
Kemeny Consensus Complexity

Zack Fitzsimmons1 and Edith Hemaspaandra2

1College of the Holy Cross
2Rochester Institute of Technology

zfitzsim@holycross.edu, eh@cs.rit.edu

Abstract
The computational study of election problems gen-
erally focuses on questions related to the winner or
set of winners of an election. But social preference
functions such as Kemeny rule output a full rank-
ing of the candidates (a consensus). We study the
complexity of consensus-related questions, with a
particular focus on Kemeny and its qualitative ver-
sion Slater. The simplest of these questions is the
problem of determining whether a ranking is a con-
sensus, and we show that this problem is coNP-
complete. We also study the natural question of
the complexity of manipulative actions that have
a specific consensus as a goal. Though determin-
ing whether a ranking is a Kemeny consensus is
hard, the optimal action for manipulators is to sim-
ply vote their desired consensus. We provide evi-
dence that this simplicity is caused by the combi-
nation of election system (Kemeny), manipulative
action (manipulation), and manipulative goal (con-
sensus). In the process we provide the first com-
pleteness results at the second level of the polyno-
mial hierarchy for electoral manipulation and for
optimal solution recognition.

1 Introduction
Elections are a widely used tool for aggregating the prefer-
ences of several agents into a collective decision. Often the
goal is to determine a single winner or set of winners from
among a set of candidates. However, in other cases, such as
constructing a meta-search engine [Dwork et al., 2001] or ge-
netic maps [Jackson et al., 2008], the natural desired outcome
is a ranking.

One of the most compelling ways of aggregating prefer-
ences is the Kemeny rule. It is known that computing a Ke-
meny consensus (i.e., a ranking closest to the electorate) is a
computationally difficult problem. We show that even simply
checking if a given ranking is a consensus is coNP-complete.
This problem is naturally motivated by an agent wanting to
verify the claimed outcome of an election.

One of the most important lines of research in the com-
putational study of elections (see, e.g., Faliszewski and
Rothe [2016]) is the study of different manipulative actions

such as manipulation and control [Bartholdi et al., 1989a;
Bartholdi et al., 1992], where an agent (or agents) seek to
ensure their preferred outcome by either voting strategically
or modifying the structure of the election. In each of these
models, the goal is typically to ensure a preferred candidate
wins. For scenarios where the collective decision is a consen-
sus, it is natural to consider manipulative actions where the
goal of the agent(s) is to reach a preferred consensus.

Even though the problem of determining whether a rank-
ing is a Kemeny consensus is hard, the optimal action for the
manipulators is to simply vote their desired consensus. We
provide evidence that this simplicity is caused by the combi-
nation of the manipulative action (manipulation), the manip-
ulative goal (consensus), and the election system (Kemeny).
In particular:

• Determining if a given ranking is a Kemeny consensus
is coNP-complete. (Section 3)

• Control by deleting candidates for Kemeny with the
goal of a particular consensus is Σp2-complete (and thus,
unlike manipulation, the optimal control action is not
polynomial-time computable). (Section 5)

• We provide evidence that manipulation (to winner) for
Kemeny is also much harder than manipulation to con-
sensus, by showing that manipulation (to winner) for a
natural variant of Slater (the qualitative version of Ke-
meny) is Σp2-complete. (Section 6)

• The choice of system matters as well. For example the
optimal action for the manipulators to reach a consen-
sus is not polynomial-time computable for Borda. (Sec-
tion 7)

2 Preliminaries
An election consists of a set of candidates C and a collection
of voters V where each voter has a ranking (total order pref-
erence) over the set of candidates. For example, a > b > c,
where > denotes strict preference, is a vote over {a, b, c}.

We consider voting rules that are social preference func-
tions, which map an election to a set of one or more rank-
ings (total orderings) of the candidates. One of the most-
important social preference functions is the Kemeny rule [Ke-
meny, 1959].

