
A Poly-log Competitive Posted-price Algorithm for Online
Metrical Matching on a Spider?

Max Bender1, Jacob Gilbert2, and Kirk Pruhs1[0000−0001−5680−1753]

1 Computer Science Deparment
University of Pittsburgh, Pittsburgh, PA 15213

mcb121@pitt.edu, kirk@pitt.edu
2 Computer Science Department

University of Maryland
jgilber8@umd.edu

Abstract. Motivated by demand-responsive parking pricing systems we consider posted-price al-
gorithms for the online metrical matching problem. Our main result is a polylog competitive posted-
price algorithm in the case that the metric space is a spider.

1 Introduction

1.1 Motivation and Problem Statement

SFpark is San Francisco’s system for managing the availability of on-street parking [3, 29, 2]. The goal of
SFpark is to reduce the time and fuel wasted by drivers searching for an open parking spot. The system
monitors parking usages using sensors embedded in the pavement and distributes this information in
real-time to drivers via SFpark.org and phone apps. SFpark periodically adjusts parking meter pricing
to manage demand, to lower prices in underutilized areas, and to raise prices in overutilized areas. Prices
can range from a minimum of 25 cents to a maximum of 7 dollars per hour during normal hours, with
a 18 dollars per hour cap for special events such as baseball games or street fairs. Several other cities
in the world have similar demand-responsive parking pricing systems, for example Calgary has had the
ParkPlus system since 2008 [1].

One natural simple model of the problem of centrally assigning drivers to parking spots to minimize
time and fuel usage is the online metrical matching problem. The setting for online metrical matching
consists of a collection of k servers (the parking spots) located at various locations within a metric space.
The algorithm then sees an online sequence of requests over time that arrive at various locations in
the metric space (the drivers arriving to look for a parking spot). In response to a request, the online
algorithm must match the request (car) to some server (parking spot) that has not been previously
matched. Conceptually we interpret this matching as the request (car) moving to the location of the
matched server (parking spot). The objective goal is to minimize the aggregate distance traveled by the
requests (cars).

In order to be implementable within the context of SFpark, algorithms for online metric matching
must be posted-price algorithms. In this setting, posted-price means that before each request arrives, the
algorithm sets a price on each unused server (parking spot) without knowing the location where the next
request will arrive. We assume each request is a selfish agent who moves to the available server (parking
spot) that minimizes the sum of the price of that server (parking spot) and the distance to that server
(parking spot). The objective remains to minimize the aggregate distance traveled by the requests (cars).
Thus conceptually, the objective of the parking pricing agency is minimizing social cost, not maximizing
revenue.

Research into posted-price algorithms for online metrical matching was initiated in [14] as part of
a broader study of the use of posted-price algorithms to minimize social cost in online optimization
problems. As a posted-price algorithm is a valid online algorithm, one can not expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by general online algorithms. So
this research line has primarily focused on problems where the optimal competitive ratio achievable
by an online algorithm is (perhaps approximately) known and seeks to determine whether a comparable
competitive ratio can be (again perhaps approximately) achieved by a posted-price algorithm. The higher
level goal is to determine the increase in social cost that is necessitated by the restriction that the

? Supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty Award.

2 M. Bender. J. Gilbert and K. Pruhs

algorithm has to use posted prices to incentivize selfish agents, instead of being able to mandate agent
behavior.

Before stating our results on posted-price algorithms for online metric matching we want to lay the
groundwork by reviewing past work on posted-price algorithm design techniques, past work on general
online algorithms for online metric matching, and past work on posted-price algorithms for online metric
matching.

1.2 Past Work

The most obvious algorithmic design approach for posted-price problems is to directly design a pricing
algorithm from scratch, as is done for metrical task systems in [15]. Two less direct algorithmic design
paradigms have emerged in the literature. The first algorithmic design paradigm is what we will call
mimicry. A posted-price algorithm A mimics an online algorithm B if the probability that B will take a
particular action is equal the probability that a self-interested agent will choose this same action when
the prices of actions are set using A. For example, [18] shows how to set prices to mimic the O(1)-
competitive algorithm Slow-Fit from [8, 9] for the problem of minimizing makespan on related machines.
For some problems it is not possible to mimic known competitive algorithms using posted prices. For such
problems, another algorithmic design paradigm is what we will call monotonization. In the monotonization
algorithm design approach, one first seeks to characterize the online algorithms that can be mimicked,
and then design such a mimicable online algorithm (the reason for using this terminology is that in all
the examples in the literature, this characterization involves some sort of monotonicity property). For
example, monotonization is used in [15] to obtain an O(k)-competitive posted-price algorithm for the
k-server problem on a line metric, in [16] to to obtain an O(k)-competitive posted-price algorithm for
the k-server problem on a tree metric, and in [21] to obtain an O(1)-competitive posted-price algorithm
for minimizing maximum flow time on related machines. In all of these examples, the competitive ratio
achievable by the posted-price algorithm is comparable to the best competitive ratio achievable by a
general online algorithm, thus showing that there is minimal increase in social cost necessitated by the
use of posted-prices.

