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Abstract. Motivated by demand-responsive parking pricing systems we
consider posted-price algorithms for the online metrical matching prob-
lem and the online metrical searching problem in a tree metric. Our main
result is a poly-log competitive posted-price algorithm for online metrical
searching.

1 Introduction

Since 2011 SFpark has been San Francisco’s system for managing the availability
of on-street parking [2,3,28]. The goal of the system is to reduce the time and
fuel wasted by drivers searching for an open space. The system monitors parking
usages via sensors embedded in the pavement and distributes this information in
real-time to drivers via SFpark.org and phone apps. SFpark periodically adjusts
parking meter pricing to manage demand, to lower prices in underutilized areas,
and to raise prices in overutilized areas. Prices can range from a minimum of
25 cents to a maximum of 7 dollar per hour during normal hours with a 18
dollars per hour cap for special events such as baseball games or street fairs.
Several other cities in the world have similar demand-responsive parking pricing
systems, for example Calgary has had the ParkPlus system since 2008 [1].

The problem of centrally assigning drivers to parking spots to minimize time
and fuel usage is naturally modeled by the online metrical matching problem.
The setting for online metrical matching consists of a collection of k servers (the
parking spots) located at various locations within a metric space. The algorithm
then sees an online sequence of requests over time that arrive at various locations
in the metric space (the drivers arriving to look for a parking spot). In response
to a request, the online algorithm must match the request (car) to some server
(parking spot) that has not been previously matched; Conceptually we interpret
this matching as the request (car) moving to the location of the matched server
(parking spot). The objective goal is to minimize the aggregate distance traveled
by the requests (cars).
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We also consider what we call the online metrical search problem, which is
an important special case of the online metrical matching problem. This is a
promise problem in that the adversary is constrained to guarantee that there is
an optimal matching for which only one edge has positive cost. It is useful to
conceptually think of online metrical search as the following parking problem:
the setting consists of many parking spots at various locations in a metric space
and a single car that is initially parked at some location in the metric space.
Over time the parking spots are decommissioned one by one until only one
parking spot is left in commission. If at any time the car is not parked at an
in-commission parking spot, then the car must move to a parking spot that is
still in commission. The objective is to minimize the aggregate distance traveled
by the car. The optimal solution is to move the car directly to the last remaining
parking spot.

The online metrical search problem is a special case of the online metrical
matching problem because the parking spots can be viewed as servers and the
decommissioning of a parking spot can be simulated by the arrival of a request at
the location of that parking spot. So a lower bound on the competitive ratio for
the online metrical search problem for a particular metric space also gives a lower
bound for the online metrical matching problem on the metric space. Conversely
it seems that in terms of the optimal competitive ratio, online metric search is
no easier than metric matching. In particular, there is no known example of a
metric space where the optimal competitive ratio for online metrical matching is
known to be significantly greater than the optimal competitive ratio for online
metrical search on that metric space. For example on a line metric, the online
metrical search problem is better known as the “cow path problem”, and the
optimal deterministic competitive ratio is known to be 9 [13], while the best
known lower bound on the deterministic competitive ratio for online metrical
matching on a line metric is 9.001 [18], worse only by a minuscule factor.

In order to be implementable within the context of SFpark, online algorithms
must be posted-price algorithms. In this setting, posted-price means that before
each request arrives, the online algorithm sets a price on each unused server
(parking spot) without knowing the location where the next request will arrive.
Furthermore, each request is assumed to be a selfish agent who moves to the
available server (parking spot) that minimizes the sum of the price of and dis-
tance to that server. The objective remains to minimize the aggregate distance
traveled by the requests. So conceptually the objective of the parking pricing
agency is minimizing social cost, not maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [14] as part of a line of research to study the use of posted-price algo-
rithms to minimize social cost in online optimization problems. As a posted-
price algorithm is a valid online algorithm, one can not expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known and seeks to determine whether a similar competitive ratio can
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be (again perhaps approximately) achieved by a posted-price algorithm. The
higher level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

An O(log A)-competitive randomized posted-price algorithm for metric
matching on a line metric is given in [14] where A is the ratio of the dis-
tance between the furthest two servers and the distance between the closest
two servers. No o(log k)-competitive (not necessarily posted-price) algorithm is
known for online metric matching on a line metric. So arguably, on a line metric
there is a posted-price algorithm that is nearly as competitive as the best known
centralized online algorithm.