A ranking > is a Kemeny consensus if the sum of
the Kendall tau distances to the voters is minimal, i.e.,
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a>bN(b,a)isminimal,whereforcandidatesaandb,
N(b,a)denotesthenumberofvotersthatstateb>a.
Itisoftenusefultorefertotheinducedweightedmajor-

itygraphoftheelectionwhenworkingwiththeKemeny
rule.Theweightedmajoritygraphofanelection(C,V)has
avertexforeachcandidateandforeachpairofcandidates
a,b∈CifN(a,b)>N(b,a)thereisanarc(a,b)labeled
withN(a,b)−N(b,a).

Example1.Consideranelectionwithcandidates{a,b,c,d}
andthreevoterswiththeirvotes,andthecorrespondingin-
ducedweightedmajoritygraphbelow.

•a>b>c>d

•c>a>d>b

•b>c>d>a

Consensuses: a >b >c >d, b >c >a >d,
c>a>b>d.Kendalltaudistance:6.

Weconsiderseveraldifferentcomputationalproblemsre-
latingtotheKemenyrule.Forreadability,theformaldefi-
nitionsoftheseproblemsaredeferredtowheretheresults
appear.
Weassumethatthereaderisfamiliarwiththecomplexity

classesP,NP,andcoNP.Ourcomplexityresultsalsoconcern
theclassΣp2=NP

NP,aclassatthesecondlevelofthepolyno-
mialhierarchy,whichistheclassofproblemssolvablebyan
NP-machinewithaccesstoanNPoracle[MeyerandStock-
meyer,1972;Stockmeyer,1976].

3 ConsensusRecognition

Wenowformallydefinetheproblemofdeterminingwhether
arankingisaKemenyconsensus.
Name:KemenyConsensusRecognition
Given:Anelection(C,V)andatotalorderX.
Question:IsXaKemenyconsensusoftheelection?
Hudry[2013]observesthattheKemenyConsensusRecog-

nitionproblem(therecalledOrderRecognition)isincoNP,
andconjecturesitiscoNP-complete.1Sinceitiseasierto
thinkaboutNPthanaboutcoNP,wewilloftenlookatthe
complement,i.e.,determiningwhetherXisnotaconsensus.
Asusual,theupperboundiseasytosee:NotethatXisnot
aKemenyconsensusifandonlyifthereexistsatotalorder
whosedistancetotheelectionislessthanthatofX.
AlsonotethattheKemenyConsensusRecognitionprob-

lemisnotinNPunlessNP=coNP,sincetheKemenyscore
ofanelection(Kendalltaudistancetoaconsensus)isgreater
thankifandonlyifthereexistsatotalorderthatisaKe-
menyconsensuswhosescoreisgreaterthank.SoifKe-
menyConsensusRecognitionisinNP,thendeterminingif
theKemenyscoreofanelectionisgreaterthankisinNP.
ThislatterproblemiscoNP-complete,sinceitisinessence
thecomplementoftheproblemKemenyScore,whichisNP-
complete[Bartholdietal.,1989b].
TheabovedoesnotimplythatKemenyConsensusRecog-

nitioniscoNP-hard.Itmerelysaysthat,assumingNP=

1HudryusesTuringreductions.Welookatthestandardnotionof
polynomial-timemany-onereductions,whichgivesstrongerresults.

coNP,theproblemisincoNP−NP.Undertheassump-
tionthatNP=coNP,thereareproblemsincoNP−NP
thatarenotcoNP-complete[Ladner,1975].Anaturalcan-
didateofsuchaproblemisgraphnonisomorphismproblem.
Notethatthisproblemhassome“easiness”propertiesthatare
notsharedbyanynaturalcoNP-completeproblem,suchasa
zero-knowledgeproofforthecomplement[Goldreichetal.,
1991]andaquasi-polynomialtimealgorithm[Babai,2016].
WewillnowproveHudry’sconjecturethatKemenyCon-

sensusRecognitioniscoNP-complete(asTheorem5).
Optimalsolutionrecognitionproblemsinducedbyopti-

mizationproblemsareverynaturaldecisionproblems,but
thereareonlyacoupleofresultsintheliterature.Papadim-
itriouandSteiglitz[1978,Theorem5]showthatMinimum
TSPTourRecognitioniscoNP-complete.ArmstrongandJa-
cobson[2003]studytheglobalverificationproblem(which
isthecomplementofoptimalsolutionrecognition)relatedto
variousNPoptimizationproblemsandshowthattheoptimal
solutionrecognitionproblemsforVertexCover,MAX-SAT,
andMAX-k-SAT(k≥2)areeachcoNP-complete.
OurproofofTheorem5willusethecoNP-completeness

ofMinimumVertexCoverRecognition.
Name:MinimumVertexCoverRecognition
Given:AgraphGandasetofverticesX.
Question:IsXaminimumvertexcoverofG?

