SNR in any way. However, it would correspond to having
active power elements in the circuit. From here onwards, we
use the symbol α instead of α2 for ease of exposition. Defining
A to be the NRX ×NRX preprocessing matrix

A =



1 α 0 . . . 0

0 1 α
. . . 0

0
. . . . . . . . . 0

...
. . . . . . 1 α

α 0 . . . 0 1


, (33)

the signal vector z(t) at the output of the preprocessor is given
by

z(t) = Ay(t) =
K∑
k=0

γkAa(θk)x(t− τk) + An(t). (34)

Finally, the 1-bit quantized preprocessed signal vector sampled
at the Nyquist rate is given by

r[n] = sgn(z(nTs)). (35)

Intuition: We note here that each row of the preprocess-
ing matrix A is a [1 α]T filter which beam-forms in the
sin−1

(
−∠αλ

2πd

)
direction for |α| = 1. For α = 1, this

corresponds to the 0◦ bore-sight direction. The signal and
the spatially white Gaussian noise are both shaped by the
frequency response of the [1 α]T filter after the preprocessing
stage. At low SNR (≈≤ 0dB), the quantization noise from the
1-bit ADCs is spread uniformly over the spatial domain. The
SNR of the reflected path from the sin−1

(
−∠αλ

2πd

)
direction,

however, effectively doubles after the [1 α]T filter thus giving
an overall gain in this direction. We explain this more formally
and derive the resulting CRB in Section V and Section VI.

The preprocessing operation (denoted by A) makes the
AWGN n(t) correlated across any triplet of the preprocessed
outputs zi. Letting ñ(t) denote the correlated noise An(t), its
covariance matrix Rññ is given by

Rññ = ARnnA∗

= σ2



1 + |α|2 α 0 . . . α∗

α∗ 1 + |α|2 α
. . . 0

0
. . . . . . . . . 0

...
. . . . . . 1 + |α|2 α

α 0 . . . α∗ 1 + |α|2


.

(36)

Remark 1. Note that for α = 1, the preprocessing stage
corresponds to a [1 1]T beamformer and has nulls in the
θ = ±90◦ direction. It has the effect of self-interference
cancellation because the self-interference part of the RX signal
in (2) jumps phase by π between every pair of antennas for
θ0 = −90◦ and hence decreases the constraints on the antenna
beampattern design.

V. IMPROVED CRB

The computation of the exact CRB in Section III-A was
primarily made possible due to the product form of the likeli-
hood p(q|s(ψ)) in (5). The preprocessing stage introduced
in Section IV makes the noise correlated. Computing the
exact CRB given by (4) essentially amounts to enumerating
all the 2NRX possibilities of the quantized observation vector
r[n] which makes it computationally inhibitive. The analytical
intractability of the FIM in the case of correlated noise and the
tightness of the Gaussian lower bound in an AWGN setting
at low SNRs (as demonstrated in Section III) justify our use
of (19) for computing the CRB with the proposed analog
preprocessor. The lower bound (30) was shown to be equal
to the exact FIM in (16) at low SNRs based on the Bussgang
decomposition. Following the development in Section III-C,
the Bussgang theorem [16] states that the preprocessed output
of the non-linear 1-bit ADC r in (35) can be decomposed into
a desired signal component and an uncorrelated distortion e
as

r = Dz + e. (37)

Here D is given by the LMMSE estimator of r from z
given by RrzR

−1
zz . The correlation matrix of the uncorrelated

distortion error e is given by Ree = Rrr − RrzR
−1
zz Rzr.

Defining n′[n] = DAn[n] + e[n], the quantized preprocessed
observation vector r[n] in (35) can then be written as

r[n] =
K∑
k=0

γkDAa(θk)x(nTs − τk) + n′[n]. (38)

Similar to (24), the covariance matrix of the effective non-
Gaussian noise n′ is given by

Rn′n′ = Rrr −RrzR
−1
zz Rzr + RrzR

−1
zz RññR−1

zz Rzr. (39)

As per the proof in [17], we assume that the noise term n′ in
(38) is Gaussian distributed with the same covariance matrix
as Rn′n′ in (39). At a low per-antenna SNR, the covariance
matrix of the preprocessed signal Rzz is dominated by the
preprocessed noise and can be approximated as Rññ given
in (36). With ᾱ = α

1+|α|2 and the function f(·) = 2
π arcsin(·)

applied element-wise to the real and imaginary parts of its ar-
gument (·), the matrix Rrr under the low SNR approximation
is given by the arcsin law [10]

Rrr =
2

π

[
arcsin

(
diag(Rzz)−

1
2 Rzz diag(Rzz)−

1
2

)]
≈ 2

π

[
arcsin

(
diag(Rññ)−

1
2 Rññ diag(Rññ)−

1
2

)]

=



1 f(ᾱ) 0 . . . f(ᾱ∗)

f(ᾱ∗) 1 f(ᾱ)
. . . 0

0
. . . . . . . . . 0

...
. . . . . . 1 f(ᾱ)

f(ᾱ) 0 . . . f(ᾱ∗) 1


.

(40)

The covariance matrix of the effective noise Rn′n′ in (39)
approximately equals Rrr under the assumption Rzz ≈ Rññ.
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Additionally, the cross-correlation matrix Rrz in case of 1-bit
ADCs is given by [10]

Rrz =

√
2

π
diag(Rzz)−

1
2 Rzz

≈

√
2

π

(
1

1 + |α|2

)
1

σ
Rññ.

(41)

Combining (41) and the approximation Rzz ≈ Rññ, the

matrix D in (37) is given by
√

2
π

(
1

1+|α|2

)
1
σ I.