Our original research goal was to determine whether posted-price algorithms
can be similarly competitive with a centralized online algorithm for tree metrics
for online metrical matching. In order to be more specific about our goal, we
need to review a bit. A tree metric is represented by a tree T = (V, E) with
positive real edge weights where the distance dr(u,v) between vertices u,v € V
is the shortest path between vertices u and v in T'. There is a deterministic online
algorithm that is (2k — 1)-competitive for online metric matching in any metric
space, and no deterministic online algorithm can achieve a better competitive
ratio for online metric searching in a tree metric [21,22]. An O(log k)-competitive
randomized algorithm for online metric matching in O(log k)-HST’s (Hierarchi-
cally Separated Trees) is given in [25]. By combining this result with results
about randomly embedding metric spaces into HST’s [10,11,16,25] obtained
an O(log® k)-competitive randomized algorithm for online metric matching in
a general metric space. Following this general approach, [9] later obtained an
O(log2 k)-competitive randomized algorithm for online metrical search in an
arbitrary metric by giving an O(log k)-competitive randomized algorithm for
2-HST’s. No better results are known for tree metrics, so all evidence points
to tree metrics as being as hard as general metrics for online metrical match-
ing. Thus, more specifically our original research goal was to determine whether
there is poly-log competitive randomized posted-price algorithm for the online
metrical matching problem on a tree metric. Before stating our progress toward
this goal, it will be useful to review the literature a bit more.

1.1 Prior Related Work

The most obvious algorithmic design approach for posted-price problems is to
directly design a pricing algorithm from scratch, as is done for metrical task sys-
tems in [14], but this is not the most common approach in the literature. Two
less direct algorithmic design paradigms have emerged in the literature. The
first algorithmic design paradigm is what we will call mimicry. A posted-price
algorithm A mimics an online algorithm B if the probability that B will take a
particular action is equal the probability that a self-interested agent will choose
this same action when the prices of actions are set using A. For example, [14]
shows how to set prices to mimic the O(log A)-competitive Harmonic algorithm
for online metric matching on a line metric from [19]. As another example, [17]
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shows how to set prices to mimic the O(1)-competitive algorithm Slow-Fit from
[7,8] for the problem of minimizing makespan on related machines. However,
for some problems it is not possible to mimic known competitive algorithms
using posted prices. For such problems, another algorithmic design paradigm
is what we will call monotonization. In the monotonization algorithm design
approach, one first seeks to characterize the online algorithms that can be mim-
icked, and then designs such an online algorithm. In the examples in the lit-
erature, this characterization involves some sort of monotonicity property. For
example, monotonization is used in [14] to obtain an O(k)-competitive posted-
price algorithm for the k-server problem on a line metric, and in [15] to obtain
an O(k)-competitive posted-price algorithm for the k-server problem on a tree
metric. Since no deterministic algorithm can be better than k-competitive for
the k-server problem in any metric [24], this shows that in these settings, there
is minimal increase in social cost necessitated by the use of posted-prices. As
another example, monotonization is used in [20] to obtain an O(1)-competitive
posted-price algorithm for minimizing maximum flow time on related machines.

For online metric matching on a line metric, better competitive ratios are
achievable. An O(k-5%)-competitive deterministic online algorithm was given in
[4]. Subsequently several different O(logn)-competitive randomized online algo-
rithms for a line are given in [19]; these algorithms leverage special properties of
HST’s constructed from a line metric. As already mentioned, [19] also showed
that the natural Harmonic algorithm is O(log A)-competitive. An O(log? k)-
competitive deterministic online algorithm was given in [26], and this was later
improved to O(log k) in [27]. Super-constant lower bounds for various types of
algorithms are given in [5,23]. More generally, the algorithm for online metric
matching given in [26] has the property that for every metric space, its competi-
tive ratio is at most O(log2 k) times the optimal competitive ratio achievable by
any deterministic algorithm on that metric space.