Theorem2([ArmstrongandJacobson,2003]).Minimum
VertexCoverRecognitioniscoNP-complete.

TheKemenyScoreproblemwasshownhardbyareduction
fromFeedbackArcSet(FAS)[Bartholdietal.,1989b].In
thefullversion[FitzsimmonsandHemaspaandra,2021],we
showthefollowingproblemcoNP-complete.
Name:MinimumFASRecognition
Given:AnirreflexiveandantisymmetricdirectedgraphG
andasetofarcsX.
Question:IsXaminimumfasofG(aminimumsetofarcs
suchthatG−Xisacyclic)?

Theorem3.MinimumFASRecognitioniscoNP-complete.

Feedbackarcsetsand Kemenyconsensusesarevery
closelyrelated[Bartholdietal.,1989b].Weusethefollowing
slightlyunusualformulationofthisrelationship.

Lemma4.ForGadirectedgraph,lete(G)betheelection
withcandidatesV(G)andforeacharc(a,b)∈A(G)one
votervotinga>bfollowedbyallcandidatesinV(G)−
{a,b}inlexicographicalorderandonevotervotingallcan-
didatesinV(G)−{a,b}inreverselexicographicalorder
followedbya>b.Thiselectioniscomputableinpolyno-
mialtime,andhasGwithallarcweights2asitsinduced
weightedmajoritygraph[McGarvey,1953].
ForXaminimalfasofG(i.e.,XisafasofGandno

strictsubsetofXisafas),andXatotalorderconsistent

withG−X(i.e.,if(a,b)∈A(G)−X,thena>binX),it

holdsthatXisaminimumfasifandonlyifXisaKemeny
consensusofe(G).

ProceedingsoftheThirtiethInternationalJointConferenceonArtificialIntelligence(IJCAI-21)

197

ThisgivesusareductionfromMinimumFASRecognition
toKemenyConsensusRecognition,whichgivesusthefol-
lowingtheorem.



Theorem 5. Kemeny Consensus Recognition is coNP-
complete.

Proof. Given G and X , if X is not a minimal fas (which
can be determined in polynomial time), then output some-
thing that is not an instance of the problem. If X is a minimal
fas, then output e(G) (as defined in Lemma 4) and a total or-
der consistent with G −X (which can be computed in poly-
nomial time, since G−X is acyclic). q

From the above, one might think that coNP-hardness for an
optimal solution recognition problem follows from a straight-
forward modification of the reduction for the related NP-
complete decision problem. But this is only the case when the
witnesses of the two decision problems directly correspond to
each other. This is usually not the case. See for example the
proof of the analogous result for tournaments later in this pa-
per (Theorem 15).

4 Manipulative-Actions-to-Consensus
In the previous section we showed that Kemeny Consensus
Recognition is coNP-complete. Given the hardness of this
problem, does it follow that manipulative actions with the
goal to reach a specific consensus are hard? This is true if we
look at decision problems such as “Given an election and a to-
tal order X , can we perform a manipulative action such that
X is a consensus.” Such decision problems typically inherit
the coNP-hardness (e.g., by having no manipulators). It is still
interesting to look at these decision problems, since they may
be complete for classes above coNP, which limits the tools we
have to solve these problems. Standard approaches for solv-
ing problems in NP or coNP such as using SAT solvers are not
appropriate for solving problems that are complete for higher
levels of the polynomial hierarchy such as Σp2.

We will also look at the problem of determining the ma-
nipulative action. It is possible that it is easy to determine the
best action, even though it is hard to determine whether such
an action leads to the desired outcome. In fact:

Observation 6. Consider Kemeny-Manipulation-to-
Consensus, in which we are given an election, a collection of
manipulators, and a desired consensus X , and we ask if the
manipulators can vote so that X is a Kemeny consensus of
the resulting election. It is easy to see that a total order X
can be made a consensus if and only ifX is a consensus when
all manipulators vote X (for details see the full version).

