This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Reconstruction of Sparsely Sampled
Seismic Data via Residual U-Net

Shuhang Tang, Yinshuai Ding

Abstract— Reconstruction of sparsely sampled seismic data
is critical for maintaining the quality of seismic images when
significant numbers of shots and receivers are missing. We present
a reconstruction method in the shot-receiver-time (SRT) domain
based on a residual U-Net machine learning architecture, for
seismic data acquired in a sparse 2-D acquisition and name it
SRT2D-ResU-Net. The SRT domain retains a high level of seismic
signal connectivity, which is likely the main data feature that the
reconstructing algorithms rely on. We develop an “in situ training
and prediction” workflow by dividing the acquisition area into
two nonoverlapping subareas: a training subarea for establishing
the network model using regularly sampled data and a testing
subarea for reconstructing the sparsely sampled data using
the trained model. To establish a reference base for analyzing the
changes in data features over the study area, and quantifying the
reconstructed seismic data, we devise a baseline reference using
a tiny portion of the field data. The baselines are properly spaced
and excluded from the training and reconstruction processes. The
results on a field marine data set show that the SRT2D-ResU-Net
can effectively learn the features of seismic data in the training
process, and the average correlation between the reconstructed
missing traces and the true answers is over 85%.

Index Terms—Baseline reference, convolutional neural

network, deep residual U-Net, reconstruction.

I. INTRODUCTION

HE quality of seismic images of the earth’s structures

relies on regularly and densely sampled seismic data in
field acquisitions, which provide angular illumination of the
subsurface targets with sufficiently high signal-to-noise ratio
(SNR) [1], [2]. However, sparsely sampled data sets do occur
in field practice due to various reasons, chiefly the existence
of survey obstacles and the limitations in the financial and
time budgets of seismic surveys. While maintaining high
image quality is a key in designing and processing of seismic
data, the cost of seismic surveys increases greatly with the
increasing numbers of shots and receivers. Interestingly, recent
developments of sparse sampling (compressive sensing) in
signal processing offer a way to save the acquisition cost
and maintain the image quality at the same time [3], [4].
The desired data sparsity in space is realized by intentionally
reducing the shots and receivers to smaller numbers; after

Manuscript received May 30, 2020; revised July 20, 2020 and August 25,
2020; accepted October 26, 2020. This work was supported in part by the
NSF under Grant OCE-1832197. (Corresponding author: Yinshuai Ding.)

Shuhang Tang and Hua-Wei Zhou are with the Department of Earth and
Atmospheric Sciences, University of Houston, Houston, TX 77004 USA.

Yinshuai Ding is with the Department of Earth and Atmospheric Sciences,
University of Houston, Houston, TX 77004 USA, and also with the Depart-
ment of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden (e-mail:
yinshuai.ding @geo.uu.se).

Heng Zhou is with BGP International, BGP Inc., Zhuozhou 072751, China.

Color versions of one or more of the figures in this letter are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2020.3035835

, Hua-Wei Zhou, and Heng Zhou

field acquisition, regularly sampled data can be reconstructed
in computer from the sparsely sampled seismic data [5], [6].
The quality of the reconstructed data depends mostly on the
sparsity of the data and, to a lesser but still significant extent,
the reconstruction method.

In this letter, we exploit the potential of using machine
learning (ML) in the reconstruction of sparsely sampled seis-
mic data, particularly reflection seismic profiles acquired in
exploration geophysics. ML has achieved success in many
areas, such as medical imaging and remote sensing, as well
as in the reconstruction of seismic data using ML networks
[7]-[11]. Interpolation of seismic data in the 2-D shot-gather
domain, for example, was done by Jia and Ma [7] using
support vector machine, by Mandelli et al. [8] using U-Net,
and by Wang et al. [9] using Res-Net. Dictionary learning [10]
and tight frame learning [11] were also applied to reconstruct
seismic data. However, it is challenging for a single network to
characterize seismic data universally [9], because the accuracy
of the network decreases with the increasing difference in data
features between the training area and the testing area.

