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Abstract

The computational study of election problems gen-
erally focuses on questions related to the winner or
set of winners of an election. But social preference
functions such as Kemeny rule output a full rank-
ing of the candidates (a consensus). We study the
complexity of consensus-related questions, with a
particular focus on Kemeny and its qualitative ver-
sion Slater. The simplest of these questions is the
problem of determining whether a ranking is a con-
sensus, and we show that this problem is coNP-
complete. We also study the natural question of
the complexity of manipulative actions that have
a specific consensus as a goal. Though determin-
ing whether a ranking is a Kemeny consensus is
hard, the optimal action for manipulators is to sim-
ply vote their desired consensus. We provide evi-
dence that this simplicity is caused by the combi-
nation of election system (Kemeny), manipulative
action (manipulation), and manipulative goal (con-
sensus). In the process we provide the first com-
pleteness results at the second level of the polyno-
mial hierarchy for electoral manipulation and for
optimal solution recognition.

1 Introduction

Elections are a widely used tool for aggregating the prefer-
ences of several agents into a collective decision. Often the
goal is to determine a single winner or set of winners from
among a set of candidates. However, in other cases, such as
constructing a meta-search engine [Dwork et al., 2001] or ge-
netic maps [Jackson et al., 2008], the natural desired outcome
is a ranking.

One of the most compelling ways of aggregating prefer-
ences is the Kemeny rule. It is known that computing a Ke-
meny consensus (i.e., a ranking closest to the electorate) is a
computationally difficult problem. We show that even simply
checking if a given ranking is a consensus is coNP-complete.
This problem is naturally motivated by an agent wanting to
verify the claimed outcome of an election.

One of the most important lines of research in the com-
putational study of elections (see, e.g., Faliszewski and
Rothe [2016]) is the study of different manipulative actions
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such as manipulation and control [Bartholdi er al., 1989a;
Bartholdi et al., 1992], where an agent (or agents) seek to
ensure their preferred outcome by either voting strategically
or modifying the structure of the election. In each of these
models, the goal is typically to ensure a preferred candidate
wins. For scenarios where the collective decision is a consen-
sus, it is natural to consider manipulative actions where the
goal of the agent(s) is to reach a preferred consensus.

Even though the problem of determining whether a rank-
ing is a Kemeny consensus is hard, the optimal action for the
manipulators is to simply vote their desired consensus. We
provide evidence that this simplicity is caused by the combi-
nation of the manipulative action (manipulation), the manip-
ulative goal (consensus), and the election system (Kemeny).
In particular:

Determining if a given ranking is a Kemeny consensus
is coNP-complete. (Section 3)

Control by deleting candidates for Kemeny with the
goal of a particular consensus is ¥:5-complete (and thus,
unlike manipulation, the optimal control action is not
polynomial-time computable). (Section 5)

We provide evidence that manipulation (to winner) for
Kemeny is also much harder than manipulation to con-
sensus, by showing that manipulation (to winner) for a
natural variant of Slater (the qualitative version of Ke-
meny) is Eg-complete. (Section 6)

The choice of system matters as well. For example the
optimal action for the manipulators to reach a consen-
sus is not polynomial-time computable for Borda. (Sec-
tion 7)

2 Preliminaries

An election consists of a set of candidates C' and a collection
of voters V' where each voter has a ranking (total order pref-
erence) over the set of candidates. For example, a > b > ¢,
where > denotes strict preference, is a vote over {a, b, c}.

We consider voting rules that are social preference func-
tions, which map an election to a set of one or more rank-
ings (total orderings) of the candidates. One of the most-
important social preference functions is the Kemeny rule [Ke-
meny, 1959].

A ranking > is a Kemeny consensus if the sum of
the Kendall tau distances to the voters is minimal, i.e.,
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Y assN(b,a) is minimal, where for candidates a and b,
N (b, a) denotes the number of voters that state b > a.