And so the optimal action for the manipulators is straight-
forward, namely to vote X , and the complexity of the asso-
ciated decision problem Kemeny-Manipulation-to-Consensus
is the same as for the recognition problem, namely, coNP-
complete.

Now we ask: What makes it easy to determine the manipu-
lative action? Is it the election system (Kemeny)? Is it the ma-
nipulative action (manipulation)? Is it the manipulative goal
(consensus)?

Note that the observation above has interesting repercus-
sions for other manipulative actions and for other manipula-
tive goals. For example, in bribery, we can assume that all
bribed voters vote the same X , where X is a consensus af-
ter bribery. And if the goal of the manipulators is to make a

preferred candidate p a winner, we can assume that all ma-
nipulators vote the same X , where X is a consensus after
manipulation. (Since if there is a manipulation such that p is
a winner, then there is a manipulation with a consensus X
that ranks p first. But then X is also a consensus when all
manipulators vote X .)

Despite this simplicity of all manipulators/bribed voters
voting the same, we will provide evidence in the next couple
of sections that determining the optimal manipulation to ob-
tain a Kemeny consensus is easy because of the combination
of election system (Kemeny), manipulative action (manipula-
tion), and manipulative goal (consensus).

5 Control-to-Consensus
Electoral control models whether the structure of an election
can be modified to ensure a preferred outcome [Bartholdi et
al., 1992]. Control(-to-Winner) problems for Kemeny tend to
be Σp2-complete [Fitzsimmons et al., 2019] (note that win-
ner determination is already complete for parallel access to
NP [Hemaspaandra et al., 2005]). In this section we provide
evidence that this is also the case for Control-to-Consensus.
Note that this implies that, unless NP = coNP, the opti-
mal control action to obtain a Kemeny consensus is not
polynomial-time computable (in contrast to manipulation).

Σp2 lower bounds are often hard to prove, in part because
there are fewer known Σp2-complete problems (see Schaefer
and Umans [2002] for a list) and also because one needs
a closer correspondence between the two problems than for
NP-hardness reductions.

We first show that optimal solution recognition for
the Σp2-complete problem Generalized Node Deletion
(GND) [Rutenburg, 1994] is Πp

2-complete.
Name: Minimum GND Recognition
Given: A graph G, integer `, and set of vertices X .
Question: Is X a minimum set of vertices such that G − X
does not contain K`+1 (a clique of size `+ 1)?
Theorem 7. Minimum GND Recognition is Πp

2-complete.
This is the first completeness result at the second level of

the polynomial hierarchy for optimal solution recognition.
For details, see the full version.

The natural deletion analogues of Minimum Vertex Cover
(resp. FAS) Recognition where we are additionally given a
delete limit k and ask if there exists a set of at mostW vertices
such thatX is a minimum vertex cover (minimum fas, respec-
tively) ofG−W are also Σp2-complete (for details see the full
version). Since there is a dearth of natural Σp2-complete prob-
lems, these results are interesting in their own right.

We will now look at control by deleting candidates (CDC).
We will show that the following problem is Σp2-complete.
Name: Kemeny-CDC-to-Consensus
Given: An election (C, V ), delete limit k, and a total order
X over C.
Question: Does there exist a set D ⊆ C of at most k candi-
dates such that X restricted to C −D is a Kemeny consensus
of (C −D,V )?

Though this problem is not the most natural, it does pro-
vide evidence that Kemeny-Control-to-Consensus problems
are Σp2-complete.
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Theorem 8. Kemeny-CDC-to-Consensus is Σp2-complete.
Note that in the definition of Kemeny-CDC-to-Consensus,

it is important that X is a total order over C. If it were
over C − D, we would be able to see which candidates are
deleted from the problem instance (and the problem would
be equivalent to Kemeny Consensus Recognition). However,
this makes the problem different from the Σp2-complete FAS
problem, since total orderX ranks all candidates. This means
that the straightforward Σp2 analogue of the reduction from
Minimum FAS Recognition to Kemeny Consensus Recog-
nition from the proof of Theorem 5 does not work. In that
reduction, the order was a total order consistent with the di-
rected acyclic graph G −X , where X is a fas. However, be-
fore deletion, G−X is not necessarily acyclic! To prove Σp2-
completeness of Kemeny-CDC-to-Consensus, we need dif-
ferent, less natural Σp2-complete versions of Vertex Cover and
Feedback Arc Set Recognition that look more like Kemeny-
CDC-to-Consensus. In particular, we need to make sure that
the solutions for Vertex Cover and Feedback Arc Set are (not
necessarily optimal) solutions for the whole graph. Details
can be found in the full version.