Let us now turn to known results for general algorithms for online metric matching in a general
metric. There is a deterministic online algorithm that is (2k−1)-competitive, and no deterministic online
algorithm can achieve a better competitive ratio in a star metric [22, 23]. Using HST’s (Hierarchically
Separated Trees) [11, 12, 17], [25] obtained an O(log3 k)-competitive randomized algorithm. The algorithm
in [25] can be viewed as combining two online randomized metric matching algorithms:

HST Algorithm: An O(log k)-competitive algorithm for O(log k)-HST’s.
Uniform Metric Space Algorithm: The natural O(log k)-competitive for a uniform metric space.

Later [10] obtained an O(log2 k)-competitive randomized algorithm by replacing the HST algorithm used
by [25] by a O(log k)-competitive algorithm for 2-HST’s.

Better competitive ratios for online metric matching can be achieved on some natural metric spaces.
Let us first consider a line metric. An O(k.59)-competitive deterministic algorithm was given in [4]. Subse-
quently several different O(log k)-competitive randomized algorithms are given in [20]. These algorithms
leverage special properties of HST’s constructed from a line metric. [20] also showed that the natural
Harmonic algorithm is O(log∆)-competitive, where ∆ is the ratio of the distance between the furthest
two servers and the distance between the closest two servers. And by applying a standard doubling ap-
proach, [20] showed how to convert this Harmonic algorithm into an O(log k)-competitive algorithm. An
O(log2 k)-competitive deterministic online algorithm, called RM, was given in [26], and this was later im-
proved to O(log k) in [28]. An Ω(log k) lower bound on the competitive ratio for certain types of natural
algorithms is given in [5, 24]. A 9.001 lower bound on the competitive ratio of deterministic algorithm is
given in [19]. This was improved to an Ω(

√
log k) lower bound on the competitive ratio for randomized

algorithms in [27].
[26] also showed that for every metric space the competitive ratio of the RM algorithm is at most

O(log2 k) times the optimal competitive ratio achievable by a deterministic algorithm on that metric
space.

We now turn to posted-price algorithms for online metric matching. [14] shows that the online algo-
rithm Harmonic is mimicable on a line metric, and thus, using the results from [20], obtain an O(log∆)-
competitive randomized posted-price algorithm for a line metric.

[13] considered posted-price algorithms for tree metrics. [13] adopts the monotization approach, and
identifies a monotonicity property that characterizes mimicable algorithms for online metrical matching

A Poly-log Competitive Posted-price Algorithm for Online Metrical Matching on a Spider 3

in tree metrics. This monotization property is that, as a request arrival location moves closer to a server
location, the probability that the request uses that server can not decrease. While this monotization
property might seem innocuous at first, standard algorithmic approaches are seemingly hopelessly non-
monotone. For example, there is no hope to mimic any of the online algorithms that are based on HST’s
as HST’s by their very nature lose too much information about the structure of a tree metric. [13] devel-
oped a type of hierarchical tree, which they call a grove, that is a refinement of an HST that retains more
information about the topology of the original metric space, and showed how to approximate a tree metric
by a grove in a similar way to which one can approximate a tree metric by an HST. One way to think of
an HST is as a unit star where each of the leaves can be recursively thought of as a scaled-down HST.
In this vein, a grove is unit tree where each of the nodes can be recursively thought of as a scaled-down
grove. (Unit here means the distance of every edge is 1) One can then develop algorithms for a grove, as
one does for a HST, that is, design one algorithm for the grove/HST and another algorithm for the base
metric space. However, for groves the base metric is a unit tree (instead of a uniform metric space as it
is for an HST). [13] gave a monotone grove algorithm that, if combined with certain types of “low-hop”
monotone algorithms for a unit tree, yields a poly-log competitive monotone algorithm for a general tree
metric (unfortunately its not quite a black box reduction). An algorithm for a unit tree is low-hop if the
number of servers that have to move a positive distance to a parking spot is at most

L

(
(1 + ε)H +

ln k

ε

)
where H is the diameter of the unit tree, 1

ε is poly-log bounded, and L is the optimal/minimum number
of servers that have to move a positive distance to a parking spot. The multiplicative (1 + ε) term has to
be so small because the grove algorithm is going to apply the unit tree algorithm recursively to a poly-log
depth. [13] then developed a monotone low-hop algorithm for a unit tree for the online metric search
problem, which is a special case of the online metric matching problem in that there is a promise that
there is an optimal matching with only one nonzero length edge (most lower bounds for online metric
matching are of this special type). This low-hop algorithm is based on the classic multiplicative weights
algorithm in the setting of online learning from experts [6]. Conceptually there is one expert for each leaf
of the tree, and this expert always recommends that the car/request travel toward this leaf. Putting this
all together, the main result of [13] is a O(log6∆ log2 n)-competitive posted-price algorithm for online
metric searching (not matching) on a general tree metric.