Since the noise n′ in (38) is uncorrelated with the signal
component, the mean of the signal component for the Gaus-
sian system approximation to the non-Gaussian 1-bit system,
µr(ψ), is given by

µr(ψ) =

√
2

π

(
1

1 + |α|2

)
1

σ
I
K∑
k=0

γkAa(θk)x(nTs − τk)︸ ︷︷ ︸
µz(ψ) = Aµy(ψ)

.

(42)

Here µz(ψ) is the mean of the received preprocessed signal z
in (34) before 1-bit quantization. Note that µz(ψ) = Aµy(ψ).
Combining the results of (42) with Rn′n′ ≈ Rrr, the lower
bound to the FIM for the preprocessed 1-bit quantized case
under the low SNR assumption, F1-bit-PP, is given by

F1-bit-PP

� 2

π

(
1

1 + |α|2

)
2

σ2
Re
[(

∂µz(ψ)

∂ψ

)∗
R−1

rr

(
∂µz(ψ)

∂ψ

)]
=

2

π

(
1

1 + |α|2

)
2

σ2
Re
[(

∂µy(ψ)

∂ψ

)∗
×

A∗R−1
rr A

(
∂µy(ψ)

∂ψ

)]
.

(43)

The matrices A∗,Rrr,A in (43) are circulant and hence can
be diagonalized by the FFT matrix FNRX and the inverse
FFT matrix F∗NRX

as FNRX diag(∆(·))F∗NRX
, where the operator

∆(·) denotes the vector of eigenvalues of the matrix (·) [26].
In case of a circulant matrix, the eigenvector ∆(·) is given
by the FFT of the first row of the corresponding matrix, that
is (·)1 [26]. A1 denotes the FFT of A1 = [1, α, 0, . . . 0]. The
first row of A∗, [1, 0, . . . 0, α∗], equals the conjugate time-
reversed version of A1. Hence, A∗1 = (A1)∗. Similarly (Rrr)1

denotes the FFT of the first row of Rrr. We note here that
(Rrr)1 ∈ RNRX because of the complex conjugate nature of
(Rrr)1. With these definitions, (43) can be simplified to

F1-bit-PP �
2

π

2

σ2
Re
[(

∂µy(ψ)

∂ψ

)∗
FNRX

(
1

1 + |α|2

)
×

diag((A1)∗)(diag((Rrr)1))−1diag(A1)F∗NRX

(
∂µy(ψ)

∂ψ

)]
.

(44)

Let RPP =
(

1
1+|α|2

)
diag((A1)∗)(diag(Rrr−1))−1diag(A1).

We emphasize here that RPP is a diagonal matrix with real
entries. Comparing (44) to (30), it can be seen that the FIM

for the preprocessed 1-bit quantization setup differs only by the
factor RPP from the FIM for the case without preprocessing
where RPP = INRX as discussed in remark 2.

Remark 2. For 1-bit quantization without preprocessing, the
effect of quantization is spatially uniform on the FIM. The
FIM as derived in (30) can be written as

F1-bit �
2

π

2

σ2
Re
[(

∂µy(ψ)

∂ψ

)∗
FNRXINRXF∗NRX

(
∂µy(ψ)

∂ψ

)]
=

2

π

2

σ2
Re

[(
∂F∗NRX

µy(ψ)

∂ψ

)∗
INRX

(
∂F∗NRX

µy(ψ)

∂ψ

)]
.

(45)

The effect of quantization on the FIM as a function of the
DoA can be quantified by splitting the parameter vector ψ
into two parts. For ψ 6= θ, the vector

∂F∗NRX
µy(ψ)

∂ψ can be split
into two parts: 1) The conjugate Fourier transform of the array
response vector a(θ), given by a(θ), which can be pulled out
of the partial derivative operator and 2) A complex scaling
given by ∂αx(nTs−τ)

∂ψ . Now consider the spatial angular grid
A corresponding to the NRX FFT frequencies (function of the
NRX RX antennas and the array response vector). The kth ele-
ment Ak is given by sin−1( λk

dNRX
) for k ∈ {−NRX

2 . . . NRX
2 −1}.

For a spatially on-grid target located at the kth grid position,
a(θ) =

√
NRXek. The product (a(θ))∗INRXa(θ) thus equals

NRX irrespective of the DoA Ak of the target. For an off-grid
target with DoA θ, (a(θ))∗INRXa(θ) = NRX by Parseval’s
theorem. For the case ψ = θ, the Fisher information by
definition depends on the DoA (even for ideal ∞−resolution
ADCs), being the largest for θ = 0◦ (broad-side) and smallest
for θ = ±90◦ (end-fire). For ψ = θ, The vector

∂F∗NRX
µy(ψ)

∂ψ

is given by the conjugate FFT of ∂µy(ψ)
∂θ given in (52)

in Appendix A. Nonetheless, it uniformly affects all spatial
directions through the matrix INRX and the factor 2

π . Hence,
perhaps not surprisingly, 1-bit quantization effects the FIM
uniformly irrespective of the DoA θ of the target.

Remark 3. For 1-bit quantization with preprocessing, the effect
of the preprocessing and quantization is a function of the
choice of α and the DoA θ of the target. For k ∈ {0 . . . NRX−
1}, the dependence of the kth entry along the diagonal of RPP
on α is given by

(RPP)kk =

(
1

1 + |α|2

)
×

1 + |α|2 + αej2πk/NRX + α∗e−j2πk/NRX

1 + f(ᾱ)ej2πk/NRX + f(ᾱ∗)e−j2πk/NRX
.

(46)

Here k = 0 corresponds to the first and k = NRX − 1 to
the last entry along the diagonal. As detailed in remark 2, the
DoA of the target, θ, determines the weight assigned to the
entries of RPP through the product (a(θ)∗RPPa(θ)). Thus the
preprocessed 1-bit quantization has a spatially non-uniform
effect on the FIM. This encourages the optimization of the
analog preprocessor from the perspective of choice of the
parameter α as detailed in Section VI.