To cope with the above challenge, we propose to reconstruct
the sparsely sampled seismic data in the shot-receiver-time
(SRT) domain using residual U-Net and name the algorithm
SRT2D-ResU-Net. U-Net is a convolutional neural network
that has already showed success in medical imaging when
limited images are available [12], and in seismic applications
[13]. As we use a U-Net with deep layers, we have added
residual unit [14]-[16] in U-Net to ease the training of deep
networks. The residual unit was first proposed by He et al.
[14], by adding a skip-path to the addition unit, to facilitate
an improved learning of deep layers. Zhang er al. [15] used
ResU-Net in road extraction. To realize the in situ training and
prediction in our SRT2D-ResU-Net, we have developed an “in
situ training and prediction” workflow, by dividing the acqui-
sition area into two nonoverlapping subareas. In the training
subarea, the network is trained using regularly sampled data.
In the testing or predicting subarea, the trained network is
applied to reconstruct the sparsely acquired data. Typically,
the size of the testing subarea is much larger than that of the
training subarea.

In the SRT domain, S stands for the shot location, R stands
for the receiver location, and T stands for the two-way travel
time of seismic reflections. Hence, for 2-D seismic acquisition,
a slice of the 3-D SRT data cube at a fixed shot location
is a common shot slice, and a slice of the data cube at
a fixed receiver location is a common receiver slice when
receivers are not moving. We prefer to use the SRT domain
for reconstructing sparsely sampled seismic data, since the
connectivity of seismic signals is among the most important
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Fig. 1. Architectures of ResU-Net. (a) Residual block in U-Net. (b) Architec-
ture of the designed ResU-Net. The blue arrowed lines indicate the skipping
paths. The dashed blue arrowed lines indicate the identity mappings.

data features that the ML algorithms rely on. The SRT domain
retains a high level of signal connectivity for continuous
features such as seismic wavefields, as well as for piecewise
continuous features with truncations, such as reflections from
faulted rock strata.

It is infeasible to quantify the performance of the trained
network for field data, because there are no measured values
for their missing traces. To evaluate the performance of the
trained network across the data cube, we devise a baseline
reference as a quality control (QC) measure of the network.
The baseline reference consists of a small number of field data
traces, as the ground truth of the observed values distributed
regularly over the entire survey area. All baseline traces,
or baselines, are excluded from the training and treated as
missing traces in the reconstructing processes. Since baselines
have a similar distribution as the other missing traces, the
performance of the network at the baselines can be used as
a reliable indicator about the quality of the reconstructed
traces. The baseline reference also enables an assessment
about the changing data features from the training subarea
to the testing subarea, as to be illustrated with a field marine
data set in the following.

II. METHODOLOGY

We choose the ResU-Net to accomplish the reconstruction.
The ResU-net architecture includes an encoding path and a
decoding path (Fig. 1). The skip-connections, which connect
the encoding and decoding paths, help the network to combine
data features from different levels. In the encoding path,
we repeatedly apply the residual block [Fig. 1(a)]. Each
residual block contains two convolution layers with kernel size
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Fig. 2. Sketch of the shot/receiver coordinate system in a 2-D acquisition

plan. The stars are shots and the triangles are receivers; there are 20 receivers
per shot. The training subarea (yellow area with shots 1-6) has a regular
sampling on the full grids. The testing subarea (green area with shots
7-20) has a sparse sampling, with blank triangles and stars indicating missing
receivers and shots, respectively. Two baselines are indicated by the red stars
and triangles.

3 x 3 x 3, two leaky rectified linear units (Leaky ReL.U) [17],
and one identity mapping. The down sampling between two
residual blocks is realized by the first convolution layer with
stride 2 in the second residual block. In the first level, we use
32 feature channels for the convolution, and the number of
feature channels is doubled in each successive residual block.
In the decoding path, we use a 2 x 2 x 2 “up sampling” layer,
which doubles the inputs via repetition in each dimension,
respectively, and then followed by a residual block. The data
from the encoding path are passed by the skipping connections
and then concatenated to the data from the corresponding
layers in the decoding path [Fig. 1(b)]. The final layer is
a 1 x1x1 convolution layer with linear activations, which
resizes the outputs as the size of inputs. We implement our
ResU-Net architecture with Keras in Tensorflow [18], [19].