1.3 Our Contribution

Our main result is a O(log5∆ log2 n)-competitive posted-price algorithm for online metric matching on
a spider metric. A spider is a rooted tree T in which the root ρ (sometimes called the head) is the only
node of degree greater than 2. We use d to denote the degree of the root and use the term leg to refer
to the leaf to root paths in the spider. We achieve our main result by designing a monotone low-hop
algorithm Spider-Match for a unit spider, and then applying the techniques developed in [13] for groves.

As in [13], the starting point in the design of our low-hop algorithm Spider-Match is the classic
multiplicative weights algorithm in the setting of online learning from experts [6]. However, because we
consider online metric matching, instead of online metric search as in [13], we have to surmount technical
difficulties that did not arise in [13]. In section 2 we give an overview of some of the key algorithmic
ideas behind the design of Spider-Match, and an explanation of some of these technical difficulties. We
strongly recommend that the reader read this section before launching into the subsequent technical
sections.

In section 3 we give some preparatory notation and terminology. In section 4 we give a formal definition
of the Spider-Match algorithm. In section 5 we give the analysis of Spider-Match. Finally in the appendix
we show how these results can be combined with the results from [13] to obtain a O(log5∆ log2 n)-
competitive posted-price algorithm for online metric matching on a spider metric (This is more or less
the same as the grove analysis in [13], except for a slight refinement that cuts off a factor of log∆).

2 Intuitive Overview On A Simple Instance

Assume in our unit spider T that each leg is of infinite length, that the root ρ contains no servers, and
that each node other than ρ contains a single server. Furthermore, suppose the request sequence r1, r2, . . .
is such that

4 M. Bender. J. Gilbert and K. Pruhs

– The first m < d requests, r1, ..., rm all arrived at the root ρ, and
– if a request rt, t > m, arrives on a leg ` then it must arrive at the vertex on leg ` that is closest to

the root ρ among those vertices where a request has not yet arrived.

To model this within the setting of online learning from experts [6], we assume that there are
(
d
m

)
experts,

one for each of the possible collection R of of m distinct legs. Initially, the expert R recommends the first
m requests move down the legs in R (one request per leg) to the first available server. Subsequently each
expert R recommends requests that arrive on a leg ` ∈ R move down to the next available server on leg `,
and recommends that requests that arrive on a leg ` /∈ R use the server at the location where the request
arrived (which exists by assumption). So each expert incurs a cost of 1 hop when a request arrives on one
of its recommended legs, and a cost of 0 otherwise. (Recall that in the definition of a low-hop algorithm,
all moves of nonzero distance cost one hop).

The classic multiplicative weights algorithm maintains a probability distribution π over experts R,
which in turn induces a probability π(s) that server s is available if an expert is picked according to
probability distribution π. If one could design an online algorithm that also maintained the invariant that
each server s is available with probability π(s) then one could conclude that the expected number of hops
used by this algorithm is at most:

m

(
(1 + ε)H +

ln(d)

ε
+ 1

)
,

where H is the minimum total cost of all the experts and is thus low-hop, using the standard analysis of
the multiplicative weights algorithm [6].

To maintain the invariant that each server is available with probability π(s) we need to design a
probability distribution qr for each possible location r where the next request might arrive, where qr(`) is
the probability that our algorithm will move a request arriving at location r to the next available server
on leg `. We need that probability distributions qr to satisfy two properties:

– The probability that a server s is available will be π(s), so the experts distribution is matched.
– These probabilities are monotone. So as r moves closer to a server s the probability that the algorithm

will use server s can not decrease.

Again, at first impression the monotonicity requirement can seem innocuous, but it is actually very
limiting. Our eventual design of such probability distributions qr was by significant trial and error; we
do not have a principled explanation why these are in some sense the “right” distributions.