9

Fig. 3: Derivative of F1-bit-PP for ψ 6= θ as a function of
θ and |α| with ∠α = 0◦. It can be seen that for θ ∈ Θα

around ∠α, the derivative of the Fisher information is positive.
This combined with the non-negativity of Fisher information
implies a monotonic increase the Fisher information measure
for θ ∈ Θα with the maximum at |α| = 1.

VI. PREPROCESSOR OPTIMIZATION

The FIM derived for the analog preprocessor architecture in
Section V, F1-bit-PP, leaves open the question of the choice of
the parameter α. In this section, we provide design rules for
the choice of α and discuss results for different values of α.

A. Optimization of |α|
The proposed analog preprocessor and the FIM (44) derived

based on that structure do not provide any guidelines about the
choice of |α|. For the remainder of this subsection we assume
that ∠α = 0◦ and leave the details of the optimization of ∠α
to Section VI-B. Let R′PP denote the derivative of RPP with
respect to (WRT) |α|. The details of the calculation of R′PP are
given in Appendix B. The derivative of the Fisher information
w.r.t |α| of the preprocessed 1-bit system for ψ 6= θ is shown
in Fig. 3. Any constant parameters which do not depend on α
have been taken to be equal to unity since they do not affect
the optimization WRT |α|. Particularly, the expression

Re
[
a(θ)∗FNRXR′PPF∗NRX

a(θ)
]

is plotted in Fig. 3 as a function of the spatial DoA θ and
0 ≤ |α| ≤ 1. Similarly for the case of ψ = θ, the expression

Re
[(

∂a(θ)

∂θ

)∗
FNRXR′PPF∗NRX

∂a(θ)

∂θ

]
is illustrated in Fig. 4 as a function of the spatial DoA θ
and |α|. A constant reference surface with a value of 0 is
also plotted (in black) in Fig. 3 and Fig. 4. A number of
observations can be made from Fig. 3 and Fig. 4. First off,
the derivative of the Fisher information measure → 0 as

Fig. 4: Derivative of F1-bit-PP for ψ = θ as a function of θ and
|α| with ∠α = 0◦. Similar to Fig. 3, the positive values of
the derivative imply a monotonic increase in the DoA Fisher
information for θ ∈ Θα with the maximum occurring at |α| =
1. The derivative equals 0 for θ = ±90◦ because the aperture
size is reduced to 0 for end-fire directions.

|α| → 1. This implies that |α| = 1 is a stationary point
irrespective of the DoA θ. It can be seen that the derivative of
the Fisher information measure is positive for a subset of DoA
θ ∈ [−θα, θα], where θα is some constant that depends on α.
Let Θα represent the set of the DoAs [−θα, θα]. The positive
values of the derivative of Fisher information for θ ∈ Θα

combined with the non-negativity of the Fisher information
imply a monotonic increase in the Fisher information measure
reaching its maximum at |α| = 1 for θ ∈ Θα. For θ /∈ Θα,
the derivatives illustrated in Fig. 3 and Fig. 4 become negative
thus suggesting a decrease in the Fisher information measure
θ /∈ Θα reaching its minimum at |α| = 1. This suggests that
the preprocessing is optimized at |α| = 1 for θ ∈ Θα resulting
in the maximum improvement that can be achieved under the
proposed preprocessing architecture.

Remark 4. It can be observed from Fig. 4 that for ψ = θ, the
value of the derivative equals 0 for θ = ±90 irrespective of
|α|. This is explained by the fact that θ = ±90 corresponds to
the end-fire direction with reference to the array. The Fisher
information measure is 0 for θ = ±90 even in the case of
ideal ADCs. This is so because the aperture size reduces to
0 for θ = ±90. The proposed preprocessing can not further
change that.

B. Optimization of ∠α

Fig. 3 and Fig. 4 provide a hint towards the optimization of
∠α. It can be seen that the derivative of the FIM is positive
in a set Θα centered around ∠α = 0◦. Consequently the
preprocessed FIM improves over the unprocessed case in this
set Θα attaining the maximum improvement for θ = 0◦
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Fig. 5: Derivative of F1-bit-PP for ψ 6= θ as a function of
θ and ∠α with |α| = 1. It can be seen that the derivative
equals 0 for two different values of θ for each value of ∠α.
Claim 1 proves that the FIM gets the most improvement for
θ̄ = sin−1

(
−∠αλ

2πd

)
, the beamforming direction for a [1 α]

filter.

where the derivative can be seen to be the largest. This
makes intuitive sense because setting ∠α = 0◦ makes the
preprocessor beamform towards θ = 0◦.

This observation can be quantified by considering the sta-
tionary points of the FIM w.r.t ∠α. Let R′′PP be the derivative
of RPP w.r.t ∠α. The details of the computation of R′′PP
are given in Appendix C. Analogous to Fig. 3 and Fig. 4, the
expressions

Re
[
a(θ)∗FNRXR′′PPF∗NRX

a(θ)
]

and

Re
[(

∂a(θ)

∂θ

)∗
FNRXR′′PPF∗NRX

∂a(θ)

∂θ

]
are illustrated in Fig. 5 and Fig. 6 as a function of the spatial
DoA θ and ∠α. Having established that |α| = 1 maximizes
the FIM for θ ∈ Θα in Section VI-A, we restrict |α| = 1
for the remainder of this section. As in Section VI-A, any
parameters in the computation of the FIM in (44) that do not
depend on ∠α are taken to be equal to unity. It can be seen
from Fig. 5 that for ψ 6= θ, the derivative of the FIM equals
0 for any ∠α for two different values of θ. Fig. 6 additionally
illustrates that for ψ = θ, the derivative of the FIM equals 0
for all θ close to the end-fire direction. Going back to Section
VI-A, this connects to the explanation given in remark 4 for
Fig. 4. To establish which of the stationary points corresponds
to the maximum of the FIM as a function of θ, we look at the
expression for (RPP)kk in (46) (which captures the effect of
the proposed preprocessing on the FIM) in more detail.