There are other types of control, most notably control by
adding candidates and control by adding/deleting voters. As
problems, these are more compelling. For example, the def-
inition of control by deleting voters (CDV) to consensus is
straightforward and natural.
Name: Kemeny-CDV-to-Consensus
Given: An election (C, V ), delete limit k, and a total orderX .
Question: Does there exist a set W ⊆ V of at most k voters
such that X is a Kemeny consensus of (C, V −W )?

One might think that, in analogy to optimal action for ma-
nipulators being voting the consensus, the optimal action for
CDV would be to simply delete voters furthest from the de-
sired consensus (and for CAV to simply add voters closest
to the desired consensus). However, the following example
shows that this is not the case.
Example 9. Consider an election with candidates {a, b, c},
five voters: three voting a > b > c, one voting a > c > b, and
one voting c > b > a, delete limit 1, and desired consensus
a > c > b.

Note that a > c > b is not a consensus. If we delete the
voter furthest from the consensus (i.e., the voter voting c >
b > a) then a > c > b is not a consensus, but if we delete one
of the a > b > c voters then a > c > b is a consensus.

This example with one of the a > b > c voters and the
c > b > a voter as the unregistered voters and an add limit of
1 shows the analogous counterexample for Kemeny-CAV-to-
Consensus.

We conjecture that all these control-to-consensus problems
are Σp2-complete. However, we cannot modify the approach
above in a simple way, since one arc in a graph does not cor-
respond to one voter in the corresponding election. This is
also the reason that the complexity of “regular” Kemeny voter
control(-to-winner) is still open [Fitzsimmons et al., 2019].

6 Manipulation(-to-Winner)
Showing that manipulation is hard is hard! For example, it is
not too hard to show that control for Borda is hard [Russell,

2007], but the complexity of (coalitional) manipulation for
Borda was open for a long time and NP-completeness was
shown only after discovering an appropriate NP-complete
problem in scheduling [Davies et al., 2014; Betzler et al.,
2011]. And proving the NP-completeness of manipulation for
Copelandα for α 6= 0.5 involved construction of elaborate
gadgets [Faliszewski et al., 2008; Faliszewski et al., 2010].

The reason that it is so hard to prove manipulation hard is
that the manipulators do not follow any structure other than
voting a total order. This means that basically all the structure
needs to come from the nonmanipulators.

For Kemeny, we know from Section 4 that we can assume
that all manipulators vote the same. So all we have to work
with is one total order. Though we conjecture that Kemeny-
Manipulation is Σp2-complete, we have not succeeded in prov-
ing this. The closest we got is the following theorem, which
is explained in more detail after the theorem statement. We
note that this is the first Σp2-complete manipulation result.

Theorem 10. Slater-Manipulation where candidates have
unary weights is Σp2-complete, even for one manipulator.

The Slater rule [Slater, 1961] can be viewed as a qualita-
tive version of Kemeny. It is defined as follows. A ranking >
is a Slater consensus if the number of disagreements with the
majority graph induced by the voters is minimal (note that
for Slater we look at the induced majority graph while for
Kemeny we look at the induced weighted majority graph). In
our Slater proofs, we will often look at the Slater score of a
ranking, which is the number of agreements with the majority
graph, i.e., ‖C‖(‖C‖ − 1)/2 minus the number of disagree-
ments. So, the higher the score, the better the ranking.

Candidates with weights for Kemeny are a natural no-
tion [Kumar and Vassilvitskii, 2010]. For candidates with
weights, the contribution of each candidate to the score is
multiplied by its weight. For our result, we need only unary
weights, which is a step in the direction of not needing
weights.