An even bigger technical challenge arises when we relax the requirement that the m requests at the
root arrive at the start, and instead may arrive anywhere in the sequence. Then the algorithm’s estimate
m of the number of root requests, and thus the number

(
d
m

)
of experts, can increase when a request arrives

at the root. This request then yields in a new probability distribution π̃ over
(

d
m+1

)
experts that replaces

the prior probability distribution π over
(
d
m

)
experts. First, we need to show how to adapt the standard

analysis of the multiplicative weights algorithm to handle this. Then we need to design a probability
distribution q̃ where q̃(`) gives the probability that this request at the root will move to the first available
server on leg `. We need the q̃ to satisfy the following two properties:

– If the next request arrives at the root then the probability that a server s is available will be π̃(s), so
the new experts distribution is matched.

– The probability distributions qr and q̃ are monotone. So as r moves closer to a server s the probability
that the algorithm will use server s can not decrease.

As the probability distributions qr and q̃ are designed to match different experts distributions, it is
challenging to attain monotonicity. Again our design of q̃ derived from significant trial and error.

This is illustrative of a general phenomenon, it is difficult to maintain monotonicity for any sort of
algorithmic design that has the form:

If a property P is true about a new request then take action A, else take action B.

when some request locations will make property P true and some requests locations will make property
P false. In this case, the actions A and B have to be carefully coordinated with each other, and with the
locations where property P is true, to maintain monotonicity.

Roughly speaking, on a general instance, our algorithm Spider-Match works as follows. If there is an
available server between the current request and the root then the request moves to the first available

A Poly-log Competitive Posted-price Algorithm for Online Metrical Matching on a Spider 5

server on the path to the root. Intuitively, these are “easy” requests that we account for without having
to invoke multiplicative weights. Otherwise if there is a hole between the current request and the root,
then the request is matched to the available server on leg ` that is closest to the root with a probability
q(`). Roughly speaking, a hole is a server location that does not contain an available server, but that
could have contained an available server if the prior random events internal to the algorithm had been
different. Otherwise, the request is matched to the available server on leg ` that is closest to the root
with a probability q̃(`).

3 Notation and Terminology

Definition 1. – A spider metric is a rooted tree metric (T = ((V, ρ), E), x), an acyclic connected
graph consisting of vertices V and edges E with a particular vertex ρ marked as the root, along with
a distance metric x : V × V → R satisfying
i) x(u, v) = 0 if and only if u = v,
ii) x(u, v) = x(v, u), and

iii) x(u, v) ≤ x(u,w) + x(w, v)
for all u, v, w ∈ V .

– The degree d of a tree is the degree of the root ρ.
– A spider metric is a rooted tree metric (T = ((V, ρ), E), x) where ρ is the single vertex of degree

greater than 2.
– A server s is a leaf-server if there are no other servers in the subtree rooted at s.
– Let L(T) = {µ1, ..., µd} denote the collection of leaf-servers.
– For ` ∈ [d], define T` ⊆ V as the set of servers on the path from the root ρ to µ`, inclusive. T` is

referred to as the `th leg of T .
– A server s on T` becomes a hole when either

a) a request rt arrives on Tλ where λ 6= ` and rt is matched to s,
b) or a request rt arrives on the path from ρ to s (inclusive of ρ, non-inclusive of s) and matches to

s.
– A hole s is filled and loses its status as a hole when a request rt arrives such that

a) s is on the path from rt to ρ, inclusive,
b) and there is no available server on the path from rt to s.

– The number of holes at time t is denoted by mt.
– We define T` to be alive if there is still an available server or a hole in T` and dead otherwise.
– Let At = {` ∈ [d] | T` is alive just before the arrival of rt}.
– If rt 6= ρ, let `t = ` such that rt ∈ T`. Otherwise, if rt = ρ, let `t = 0.
– Let χt denote the sum of available servers and holes on the path from rt to the root ρ, inclusive.

4 The Spider-Match Algorithm Design

We formally define the Spider-Match algorithm on a given rooted spider T with root ρ. The probability
distributions qtσ(`) and q̃tσ(`), used in the algorithm description, are defined after the algorithm (as this
seems more natural).

Definition 2 (Spider-Match Algorithm).
Spider-Match maintains an internal setting σ, initialized to ∅, representing which legs of the spider

Spider-Match currently has holes on. The algorithm operates in two phases, starting with the core phase
and possibly transitioning to the epilogue. During the core phase, at the arrival of rt:

1. If χt > 1, match rt to the closest available server on the path from rt to the root, inclusive (as we
shall see, in this case there must be at least one such available server).