It is often useful to refer to the induced weighted major-
ity graph of the election when working with the Kemeny
rule. The weighted majority graph of an election (C, V') has
a vertex for each candidate and for each pair of candidates
a,b € Cif N(a,b) > N(b,a) there is an arc (a,b) labeled
with N (a,b) — N (b, a).

Example 1. Consider an election with candidates {a, b, c,d}
and three voters with their votes, and the corresponding in-

duced weighted majority graph below.
-1,
1
X
3

b>c¢c>a>d

b

l

c

*a>b>c>d a

1
d

*c>a>d>Db
*b>c>d>a

Consensuses: a > b > ¢ > d,
¢ > a > b > d. Kendall tau distance: 6.

We consider several different computational problems re-
lating to the Kemeny rule. For readability, the formal defi-
nitions of these problems are deferred to where the results
appear.

We assume that the reader is familiar with the complexity
classes P, NP, and coNP. Our complexity results also concern
the class ¥5= NPNF a class at the second level of the polyno-
mial hierarchy, which is the class of problems solvable by an
NP-machine with access to an NP oracle [Meyer and Stock-
meyer, 1972; Stockmeyer, 1976].

3 Consensus Recognition

We now formally define the problem of determining whether
a ranking is a Kemeny consensus.

Name: Kemeny Consensus Recognition

Given: Anelection (C, V') and a total order X.

Question: Is X a Kemeny consensus of the election?

Hudry [2013] observes that the Kemeny Consensus Recog-
nition problem (there called Order Recognition) is in coNP,
and conjectures it is coNP-complete.! Since it is easier to
think about NP than about coNP, we will often look at the
complement, i.e., determining whether X is not a consensus.
As usual, the upper bound is easy to see: Note that X is not
a Kemeny consensus if and only if there exists a total order
whose distance to the election is less than that of X.

Also note that the Kemeny Consensus Recognition prob-
lem is not in NP unless NP = coNP, since the Kemeny score
of an election (Kendall tau distance to a consensus) is greater
than k if and only if there exists a total order that is a Ke-
meny consensus whose score is greater than k. So if Ke-
meny Consensus Recognition is in NP, then determining if
the Kemeny score of an election is greater than k is in NP.
This latter problem is coNP-complete, since it is in essence
the complement of the problem Kemeny Score, which is NP-
complete [Bartholdi ez al., 1989b].

The above does not imply that Kemeny Consensus Recog-
nition is coNP-hard. It merely says that, assuming NP #

"Hudry uses Turing reductions. We look at the standard notion of
polynomial-time many-one reductions, which gives stronger results.
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coNP, the problem is in coNP — NP. Under the assump-
tion that NP # coNP, there are problems in coNP — NP
that are not coNP-complete [Ladner, 1975]. A natural can-
didate of such a problem is graph nonisomorphism problem.
Note that this problem has some “easiness” properties that are
not shared by any natural coNP-complete problem, such as a
zero-knowledge proof for the complement [Goldreich et al.,
1991] and a quasi-polynomial time algorithm [Babai, 2016].

We will now prove Hudry’s conjecture that Kemeny Con-
sensus Recognition is coNP-complete (as Theorem 5).

Optimal solution recognition problems induced by opti-
mization problems are very natural decision problems, but
there are only a couple of results in the literature. Papadim-
itriou and Steiglitz [1978, Theorem 5] show that Minimum
TSP Tour Recognition is coNP-complete. Armstrong and Ja-
cobson [2003] study the global verification problem (which
is the complement of optimal solution recognition) related to
various NP optimization problems and show that the optimal
solution recognition problems for Vertex Cover, MAX-SAT,
and MAX-E-SAT (k > 2) are each coNP-complete.

Our proof of Theorem 5 will use the coNP-completeness
of Minimum Vertex Cover Recognition.
Name: Minimum Vertex Cover Recognition
Given: A graph G and a set of vertices X.
Question: Is X a minimum vertex cover of G?

