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Abstract

We design and mathematically analyze
sampling-based algorithms for regularized
loss minimization problems that are imple-
mentable in popular computational models
for large data, in which the access to the data
is restricted in some way. Our main result
is that if the regularizer’s effect does not be-
come negligible as the norm of the hypothesis
scales, and as the data scales, then a uniform
sample of modest size is with high probabil-
ity a coreset. In the case that the loss func-
tion is either logistic regression or soft-margin
support vector machines, and the regularizer
is one of the common recommended choices,
this result implies that a uniform sample of
size O(d

√
n) is with high probability a core-

set of n points in <d. We contrast this up-
per bound with two lower bounds. The first
lower bound shows that our analysis of uni-
form sampling is tight; that is, a smaller uni-
form sample will likely not be a core set. The
second lower bound shows that in some sense
uniform sampling is close to optimal, as sig-
nificantly smaller core sets do not generally
exist.

1 Introduction

We consider the design and mathematical analysis of
sampling-based algorithms for regularized loss mini-
mization (RLM) problems on large data sets (Shalev-
Shwartz and Ben-David, 2014). The input consists of
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a collection X = {x1, x2, . . . , xn} of points in <d, and
a collection Y = {y1, y2, . . . , yn} of associated labels
from {−1, 1}. Intuitively the goal is to find a hypoth-
esis β ∈ <d that is the best “linear” explanation for
the labels. More formally, the objective is to minimize
a function F (β) that is a linear combination of a non-
negative nondecreasing loss function ` that measures
the goodness of the hypothesis, and a nonnegative reg-
ularization function r that measures the complexity of
the hypothesis. So:

F (β) =

n∑
i=1

`(−yiβ · xi) + λ r(Rβ) (1)

Notable examples include regularized logistic regres-
sion, where the loss function is `(z) = log(1 + exp(z)),
and regularized soft margin support vector machines
(SVM), where the loss function is `(z) = max(0, 1+z).
Common regularizers are the 1-norm, the 2-norm,
and the 2-norm squared (Buhlmann and van de Geer,
2011). The parameter λ ∈ < is ideally set to balance
the risks of over-fitting and under-fitting. We will as-
sume that λ is proportional to nκ for some 0 < κ < 1,
capturing the range of most commonly suggested reg-
ularizers. In particular, is commonly recommended to
set λ to be proportional to Θ(

√
n) (Shalev-Shwartz

and Ben-David, 2014; Negahban et al., 2009). For this
choice of λ, if there was a true underlying distribution
from which the data was drawn in an i.i.d. manner,
then there is a guarantee that the computed β will
likely have vanishing relative error with respect to the
ground truth (Shalev-Shwartz and Ben-David, 2014,
Corollary 13.9) (Negahban et al., 2009, Corollary 3).
The parameter R is the maximum 2-norm of any point
in X. Note that the regularizer must scale with R if
it is to avoid having a vanishing effect as the point set
X scales.1

1To see this note that if we multiplied each coordinate
of each point xi by a factor of c, the optimal hypothesis β
would decrease by a factor of c, thus decreasing the value
of all of the standard regularizers.
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We are particularly interested in settings where the
data set is too large to fit within the main memory of
one computer, and thus the algorithm’s access to the
data set is restricted in some way. Popular computa-
tion models that arise from such settings include:

Streaming Model: This model derives from settings
where the data is generated in real-time, or stored
on a memory technology (such as a disk or tape)
where a sequential scan is way more efficient than
random accesses. In this model, the data can only
be accessed by a single (or a small number of)
sequential passes (Muthukrishnan, 2005).

Massively Parallel Computation (MPC) Model:
This model derives from settings where the data
is distributed over multiple computers. In this
model only a few rounds of communication with
sublinear sized messages are allowed (Im et al.,
2017; Karloff et al., 2010).

Relational Model: This model derives from settings
where the data is stored in a database in a collec-
tion of tables. In this model the data must be
accessed via relational operators that do not ex-
plicitly join tables (Khamis et al., 2016).

Thus we additionally seek algorithms that can be rea-
sonably implemented in these popular restricted access
models.