The high-level reason that we obtain this result for Slater
and not for Kemeny is that in Slater we can “freeze” certain
arcs in the majority graph. For example, if we have three non-
manipulators all voting a > b, and we have one manipulator,
then the manipulator cannot change the contribution to the
Slater score of the pair {a, b}. Note that this is not the case
for Kemeny.

Candidates with weights also give more structure to the
manipulator. For example, if we have two candidates a and
b of weight 10, then the manipulator can rank a > b or b > a.
If we replace a by 10 little a’s and 10 little b’s, the manipula-
tor can rank those in any messy order it wants.
Proof Sketch of Theorem 10. To show Σp2-hardness, we will
reduce from QSAT2 [Stockmeyer, 1976; Wrathall, 1976].
Consider cnf formula φ = D1 ∧ · · · ∧ Dm−1 over variables
x2, . . . , xn and let φ′ = (x1∨D1)∧· · ·∧(x1∨Dm−1)∧¬x1.
(Notice that φ′ has m clauses over variables x1, . . . , xn.)
Without loss of generality, assume that if φ is not satisfi-
able, then at most m − 3 clauses can be satisfied (this can
be accomplished by doubling each clause). We will in poly-
nomial time compute an election with one manipulator such
that ∃xn′+1 · · ·xn¬(∃x2 · · ·xn′φ(x2, . . . , xn)) if and only if
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themanipulatorcanvotesuchthatthecandidate+1becomes
awinner.
Firstnotethatif∃xn+1···xn¬(∃x2···xnφ(x2,...,xn)),

then∃xn+1···xnsuchthatanyassignmentwithx1=true
satisfiesm−1clausesofφandanyassignmentwithx1=
falsesatisfiesatmostm−2clausesofφ.Ifitisnotthecase
that∃xn+1···xn¬(∃x2···xnφ(x2,...,xn)),thenany
assignmentwithx1=truesatisfiesm−1clausesofφand
thereisanassignmentwithx1=falsethatsatisfiesmclauses
ofφ.
NowapplythereductionfromMAX-SATtoSlaterscore

fromConitzer[2006]toφ,withthefollowingchange.We
replaceeachsizeM “super-candidate”(agroupofM can-
didatesthat,forthepurposesofSlaterscore,canbetreated
asonesinglecandidateofweightM)byonecandidateof
weightM.ThisensuresthatweonlygetSlaterconsensuses
ofaspecificformandno“rogue”consensuses(thiswasnot
aprobleminConitzer[2006],sinceforthepurposesofSlater
scoresitisenoughthatthereexistaSlaterconsensusofthe
appropriateform;however,sinceweareinterestedinwhether
aspecificcandidatecanbeawinnerornot,weneedtopre-
cluderogueconsensuseswitharoguewinner).Thiscomputes
atournament2inwhicheachvariablexiisrepresentedbya
subtournamentTi(whichincludesthevertices+iand−i)
andeachclausebyacandidateck.Therelevantpropertiesof
thereductionareasfollows.

•AllSlaterconsensusesrankT1>···>Tn.

•Slaterconsensusescorrespondtoassignmentssatisfying
amaximumnumberofclausesofφinthefollowing
way.ForCkatrueclause,candidateckisranked(in
aspecificway)amongthecandidatesinasubtourna-
mentTiwhoserankingencodesanassignmenttoxithat
makesCktrue.

•IfT1’srankingencodesx1=true,thencandidate+1
isrankedfirst.IfT1’srankingencodesx1=false,then
candidate−1isrankedfirst.

•+1isaSlaterwinneror−1isaSlaterwinner.

•Thereisanassignmentthatsatisfies≥kclausesofφif
andonlyiftheSlaterscoreis≥B+kM(here,B(the
baselinescore)andM arepolynomial-timecomputable
constantsthataresmallenoughtobegiveninunary).