Theorem 2 ([Armstrong and Jacobson, 2003]). Minimum
Vertex Cover Recognition is coNP-complete.

The Kemeny Score problem was shown hard by a reduction
from Feedback Arc Set (FAS) [Bartholdi et al., 1989bl. In
the full version [Fitzsimmons and Hemaspaandra, 20211, we
show the following problem coNP-complete.

Name: Minimum FAS Recognition

Given: An irreflexive and antisymmetric directed graph G
and a set of arcs X.

Question: Is X a minimum fas of G (a minimum set of arcs
such that G — X is acyclic)?

Theorem 3. Minimum FAS Recognition is coNP-complete.

Feedback arc sets and Kemeny consensuses are very
closely related [Bartholdi ef al., 1989b]. We use the following
slightly unusual formulation of this relationship.

Lemma 4. For G a directed graph, let e(G) be the election
with candidates V (G) and for each arc (a,b) € A(G) one
voter voting a > b followed by all candidates in V(G) —
{a, b} in lexicographical order and one voter voting all can-
didates in V(G) — {a, b} in reverse lexicographical order
followed by a > b. This election is computable in polyno-
mial time, and has G with all arc weights 2 as its induced
weighted majority graph [McGarvey, 1953].

For X a minimal fas of G (i.e, X is a fas of G and no
strict subset of X is a fas), and X a total order consistent
with G — X (i.e., if (a,b) € A(G) — X, thena > bin X), it
holds that X is a minimum fas if and only if X isa Kemeny
consensus of e(G).

This gives us a reduction from Minimum FAS Recognition
to Kemeny Consensus Recognition, which gives us the fol-
lowing theorem.
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Theorem 5. Kemeny Consensus Recognition is coNP-
complete.

Proof.  Given G and X, if X is not a minimal fas (which
can be determined in polynomial time), then output some-
thing that is not an instance of the problem. If X is a minimal
fas, then output e(G) (as defined in Lemma 4) and a total or-
der consistent with G — X (which can be computed in poly-
nomial time, since G — X is acyclic).

From the above, one might think that coNP-hardness for an
optimal solution recognition problem follows from a straight-
forward modification of the reduction for the related NP-
complete decision problem. But this is only the case when the
witnesses of the two decision problems directly correspond to
each other. This is usually not the case. See for example the
proof of the analogous result for tournaments later in this pa-
per (Theorem 15).

4 Manipulative-Actions-to-Consensus

In the previous section we showed that Kemeny Consensus
Recognition is coNP-complete. Given the hardness of this
problem, does it follow that manipulative actions with the
goal to reach a specific consensus are hard? This is true if we
look at decision problems such as “Given an election and a to-
tal order X, can we perform a manipulative action such that
X is a consensus.” Such decision problems typically inherit
the coNP-hardness (e.g., by having no manipulators). It is still
interesting to look at these decision problems, since they may
be complete for classes above coNP, which limits the tools we
have to solve these problems. Standard approaches for solv-
ing problems in NP or coNP such as using SAT solvers are not
appropriate for solving problems that are complete for higher
levels of the polynomial hierarchy such as 5.

We will also look at the problem of determining the ma-
nipulative action. It is possible that it is easy to determine the
best action, even though it is hard to determine whether such
an action leads to the desired outcome. In fact:

Observation 6. Consider  Kemeny-Manipulation-to-
Consensus, in which we are given an election, a collection of
manipulators, and a desired consensus X, and we ask if the
manipulators can vote so that X is a Kemeny consensus of
the resulting election. It is easy to see that a total order X
can be made a consensus if and only if X is a consensus when
all manipulators vote X (for details see the full version).

And so the optimal action for the manipulators is straight-
forward, namely to vote X, and the complexity of the asso-
ciated decision problem Kemeny-Manipulation-to-Consensus
is the same as for the recognition problem, namely, coONP-
complete.