2. If χt = 1:
(a) If there is an available server on the path from rt to ρ, match rt to that server.
(b) Otherwise, if rt does not kill `t, then rt is matched to the first available server in T` with probability

qtσ(`). In this case, σ ← σ \ {`t} ∪ {`}.
(c) Otherwise, rt is matched to the first available server in T` with probability q̃tσ(`). In this case,

σ ← σ \ {`t} ∪ {`}.
In this case, we say that rt was collocated if the server s that contributed to χt was collocated with
rt; otherwise, rt is non-collocated.

6 M. Bender. J. Gilbert and K. Pruhs

3. If χt = 0, rt is matched to the first available server in T` with probability q̃tσ(`). In this case,
σ ← σ ∪ {`}. If mt+1 = |At+1|, the epilogue immediately begins.

In the epilogue phase, at the arrival of rt:

1. If there is an available server on the path from rt to ρ, match rt to the closest available server on the
path from rt to the root, inclusive.

2. Else if rt = ρ or T`t is dead, match rt to the first available server on T` where ` is chosen from At
uniformly at random.

3. Else match rt to the first available server in T`t .

In order to define q and q̃, we let

nt` = |{ri | i ≤ t, ri ∈ T`, and χi = 1}|,

wt` = (1− ε)n
t
` for ` ∈ [d],

wtR =
∏
`∈R

wt` = (1− ε)
∑
`∈R n

t
` for R ∈ 2[d],

W t(X) =
∑
R∈X

wtR for X ∈ 22
[d]

.

This lets us now define q and q̃ as follows:

qtσ(`) =



0 if ` ∈ (σ \ {`t}) ∪ ([d] \ At)
εwt`

∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

(1−ε)wt`tW
t
(
(A

t\{`t}
mt−1)

)
+W t

(
(A

t\{`t}
mt

)
) if ` ∈ At \ σ

1−
∑
λ6=`t q

t
σ(λ) if ` = `t

q̃tσ(`) =


0 if ` ∈ σ ∪ ([d] \ At)
wt`
∑
T∈(A

t\{`}
mt

)
wtT

mt+1−|σ∩T |

W t
(
(A

t

mt+1)
) if ` ∈ At \ σ

5 Analysis of the Spider-Match Algorithm

In this section, we first show in Lemma 2 that Spider-Match is well defined. We then show in Lemma 3
that Spider-Match follows the multiplicative updates method experts’ distribution to maintain its holes.
In Lemma 4 we show that Spider-Match is monotone. Lastly, we show the main theorem 1 of this section,
where we bound the number of times Spider-Match pays to handle requests.

Lemma 1. By construction of Spider-Match, it follows that until the epilogue there is at most one hole
per subtree T`.

Proof. This follows from the fact that Spider-Match either matches a request to an available server and
thus does not make a new hole, or creates a new hole on a leg without a hole since by the definitions of q
and q̃, there is 0 probability of matching to a leg in σ \ {`t}. Note that there will always be a leg without
a hole for a request to be to matched to in the core phase, else we move to the epilogue phase.

Lemma 2. Spider-Match is well defined.

Proof. We will show that

a)
∑
`∈[d] q

t
R(`) = 1,

b)
∑
`∈[d] q̃

t
R(`) = 1

for any R ∈ 2[d].
For a), note that qtR(`t) = 1 −

∑
λ6=`t q

t
R(λ), so it suffices to show that qtR(`) ≤ 1 for all `. Since all

terms in the denominator are positive, ε < 1, and 1
mt−|R∩T | ≤ 1, it follows that qtR(`) ≤ 1 for all `.

A Poly-log Competitive Posted-price Algorithm for Online Metrical Matching on a Spider 7

For b), since q̃tR(`) = 0 for ` ∈ R ∪ ([d] \ At), it remains to show that
∑
`∈At\R q̃

t
R(`) = 1.

∑
`∈At\R

q̃tR(`) =

∑
`∈At\R w

t
`

∑
T∈(A

t\{`}
mt

)
wtT

mt+1−|R∩T |

W t
((At
mt+1

)) by Def. 2

=

∑
`∈At\R

∑
T∈(A

t\{`}
mt

)
wtT∪{`}

mt+1−|R∩(T∪{`})|

W t
((At
mt+1

)) since weights are

multiplicative and ` 6∈ R

=

∑
T∈(A

t

mt+1)
|T\R|

mt+1−|R∩T |w
t
T

W t
((At
mt+1

))
=

∑
T∈(A

t

mt+1)
wtT

W t
((At
mt+1

)) as |T \R| = |T | − |T ∩R|
= mt + 1− |T ∩R| since

T ∈
(
At

mt + 1

)

=
W t

((At
mt+1

))
W t

((At
mt+1

)) = 1 by Def. 2

Definition 3 (ptT and πtT). We denote ptT as the probability that the internal parameter σ of the

algorithm is T ∈
(At
mt

)
just before the arrival of rt. We define

πtT =
wtT

W t
((

[d]
mt

))
Lemma 3. For any R ∈

(
[d]
mt

)
, we have ptR ≥ πtR.