1.2 Owur Contribution

There is no hope to mimic any of the online algorithms for online metrical match-
ing that are based on HST’s as HST’s by their very nature lose too much informa-
tion about the structure of a tree metric. Therefore we adopt the monotonization
approach. In Sect. 2 we identify a monotonicity property that characterizes mim-
icable algorithms for online metrical matching in tree metrics. Roughly speaking
this property says that if a request were to have arrived on the route to its desired
server, then the probability that the request would still have been matched to
this server can not decrease. Thus we reduce finding a post-priced algorithm to
finding a monotone algorithm.

In Sect.3 we give an algorithm TreeSearch for the online metrical search
problem on a tree metric. The algorithm is based on the classic multiplicative
weights algorithm for online learning from experts [6]. Conceptually there is one
expert E¢ for each leaf ¢ of the tree T. Expert EY always recommends that
the car/request travels toward the leaf ¢. Thus expert E* pays a cost of one
whenever a parking spot on the path from the root to ¢ is decommissioned, a
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cost of zero when other parking spots are decommissioned, and an infinite cost
if there are no remaining parking spots on the path from the root to ¢. Let wf
be the probability that the multiplicative Weights algorithm has associated with
expert E’ right before request r; arrives. Let vf be the location of the car just
before request 7, arrives if the advice of expert E¢ had always been followed.
The algorithm TreeSearch maintains the invariant that right before request ry
arrives, the probability that the car is at a vertex v is 3, r_, mf, the sum of
the probabilities of the experts that recommend that the car should be parked
at v. The most technically difficult part of the algorithm design process was
maintaining this invariant. We then upper bound the expected number of jumps
made by the TreeSearch algorithm, where a jump is a movement of the car by a
positive amount. Finally, we show how to extend TreeSearch to be a monotone
algorithm TreeMatch for online metrical matching on a tree metric.

In Section algorithm for online metric searching on a tree metric. Before any
requests arrive, an algorithm GroveBuild embeds the tree metric into what we
will call a grove, which is a refinement of an HST that retains more information
about the topology of the original metric space. It is probably easiest to explain
what a grove is by explaining the difference in how one is constructed in com-
parison to how an HST is constructed. The construction of each starts with a
Low Diameter Decomposition (LDD) of the metric space. A LDD is a partition
P ={Py,...,P,} of the vertices of the metric space where each part is connected
and the diameter of each part is an « factor smaller than the diameter of the
whole metric space. The top of the HST consists of a star where the center of the
star is the root of the HST, and there is one child of the root for each part P;.
In contrast, the top of a grove consists of the tree that remains after collapsing
each part to a single vertex. For both an HST and a grove, the construction then
proceeds recursively on each part. So intuitively the key difference is that groves
retain information about the distances between parts in the LDD that the HST
instead discards. See Fig.1 for a comparison of an HST and a grove constructed
from the same LDD.

We then give a monotone algorithm GroveMatch for online metrical matching
on a tree metric that utilizes the algorithm TreeMatch on each tree in the grove
constructed from the tree metric. We show that GroveMatch is poly-log compet-
itive (more precisely O(log® Alog? n)-competitive) on metric search instances by
induction on the levels of the grove. This is an extension of a similar induction
argument in [25] that shows that a O(log n)-competitive algorithm for a star (or
a complete unit metric) can be extended to an algorithm for a O(logn)-HST
with the loss of a poly-log factor in the competitiveness. However, our situation
is complicated by the fact the possible ways that a request can potentially move
within a grove is more complicated than the possible ways a request can move
within an HST, and thus the induction is more complicated as the induction
depends on when the request is moving “up” and when the request is moving
“down” in trees within the grove. The bound on the number of jumps made
by TreeSearch translates to a bound on the number of recursive calls made by
GroveMatch. There is not a lot of wiggle room in our analysis, and thus both the
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algorithm design and algorithm analysis process are necessarily quite delicate.
For example, if TreeSearch made just 1% more jumps than the bound that
we can show, then the resulting competitiveness of GroveMatch would not be
poly-logarithmic. One consequence of this delicateness is that we can not use a
black box LDD construction to build our grove, we need to construct our LDD
in a way that tightly controls the variance of random properties of our grove.

Due to space requirements, proofs have mostly been removed. See [12] for
the full paper with complete proofs.