Wewanttokeepasmuchofthisconstructionaspossible.
Firstwedoubleeveryvoter,sothatthearcweightsinthe
inducedtournamentareall2.Wehaveonemanipulator.Note
thatonemanipulatorcannotchangeanarcofweight2.We
willnowchangethetournamentalittle,insuchawaythatthe
manipulatorcan“set”thevaluesoftheexistentialvariables
(xn+1,...,xn),butnothingelse.
Intheconstruction, wechangehowtheexistential

variablesarerepresented. Eachsuchvariablexi will
berepresentedbyagraphconsistingoffourcandi-
dates+i,−i,bi,di,eachofweightM (recallthatweal-
lowunaryweightsforthecandidates).Thesefourcan-
didatesareconnectedbythefollowing weight-2arc:

2Foreverypairofverticesa,b,a→ borb→ a,butnotboth.

Theonly“undeclared”arcisbetween+iand−i.Thisarc
willbedeterminedbythevoteofthemanipulator.+i>−i
willcorrespondtosettingxitotrueand−i>+iwillcorre-
spondtosettingxitofalse.LetTibethesubtournamentafter
themanipulatorvote.
Forclausecandidateck,weaddthefollowingarcs.

•IfxioccurspositivelyinCk,addarcs
+i→ck,ck→−i,ck→bi,di→ck.

•IfxioccursnegativelyinCk,addarcs
−i→ck,ck→+i,ck→bi,di→ck.

•IfxidoesnotoccurinCk,addarcs
ck→+i,ck→−i,bi→ck,di→ck.

Allotherarcsareunchanged.Inparticular,allSlatercon-
sensusesrankT1>···>Tn >Tn+1 >···>Tn.Note
thatifwerankcandidateckbeforeorafterTi,thiscontributes
abaselinescoreof2M totheSlaterscore.Theonlywaya
clausecandidateckcangainpointsfromTioverthebaseline
scoreof2M isifckisrankedamongthecandidatesinTiand
thevalueofxiencodedbytherankingofTimakesCktrue.
Inthatcase,wegainM extrapoints.

Example11.Forexample,ifxiistrueandxioccursposi-
tivelyinCk,weobtainthesubtournamentbelowandwecan
order+i>ck>−i>bi>disothatckgains3M points
fromTifortheSlaterscore.

Fromthis,wegetthefollowing,foraspecificfixedassign-
menttoxn+1,...,xn(andthemanipulatorvotingaccord-
ingly).

•Slaterconsensusescorrespondtoassignmentssatisfying
amaximumnumberofclausesofφinthefollowing
way.ForCkatrueclause,candidateckisranked(ina
specificway)amongthecandidatesinasubtournament
TiorTiwhoserankingencodesanassignmenttoxithat
makesCktrue.

•IfT1’srankingencodesx1=true,then+1isranked
first.Ifitencodesx1=false,then−1isrankedfirst.

•+1isaSlaterwinneror−1isaSlaterwinner.

•Thereisanassignmentthatsatisfies≥kclausesofφif

andonlyiftheSlaterscoreis≥B+kM(here,Bisthe
baselinescoreofthenewconstruction).

If ∃xn+1···xn¬(∃x2···xnφ(x2,...,xn)), then
∃xn+1···xnsuchthatanyassignmentwithx1=truesatis-
fiesm−1clausesofφandanyassignmentwithx1=false
satisfiesatmostm−2clausesofφ
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according to the assignment to xn′+1 · · ·xn. Then the Slater
score of a total order starting with −1 is < B̂ + (m − 1)M
and the Slater score of a total order starting with +1 is
≥ B̂ + (m− 1)M . It follows that +1 is a Slater winner.

For the converse, suppose the manipulator can vote such
that +1 is a winner. Consider the assignment to xn′+1 · · ·xn
induced by the manipulator. If φ(x2, . . . , xn′) were satisfi-
able, then any assignment with x1 = true satisfies m − 1
clauses of φ′ and there is an assignment with x1 = false
that satisfies m clauses of φ′. It follows that the Slater score
≥ B̂ +mM and that the ranking of T1 in any Slater consen-
sus encodes that x1 is false. This implies that −1 is always
ranked first, which contradicts the assumption that +1 is not
a winner. q

Slater is an interesting system in itself (see,
e.g., Hüllermeier and Fürnkranz [2004] for motivation
from the preference learning literature). But here we are
mostly interested in the closeness of Slater to Kemeny,
and view Theorem 10 as supporting our conjecture that
Kemeny-Manipulation is Σp2-complete.