Proof. To conserve space, this proof has been moved to the appendix.

We next show that this algorithm is monotone and hence induces a pricing scheme as shown in [13].

Lemma 4. Spider-Match is monotone.

Proof. Let rt →Spider-Match s denote the event that rt is matched by Spider-Match to s. We must show
that Pr[rt →Spider-Match s | rt = u] ≤ Pr[rt →Spider-Match s | rt = v] for all u, v ∈ V and s ∈ S where
v is on the path from u to s. Note that u and v can belong to separate subtrees; and if s = v, then
Pr[rt →Spider-Match s | rt = v] = 1, so we can assume that s is not collocated with v. The claim is also
trivial for the case where u = v. Letting χvt = χt | rt = v, we break the proof into the following cases:

a. χut = 0 and
i) χvt = 0
ii) χvt = 1

iii) χvt > 1
b. χut > 1 and

i) χvt = 0
ii) χvt = 1

iii) χvt > 1
c. χut = 1 and

i) χvt > 1
ii) χvt = 1

iii) χvt = 0

Throughout this proof, we will define `v such that v is on T`v .
For a.i), we have that Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match s | rt = v], so the claim is

trivially true.

8 M. Bender. J. Gilbert and K. Pruhs

For a.ii), note that if `v ∈ σ then Pr[rt →Spider-Match s | rt = u] = 0. However, if `v 6∈ σ, then there is
an available server in between u and v, so Pr[rt →Spider-Match s | rt = u] = 0.

For a.iii), note that there must be some available server between u and v, as χvt > 1; thus we have
that Pr[rt →Spider-Match s | rt = u] = 0.

For b.i) and b.ii), note that there must be some available server between u and v, as χut > 1 ≥ χvt ;
thus we have that Pr[rt →Spider-Match s | rt = u] = 0.

For b.iii), if u and v are on T` and Tλ respectively, where ` 6= λ, then there are available servers
between u and v and thus Pr[rt →Spider-Match s | rt = u] = 0. If u and v are on the same T` and if
s is the closest available server to u on the path from u to ρ, then Pr[rt →Spider-Match s | rt = u] =
Pr[rt →Spider-Match s | rt = v] = 1. Otherwise, Pr[rt →Spider-Match s | rt = u] = 0.

For c.i), note that there must be some available server between u and v, as χvt > 1; thus we have that
Pr[rt →Spider-Match s | rt = u] = 0.

For c.ii), first if `u = `v then Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match s | rt = v]. Otherwise,
note that if `v ∈ σ then Pr[rt →Spider-Match s | rt = u] = 0. However, if `v 6∈ σ, then there is an available
server in between u and v, so Pr[rt →Spider-Match s | rt = u] = 0.

For c.iii), first if `u 6∈ σ then Pr[rt →Spider-Match s | rt = u] = 0. Otherwise, if `t = `u would kill
`u, then Pr[rt →Spider-Match s | rt = u] = Pr[rt →Spider-Match s | rt = v]. Otherwise, we must show that
qtσ(`) ≤ q̃tσ(`). Since ε ≤ 1

3 we note

qtσ(`) =
εwt`

∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

(1− ε)wt`tW
t
((At\{`t}

mt−1
))

+W t
((At\{`t}

mt

)) ≤ ε

1− ε

wt`
∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

wt`tW
t
((At\{`t}

mt−1
))

+W t
((At\{`t}

mt

))
=

ε

1− ε

wt`
∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

W t
((At
mt

)) ≤ 1

2

wt`
∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

W t
((At
mt

)) . (1)

Hence, it suffices to prove that
wt`
∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt−|σ∩T |

W t
(
(A

t

mt
)
) ≤ 2q̃tσ(`). By cross multiplication, this becomes:

W t

((
At

mt + 1

)) ∑
T∈(A

t\{`t,`}
mt−1)

wtT
mt − |σ ∩ T |

≤ 2W t

((
At

mt

)) ∑
T∈(A

t\{`}
mt

)

wtT
mt + 1− |σ ∩ T |

(2)

Letting P = At \ {`t, `}, we note

W t

((
At

mt + 1

))
= wt{`t,`}W

t

((
P

mt − 1

))
+
(
wt`t + wt`

)
W t

((
P
mt

))
+W t

((
P

mt + 1

))
, (3)