LDD of Tree T:

Grove of Tree T:

T
HST of Tree T: @

©

@
Ay D,y Hy @
®) © " b

Fig. 1. An example of a LDD, the corresponding HST, and the corresponding grove.

2 Pricing Monotone Algorithms

In this section, we show that an algorithm for the online metrical matching can
be implemented as a posted-price algorithm if and only if the algorithm satisfies
the following monotonicity property. We note that monotonicity does not have
a natural interpretation within the context of online metrical searching, which
explains why we give a monotone algorithm for online metrical matching, even
though we only analyze its competitiveness for online metrical search.

Definition 1. An algorithm A for online metric matching is monotone if for
every instance, every request Ty in that instance, every possible sequence R of
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random events internal to A prior to ri’s arrival, and all vertices u,v,s where v
is on the path from u to s it is the case that: Pr[Ag(ri) = s | Eg and 1y = u] <
Pr[Agr(r;) = s | Er and ry = v] where Ag(ry) is the event that A matches ry to
s, and ER is the event that the past random events internal to A are equal to R.

Theorem* 1. Any algorithm A for the online metrical matching problem can
be implemented as a posted-price algorithm if and only if A is monotone.

3 The Algorithm TreeMatch

In Subsect. 3.1 we define algorithm TreeSearch for the metric search problem on
a tree T = (V, E) rooted at vertex a p. The distance metric on T will not be of
interest to us in this section. We will use the interpretation of a car moving when
its parking spot is decommissioned, as introduced earlier, as we think that this
interpretation is more intuitive. The description of TreeSearch in Subsect. 3.1
uses a probability distribution ¢7(7) that is complicated to define, so its exact
definition is postponed until Subsect. 3.2, in which we also show that it achieves
our goal of matching the experts distribution. Finally in Subsect. 3.3, we show
how to convert TreeSearch into a monotone algorithm TreeMatch for online
metrical matching that is identical to TreeSearch on online metrical search
instances.

3.1 Algorithm Description
We start with some needed definitions and notation.

Definition 2. A parking spot s; in the collection S of parking spots is a
leaf-spot if there are mo other parking spots in the subtree rooted at s;. Let
L(T) = {¢1,....,44} denote the collection of leaf-spots. Let H be the mazimum
initial number of parking spots in T on the path from the root p to a leaf-
spot in L(T). For o € [d]|, define T, C V as the set of parking spots on
the path from the root p to L., inclusive. We define T, to be alive if there
s still an in-commission parking spot in T,, and dead otherwise. A T, 1is
killed by vy if ry is the last parking spot to be decommissioned in T,. Let
A: = {o € [d] | Ty is alive just before the arrival of r+}. For a vertex v € V,
let L(v) denote the collection of leaf-spots that are descendants of v in T. Let ¢;
be the location of the car just before the arrival of request 7.

Algorithm TreeSearch: The algorithm has two phases: the prologue phase and
the core phase. The algorithm starts in the prologue phase and transitions to
the core phase after the first time m when there is no available parking space on
the path from the new parking spot ¢, 11 to the root p, inclusive. The algorithm
then remains in the core phase until the end. In the prologue phase, whenever the
car is not parked at a vertex with an in-commission parking spot, the following
actions are taken:
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1. If there is an in-commission parking spot at ¢; then no action is taken.

2. Else if there is an in-commission parking spot on the path between ¢; and the
root p, inclusive, then the car moves to the first in-commission parking spot
on this path nearest to c;.

3. Else the car moves to the root p and enters the core phase to determine where
to go from there. So for analysis purposes, the movement to p counts as being
part of the prologue phase, and the rest of the movement counts as being in
the core phase.

If the car is at the root p and the algorithm is just transitioning into the core
phase, then a live T, is picked uniformly at random from .4;1;, an internal
variable v is set to be 7, and the car moves to the first in-commission parking
spot on the path from p to ¢,. Subsequently in the core phase, when a parking
spot r; is decommissioned then:

1. If the car is not parked at r;, that is if ¢; # 7, then no action is taken.
2. Else the car moves to the first in-commission parking spot in 7 with proba-
bility ¢/ (1) and sets v to be 7. ( ¢/ () is defined in the next subsection.)

Intuitively ~y stores the last random choice of the algorithm.