Claim 1. The FIM gets the maximum improvement at θ̄ =
sin−1

(
−∠αλ

2πd

)
.
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Fig. 6: Derivative of F1-bit-PP for ψ = θ as a function of θ
and ∠α with |α| = 1. In addition to the observations made
in Fig. 5, it can be seen that the derivative of the DoA Fisher
information measure equals 0 for all angles close to the end-
fire direction.

Proof: See Appendix D. �

C. Analog preprocessor using low-resolution phase-shifters

Having established that |α| = 1 results in the maximum
improvement in a subset of θ ∈ Θα centered around θ̄ =
sin−1

(
−∠αλ

2πd

)
, we now understand how to choose α depend-

ing on the application. For example, the field of view (FoV)
of interest for a long-range radar (LRR) in an automotive
setting consists of the spatial directions close to broad-side
[23]. In this case, α = 1 is the appropriate choice resulting
in the maximum improvement at θ = 0◦. An adaptable high-
resolution high-bandwidth α would require complex circuitry
that will consume a significant amount of power. In this
section, we look at the improvements in FIM achievable using
low-resolution phase-shifters as potential ways of choosing α.

Low-resolution phase-shifters are of interest because of
reduced hardware complexity, power consumption, and cost
[27]. With Iq = {0, 1 . . . q−1}, the set of phase shifts achiev-
able by a q-bit phase shifter is given by Qq = {exp(j2πk/2q) :
k ∈ Iq}. For a specific parameter ψ = ψk, we define the ratio
of the (k, k)-th elements of the Fisher information matrices
given in (44) and (45),

χ(θ, α) =
[F1-bit-PP]kk
[F1-bit]kk

,

as the gain of the preprocessed system as a function of varying
θ and α. The gain χ(θ, α) (for ψ 6= θ) for −90◦ ≤ θ ≤ 90◦

and α = |α|ej∠α, where 0 ≤ |α| ≤ 1 and ∠α ∈ Q2 is
illustrated in Fig. 7. A 2-bit phase shifter can, in fact, be
implemented through two 1-bit comparators in the real and
quadrature dimensions and four switches. The four subfigures,
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(a) α = |α|ej2π×0/4. Maximum
gain at θ = 0◦. χ ≥ 1 in Θα =
[−30◦, 30◦]. Null at θ = ±90◦.

(b) α = |α|ej2π×1/4. Maximum
gain at θ = −30◦. χ ≥ 1 in
Θα = [−90◦,−30◦]. Null at
θ = 30◦.

(c) α = |α|ej2π×3/4. Maximum
gain at θ = 30◦. χ ≥ 1 in Θα =
[30◦, 90◦]. Null at θ = −30◦.

(d) α = |α|ej2π×2/4. Maxi-
mum gain at θ = ±90◦. χ ≥
1 in Θα = [−90◦,−30◦] ∪
[30◦, 90◦]. Null at θ = 0◦.

Fig. 7: Improvement in FIM, χ, as a function of the DoA θ and |α| for large NRX. As analyzed in section VI-A and VI-B,
maximum improvement occurs for |α| = 1 and at around θ = sin−1

(
−∠αλ

2πd

)
. The black line in each subfigure shows the 4

possible improvements resulting from the use of a 2-bit phase shifter corresponding to its 4 distinct phases.

each corresponding to one of the elements ofQ2, also illustrate
a constant surface with a value of 1 as a reference. All points
above this surface are where the preprocessing architecture
results in improvements over the unprocessed case. Each of
the subfigures also plots a black line for |α| = 1, which
is the resulting gain for the case of α ∈ Q2. As analyzed
in section VI-A, the maximum gain occurs at |α| = 1 for
all values of ∠α considered. This is of importance since
the preprocessing architecture in Fig. 2 can now be realized
through low-resolution phase-shifters. As per claim 1, the FIM
gain χ > 1 in a region Θα centered at θ̄ = sin−1

(
−∠αλ

2πd

)
in

each subfigure. The region Θα is not necessarily symmetric
around Θ̄. This is due to the sinusoidal dependence of spatial
frequency of the array factor on the physical DoA θ. For
ψ = θ, the gain χ looks very much like Fig. 7 other
than 2 subtleties. There is slight spreading due to the term(
∂a(θ)
∂θ

)∗
FNRX when ψ = θ. Secondly at θ = ±90◦, the gain

χ is not exactly defined because F1-bit-PP = F1-bit = 0 because
of zero aperture size in the end-fire direction. As hinted at the
beginning of section VI-C, α has a significant impact on the
system performance and has to be chosen according to the
application of interest. The choice of α = 1 with the gain χ
of Fig. 7a is appropriate for an LRR application. On the other
hand, the choice of α in Fig. 7b and Fig. 7c is appropriate
for cross traffic alerts and use as parking sensors within the
ADAS realm [22], [28].

The FIM gain χ in Fig. 7 peaks at 1.2 for all values of
α considered in Fig. 7. This result follows from (65) at the
optimal values of |α| and θ̄. The CRB at the optimal value of
|α| and θ̄ then follows from (44) as

CRB1-bit-PP||α|=1,θ̄=sin−1(−∠αλ
2πd ) ≈

π

2.4
CRBideal. (47)

It follows from (47) that the preprocessed case suffers a loss
of π

2.4 ≈ 1.16dB in comparison to the ideal ADC case in the
beamformed direction. This is an improvement of 0.8dB in
comparison to the unprocessed case derived in (31).