Now we ask: What makes it easy to determine the manipu-
lative action? Is it the election system (Kemeny)? Is it the ma-
nipulative action (manipulation)? Is it the manipulative goal
(consensus)?

Note that the observation above has interesting repercus-
sions for other manipulative actions and for other manipula-
tive goals. For example, in bribery, we can assume that all
bribed voters vote the same X, where X is a consensus af-
ter bribery. And if the goal of the manipulators is to make a
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preferred candidate p a winner, we can assume that all ma-
nipulators vote the same X, where X is a consensus after
manipulation. (Since if there is a manipulation such that p is
a winner, then there is a manipulation with a consensus X
that ranks p first. But then X is also a consensus when all
manipulators vote X.)

Despite this simplicity of all manipulators/bribed voters
voting the same, we will provide evidence in the next couple
of sections that determining the optimal manipulation to ob-
tain a Kemeny consensus is easy because of the combination
of election system (Kemeny), manipulative action (manipula-
tion), and manipulative goal (consensus).

5 Control-to-Consensus

Electoral control models whether the structure of an election
can be modified to ensure a preferred outcome [Bartholdi et
al., 1992]. Control(-to-Winner) problems for Kemeny tend to
be Xb-complete [Fitzsimmons er al., 2019] (note that win-
ner determination is already complete for parallel access to
NP [Hemaspaandra e al., 2005]). In this section we provide
evidence that this is also the case for Control-to-Consensus.
Note that this implies that, unless NP = coNP, the opti-
mal control action to obtain a Kemeny consensus is not
polynomial-time computable (in contrast to manipulation).

YE lower bounds are often hard to prove, in part because
there are fewer known Y5-complete problems (see Schaefer
and Umans [2002] for a list) and also because one needs
a closer correspondence between the two problems than for
NP-hardness reductions.

We first show that optimal solution recognition for
the X2-complete problem Generalized Node Deletion
(GND) [Rutenburg, 1994] is IT5-complete.

Name: Minimum GND Recognition

Given: A graph G, integer ¢, and set of vertices X.
Question: Is X a minimum set of vertices such that G — X
does not contain K11 (a clique of size £ + 1)?

Theorem 7. Minimum GND Recognition is 115-complete.

This is the first completeness result at the second level of
the polynomial hierarchy for optimal solution recognition.
For details, see the full version.

The natural deletion analogues of Minimum Vertex Cover
(resp. FAS) Recognition where we are additionally given a
delete limit £ and ask if there exists a set of at most IV vertices
such that X is a minimum vertex cover (minimum fas, respec-
tively) of G — W are also X5-complete (for details see the full
version). Since there is a dearth of natural >:5-complete prob-
lems, these results are interesting in their own right.

We will now look at control by deleting candidates (CDC).
We will show that the following problem is >5-complete.
Name: Kemeny-CDC-to-Consensus
Given: An election (C, V), delete limit %, and a total order
X over C.

Question: Does there exist a set D C C of at most & candi-
dates such that X restricted to C'— D is a Kemeny consensus
of (C—D,V)?

Though this problem is not the most natural, it does pro-
vide evidence that Kemeny-Control-to-Consensus problems
are Xb-complete.
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Theorem 8. Kemeny-CDC-to-Consensus is ¥5-complete.

Note that in the definition of Kemeny-CDC-to-Consensus,
it is important that X is a total order over C. If it were
over C' — D, we would be able to see which candidates are
deleted from the problem instance (and the problem would
be equivalent to Kemeny Consensus Recognition). However,
this makes the problem different from the ¥%-complete FAS
problem, since total order X ranks all candidates. This means
that the straightforward X5 analogue of the reduction from
Minimum FAS Recognition to Kemeny Consensus Recog-
nition from the proof of Theorem 5 does not work. In that
reduction, the order was a total order consistent with the di-
rected acyclic graph G — X, where X is a fas. However, be-
fore deletion, G — X is not necessarily acyclic! To prove 35-
completeness of Kemeny-CDC-to-Consensus, we need dif-
ferent, less natural ES -complete versions of Vertex Cover and
Feedback Arc Set Recognition that look more like Kemeny-
CDC-to-Consensus. In particular, we need to make sure that
the solutions for Vertex Cover and Feedback Arc Set are (not
necessarily optimal) solutions for the whole graph. Details
can be found in the full version.