Many lower bound proofs for Kemeny transfer to Slater
and vice versa by the following simple observation (this is
implicit in any source comparing Kemeny and Slater and ex-
plicitly stated for tournaments where every arc has weight 1
in Bachmeier et al. [2019]).
Observation 12. If all weights in the weighted majority
graph are the same, then the Kemeny consensus and Slater
consensuses coincide.

Looking back at the proofs of the results from the previous
section, we immediately obtain the following corollaries.
Corollary 13. Slater Consensus Recognition is coNP-
complete.
Corollary 14. Slater-CDC-to-Consensus is Σp2-complete.

The definition of Slater from this section allows an even
number of voters. Not all Slater definitions allow ties, i.e.,
Slater is sometimes defined only for the case where the ma-
jority graph is a tournament. And also Kemeny for tourna-
ments is an interesting problem. The proofs from the previ-
ous section construct elections with an even number of voters
and so do not give the analogous results about tournaments.
It is much more difficult to prove hardness for tournaments.
For example, feedback arc set is one of the original 21 NP-
complete problems from Karp [1972], but the complexity of
feedback arc set for tournaments was open for a long time.
Alon [2006] showed NP-completeness by derandomizing the
reduction from Ailon et al. [2008]. Conitzer [2006] gave a di-
rect proof of the result. We will modify the lovely reduction
from Conitzer [2006] to prove the following. For Slater this
answers an open question from Hudry [2010]. For details see
the full version.
Theorem 15. Slater and Kemeny Consensus Recognition for
tournaments is coNP-complete.

7 Manipulation-to-Consensus
Recall from Observation 6 that for Kemeny-Manipulation-to-
Consensus the optimal action for the manipulators is to vote

their desired consensus. In contrast we show that for Borda-
Manipulation-to-Consensus it is hard to compute the optimal
action for the manipulators. The Borda election system [de
Borda, 1781] is an important rule that can be used to produce
a consensus by ranking each candidate by their Borda score.
For an m-candidate election, each voter contributes m − i
points to the candidate ranked ith in their vote. Note that in a
Borda consensus candidates with the same score are tied.

We first show that for Borda it is not always the case that a
manipulator should vote the desired consensus.
Example 16. Let there be the following five nonmanipulative
voters: Two voters voting a > b > c > d, two voters voting
b > a > c > d, and one voter voting b > c > a > d.
Let there be one manipulator with a preferred consensus of
a > b > c > d.

Before manipulation, the candidates have the following
Borda scores: score(a) = 11, score(b) = 13, score(c) =
6, and score(d) = 0, and so the consensus is b > a > c > d.

If the manipulator votes their preferred consensus the
resulting Borda scores are: score(a) = 14, score(b) =
15, score(c) = 7, and score(d) = 0, with the Borda con-
sensus of b > a > c > d.

However, manipulation is possible when the manipulator
instead votes a > c > d > b.

We now consider the complexity of Borda-Manipulation-
to-Consensus. The proof from Davies et al. [2014], which
shows that coalitional manipulation for Borda is NP-complete
constructs an election such that manipulation is possible if
and only if after manipulation the candidates p, a1, . . . , aq+1

are all tied with the highest Borda score and the remaining
candidate aq+2 has a strictly lower score, i.e., the Borda con-
sensus is {p, a1, . . . , aq+1} > aq+2. It follows that:
Theorem 17. Borda-Manipulation-to-Consensus is NP-
complete.

This immediately implies that the optimal action for
the manipulators is not polynomial-time computable, unless
P = NP.

8 Conclusion
We showed that even checking if a given ranking is a Kemeny
consensus is coNP-complete. We also showed that, though
determining whether a ranking is a Kemeny consensus is
hard, the optimal action for the manipulators to reach a con-
sensus is easy. We provided evidence that this simplicity is
caused by the combination of election system (Kemeny), ma-
nipulative action (manipulation), and manipulative goal (con-
sensus).

For future work, we are most interested in showing our
conjecture that Kemeny-Manipulation(-to-Winner) is Σp2-
complete. In addition, the study of elections where candidates
have weights is very natural and interesting.
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