Note: The analog preprocessor, its optimization and the
resulting improvements from it have all been confined to the
specific structure shown in Fig. 2. A more general analog
preprocessor which beamforms in any specific direction using

n neighboring RF chains can achieve a higher gain in and
around the beamformed direction. This is, however, a game of
diminishing returns with the highest return coming at the first
step, i.e. n = 2, as discussed in this paper. This resembles
the effect of oversampling that has been observed in [14]
and [13]. A more general beamforming architecture will also
strongly affect the results shown in Fig. 7 by introducing local
minimums and maximums.

VII. RESULTS AND DISCUSSION

The performance of the proposed architecture for the case
of ideal infinite resolution ADCs and 1-bit ADCs derived in
Section III and 1-bit ADCs with analog preprocessing derived
in Section V is characterized by numerically evaluating the
CRB for each case. We emphasize here that the low-SNR
assumption Ryy ≈ Rnn in Section III and Rzz ≈ Rn′n′

in Section V is dropped in the numerical computation of the
CRBs. Thus, we expect deviation from the results derived in
this paper at medium to high SNRs. The important simulation
parameters, summarized in Table I, are inspired from an
automotive setting [22], [23]. We take the transmit power Pt
to be 20dBm. The numerical evaluations are done for a TX
antenna gain of 13dBi, RX antenna gain of 5dBi, target RCS
ζ of 0dBsm, a bandwidth of 1 GHz, a RX antenna array of 64
elements and a CPI of 100 IID symbols. The results illustrated
in this Section are for α = 1 and correspond to the gain
observed in Fig. 7a with maximum improvement at θ = 0◦.
Results similar to what is presented for α = 1 are obtained
for other choices of α. We first present CRB results for the

Bandwidth B 1 GHz
Carrier frequency fc 77 GHz

Transmit power 20 dBm
TX antenna gain 13 dBi
RX antenna gain 5 dBi

Path loss coefficient 2
Target RCS ζ 0 dBsm

Number of RX array elements NRX 64
Number of TX symbols L 100

TABLE I: Important simulation parameters
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Fig. 8: The CRB of the range and DoA estimate for the case of
an ideal ADC and 1-bit ADC with and without the proposed
preprocessing (for α = 1) for a target located at θ1 = 0◦. At
low per-antenna SNRs, the introduction of the preprocessor
results in an improvement of .84dB. At mid-range SNRs the
Ryy ≈ Rnn assumption does not remain true and the CRBs
for both 1-bit quantized systems start to deviate from the ideal
ADC case. Best viewed in color.

two parameters of interest: 1) Range and 2) DoA in single
target and multi-target settings followed by the improvement
in MSE for a simple correlation-based range-DoA estimator.

A. CRB results

1) Single target setting
The CRB for the target range (in solid) and DoA (in dotted)

estimation error against the true target position for a single
target setting is illustrated in Fig. 8. The target position is
changed in increments of 10 m from 10 m to 100 m whereas
its DoA is held fixed at 0◦. The target distance maps from a
maximum target (per-antenna) SNR of about 0dB at 10 m to
a minimum target SNR of -40dB at 100 m shown as a second
x-axis in Fig. 8.

The solid magenta line ( ) in Fig. 8 is the range CRB for
the system with infinite resolution ADCs which is inversely
proportional to the fourth power of the target range. This is
coherent with the result derived in [1]. The solid blue line
( ) in Fig. 8 is for the case of 1-bit ADCs which only
observe the sign of the RX signal. As derived in (31), the
CRB for the 1-bit case suffers a loss of π

2 ≈ 2dB at low
SNRs. At high SNRs the assumption Ryy ≈ Rnn is violated
and (27) does not hold anymore. As a result, the 1-bit CRB
starts to diverge from the CRB for ideal ADCs at smaller
ranges as seen in Fig. 8. Interestingly enough, at mmWave
frequencies, the per-antenna operating SNR falls in the low
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Fig. 9: The CRB for the range and DoA estimate for the case
of an ideal ADC and 1-bit ADC with and without the proposed
preprocessing (for α = 1) for a target located at θ1 = 45◦. It
can be seen that the proposed preprocessing suffers a loss
(in agreement with Fig. 7a) compared to the case without
preprocessing because θ1 = 45◦ /∈ Θα for α = 1. Best viewed
in color.

SNR regime thus making the bound (31) useful. The new
results derived in this paper using the analog preprocessing
unit shown in Fig. 2 with 1-bit ADCs are shown in the solid
red line ( ) in Fig. 8. For α = 1, the proposed analog
beamformer in (33) coherently adds the target contributions
of RX signal over neighboring RF chains for θ1 = 0◦. As per
(47), the CRB for the 1-bit preprocessed case suffers a loss
of π

2.4 ≈ 1.16dB from the ideal ADC case at low SNRs. It
can be observed that the system with preprocessing starts to
deviate from the ideal ADC system earlier compared to the
case without analog preprocessing. This happens because for
a target at θ1 = 0◦, the signal power is increased by a factor of
4 after the preprocessing stage boosting the SNR by a factor of
2. The Rzz ≈ Rn′n′ condition is thus violated earlier for the
architecture with preprocessing which explains the crossover
between the red and blue lines in Fig. 8. We point out here
that this artifact can be removed by introducing a switching
network in Fig. 2 which takes the preprocessing network out
of the system at mid-range SNRs or by dithering but we do
not pursue this further in this work. Similar observations about
the DoA CRB can be made from the set of three dotted ( )
lines shown in Fig. 8.