There are other types of control, most notably control by
adding candidates and control by adding/deleting voters. As
problems, these are more compelling. For example, the def-
inition of control by deleting voters (CDV) to consensus is
straightforward and natural.

Name: Kemeny-CDV-to-Consensus

Given: An election (C, V'), delete limit k, and a total order X .
Question: Does there exist a set W C V of at most k voters
such that X is a Kemeny consensus of (C,V — W)?

One might think that, in analogy to optimal action for ma-
nipulators being voting the consensus, the optimal action for
CDV would be to simply delete voters furthest from the de-
sired consensus (and for CAV to simply add voters closest
to the desired consensus). However, the following example
shows that this is not the case.

Example 9. Consider an election with candidates {a,b, c},
five voters: three voting a > b > ¢, one voting a > ¢ > b, and
one voting ¢ > b > a, delete limit 1, and desired consensus
a>c>b.

Note that a > ¢ > b is not a consensus. If we delete the
voter furthest from the consensus (i.e., the voter voting ¢ >
b > a) then a > ¢ > b is not a consensus, but if we delete one
of the a > b > c voters then a > ¢ > b is a consensus.

This example with one of the @ > b > ¢ voters and the
¢ > b > a voter as the unregistered voters and an add limit of
1 shows the analogous counterexample for Kemeny-CAV-to-
Consensus.

We conjecture that all these control-to-consensus problems
are Y:5-complete. However, we cannot modify the approach
above in a simple way, since one arc in a graph does not cor-
respond to one voter in the corresponding election. This is
also the reason that the complexity of “regular” Kemeny voter
control(-to-winner) is still open [Fitzsimmons et al., 2019].

6 Manipulation(-to-Winner)

Showing that manipulation is hard is hard! For example, it is
not too hard to show that control for Borda is hard [Russell,
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20071, but the complexity of (coalitional) manipulation for
Borda was open for a long time and NP-completeness was
shown only after discovering an appropriate NP-complete
problem in scheduling [Davies er al., 2014; Betzler et al.,
2011]. And proving the NP-completeness of manipulation for
Copeland® for o # 0.5 involved construction of elaborate
gadgets [Faliszewski er al., 2008; Faliszewski er al., 2010].

The reason that it is so hard to prove manipulation hard is
that the manipulators do not follow any structure other than
voting a total order. This means that basically all the structure
needs to come from the nonmanipulators.

For Kemeny, we know from Section 4 that we can assume
that all manipulators vote the same. So all we have to work
with is one total order. Though we conjecture that Kemeny-
Manipulation is X5 -complete, we have not succeeded in prov-
ing this. The closest we got is the following theorem, which
is explained in more detail after the theorem statement. We
note that this is the first X5-complete manipulation result.

Theorem 10. Slater-Manipulation where candidates have
unary weights is X5 -complete, even for one manipulator.

The Slater rule [Slater, 1961] can be viewed as a qualita-
tive version of Kemeny. It is defined as follows. A ranking >
is a Slater consensus if the number of disagreements with the
majority graph induced by the voters is minimal (note that
for Slater we look at the induced majority graph while for
Kemeny we look at the induced weighted majority graph). In
our Slater proofs, we will often look at the Slater score of a
ranking, which is the number of agreements with the majority
graph, i.e., ||C|(||C|| — 1)/2 minus the number of disagree-
ments. So, the higher the score, the better the ranking.

Candidates with weights for Kemeny are a natural no-
tion [Kumar and Vassilvitskii, 2010]. For candidates with
weights, the contribution of each candidate to the score is
multiplied by its weight. For our result, we need only unary
weights, which is a step in the direction of not needing
weights.