In the training stage, we use the data acquired on the full
regular grids in the training subarea (Fig. 2) as the desired
output in our supervised algorithm. To fulfill the goal of
reconstruction using ResU-Net, we need the sparsely sampled
data corresponding to the labeled data as inputs. Such sparsely
sampled data could be acquired by reducing the shots and
receivers, either randomly or regularly. For the 2-D seismic
data, both the full data and the sparsely sampled data are in
the 3-D SRT domain. To get the patch data which are suitable
for training the ResU-Net, we extract a large number of 3-D
boxed-data (size of 32 x 32 x 32) in the 3-D full data and the
sparsely sampled data.

In the testing stage, we apply the trained model to the
sparsely sampled data in the testing subarea (Fig. 2) and
reconstruct the missing data there. In our field data test as
an example, the sparsely sampled data are created by omitting
every third shot from the testing subarea. Together with the
baseline data, we have a missing rate around 30%.

In field studies, true values are unavailable for missing
traces. The baselines should be chosen at the stage of acqui-
sition design, as a tiny portion of the field data taking away
from the training and reconstruction processes. Although the
baseline traces are chosen artificially, they are preferably
regularly spaces, as the ground truth for quantifying how
well the network has been performed in the training and
reconstruction stages. In our testing case in Section III, for
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Fig. 3. Four slices of the SRT data cube. (a) Full data on a saturable
reactor (SR) slice, showing two subareas and a small blue box locating the
other slices. The orange vertical lines denote the baselines. (b) Zoomed-in time
slice (r = 6.5 s) of the boxed area in (a); two dash lines are intersecting lines
with slices (c) and (d). (c) Common shot slice (Xs = 9.72 km). (d) Common
receiver slice (Xr = 9.9 km).

example, we take every 30th shot of the whole data set as
the baseline shots, so the baselines count for 3.3% of the data
set.

In the training stage, by removing the baseline shots from
the data cube in the training sub area, we create gaps with not
a number (NaN) values at baseline locations. Then, we need
to condense the rest of the data cube as if there is no gap,
to facilitate a proper network training using the condensed data
cube. In the testing stage, we treat the baselines the same way
as that for the missing traces. Based on the known true values
of the baselines, their correlations with the reconstructed traces
in the training subarea indicate how well we have trained the
model; similarly, the correlations in the testing subarea indicate
the performance of the trained model in the reconstruction.

III. FIELD DATA SET EXPERIMENT

To evaluate the performance of the SRT2D-ResU-Net
method, we tested it with several synthetic and field data sets.
Here, we show the results for a field marine data set which
was acquired in November 2019 in the South Atlantic Ocean.
The purpose of the survey is to map ocean floor sediments,
to assist the selection of future drilling sites. One of the 2-D
seismic lines from the survey is selected for our experiment.
This 2-D line has 503 shots, and each shot has 96 receivers
(channels). The shot interval and the receiver interval are
24 and 6.25 m, respectively. The time sample interval is 1 ms,
and the recording length is 8 s. The main frequency of the
reflection data is around 120 Hz. Since the primary reflections
from the targeted ocean floor sediments are between 6.3 and
6.7 s in the two-way travel time, after a preliminary processing,
we use the data between 6.3 and 6.7 s to test our reconstruction
method.

We transfer the data into a 3-D cube in the SRT domain
(Fig. 3). The 3-D mesh grid of the SRT data cube is 503 x
2135 x 401. From the whole data set of 503 shot gathers,
we select 150 shot gathers (from shot 101 to 250) as the
training subarea, including 100 (101-200) shot gathers as the
training data and 50 (201-250) shot gathers as the validation
data. The rest of the data set forms the testing subarea.

Fig. 4. Six slices of the SRT data cube illustrating the reconstruction of
missing traces, in the same zoomed-in area as Fig. 3(b). (a) Time slice (t =
6.5 s) showing gaps due to missing eight shots. (b) Same time slice as (a),
after reconstruction. Two black dash lines are the intersecting lines of these
perpendicular slices. (c) and (d) Common shot slices at Xs = 9.72 km, before
and after reconstruction. (¢) and (f) Common receiver slices at Xr = 9.9 km
before and after reconstruction. The black wiggle traces in (f) highlight seven
reconstructed traces on this slice.

Thus, the sizes of the training subarea and testing sub-
area are about 30% and 70% of the whole data cube,
respectively.