Fig. 9 illustrates results for a setting similar to Fig. 8 except
that the target is now placed at θ1 = 45◦. It follows from
Fig. 7a that χ(45◦, 1) ≤ 1, resulting in the preprocessed
CRB being larger than the case without preprocessing. The
solid magenta ( ) and blue ( ) lines in Fig. 9 equal their
counterparts in Fig. 8. However, the solid red line ( ) in
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Fig. 9 corresponding to the range CRB for the preprocessed
case experiences a loss larger than simple 1-bit quantization
in contrast to its counterpart in Fig. 8, thus confirming the
earlier observation. The reason is that for α = 1, the proposed
analog preprocessor does not coherently add the signals for a
target located at θ1 = 45◦. The same observation can be made
for the set of dotted ( ) lines which correspond to the DoA
CRB. The dotted lines in Fig. 9 suffer an additional loss in
comparison to the dotted lines in Fig. 8 due to the reduced
aperture length at θ1 = 45◦. Fig. 9 confirms the observation
made in Fig. 7 that α has a significant effect on the system
performance and needs to be chosen depending on the radar
region of interest.

2) Multi-target setting
Here we present results for a two target setting where the

first target is moved in increments of 10 m at θ1 = 0◦

as in Fig. 8. The second target is held fixed at 40 m and
θ2 = 2◦ for all positions of the first target. θ2 = 2◦ at 40
m corresponds to a cross-range separation of 1.4 m which
approximately equals the half-lane width of a typical road.
Hence, the two targets can be thought of as two vehicles
going in two lanes next to each other. The CRB of the DoA
estimate for the two targets are plotted in Fig. 10. The set
of three solid ( ) lines (with same color coding as before)
correspond to the first target along θ1 = 0◦. The three dotted
lines ( ) correspond to the second target with θ2 = 2◦. The
black dashed ( ) line in Fig. 10 illustrates the DoA CRB
for the single target setting from Fig. 8 for comparison. It can
be observed that preprocessing results in an improvement over
1-bit quantization for both targets similar to the single target
setting in Fig. 8. The CRBs for both targets increase slightly
as they approach closer to each other. This makes intuitive
sense as it becomes increasingly difficult to resolve the two
targets as they come close to each other. The CRB for target 1
( ) equals the CRB for the single target setting ( ) except
in the region where the two targets are relatively close.

The range and DoA CRB results demonstrated in this sec-
tion establish that the proposed architecture with 1-bit ADCs
and phase-shifters performs within 1.16dB of an architecture
with ideal ADCs and is capable of achieving sub-meter and
sub-degree accuracy in terms of range and DoA estimation
error. Hence, it is a promising candidate for future low-cost
low-power consumption high-resolution sensing applications.
Now we demonstrate the achievability of the improved CRB
through a correlation-based estimator.

B. Range and DoA estimator

The proposed correlation-based range and DoA estimator
follow the development in [30] and [1, Ch. 7]. The maximum
likelihood estimate (MLE) of delay for the discrete RX signal
(at one of the RX antennas) y[`] for ` ∈ T leads to the
correlation-based estimator τ̂ = ˆ̀

0Ts where

ˆ̀
0 = argmax

`0

[∣∣∣∣∣∑
`∈T

y[`]s∗[`− `0]

∣∣∣∣∣
]
, (48)

0 ≤ `0 ≤ dT+τmax
Ts
e and s[` − `0] = 0 for ` − `0 ≤ 0 and

`−`0 > L. An obvious problem with this estimator, especially
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Fig. 10: Range and DoA CRB results for a two target setting.
Target 1 is moved from 10 m to 100 m in increments of 10 m
with its DoA θ1 = 0◦. Target 2 is held at 40 m and θ2 = 2◦.
It can be seen that the proposed digital architecture preserves
the flexibility provided by a fully digital architecture while
reducing the performance loss due to 1-bit quantization in the
region of interest. Best viewed in color.

at high SNRs, is that accuracy of the estimate is limited by
the sampling time Ts since the true range estimate can lie
anywhere on the real line. Assuming that the resulting error
is uniformly distributed in between (ˆ̀− 1

2 )Ts and (ˆ̀+ 1
2 )Ts

leads to the simple sampling error bound T 2
s

12

(
c
2

)2
for the range

estimate [1, Ch. 7]. The estimation accuracy can be improved
beyond this sampling bound (SB) by either oversampling the
RX signal or interpolating the RX signal/correlation statistics
to a higher rate [1], [30]. Since the sampling frequency
is limited by hardware, we resort to interpolating the RX
signal before correlation. The interpolation procedure leads to
increased memory and computational cost and thus can only
be done to a certain degree as the sampling-based range error
bound is quite far from the range CRB at relatively higher
SNRS as show in Fig. 11. An alternative approach studied in
[1, Ch. 7] and [30] consists of refining the correlation peak
position by fitting a parabola around ˆ̀

0 in a least squares (LS)
sense and taking the apex of the parabola (given by −b/2a for
a parabola parametrized as ax2+bx+c) as the refined estimate.

Algorithm 1 Correlation-based range-DoA estimator
Input: Y,Θ, s

0) Pre-whiten Y (for the preprocessed case)
1) 2D correlation matrix R:

Rij =
∑NRX
n=1

∑
`∈T Ylns

∗[`− i]a(Θj)[n]

2) CFAR detection: (Get list of potential targets)
TargetList = CFAR(|R|) (using [29])(coarse estimate)

3)Parabolic refinement: (For all elements in TargetList)
LeastSquares(x) for x ∈ TargetList (Parabola LS fitting)
ApexCalculation(LS(x)) (see [30])(refined estimate)
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on grid spacing. It can be observed that improvements similar
to the CRB are achieved in the MSE by the correlation based
estimator as a result of the proposed preprocessing structure.
Best viewed in color.