The high-level reason that we obtain this result for Slater
and not for Kemeny is that in Slater we can “freeze” certain
arcs in the majority graph. For example, if we have three non-
manipulators all voting @ > b, and we have one manipulator,
then the manipulator cannot change the contribution to the
Slater score of the pair {a,b}. Note that this is not the case
for Kemeny.

Candidates with weights also give more structure to the
manipulator. For example, if we have two candidates a and
b of weight 10, then the manipulator can rank @ > bor b > a.
If we replace a by 10 little a’s and 10 little b’s, the manipula-
tor can rank those in any messy order it wants.

Proof Sketch of Theorem 10. To show Xb-hardness, we will
reduce from QSAT> [Stockmeyer, 1976; Wrathall, 1976].
Consider cnf formula ¢ = D1 A --- A D,,_1 over variables
Xoy...,xpandlet ¢’ = (k1 VDA A(x1V Dypq) Ay
(Notice that ¢’ has m clauses over variables x1,...,x,.)
Without loss of generality, assume that if ¢ is not satisfi-
able, then at most m — 3 clauses can be satisfied (this can
be accomplished by doubling each clause). We will in poly-
nomial time compute an election with one manipulator such
that 3z, 41 - v~ (3Bxe - Ty d(xa, . . ., xy,)) if and only if
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the manipulator can vote such that the candidate +; becomes
a winner.

First note thatif 3z,,r - -z~ (Fzg - - T d(za, .. ., Ty,)),
then 3zpryq - - - £, such that any assignment with z; = true
satisfies m — 1 clauses of ¢’ and any assignment with z; =
false satisfies at most m — 2 clauses of ¢'. If it is not the case
that 3z zp—=(Iza- - Tprd(za,...,7,)), then any
assignment with x; = true satisfies m — 1 clauses of ¢’ and
there is an assignment with =; = false that satisfies m clauses
of ¢'.

Now apply the reduction from MAX-SAT to Slater score
from Conitzer [2006] to ¢, with the following change. We
replace each size M “super-candidate™ (a group of M can-
didates that, for the purposes of Slater score, can be treated
as one single candidate of weight M) by one candidate of
weight M. This ensures that we only get Slater consensuses
of a specific form and no “rogue” consensuses (this was not
a problem in Conitzer [2006], since for the purposes of Slater
scores it is enough that there exist a Slater consensus of the
appropriate form; however, since we are interested in whether
a specific candidate can be a winner or not, we need to pre-
clude rogue consensuses with a rogue winner). This computes
a tournament? in which each variable x; is represented by a
subtournament 7; (which includes the vertices +; and —;)
and each clause by a candidate ¢. The relevant properties of
the reduction are as follows.

» All Slater consensuses rank T > --- > T},.

+ Slater consensuses correspond to assignments satisfying
a maximum number of clauses of ¢’ in the following
way. For C}, a true clause, candidate ¢ is ranked (in
a specific way) among the candidates in a subtourna-
ment T; whose ranking encodes an assignment to x; that
makes C}, true.

» If T7’s ranking encodes x; = true, then candidate +;
is ranked first. If T ’s ranking encodes x; = false, then
candidate — is ranked first.

* 4, is a Slater winner or —; is a Slater winner.

* There is an assignment that satisfies > k clauses of ¢’ if
and only if the Slater score is > B + kM (here, B (the
baseline score) and M are polynomial-time computable
constants that are small enough to be given in unary).

We want to keep as much of this construction as possible.
First we double every voter, so that the arc weights in the
induced tournament are all 2. We have one manipulator. Note
that one manipulator cannot change an arc of weight 2. We
will now change the tournament a little, in such a way that the
manipulator can “set” the values of the existential variables
(Znry1, ..., Tn), but nothing else.