One popular method to deal with large data sets is
to extract a manageably small (potentially weighted)
sample from the data set, and then directly solve
(a weighted version of) the RLM problem on the
(weighted) sample2. The aspiration here is that the
optimal solution on the sample will be a good approx-
imation to the optimal solution on the original data
set. To achieve this aspiration, the probability that
a particular point is sampled (and the weight that it
is given) may need to be carefully computed as some
points may be more important than other points. But
if this sampling probability distribution is too com-
plicated, it may not be efficiently implementable in
common restricted access models.

A particularly strong condition on the sample that is
sufficient for achieving this aspiration is that the sam-
ple is a coreset ; intuitively, a sample is a coreset if for
all possible hypotheses β, the objective value of β on
the sample is very close to the objective value of β on
the whole data set.

There has been work on constructing coresets for spe-
cial cases of the RLM problem. In particular, sublin-

2A more general approach is to summarize the data set
in some more sophisticated way than as a weighted sample,
but such approaches are beyond the scope of this paper.

ear coresets exists for unregularized logistic regression
(i.e λ = 0) by making assumptions on the input. The
exact assumption is technical, but intuitively the core-
sets are small when there is no hypothesis that is a
good explanation of the labels. The work of Tolochin-
sky and Feldman (2018) gave coresets for regularized
soft-margin SVM assuming the 2-norm of the optimal
β is small.

Unfortunately, both of these works do not apply to
general input instances. Moreover, they require knowl-
edge that is not easy to compute about the input to
know if the input has the needed properties. One may
wonder if small coresets exist for general data sets.
The work of Munteanu et al. (2018) shows that there
is no coreset of size Ω( n

logn ) for unregularized logistic
regression.

This lower bound is discouraging, suggesting that
small coresets are not possible for arbitrary inputs even
for the special case of the logistic regression problem.
However, the lower bound is for unregularized logistic
regression. In practice, regularization is almost always
used, as emphasized in the following quotes. From
Chapter 5. Basic Practice of Burkov (2019): “Regu-
larization is the most widely used approach to prevent
overfitting.” Quoting Maya Gupta, head of the Glass-
box Machine Learning team at Google from her online
course on machine learning, “The key ingredient to
making machine learning work great... is regulariza-
tion” (Gupta).

Thus, the natural research question is if small coresets
exist for RLM problems in general, and for regularized
logistic regression and regularized SVM – and further,
if they can be efficiently computed within the common
restricted access models.

Our Results: Our main result is that if the regular-
izer’s effect does not become negligible as the norm of
the hypothesis scales then a uniform sample of size
Θ(n1−κ∆) points is with high probability a coreset.
Here, ∆ is the VC-dimension of the loss function.
Thus, coresets exists for general input instances for
the RLM problem, showing regularization allows us to
break through lower bounds shown in prior work! For-
mally this scaling condition says that if `(−‖β‖) = 0
then r(β) must be a constant fraction of `(‖β‖2). We
show that this scaling condition holds when the loss
function is either logistic regression or SVM, and the
regularizer is the 1-norm, the 2-norm, or the 2-norm
squared. So for example, in the recommended case
that κ = 1/2, the scaling condition ensures that a uni-
form sample of Θ̃(d

√
n) points is with high probability

a coreset when the regularizer is one of the standard
ones, and the loss function is either logistic regression
and SVM, as they have VC-dimension O(d). Note also
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that uniform sampling can be reasonably implemented
in all of the popular restricted access models. So this
yields a reasonable algorithm for all of the restricted
access models under the assumption that a data set of
size Θ̃(d

√
n) can be stored, and reasonably solved, in

the main memory of one computer.

We complement our upper bound with two lower
bounds on the size of coresets. Our lower bounds as-
sume the 2-norm squared as the regularizer, since in-
tuitively this is the standard regularizer for which it
should be easiest to attain small coresets. We first
show that our analysis is asymptotically tight for uni-
form sampling. That is, we show that for both lo-
gistic regression and SVM, a uniform sample of size
O(n1−κ−ε) may not result in a coreset. We then show
for both logistic regression and SVM there are in-
stances in which every core set is of size Ω(n(1−κ)/5−ε).
So more sophisticated sampling methods must still
have core sets whose size is in the same ballpark as
is needed for uniform sampling. One might arguably
summarize our results as saying that the simplest pos-
sible sampling method is nearly optimal for obtaining
a coreset.