Fig. 3(a) shows a time slice at 6.5 s of the SRT data cube
for the field 2-D survey. It is a plot of recorded data amplitude
as a function of the shot location Xs and receiver location Xr.
Fig. 3(b) shows the zoomed-in view of a small boxed area in
Fig. 3(a), showing two intersecting lines of three perpendicular
slices [Fig. 3(b)—(d)]. Fig. 3(c) shows a common shot slice,
same as the common shot gather, a collection of seismic
records of one shot by the streamer. Fig. 3(d) shows a common
receiver slice, a collection of seismic records from many shots
fired at different times to a fixed recording location. Since
the hydrophone streamer sails following the air gun shots
during the survey, a common receiver slice like Fig. 3(d)
differs from a common receiver gather. Such common receiver
slices are noisier than common shot slices (common shot
gathers).

We train the ResU-Net model with 100 epochs. The loss
function (in terms of L2 norm) in the network is defined
as L(w) = ||Net(Dy, w) — Dy||3, where w denotes the net-
work parameters. With the convergence of the loss function,
we obtain the trained model, which is used in reconstructing
all the missing traces in the data cube.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

Fig. 4 illustrates the reconstruction result in comparison
to the field data on three intersecting slices, in the same
zoomed-in box in Fig. 3(a). The top pair of the panels
[Fig. 4(a) and (b)] compares the time slices, the middle pair
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TABLE I

MEAN AND MEDIAN CORRELATIONS BETWEEN THE FIELD AND RECON-
STRUCTED DATA OF THREE TYPES

Data type Mean correlation Median correlation
Baseline data 87.9% 89.3%
Mlés!ng data in the 89.8% 91.0%
training subarea
Misei nth
|s§|ng data in the 86.4% 87.9%
testing subarea

ey
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Fig. 5. Correlation between the field data and the constructed data as a
function of shot position Xs, for missing data (gray color) and baseline data
(orange color). At each shot position, the vertical bar denotes the range of
the correlations, and the square or triangle indicates the mean value.

[Fig. 4(c) and (d)] compares the common shot slices (gather),
and the bottom pair [Fig. 4(e) and (f)] compares the com-
mon receiver slices, respectively. The slices in the left side
of the figure are from the sparsely sampled input data
cube, with missing traces shown as vertical white stripes in
Fig. 4(a) and (e) and no data in Fig. 4(c) since all its traces
are missing. The missed field data from Fig. 4(c) are shown
in Fig. 3(c) and that from Fig. 4(e) are shown in Fig. 3(d).
The slices in the right side of Fig. 4 are from the reconstructed
data cube. The black wiggle traces in Fig. 4(f) are examples
of the reconstructed seismic traces, at the same location as the
white stripes in Fig. 4(e).

To evaluate the effectiveness of the SRT2D-ResU-Net quan-
titatively, we calculate the correlations between the field and
reconstructed data for all the missing and baseline traces.
As shown in Table I, the average correlation, measured by
mean or median, is higher than 85% for the baseline data and
missing data from the field marine data set. Interestingly, for
this case, the performance of our method for the baseline data
is very similar to that for the reconstructed missing data.

Fig. 5 shows the variation in the correlation as a func-
tion of shot position, for the missing data (gray color) and
baseline data (orange color). Each of the vertical bars in the
figure denotes the range of the correlation coefficients of all
data traces at the shot position, and each small square (for
missing data) or small triangle (for baseline data) indicates
the mean value of the correlation coefficients. At all shot
positions, the mean correlation is skewed toward the high
correlation side, or more high-correlation traces than low-
correlation traces everywhere. As expected and statistically,
the training subarea has high mean values and narrow ranges
of the correlations than that of the testing subarea.

In the testing subarea, as we move farther from the training
area, the correlations decrease slightly in trend, and with
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Fig. 6.  Comparison between two common shot slices at a baseline location
(Xs = 6.48 Km). (a) From the field data cube. (b) From the reconstructed
data cube. The field data at all baseline locations are excluded from training
the network. The mean correlation between all traces of the two slices is 88%.