3.2 The Definition of g (1)

In this section we only consider times in the core phase. We conceptually divide
up the tree T into three regions. Given vertex v and time ¢, we let 2} be the
number of in-commission parking spots on the path from v to p, inclusive, just
before decommission ;. We then define the regions as follows:

1. The root region is the set of all vertices v such that z; = 0. Note that this
region is connected, and no decommissioning can occur in this region since
there are no parking spots left.

2. The frontier region is the set of all vertices v such that z; = 1. A decommis-
sioning 7 is called a frontier decommissioning if r; is in the frontier region.

3. The outer region is the set of all vertices v such that zy > 1. A decommis-
sioning 7 is called a outer decommissioning if r; is in the outer region.

Observe that these regions have no dependence on random events internal to the
algorithm. Further observe that step 2 of the core phase in algorithm TreeSearch
maintains the invariant that the car is always parked at a spot in the frontier
region. This means that any outer decommissionings will not move the car from
its current parking spot.

Definition 3. Let r,, be the last decommissioning handled in the prologue phase
of TreeSearch. Define Xy = Ay N L(ry) to be the collection of o’s such that T, is
alive and contains ry and define Yy = A\ Xy = Ay N L(ry) to be the collection of
o’s such that T, is alive and doesn’t contain ry. Define Fy = X ﬂm to be the
collection of 0’s such that Ty, is killed by ry. Let n{ denote the number of frontier
decommissionings strictly before time t from T,. Define wy = (1 — €)™ for each
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o € [d]. Define Wi(J) = >, cywi for any J C {1,...,d}. Define 7f as the

probability the experts algorithm would give to expert o, that is 77 = #’;w,
TE t

Define 77 as my normalized amongst all experts in Az, that is T = = e o
reAy Wt

if o € Ay, and 0 otherwise. Define p{ as the probability that v = o right before
time t.

We are now ready to define ¢f (7). Note that by the definition of TreeSearch,
g7 (1) is only used for o € X; since the algorithm only reaches step 2 of the core
phase when r; € T),. We show in Lemma 1 that this definition of ¢f (7) indeed
defines a probability distribution over 7 € [d]. We then show in Lemma 2 that
the definition of ¢f (7) guarantees that our desired invariant pf = 77 holds.

Definition 4

(1—5)Wt(Xil<);-})+Wt(yt) ifT €Y and o € X\ Fy
, (1—e)Wt(X:<tft)+Wt(yt) ift €Yy and o € Fy
q; (1) =
ey 0000 if T e X\ F
0 ifTreForT e A

Lemma* 1. For all times t in the core phase and for all o € Xy, ¢ (T) forms
a distribution over T € [d].

Lemma®* 2. For all times t during the core phase and for all o € [d], p{ = 7.

Definition 4 and Lemmas 1 and 2 give us the following bound on the cost:

Theorem* 2. During the prologue phase, Y i 1™(t) < H and during the

core phase, E [Zf;}ﬂ_l 1™ (t)} < (14 €)H + 24 where 1™\(t) is an indicator
random variable that is 1 if TreeSearch moves the car to a new parking spot

on the decommissioning ry and O otherwise.

3.3 Monotonicity

We show that any neighbor algorithm for online metrical search can be extended
to a monotone algorithm for online metrical matching, where a neighbor algo-
rithm has the property that if it moves the car to a parking spot s; with positive
probability then it must be the case that there is no in-commission parking spot
on the route to s;. As TreeSearch is obviously a neighbor algorithm, it then
follows that it can be extended to a monotone algorithm for online metrical
matching, which we will call TreeMatch.

Lemma* 3. Let A be a neighbor algorithm for online metrical search. Then
there exists a monotone algorithm B for online metrical matching on a tree
metric that is identical to A for online metrical search instances.



Competitively Pricing Parking in a Tree 229

4 The GroveMatch Algorithm

In Subsect. 4.1 we describe an algorithm GroveBuild that builds a grove G from
a tree metric T with distance metric dp before any request arrives. We assume
without loss of generality that the minimum distance in T is 1. In Subsect. 4.2 we
then give an algorithm GroveMatch for online metrical matching on a tree metric
that utilizes the algorithm TreeMatch on each tree in the grove constructed by
GroveBuild, and we prove some basic properties of the grove GG. In Subsect. 4.3
we show that GroveMatch is a monotone online metrical matching algorithm
on a tree metric, and is O(log6 Alog? n)-competitive for online metrical search
instances.