We experimentally evaluate the practical utility of uni-
form sampling for logistic regression using several real-
world datasets from the UCI machine learning dataset
repository (Dua and Graff, 2017). We observe that
our theory is empirically validated as uniform sam-
ples yield good empirical approximation, and orders-
of-magnitude speedup over learning on the full dataset.

Related Work on Coresets: The most closely re-
lated prior work is probably Munteanu et al. (2018),
who considered coresets for unregularized logistic re-
gression; i.e, the regularization parameter λ = 0.
Munteanu et al. (2018) showed that are data sets for
which there do not exist coresets of sublinear size,
and then introduced a parameter µ of the instances
that intuitively is small when there is no hypothesis
that is a good explanation of the labels, and showed
that a coreset of size roughly linear in µ can be ob-
tain by sampling each point with a uniform probabil-
ity plus a probability proportional to its `22 leverage
scores (which can be computed from a singular value
decomposition of the points). This result yields an al-
gorithm, for the promise problem in which µ is known
a priori to be small (but it is not clear how to reason-
ably compute µ), that is reasonably implementable in
the MPC model, and with two passes over the data in
the streaming model. It seems unlikely that this al-
gorithm is implementable in the relational model due
to the complex nature of required sampling probabili-
ties. Contemporaneously with our research, Tolochin-
sky and Feldman (2018) obtained results similar in fla-
vor to those of Munteanu et al. (2018). Tolochinsky

and Feldman (2018) also show that small coresets exist
for certain types of RLM instances; in this case, those
in which the norm of the optimal hypothesis is small.
So for normalized logistic regression Tolochinsky and
Feldman (2018) shows that when the 2-norm of the
optimal β is bound by µ, coresets of size Õ(µ2n1−κ)
can be obtained by sampling a point with probability
proportional to its norm divided by its ordinal position
in the sorted order of norms. So again this yields an
algorithm for the promise problem in which µ is known
a priori to be small (and again it is not clear how to
reasonably compute µ). Due to the complex nature of
the probabilities it is not clear that this algorithm is
reasonably implementable in any of the restricted ac-
cess models that we consider. So from our perspective
there are three key differences between the results of
Munteanu et al. (2018) and Tolochinsky and Feldman
(2018) and our positive result: (1) our result applies
to all data sets (2) we use uniform sampling, and thus
(3) our sampling algorithm is implementable in all of
the restricted access models that we consider.

Surveys of the use of coresets in algorithmic design
can be found in Munteanu and Schwiegelshohn (2018)
and in Har-Peled (2011, Chapter 23). The knowledge
that sampling with probability at least proportional to
sensitivity yields a coreset has been used for at least a
decade as it is used by Dasgupta et al. (2009). Coresets
were used for partitioned clustering problems, such
as k-means (Har-Peled and Mazumdar, 2004; Meyer-
son et al., 2004; Bachem et al., 2018). Coresets for
hard margin SVM are known (Har-Peled et al., 2007).
These coresets have an approximation guarantee on
the quality of the margin to the hyperplane. Unfor-
tunately, these ideas not not applicable to soft-margin
SVM.

Coresets have been used the Minimum Enclosing
Ball (MEB) problem (Har-Peled, 2011). Coresets for
MEB are the basis for the Core Vector Machine ap-
proach to unregularized kernelized SVM (Tsang et al.,
2005). Several strong coresets for computing balls are
known (Bădoiu and Clarkson, 2008; Badoiu and Clark-
son, 2003). We note that while there is a reduction
from kernelized SVM to MEB, the reduction is not
approximation preserving, and thus the existence of
coresets for MEB does not imply the existence of core-
sets for SVM.