We refer the reader to [1], [30] for more details. Prior work [1,
Ch. 7] has shown that the parabola based estimator achieves
the CRB with conservative oversampling for a considerable
range of SNR. We extend this technique to two dimensions
and obtain the coarse range and DoA estimates

ˆ̀
0, θ̂ = argmax

`0,θ

[∣∣∣∣∣
NRX∑
n=1

∑
`∈T

Ylns
∗[`− `0]a(θ)[n]

∣∣∣∣∣
]
, (49)

where Y ∈ C|T |×NRX is the two dimensional time-antenna
data matrix captured at the RX and θ ∈ Θ. Θ denotes a grid
of DoAs with a grid spacing of δDoA. The coarse estimates
are then refined by the parabola fitting method in range and
DoA dimensions separately. For our simulations, we used 4×
interpolation and δDoA = 0.5◦. Extension to multiple targets is
straightforward and involves replacing the argmax operation
in (49) by a target detection procedure based on constant false
alarm rate (CFAR) detection [29]. The coarse range and DoA
estimates for all targets can then be individually refined by
parabolic interpolation in the range and DoA dimensions. An
important point here is that the correlation-based estimator is
the MLE under the AWGN assumption. As discussed before,
the preprocessor makes the noise correlated across antennas.
We whiten the signal using R−1

n′n′ for the preprocessed case.
We also point out here that the correlation in (49) can be
implemented efficiently through FFTs. The pseudocode of the
proposed procedure is given in Algorithm 1.

The MSE in range and DoA estimates resulting from
Algorithm 1 for a target located at 30 m and θ1 = 0◦ are
illustrated in Fig. 11 against the RX SNR for the three ADC
cases considered throughout this paper. The RX SNR is varied
by changing the transmit power Pt from 10dBm to 37.5dBm.

The range and DoA CRB as well as the crude grid spacing
based error bounds (The DoA sampling bound is given by
δ2DoA
12 ) are also plotted in Fig. 11. Improvements similar to

the ones in range and DoA CRB are seen in the MSE for
the range and DoA estimates as a result of the proposed
preprocessor. All the MSE curves follow their respective CRBs
before flooring at high SNR and diverging at low SNRs. The
flooring at high SNRs occurs due to limited grid resolution
and bias from the parabola model assumed for upsampling the
correlation statistics [30]. Similar observations have been made
for correlation-based estimators before [1, Ch. 7]. The results
demonstrated in Fig. 11 establish that the gains observed in
the range and DoA CRBs derived and computed numerically
are also achievable in terms of the MSE.

VIII. CONCLUSION

In this paper, we characterized the performance of a fully
digital architecture with 1-bit ADCs in terms of CRB of
parameters of interest for a radar operating in the mmWave
band. We proposed an analog preprocessing structure that
can be designed and optimized beforehand depending on the
particular application. We demonstrated that the preprocessing
network can in fact be realized through low-resolution phase-
shifters. We showed that the gap between the CRB of a
system with 1-bit ADCs and the CRB of a system with
ideal ∞ resolution ADCs can be reduced to 1.16dB using the
proposed analog preprocessing unit, which is an improvement
over the previously known 2db loss. We also demonstrated
the achievability of the improved CRB through a simple
range-DoA estimator. We showed by numerical evaluation
of the CRB that this is a viable solution for future high-
resolution low-cost low-power sensing requirements. Future
work in this direction includes the generalization of the analog
preprocessing structure to an arbitrary number of RF chains,
optimization of oversampling rate and algorithmic design for
the use of the proposed architecture in various settings.

APPENDIX A
DERIVATIVE COMPUTATION IN (30)

This appendix details the computation of the deriva-
tives required for (30). The derivatives ∂µy(ψ)

∂ψi
for ψi ∈

{|γi|,∠γi, θi, τi} where 0 ≤ i ≤ K at time nTs are given
by

∂µy(ψ)

∂|γi|

∣∣∣∣
t=nTs

=
∂
∑K
k=0 γka(θk)x(nTs − τk)

∂|γi|
= ej∠γia(θi)x(nTs − τi),

(50)

∂µy(ψ)

∂∠γi

∣∣∣∣
t=nTs

= jγia(θi)x(nTs − τi), (51)

∂µy(ψ)

∂θi

∣∣∣∣
t=nTs

= γi (a(θi)� b(θi))x(nTs − τi), (52)

where

b(·) =

[
0

j2πd cos(·)
λ

. . .
j(N − 1)2πd cos(·)

λ

]T

, (53)
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and finally

∂µy(ψ)

∂τi

∣∣∣∣
t=nTs

= γia(θi)x
′(nTs − τi)

= γia(θi)
L∑
`=1

s[`]g′(nTs − `Ts),
(54)

where

g′(t) =

{
0, if t = 0
(πB)2t cos(πBt)−πB sin(πBt)

(πBt)2 , otherwise.
(55)

The derivatives, ∂Re[sk(ψ)]
∂ψi

and ∂Im[sk(ψ)]
∂ψi

, required for the
computation of (16) and (17) are given by the real and
imaginary parts of the kth component of (50), (51), (52) and
(54) for corresponding ψi and ψj .

APPENDIX B
DERIVATIVE OF RPP W.R.T |α|

The matrix RPP accounts for the only difference between
F1-bit-PP in (44) and F1-bit in (45). The derivative of RPP w.r.t
|α|, R′PP, is given by

R′PP =
∂RPP

∂|α|

=
1

1 + |α|2

(
−2|α|diag((A1)∗)(diag(Rrr−1))−1diag(A1)

+ diag((A1)∗)(diag(Rrr−1))−1diag(FNRXa′1)

+ diag((FNRXa′1)∗)(diag(Rrr−1))−1diag(A1)

− diag((A1)∗)(diag(Rrr−1))−2diag(FNRXR′rr−1)diag(A1)

)
,

(56)

where a′1 ∈ CNRX is the derivative of the first row of A w.r.t
|α| given by

a′1 =
[
0, ej∠α, 0, . . . 0

]T
, (57)

and R′rr−1 ∈ CNRX is the derivative of the first row of Rrr

w.r.t |α| given by

R′rr−1 =

[
0,
∂f(ᾱ)

∂|α|
, 0, . . .