4.1 The GroveBuild Algorithm

Definition 5. A grove G is either: a rooted tree X consisting of a single vertex,
or an unweighted rooted tree X with a grove X (v) associated with each vertex
v € X. The tree X is the canopy of the grove G. Each X (v) is a subgrove of X.
The canopy of a subtree X (v) is a child of X. Trees in G are descendants of X.

GroveBuild Description: GroveBuild is a recursive algorithm that takes as
input a tree metric T', a designated root p of T, positive real R, a positive real «
and a positive integer d. In the initial call to GroveBuild, T is the original tree
metric, p is an arbitrary vertex in T, R is the maximum distance A between p
and any other vertex in T, d is 1, and « is a parameter to be determined later
in the analysis.

If T consists of a single vertex v, then the recursion ends and the algorithm
outputs a rooted tree consisting of only the vertex v. We call this tree a leaf of
the grove. Otherwise the algorithm’s first goal is to partition the vertices of T’
into parts P, ..., Px, and designate one vertex ¢; of each partition P; as being
the leader of P;. To accomplish this, the algorithm sets partition P; to consist of
the vertices in T' that are within a distance z of p, where z is selected uniformly
at random from the range [0, g} The leader ¢; is set to be p. To compute P;
and /¢; after the first ¢ — 1 parts and leaders are computed the algorithm takes
the following steps. Let ¢; be a vertex such that ¢; ¢ Uj;ll P; and for each vertex

v on the path (¢;, p) it is the case that v € U;:lle. So ¢; is not in but adjacent

to the previous partitions. Then P; consists of all vertices v € T — U;;lle that

are within distance g from ¢; in T'. So P; intuitively is composed of vertices that
are not in previous partitions and that are close to #;.

The tree X at this point in the recursion has a vertex for each part in the
partition of 7. There is an edge between vertices/parts P; and P; in X if and
only if there is an edge (v,w) in T such that v € P; and w € P;. We identify
this edge in X with the edge (v,w) € T. The root of X is the vertex/part P;.
The tree X is at depth d in the grove. The grove X (P;) associated with vertex
P; in X is the result of calling GroveBuild on the subtree of T induced by the
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vertices in P;, with ¢; designated as the root, parameter R decreased by an «
factor, parameter o unchanged, and parameter d incremented by 1.

So from here on, let G denote the grove built by GroveBuild on the original
tree metric 7.

Definition 6

— For an edge (u,v) € T, let §(u,v) be the depth in the grove G of the tree X
that contains (u,v). Note that each edge in T occurs in exactly one tree in G.

— For an edge (u,v) € T, define dg(u,v) to be ﬁ.

— For vertices ug,up, € T, connected by the simple path (ug,uq,...,up) in T,
define dg(ug,un) to be Z;L:_Ol da(ui,uiy1). Obviously dg forms a metric on
the vertices of T'.

Lemma* 4. Recall that dr(u,v) is the shortest path distance between two
vertices u,v of tree T. For all vertices u,v € T, we have that dg(u,v) > dr(u,v)
and E [dg(u,v)] < a(l +1log A) - dr(u,v).

Corollary* 1. An algorithm B that is c-competitive for online metric matching
on T with distance metric dg is O(c - alog A)-competitive for online metric
matching on T with distance metric drp.

4.2 GroveMatch Description

We now describe an algorithm GroveMatch for online metrical matching for tree
metrics.

GroveMatch Description: Conceptually within GroveMatch, a separate copy
TreeMatch(X) of the online metric matching algorithm TreeMatch will be run
on each tree X in the grove G constructed by the algorithm GroveBuild. In
order to accomplish this, we need to initially place servers at the vertices in
X. We set the number of servers initially located at each vertex z € X to the
number of servers in T that are located at vertices v € T such that v € z (recall
that each vertex in a tree in the grove G corresponds to a collection of vertices

inT).
When a request r; arrives at a vertex v in T, the algorithm GroveMatch
calls the algorithm TreeMatch on a sequence (Xi,x1),(X2,22),... where each