Coresets have also been used for submodular optimiza-
tion Mirrokni and Zadimoghaddam (2015), clustering
Badoiu et al. (2002), Baysian Logistic Regression Hug-
gins et al. (2016) and in the design of streaming al-
gorithms (e.g. O’Callaghan et al. (2002)), as well as
distributed algorithms (e.g. Malkomes et al. (2015)).
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2 Preliminaries

We define `i(β) = `(−yiβ · xi) as the contribution
of point i to the loss function. We define fi(β) =
`(−yiβ · xi) + λr(Rβ)/n as the contribution of point
i to the objective F (β). The sensitivity of point i is
then si = supβ fi(β)/F (β), and the total sensitivity is
S =

∑n
i=1 si. For ε > 0, an ε-coreset (C,U) consists of

a subcollection C of [1, n], and associated nonnegative
weights U = {ui | i ∈ C}, such that

∀β H(β) :=

∣∣∑n
i=1 fi(β)−

∑
i∈C uifi(β)

∣∣∑n
i=1 fi(β)

≤ ε (2)

Conceptually one should think of ui as a multiplicity,
that is that xi is representing ui points from the orig-
inal data set. So one would expect that

∑
i∈C ui = n,

although this is not strictly required. But it is easy to
observe that

∑
i∈C ui must be close to n.

Observation 1. Assume that `(0) 6= 0, as is the
case for logistic regression and SVM. If (C,U) is an
ε-coreset then (1− ε)n ≤

∑
i∈C ui ≤ (1 + ε)n.

Proof. Applying the definition of coreset in the case
that β is the hypothesis with all 0 components, it
must be the case that

∣∣∑n
i=1 `(0)−

∑
i∈C ui`(0)

∣∣ ≤
ε
∑n
i=1 `(0), or equivalently

∣∣n−∑i∈C ui
∣∣ ≤ εn.

Note that in the special case that each ui is equal to a
common value u, as will be the case for uniform sam-
pling, setting each ui = 1 and scaling λ down by a
factor of u, would result in the same optimal hypoth-
esis β.

A collection X of data points is shatterable by a loss
function ` if for every possible set of assignments of
labels, there is a hypothesis β and a threshold t, such
that for the positively labeled points xi ∈ X it is the
case the `(β · xi) ≥ t, and for the negatively labeled
points xi it is the case that `(β · xi) < t. The VC-
dimension of a loss function is then the maximum car-
dinality of a shatterable set. It is well known that if
the loci of points x ∈ <d where `(β · x) = t is a hyper-
plane then the VC-dimension is at most d+1 (Vapnik,
1998). It is obvious that this property holds if the loss
function is SVM, and Munteanu and Schwiegelshohn
(2018) show that it holds if the loss function is lo-
gistic regression. The regularizer does not affect the
VC-dimension of a RLM problem.

A loss function ` and a regularizer r satisfy the (σ, τ)-
scaling condition if `(−σ) > 0, and if ‖β‖2 ≥ σ
then r(β) ≥ τ `(‖β‖2). Intuitively this condition en-
sures that the objective value of any correctly classified
point that is near the separating hyperplane must be
bounded away from zero, that is either the loss func-
tion or the regularlizer must bounded away from zero.

Theorem 2 (Feldman and Langberg (2011); Braver-
man et al. (2016)). Let (n,X, Y, `, r, λ,R, κ) be an in-
stance of the RLM problem where the loss function has
VC-dimension at most ∆. Let s′i be an upper bound
on the sensitivity si, let S′ =

∑n
i=1 s

′
i. Let ε, δ ∈ (0, 1)

be arbitrary. Let C be a random sample of at least
10S′

ε2 (∆ logS′+log( 1
δ ))) points sampled in an i.i.d fash-

ion, where the probability that point i ∈ [1, n] is se-
lected each time is s′i/S

′. Let the associated weight

ui for each point xi ∈ C be S′

s′i |C|
. Then C and

U = {ui | xi ∈ C} is an ε-coreset with probability
at least (1− δ).

3 Upper Bound for Uniform Sampling

In this section, we show that uniform sampling can be
used to construct a coreset for regularized loss mini-
mization.