(
∂f(ᾱ)

∂|α|

)∗]T
, (58)

with

∂f(ᾱ)

∂|α|
=

2

π

 −1/2

√
1−

(
Re [α]

1 + |α|2

)2

×

cos(∠α)(1 + |α|2)− 2Re [α] |α|(
1 + |α|2

)2 + j×

−1/2

√
1−

(
Im [α]

1 + |α|2

)2 sin(∠α)(1 + |α|2)− 2Im [α] |α|(
1 + |α|2

)2
 .

(59)

APPENDIX C
DERIVATIVE OF RPP W.R.T ∠α

The derivative of RPP w.r.t ∠α, R′′PP, is given by

R′′PP =
∂RPP

∂∠α

=
1

1 + |α|2

(
diag((A1)∗)(diag(Rrr−1))−1diag(FNRXa′1)

+ diag((FNRXa′1)∗)(diag(Rrr−1))−1diag(A1)

− diag((A1)∗)(diag(Rrr−1))−2diag(FNRXR′rr−1)diag(A1)

)
,

(60)

where a′1 ∈ CNRX is the derivative of the first row of A w.r.t
∠α given by

a′1 = [0, jα, 0, . . . 0]
T
, (61)

and R′rr−1 ∈ CNRX is the derivative of the first row of Rrr

w.r.t ∠α given by

R′rr−1 =

[
0,
∂f(ᾱ)

∂∠α
, 0, . . .

(
∂f(ᾱ)

∂∠α

)∗]T
, (62)

with

∂f(ᾱ)

∂∠α
=

2

π

 −1/2

√
1−

(
Re [α]

1 + |α|2

)2

× −Im [α](
1 + |α|2

) +

j× −1/2

√
1−

(
Im [α]

1 + |α|2

)2

× Re [α](
1 + |α|2

)
 .

(63)

APPENDIX D
PROOF OF CLAIM 1

Here we give an approximate proof of the claim made in
section VI-B. An alternative way to look at the optimization
of the preprocessor w.r.t ∠α is to derive the stationary points
of (RPP)kk in (46) w.r.t k and then evaluate (46) at these
stationary points to see which k maximizes the FIM. Each
k has a one-to-one correspondence with an on-grid DoA as
detailed in section V. Before deriving the stationary points of
(RPP)kk w.r.t k, we note that the expression in (46) can be
simplified as

(RPP)kk =

(
1 + |α|2

)−1
(

1 + |α|2 + 2|α| cos
(

2πk
NRX

+ ∠α
))

1 + 2f(Re [ᾱ]) cos
(

2πk
NRX

)
− 2f(Im [ᾱ]) sin 2πk

NRX

.

(64)
At this point, we make an approximation by exploiting that
asin(·) ≈ (·) for small (·). It can be verified that the maximum
values of Re [ᾱ] and Im [ᾱ] equal 0.5. Fig. 12 plots the per-
centage error resulting from the approximation asin(·) ≈ (·)
for |(·)| ≤ 0.5 in red. It also illustrates the percentage error in
phase as a function of ∠α resulting from this approximation
for |α| = 1. It can be observed that both these errors are under
5% in the range of interest, thus justifying its use. With the
approximation asin(·) ≈ (·), (64) can be approximated as

(RPP)kk ≈
1 + |α|2 + 2|α| cos

(
2πk
NRX

+ ∠α
)

1 + |α|2 + 4
π |α| cos

(
2πk
NRX

+ ∠α
) . (65)
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Fig. 12: Percentage error of the approx asin(·) ≈ (·) for |(·)| ≤
0.5 shown in red. The blue curve plots the percentage error
in phase as a function of ∠α resulting from the asin(·) ≈ (·)
approximation for |α| = 1. It can be seen that the error stays
under 5% thus justifying the approximation. Best viewed in
color.

Taking the derivative of (65) w.r.t k and equating it to 0
results in (after some algebra)

2|α| sin
(

2πk

NRX
+ ∠α

)
=

4

π
|α| sin

(
2πk

NRX
+ ∠α

)
. (66)

Any k that satisfies (66) is a stationary point of (46). For
α 6= 0, the two sides of (66) are equal only when the argument
of the sin() is a multiple of π. Relaxing k/NRX to any
real number and considering the fundamental period of the
argument of sin(), i.e. 0 ≤

(
2πk
NRX

+ ∠α
)
< 2π, this results

in two stationary points 2πk
NRX

= −∠α and 2πk
NRX

= π − ∠α.
Putting these back into (65) or (46) immediately reveals that
2πk
NRX

= −∠α maximizes it. Particularly for |α| = 1, putting
back 2πk

NRX
= π − ∠α into (65) yields 0 whereas 2πk

NRX
= −∠α

results in 1.22 which agrees with the peak improvement over
the unprocessed case as illustrated in Section VI-C.

The maximizing value of k can be mapped back to the
spatial DoA using the mapping given in remark 2 of Section
V resulting in θ̄ = sin−1

(
−λ∠α2πd

)
. This value (perhaps not

surprisingly) turns out to be the same as the beamforming
angle of the [1 α] filter (for |α| = 1) as discussed in Section
IV. This concludes the proof that the preprocessing architec-
ture achieves its maximum improvement in the beamformed
direction determined by ∠α.

Note: The set of values k/NRX is not dense in R unless
NRX → ∞. Consequently, the maximum improvement in
FIM, especially in the finite aperture case, does not always
occur in the beamforming angle of the [1 α] filter. Instead,
the maximum improvement at one of the neighboring on-grid
angles corresponding to the array aperture. The approximation
asin(·) ≈ (·) also adds a little bias to the results obtained using
the above analysis.
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