W t

((
At

mt

))
= wt{`t,`}W

t

((
P

mt − 2

))
+
(
wt`t + wt`

)
W t

((
P

mt − 1

))
+W t

((
P
mt

))
, (4)

and
∑

T∈(A
t\{`}
mt

)

wtT
mt + 1− |σ ∩ T |

= wt`t

∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

+
∑

T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

(5)

We will break down the left-hand side of Eq. 2 into the following disjoint inequalities, where the right-
hand sides of the following inequalities are all disjoint sums from the right-hand side of Eq. 2. Hence to
show Eq. 2 it suffices to show the following three inequalities:

1) W t

((
P

mt − 1

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

≤ 2W t

((
P

mt − 2

)) ∑
T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

+ 2W t

((
P

mt − 1

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

2) W t

((
P
mt

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

≤ 2W t

((
P

mt − 1

)) ∑
T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

3) W t

((
P

mt + 1

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

≤ 2W t

((
P
mt

)) ∑
T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

A Poly-log Competitive Posted-price Algorithm for Online Metrical Matching on a Spider 9

Note that the first one is trivially true. For 2 and 3, note that we are effectively taking a summation
on both sides over weighted multisets. In order to show the result, we will try to match terms on the left
hand side to terms at least as big on the right hand side.

Call a function f : A×B → C ×D useful if f satisfies:

1. f is an injection

2. if f(a, b) = (c, d), then c = a \ {µ} and d = b ∪ {µ} for some µ ∈ a \ b.

Suppose f :
(P
mt

)
×
(P
mt−1

)
→
(P
mt−1

)
×
(P
mt

)
is useful. Let g :

(P
mt

)
×
(P
mt−1

)
→
(P
1

)
be defined such that

f(a, b) = (a \ g(a, b), b ∪ g(a, b)). Then

W t

((
P
mt

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

=
∑

R∈(Pmt)

∑
T∈(P

mt−1)

wtRw
t
T

mt − |σ ∩ T |

≤ 2
∑

R∈(Pmt)

∑
T∈(P

mt−1)

wtRw
t
T

mt + 1− |σ ∩ T |

= 2
∑

R∈(Pmt)

∑
T∈(P

mt−1)

wtR\g(R,T)w
t
T∪g(R,T)

mt + 1− |σ ∩ T |

≤ 2
∑

R∈(Pmt)

∑
T∈(P

mt−1)

wtR\g(R,T)w
t
T∪g(R,T)

mt + 1− |σ ∩ (T ∪ g(R, T))|

≤ 2
∑

R∈(P
mt−1)

∑
T∈(Pmt)

wtRw
t
T

mt + 1− |σ ∩ T |

= 2W t

((
P

mt − 1

)) ∑
T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

Similarly, suppose f :
(P
mt+1

)
×
(P
mt−1

)
→
(P
mt

)
×
(P
mt

)
is useful. Let g :

(P
mt+1

)
×
(P
mt−1

)
→
(P
1

)
be

defined such that f(a, b) = (a \ g(a, b), b ∪ g(a, b)). Then

W t

((
P

mt + 1

)) ∑
T∈(P

mt−1)

wtT
mt − |σ ∩ T |

=
∑

R∈(P
mt+1)

∑
T∈(P

mt−1)

wtRw
t
T

mt − |σ ∩ T |

≤ 2
∑

R∈(P
mt+1)

∑
T∈(P

mt−1)

wtRw
t
T

mt + 1− |σ ∩ T |

= 2
∑

R∈(P
mt+1)

∑
T∈(P

mt−1)

wtR\g(R,T)w
t
T∪g(R,T)

mt + 1− |σ ∩ T |

≤ 2
∑

R∈(P
mt+1)

∑
T∈(P

mt−1)

wtR\g(R,T)w
t
T∪g(R,T)

mt + 1− |σ ∩ (T ∪ g(R, T))|

≤ 2
∑

R∈(Pmt)

∑
T∈(Pmt)

wtRw
t
T

mt + 1− |σ ∩ T |

≤ 2W t

((
P
mt

)) ∑
T∈(Pmt)

wtT
mt + 1− |σ ∩ T |

Hence if these useful functions exist, then the proof is complete.

We now turn to showing the existence of these functions.

1. A useful function f :
(P
mt

)
×
(P
mt−1

)
→
(P
mt−1

)
×
(P
mt

)
exists.

2. A useful function f :
(P
mt+1

)
×
(P
mt−1

)
→
(P
mt

)
×
(P
mt

)
exists.

10 M. Bender. J. Gilbert and K. Pruhs

For the first statement, consider a bipartite graph G = ((X,Y), E) where X =
(P
mt

)
×
(P
mt−1

)
,

Y =
(P
mt−1

)
×
(P
mt

)
, and {(R1, T1), (R2, T2)} ∈ E if R2 = R1 \ {`} and T2 = T1 ∪{`} for some ` ∈ R1 \T1.