Theorem 3. Let (n,X, Y, `, r, λ,R, κ) be an instance
of the RLM problem where ` and r satisfy the
(σ, τ)-scaling condition and the loss function has VC-

dimension at most ∆. Let S′ = n
τλ + `(σ)

`(−σ) + 1. A

uniform sample of q = 10S′

ε2 (∆ logS′ + log( 1
δ )) points,

each with an associated weight of u = n/q, is an ε-
coreset with probability at least 1− δ.

Proof. With an aim towards applying Theorem 2 we
start by upper bounding the sensitivity of an arbitrary
point. To this end consider an arbitrary i ∈ [1, n] and
an arbitrary hypothesis β. First consider the case that
R ‖β‖2 ≥ σ. In this case:

fi(β)

F (β)
=

`(−yiβ · xi) + λ
nr(Rβ)∑

j `(−yjβ · xj)) + λ r(Rβ)

≤
`(|β · xi|) + λ

nr(Rβ)∑
j `(−yjβ · xj) + λ r(Rβ)

[As the loss function is nondecreasing]

≤
`(|β · xi|) + λ

nr(Rβ)

λ r(Rβ)

[As the loss function is nonnegative]

≤
`(|β · β| R

‖β‖2
) + λ

nr(Rβ)

λ r(Rβ)

[As maximum is when xi = β
R

‖β‖2
]

≤
`(R ‖β‖2)

λ r(Rβ)
+

1

n

≤
`(R ‖β‖2)

λ τ `(R ‖β‖2)
+

1

n

[By (σ, τ) scaling assumption

and assumption R ‖β‖2 ≥ σ]
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≤ 1

τλ
+

1

n

Next consider the case that R ‖β‖2 < σ. In this case:

fi(β)

F (β)
=

`(−yiβ · xi) + λ
nr(Rβ)∑

j `(−yjβ · xj) + λ r(Rβ)

≤
`(|β · xi|) + λ

nr(Rβ)∑
j `(−|β · xj |) + λr(Rβ)

[As the loss function is nondecreasing]

≤
`(|β · β| R

‖β‖2
) + λ

nr(Rβ)∑
j `(−|β · β|

R
‖β‖2

) + λ r(Rβ)

[As maximum is when xi = β
R

‖β‖2
]

≤
`(R ‖β‖2) + λ

nr(Rβ)∑
j `(−R ‖β‖2) + λ r(Rβ)

≤
`(R ‖β‖2)∑
j `(−R ‖β‖2)

+
1

n

[As a, b, c, d ≥ 0 implies
a+ b

c+ d
≤ a

c
+
b

d
]

≤ `(σ)∑
j `(−σ)

+
1

n

[By assumption R ‖β‖2 < σ]

≤ `(σ)

n `(−σ)
+

1

n

Thus the sensitivity of every point is at most 1
τλ +

`(σ)
n `(−σ) + 1

n , and the total sensitivity S is at most n
τλ +

`(σ)
`(−σ) + 1. The claim the follows by Theorem 2.

Corollary 4. Let (n,X, Y, `, r, λ,R, κ) be an instance
of the RLM problem where the loss function ` is lo-
gistic regression or SVM, and the regularizer r is
one of the 1-norm, 2-norm, or 2-norm squared. Let
S′ = 12n

λ + 6 = 12n1−κ + 6. A uniform sample of

q = 10S′

ε2 ((d+ 1) logS′ + log( 1
δ ))) points, each with an

associate weight of u = n
q , is an ε-coreset with proba-

bility at least 1− δ.

Proof. Since the VC-dimension of logistic regression
and SVM is at most d + 1, it is enough to show that
the scaling condition holds in each case. First consider
logistic regression. Let σ = 1. Then we have l(−1) =
log(1+exp(−1)) 6= 0. In the case that r(β) = ‖β‖2 it is
sufficient to take τ = 1

2 as `(z) = log(1 + exp(z)) ≤ 2z
when z ≥ 1. Similarly its sufficient to take τ = 1

2
when the regularizer is the 2-norm squared, as `(z) =
log(1 + exp(z)) ≤ 2z2 when z ≥ 1. As ‖β‖1 ≥ ‖β‖2 it
is also sufficient to take τ = 1

2 when the regularizer is
the 1-norm. Therefore, total sensitivity is bounded by
2n
λ + 6 in all of these cases.