In the construction, we change how the existential
variables are represented. Each such variable z; will
be represented by a graph consisting of four candi-
dates +;, —;, b;, d;, each of weight M (recall that we al-
low unary weights for the candidates). These four can-
didates are connected by the following weight-2 arc:

2For every pair of vertices a, b, a — b or b — a, but not both.
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tj—

X

j — dj-

The only “undeclared” arc is between +; and —;. This arc
will be determined by the vote of the manipulator. +; > —;
will correspond to setting z; to true and —; > +; will corre-
spond to setting x; to false. Let T be the subtournament after
the manipulator vote.

For clause candidate cx, we add the following arcs.

* If z; occurs positively in Cy, add arcs
+i = Cky Ck = —i, ¢k = biydi = ci.

* If z; occurs negatively in Cy, add arcs
—i —* Cr,Ck — +i, cp — by, di — ¢

 If z; does not occur in Cy, add arcs
Ccg —* +hck — _i:bi — ckudi — Ck-

All other arcs are unchanged. In particular, all Slater con-
sensuses rank Ty > --- > Ty > T,y > --- > T,. Note
that if we rank candidate ¢, before or after T7, this contributes
a baseline score of 2M to the Slater score. The only way a
clause candidate ¢ can gain points from T over the baseline
score of 2M is if ¢y, is ranked among the candidates in T} and
the value of x; encoded by the ranking of 7] makes Cj, true.
In that case, we gain M extra points.

Example 11. For example, if x; is true and c; occurs posi-
tively in Cy, we obtain the subtournament below and we can
order +; > c¢x > —; > b; > d; so that ¢y, gains 3M points
from T} for the Slater score.

From this, we get the following, for a specific fixed assign-
ment to Tp/41,...,Ty (and the manipulator voting accord-
ingly).

+ Slater consensuses correspond to assignments satisfying
a maximum number of clauses of ¢’ in the following
way. For Cy a true clause, candidate ¢ is ranked (in a
specific way) among the candidates in a subtournament
T’ or T} whose ranking encodes an assignment to z; that
makes C}, true.

» If T1’s ranking encodes x; = true, then +; is ranked
first. If it encodes =, = false, then —; is ranked first.

* -+, is a Slater winner or — is a Slater winner.

» There is an assignment that satisfies > k clauses of ¢’ if

and only if the Slater score is > B+ kM (here, B is the
baseline score of the new construction).

If  Jrpgq---zp—(3ze- - zpd(z2,-..,7,)),  then
Jrprgq - - - Ty such that any assignment with z; = true satis-
fies m — 1 clauses of ¢’ and any assignment with z; = false
satisfies at most m — 2 clauses of ¢'. Let the manipulator vote
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according to the assignment to x,,/11 - - - . Then the Slater

score of a total order starting with —; is < B+ (m—1)M
and the Slater score of a total order starting with +; is

> B+ (m — 1)M. It follows that +; is a Slater winner.

For the converse, suppose the manipulator can vote such
that +; is a winner. Consider the assignment to /41 - - - Tp,
induced by the manipulator. If ¢(za,..., 2, ) were satisfi-
able, then any assignment with x; = true satisfies m — 1
clauses of ¢’ and there is an assignment with x; = false
tha‘E\ satisfies m clauses of ¢'. It follows that the Slater score
> B + mM and that the ranking of 73 in any Slater consen-
sus encodes that x; is false. This implies that —; is always
ranked first, which contradicts the assumption that +; is not
a winner. Q

Slater is an interesting system in itself (see,
e.g., Hiillermeier and Fiirnkranz [2004] for motivation
from the preference learning literature). But here we are
mostly interested in the closeness of Slater to Kemeny,
and view Theorem 10 as supporting our conjecture that
Kemeny-Manipulation is %5-complete.

Many lower bound proofs for Kemeny transfer to Slater
and vice versa by the following simple observation (this is
implicit in any source comparing Kemeny and Slater and ex-
plicitly stated for tournaments where every arc has weight 1
in Bachmeier et al. [2019]).