B e e = "‘
o S

10.1 10.3
Xr (km)

\

10.5

Fig. 7. Comparison between two common shot slices at a “missing data”
location (Xs = 10.01 Km). (a) From the field data cube. (b) From the
reconstructed data cube. The mean correlation between all traces of the
two slices is 70.8%, which is around the bottom level of all missing data
slices.

many up and down variations throughout the testing subarea.
The slight decrease trend implies that the data features, which
the reconstruction relies on, change slowly with the increasing
distance from the training subarea. The up and down pattern,
likely due to factors such as the data noise level, might have
strong local influences on the reconstruction results. In the
testing subarea, the correlations based on the baseline data
and the missing data show similar distributions, suggesting
that the baseline reference gives an effective evaluation on the
performance of the trained network.

Fig. 6 shows the comparison of the common shot (gathers)
slices of the true field data and reconstructed data, at a baseline
location (Xs = 6.48 km). The mean value of the correlation
coefficients between all trace pairs at this shot location is
88%, which is slightly higher than the average level of all
baseline slices. Clearly, the field data slice has many more
short-wavelength or spotty features, in comparison to the
reconstructed seismic slice. These short-wavelength features
may be very important short-wavelength signals (e.g., due to
pinch-outs, fractures, and faults), or noises and artifacts.

Fig. 7 shows another comparison of the common shot slices
of the true field data and reconstructed data, at a missing data
location (Xs = 10.01 km). The mean correlation of all trace
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pairs at this shot location is around 71%, the lowest level of
all reconstructed shot slices in this test. The low correlation is
likely due to the presence of spotty features over the field data
slice shown in Fig. 7(a). Our method is able to reconstruct
most of the large events in the field data, even at this shot
location of the lowest mean correlation.

V. DISCUSSION

Reconstructing missing seismic traces is an interpolation
process based on the connectivity of seismic signals among
measured data over the survey area. An interpolated seismic
trace can never be as trustworthy as the field seismic trace
acquired at the same location. Hence, before using a recon-
structed seismic data, we must assess its fidelity. Since all
missing traces of field data have no true values, we must find a
way to establish the reference for assessing the reconstruction
of sparsely sampled field data. This has led to our devised
baseline reference, which is a widely used tool for quantifying
the performance of new methods.

In our study, the baseline reference consists of a small
number of observed seismic data traces distributed regularly
over the entire survey area. The baseline traces are excluded
from the training process and used only for assessing the qual-
ity of the reconstructed traces. To give an unbiased assessment
about the change in the signal connectivity between the train-
ing and testing subareas, the baseline traces should be regularly
spaced over the entire survey area. The baseline reference has
the potential to be incorporated in other reconstruction tasks.

We use correlation coefficient to evaluate the reconstructed
missing traces against the true values, because correlation
is among the most widely used measure of similarity in
geophysics (e.g., [1], [2]). For the field marine data set,
reconstruction of sparsely sampled seismic data using our ML
algorithm has resulted in a high level of correlation with the
true values, largely due to the high SNR of the marine data
set. Users of the reconstructed seismic data should be aware
of their limitations. For example, most lateral interpolations
tend to smooth data features laterally, thus suppress vertically
aligning or spotty features that could be important.

In this study, the relatively small training data set in the “in
situ training and prediction” workflow might limit the potential
of generalizing the trained network. Nevertheless, the results
of our trained models yield a reasonable performance in our
tests conducted so far.

VI. CONCLUSION

We propose a new residual U-Net ML network named
SRT2D-ResU-Net, to reconstruct sparsely sampled 2-D seis-
mic data in the SRT domain. Such SRT domain retains a high
level of connectivity for subsurface signals in seismic data.
Instead of finding a single neural network for reconstructing
sparsely sampled seismic data universally, we develop an
“in situ training and prediction” workflow by dividing the
acquisition area into two nonoverlapping parts. We train the
network using regularly sampled data in the training subarea
and reconstruct the missing traces in the sparsely sampled
testing subarea. To establish a reference base for analyzing the
changing data features from the training to the testing subar-
eas, and to evaluate the reconstruction of the missing traces,

we devise a baseline reference which consists of a tiny portion
of the field data excluded from the training and reconstruction
processes. For a field marine seismic data set, the average
correlation between the reconstructed missing traces and the
true answers of the baseline reference is over 85%, indicating
the effectiveness of our SRT2D-ResU-Net in the training and
prediction stages. In this case, the reconstructed traces show
similar trends between their correlations with the baseline data
and the missing data, indicating that the baseline reference is
feasible for evaluating ML networks for field data.
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