Now consider SVM. Let σ = 1/2. Then l(−1/2) =
1/2 6= 0. In the case that r(β) = ‖β‖2 it is sufficient
to take τ = 1

3 as `(z) = 1 + z ≤ 3z when z ≥ 1
2 ;

τ = 1
3 will be also sufficient when the regularizer is

the 1-norm since ‖β‖1 ≥ ‖β‖2.

Furthermore, if ‖β‖2 ≥ 1, then ‖β‖22 ≥ 4 ‖β‖2; there-

fore, in the case that r(β) = ‖β‖22, it is sufficient to
take τ = 1

12 . Therefore, total sensitivity is bounded
by 12n

λ + 4.

The implementation of uniform sampling, and the
computation of R, in the streaming and MPC models
is trivial. Uniform sampling and the computation of
R in the relational model can be implemented without
joins because both can be expressed using functional
aggregate queries, which can then be efficiently com-
puted without joins (Khamis et al., 2016).

We note that in several other papers (e.g. Munteanu
and Schwiegelshohn (2018)) coreset constructions can
be applied recursively to obtain very small coresets.
We cannot apply the previous theorem recursively be-
cause after sampling and re-weighting the regularizer
stays the same; however, the number of points is less
and the weight of loss function for each point is scaled.
To see that it is not possible to re-sample the new in-
stance, it is enough to divide the new error function by
the weight of each sample and get an unweighted in-
stance that its regularizer has a small coefficient; now,
having a coreset for the weighted sample is similar to
having a coreset for this unweighted sample with small
regularizer. Of course, it can also be seen that the the-
orem cannot be applied recursively because it would
contradict out lower bound in the next section as well.

4 Uniform Sampling Lower Bound

In this section we show in Theorem 5 that our analysis
of uniform sampling is tight up to poly-logarithmic
factors.

Theorem 5. Assume that the loss function is either
logistic regression or SVM, and the regularizer is the
2-norm squared. Let ε, γ ∈ (0, 1) be arbitrary. For all
sufficiently large n, there exists an instance In of n
points such that with probability at least 1− 1/nγ/2 it
will be the case that for a uniform sample C of c =
n1−γ/λ = n1−κ−γ points, there is no weighting U that
will result in an ε-coreset.

Proof. The instance In consists of points located on
the real line, so the dimension d = 1. A collection A of
n− (λnγ/2) points is located at +1, and the remaining
λnγ/2 points are located at −1; call this collection of
points B. All points are labeled +1. Note R = 1.
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Let C be the random sample of c points, and U an
arbitrary weighting of the points in C. Note that U
may depend on the instantiation of C. Our goal is
to show that with high probability, (C,U) is not an
ε-coreset. Our proof strategy is to first show that be-
cause almost all of the points are in A, it is likely that
C contains only points from A. Then we want to show
that, conditioned on C ⊆ A, that C can not be a core-
set for any possible weighting. We accomplish this by
showing that limn→∞H(β) = 1 when β = nγ/4. The
details are relatively straightforward and can be found
in the appendix.

5 General Lower Bound on Coreset
Size

This section is devoted to proving the following theo-
rem for logistic regression (the proof for SVM is given
in the appendix).

Theorem 6. Assume that the loss function is either
logistic regression or SVM, and the regularizer is the
2-norm squared. Let ε, γ ∈ (0, 1) be arbitrary. For all
sufficiently large n, there exists an instance In of n
points such that In does not have an ε-coreset of size
O(n(1−κ)/5−γ).

The lower bound instance In consists of a collection
of n positively-labeled points in <3 uniformly spaced
around a circle of radius 1 centered at (0, 0, 1) in the
plane z = 1. Note that R =

√
2. However for con-

venience, we will project In down into a collection X
of points in the plane z = 0. So the resulting in-
stance, which we call the circle instance, consists of
n points uniformly spread around the unit circle in
<2. So for a hypothesis β = (βx, βy, βz), F (β) is now∑
xi∈X `(−yi((βx, βy) · xi + βz)) + 2λ ‖β‖22. So βz can

be thought of as an offset or bias term, that allows
hypotheses in <2 that do not pass through the origin.