Observation 12. If all weights in the weighted majority
graph are the same, then the Kemeny consensus and Slater
consensuses coincide.

Looking back at the proofs of the results from the previous
section, we immediately obtain the following corollaries.

Corollary 13. Slater Consensus Recognition is coNP-
complete.

Corollary 14. Slater-CDC-to-Consensus is X5-complete.

The definition of Slater from this section allows an even
number of voters. Not all Slater definitions allow ties, i.e.,
Slater is sometimes defined only for the case where the ma-
jority graph is a tournament. And also Kemeny for tourna-
ments is an interesting problem. The proofs from the previ-
ous section construct elections with an even number of voters
and so do not give the analogous results about tournaments.
It is much more difficult to prove hardness for tournaments.
For example, feedback arc set is one of the original 21 NP-
complete problems from Karp [1972], but the complexity of
feedback arc set for tournaments was open for a long time.
Alon [2006] showed NP-completeness by derandomizing the
reduction from Ailon et al. [2008]. Conitzer [2006] gave a di-
rect proof of the result. We will modify the lovely reduction
from Conitzer [2006] to prove the following. For Slater this
answers an open question from Hudry [2010]. For details see
the full version.

Theorem 15. Slater and Kemeny Consensus Recognition for
tournaments is cONP-complete.

7 Manipulation-to-Consensus

Recall from Observation 6 that for Kemeny-Manipulation-to-
Consensus the optimal action for the manipulators is to vote
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their desired consensus. In contrast we show that for Borda-
Manipulation-to-Consensus it is hard to compute the optimal
action for the manipulators. The Borda election system [de
Borda, 1781] is an important rule that can be used to produce
a consensus by ranking each candidate by their Borda score.
For an m-candidate election, each voter contributes m — 4
points to the candidate ranked ¢th in their vote. Note that in a
Borda consensus candidates with the same score are tied.

We first show that for Borda it is not always the case that a
manipulator should vote the desired consensus.

Example 16. Let there be the following five nonmanipulative
voters: Two voters voting a > b > ¢ > d, two voters voting
b > a > ¢ > d, and one voter voting b > ¢ > a > d.
Let there be one manipulator with a preferred consensus of
a>b>c>d

Before manipulation, the candidates have the following
Borda scores: score(a) = 11,score(b) = 13,score(c)
6, and score(d) = 0, and so the consensusisb > a > ¢ > d.

If the manipulator votes their preferred consensus the
resulting Borda scores are: score(a) 14, score(b)
15,score(c) = 7, and score(d) = 0, with the Borda con-
sensus of b > a > ¢ > d.

However, manipulation is possible when the manipulator
instead votes a > ¢ > d > b.

We now consider the complexity of Borda-Manipulation-
to-Consensus. The proof from Davies et al. [2014], which
shows that coalitional manipulation for Borda is NP-complete
constructs an election such that manipulation is possible if
and only if after manipulation the candidates p, a1, ..., aq+1
are all tied with the highest Borda score and the remaining
candidate aq4-2 has a strictly lower score, i.e., the Borda con-
sensus is {p, a1,...,aq+1} > ag+2. It follows that:

Theorem 17. Borda-Manipulation-to-Consensus is NP-
complete.

This immediately implies that the optimal action for
the manipulators is not polynomial-time computable, unless
P=NP.

8 Conclusion

We showed that even checking if a given ranking is a Kemeny
consensus is coNP-complete. We also showed that, though
determining whether a ranking is a Kemeny consensus is
hard, the optimal action for the manipulators to reach a con-
sensus is easy. We provided evidence that this simplicity is
caused by the combination of election system (Kemeny), ma-
nipulative action (manipulation), and manipulative goal (con-
sensus).

For future work, we are most interested in showing our
conjecture that Kemeny-Manipulation(-to-Winner) is X5-
complete. In addition, the study of elections where candidates
have weights is very natural and interesting.
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