X; is a tree of depth ¢ in G and z; is a vertex in X;. Initially X7 is the
depth 1 tree in G, and z; is the vertex in X; that contains v. Assume that
TreeMatch has already been called on (X1,z1),(Xe,z2),...(Xi—1,z;—1), then
the algorithm GroveMatch processes (X;,x;) in the following manner. First,
TreeMatch(X;) is called to respond to a request at x;. Let y; be the vertex
in X; that TreeMatch(X;) moved this request to. If X; is a leaf in G, then
TreeMatch(X;) sets y; = z;, and GroveMatch moves request r; to the unique
vertex in T' corresponding to z;. If X; is not a leaf in G, then X;,1 is set to
be the canopy of the grove X;(y;), and @41 = argmin,cp.yex,,, dr(v,w) or
equivalently x;1 is the first vertex in X;;; that one encounters if one walks in
T from v to the vertices of X;;1.
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Lemma* 5. Consider a tree X at depth § with Toot p in grove G. For any vertex
v in X, the number of hops in X between p and v is at most a+ 1. Furthermore,
by the time that TreeMatch(X) enters its core phase, it must be the case that
for every descendent tree Y of X in G there will be no future movement of the
car on edges in 'Y while TreeMatch (Y ) is in its prologue phase.

4.3 GroveMatch Analysis

We now analyze GroveBuild and GroveMatch under the assumption that o =
(Inn)(log? A) and € = =1
g

o

Lemma 6. The algorithm GroveMatch is O(lognlog3 A)-competitive for online
metrical search instances with the metric dg.

Proof. If GroveMatch directs a request to traverse an edge (u,v) € T, we will
say that the cost of this traversal is charged to the unique tree in G that contains
(u,v). Define P(6) to be the charge incurred by a tree X of depth d in G and all
subgroves X (v) of X during the prologue phase of TreeMatch(X). Define C(0)
to be the charge incurred by a tree X of depth ¢ in G and all subgroves X (v) of
X during the core phase of TreeMatch(X).

Recall that the distance under the dg metric of ever edge in X is % and
by Lemma 5 there are at most a 4 1 vertices on the path from any leaf to the
root of X. This gives us that the distance in X under dg from the root to any
leaf is at most a% = aﬁz and that the diameter of X is at most 2%.
The only subgroves X (v) of X that incur costs during the prologue phase of
TreeMatch(X) are those subgroves for which v is traversed by the car on its
path to the root of X. Thus we obtain the following recurrence:

P(5) < (a+1) (P(5+1)+C(5+1))+%. (1)
Note that once the core phase begins in TreeMatch(X), by Lemma 5 all instances
of TreeMatch(Y) on any tree Y that is a descendent of X in G can incur no
most costs in their prologue phase. By Theorem 2 the core phase cost on X is
at most (14 €)(a+ 1) + 22 times the diameter of X, which is at most 2_£5.
Thus we obtain the following recurrence:

%) < <C(6 +1)+ 20[?_2> ((1 +e)(a+1)+ hm) (2)

€

We expand the recurrence relation for C'(9) first. Treating ((1+€)(a+1) +

M) as a constant Z, and expanding C(4) we obtain:

A 9Alog. A [ Z\'%(A) 94 A10e A
0(5)§(c(5+1)+2 )Zg%() <2982

a2 -1 a -1
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Now expanding the recurrence relation for P(J) we obtain:

5 2
P(8) < (a+ 1) (P@E+1) +CE+1) + af_Q <X ﬁ;ffa 2

Hence the cost of the algorithm GroveMatch is O (% log? A). However, note
that TreeMatch only pays positive cost on X if for any optimal solution there
is at least one request that such a solution must pay positive cost for in X. The
reason for this is that if TreeMatch(X) moves the car out of a vertex v in X, then
there are no in-commission parking spots left in v, and therefore every algorithm
would have to move the car out of v. Since every edge in X has distance %, this

gives us that GroveMatch must be O(alog? A) = O(log nlog® A) competitive on
the metric dg.

Together with Corollary 1, Lemma 6 gives us the following theorem:

Theorem 3. GroveMatch is O(log® Alog® n)-competitive for online metrical
search instances.

Lemma* 7. GroveMatch is a monotone algorithm for online metrical
matching.
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