Fix a constant c > 0 and a subset C of X that has
size k = cn

1/5−γ

λ1/5 = cn(1−κ)/5−γ as a candidate coreset.
Let U be an arbitrary collection of associated weights.
Toward finding a hypothesis that violates equation (2),
define a chunk A to be a collection of n

4k points in the
middle of n

2k consecutive points on the circle that are
all not in C. So no point in the chunk A is in C,
and no point in the next n

8k points in either direction
around the circle are in C. Its easy to observe that,
by the pigeon principle, a chunk A must exist. Now
let βA = (βx, βy, βz) be the hypothesis where (βx, βy) ·
xi + βz = 0 for the two points xi ∈ X \ A that are
adjacent to the chunk A, that predicts A incorrectly
(and thus that predicts the points X \ A correctly),

and where ‖βA‖2 =
√

n1−γ

kλ . To establish Theorem 6

we want to show that equation (2) is not satisfied for

the hypothesis βA. By Observation 1 it is sufficient to
show that the limit as n→∞ of:∣∣∣∣∣ ∑xi∈X `i(βA)−

∑
xi∈C

ui`i(βA)

∣∣∣∣∣− 2ελ ‖βA‖22∑
xi∈X

`i(βA) + λ ‖βA‖22

=

∣∣∣∣∣1−
∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

∣∣∣∣∣− 2ελ‖βA‖22∑
xi∈X

`i(βA)

1 +
λ‖βA‖22∑

xi∈X
`i(βA)

is 1. To accomplish this it is sufficient to show that the
limits of the ratios in the second expression approach
0, which we do in the next two lemmas.

Lemma 7. lim
n→∞

λ‖βA‖22∑
xi∈X

`i(βA) = 0.

Proof. As the n
4k points in A have been incorrectly

classified by βA, we know that `i(βA) ≥ log 2 for xi ∈
A. Thus:

lim
n→∞

λ ‖βA‖22∑
xi∈X

`i(βA)
≤ lim
n→∞

λn
1−γ

kλ
n
4k log 2

= lim
n→∞

4

nγ log 2

= 0.

Lemma 8. lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA) = 0.

Proof. Let di be the distance between xi and the line
that passes through the first and last points in the
chunk A. Let θi be the angle formed by the the ray
from the origin through xi and the ray from the origin
to them middle point in A. Let θ = maxi∈A θi =
2π
n

n
8k = π

4k . We then make two algebraic observations
(the proof of the first can be found in the appendix,
and the second is more or less obvious).

Observation 9. For all xi ∈ X, di ‖βA‖2 /2 ≤
|(βx, βy) · xi + βz| ≤ di ‖βA‖2.

Observation 10. For all xi ∈ X, di = | cos(θi) −
cos(θ)|.

We then have:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
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coreset error H(β)
dataset n d |C| =

√
n |C| = 10

√
n |C| = 20

√
n

connect4 67557 126 0.35± 0.01 0.04± 0.00 0.02± 0.00
grid stability 10000 12 0.52± 0.00 0.02± 0.00 0.01± 0.00
miniboone 130064 50 0.78± 0.01 0.39± 0.00 0.22± 0.00
mnist 70000 784 0.53± 0.02 0.19± 0.02 0.14± 0.00
pokerhand 1000000 85 1.01± 0.00 0.00± 0.00 0.00± 0.00

Table 1: Dataset information and relative approximation of logistic regression objective with coresets C of
different sizes. Three trials are used. Coreset error of 0 indicates a very good approximation.

= lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−((βx, βy) · xi + βz))

)
∑
xi∈X

`i(βA)

≤ lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−di‖βA‖22 )

)
∑
xi∈A

`i(βA)

[By Observation 9]

≤ lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−‖βA‖22 (cos θ − cos θi))

)
∑
xi∈A

`i(βA)

[By Observation 10]

≤ lim
n→∞

∑
xi∈C

ui exp(−‖βA‖22 (cos θ − cos θi))∑
xi∈A

`i(βA)

[Since log(1 + x) ≤ x]

≤ lim
n→∞

∑
xi∈C

ui exp(−‖βA‖22 (cos π
4k − cos π

2k ))∑
xi∈A

`i(βA)

[Since maximizer is when θi =
π

2k
]

≤ 0

[As cos
π

4k
− cos

π

2k
=

3π2

32k2
−O(

1

k4
)]

More details can be found in Appendix B.1.

6 Experiments

We next experimentally evaluate the practical utility
of our uniform sampling scheme for logistic regres-
sion. Using 5 datasets from the UCI machine learn-
ing dataset repository (Dua and Graff, 2017), we uni-
formly generate samples of different sizes and train a
logistic regression model.

These datasets are collected from synthetic and real-
world data sources, and so represent a reasonable col-
lection of diverse datasets. Table 1 gives details on the

number of points (n) and the number of dimensions (d)
for each dataset.

Logistic regression models are trained using the ml-
pack C++ machine learning library (Curtin et al.,
2018).

We first validate the general efficacy of uniform ran-
dom sampling by running three trials with three differ-
ent coreset sizes:

√
n, 10

√
n, and 20

√
n. We plot the

relative difference in loss measures (0 means a perfect
approximation). Specifically, the approximation given
in the table, H(β), is given as

H(β) =

∣∣∑n
i=1 fi(β)−

∑
i∈C uifi(β)

∣∣∑n
i=1 fi(β)

. (3)

We report the mean of H(β) over three trials: H(β).

Next, we graph the approximation error of uniform
random sampling as the sample size is swept from 50
points up to the dataset size. We use λ = 0.1, and
report the mean approximation H(β) (according to
Eqn. 2) in Figure 1. When training the models, the
L-BFGS optimizer is used until convergence (Liu and
Nocedal, 1989). However, although this works for our
experiments, note that in general it is not feasible to
use L-BFGS like this, specifically when datasets are
very large, or when we are in restricted computation
access models, as we have considered in this paper.
This is because a single L-BFGS step requires compu-
tation of the gradient of fi(β) for every i ∈ [n].

In extremely-large-data or streaming settings, a typi-
cal strategy for training a logistic regression model is to
use mini-batch SGD (Ruder, 2016), where the model’s
parameters are iteratively updated using a gradient
computation on a small batch of random points. How-
ever, SGD-like optimizers can converge very slowly in
practice and have a number of parameters to config-
ure (learning rate, number of epochs, batch size, and
so forth). But because our theory allows us to choose a
sufficiently small sample, we can use a full-batch opti-
mizer like L-BFGS and this often converges to a much
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Figure 1: sample approximation error vs. sample size for different datasets.

better solution orders of magnitude more quickly.

To demonstrate this, we train a logistic regression
model on a sample using L-BFGS and on the full
dataset using SGD for 20 epochs. At each step of
the optimization, we record the wall-clock time and
compute the loss on the full training set (the loss com-
putation time is not included in the wall-clock time).
Figure 2 shows the results for three trials of each strat-
egy on two moderately-sized datasets. It is clear from
these results that a full-batch gradient descent tech-
nique can provide a good approximation of the full-
dataset model with orders-of-magnitude speedup; in
fact, L-BFGS is often able to recover a much better
model than even 20 epochs of SGD!

Overall, we can see that our theory is empirically val-
idated: uniform sampling provides samples that give
good empirical approximation, and the use of these
samples can result in orders-of-magnitude speedup for
learning models. Thus, our theory shows and our
experiments justify that uniform sampling to obtain
coresets is a compelling and practical approach for re-
stricted access computation models.

7 Conclusion

This paper considered constructing coresets for regu-
larized loss minimization problems. We gave an al-
gorithm that constructs a coreset. The algorithm is
essentially the best possible, ensuring the coreset has
size that nearly matches a lower bound shown in the
paper. The algorithm is simple and easy to implement
in most large data models.
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Figure 2: Learning curves; log-log axes. Three tri-
als of each strategy are shown. Note the orders-of-
magnitude faster convergence for L-BFGS on samples.
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