Note that by this choice of edges, the graph is divided into disjoint unions where for each maximal
connected subgraph GQ there exists some multi set Q so that for each element (R, T) of the subgraph GQ
we have that Q = R]T . Furthermore, this subgraph is mt−|∆Q|-regular, where ∆Q = {x ∈ Q | nQx > 1},
so by Hall’s theorem there exists a perfect matching. Since there exists a perfect matching on each
maximal connected subgraph, there is a perfect matching between the two sets. The function induced by
this matching is useful by construction.

For the second statement, consider a bipartite graph G = (X,Y), E) where X =
(P
mt+1

)
×
(P
mt−1

)
,

Y =
(P
mt

)
×
(P
mt

)
, and {(R1, T1), (R2, T2)} ∈ E if R2 = R1\{`} and T2 = T1∪{`} for some ` ∈ R1\T1. Note

that by this choice of edges, the graph is divided into disjoint unions where for each maximal connected
subgraph GQ = ((XQ, YQ), EQ) there exists some multi set Q so that for each element (R, T) of the
subgraph GQ we have that Q = R]T . Furthermore, this subgraph is (mt+ 1−|∆Q|,mt−|∆Q|)-regular,
where ∆Q = {x ∈ Q | nQx > 1}, so by Hall’s theorem there exists a matching saturating XQ. Thus, there
is a matching saturating X. The function induced by this matching is useful by construction.

Lastly, we show the main theorem of this section, where we bound the number of times we pay a
positive cost as a function of the height H of our tree and the degree d of the root. For the analysis of our
algorithm, we will consider a metric search problem which we think will help the reader understand the
analysis of Theorem 1. In this metric search problem, the algorithm sees a set of available parking spots
located within a metric space. Over time, two types of events can occur: a car can enter the space, or
a parking spot can be decommissioned. The algorithm’s job is to always keep cars matched to available
parking spaces, where each space can be filled by just one car. When a car arrives, it must be moved to an
available parking space; when a parking space is decommissioned, if a car had been parked at it, then that
car must be moved to a different available parking space. Clearly, any request sequence can be simulated
by equating the servers to parking spaces and requests to cars. Alternatively, if a request arrives at a server
for which no other request has arrived at, this can equivalently be thought of as decommissioning that
parking spot. As such, given r, we will create a sequence η of events for the parking problem described
above according to the following deterministic function:

Definition 4 (The η sequence). Given rt, define ηt by:

1. If χt = 0: ηt is the event that a new car enters the space at the location of rt.
2. If χt ≥ 1:

(a) if rt is collocated with an available server or if rt is collocated with a parked car which has already
moved: ηt is the event that the parking spot at rt is decommissioned.

(b) else: ηt is the event that a new car enters the space at the location of rt.

Let Lt denote the number of cars in the system after the ηt event. Then, any optimal matching
solution must contain at least Lt positive cost matchings to handle the requests {r1, ..., rt}. Furthermore,
it follows from the definition of mt that mt ≤ Lt.

Theorem 1.

E

[
n∑
t=1

1r(t)

]
≤ Lt

(
(1 + ε)H +

ln d

ε
+ 1

)
where 1r(t) is an indicator random variable that is 1 if Spider-Match pays positive cost to match rt and
0 otherwise.

Proof. Our proof relies on the following claim:

Claim. Let rτ denote the first request such that χt = 0 and let κ denote the number of requests rt such
that χt = 0. First, let r′ be the request sequence r after removing any request for which χt = 0. Now
consider the alternate request sequence r′′ defined such that r′′t = rt for t < τ , r′′t = ρ for τ ≤ t < τ + κ,

and r′′τ+κ+t = r′τ+t for t ≥ 0. Then E [
∑n
t=1 1r(t)] ≤ E

[∑n
t=1 1r′′(t)

]
.

First, we show that with this claim the result follows: because of the claim, we can assume r = r′′, so
that for t 6∈ {τ, ..., τ + κ− 1} it follows that χt 6= 0. We define cost vectors

ctR =

{
1 `t ∈ R or R ∩ Dt 6= ∅
0 otherwise.

A Poly-log Competitive Posted-price Algorithm for Online Metrical Matching on a Spider 11

where Dt is the set of dead legs at time t.
Define δtR such that

ptR = πtR + δtR (6)

for all R ∈
(
[d]
mt

)
. By Lemma 3, it follows that δtR ≥ 0 for all R. Then we have that∑

R∈(A
t

mt
)

ptR =
∑

R∈(A
t

mt
)

πtR +
∑

R∈(A
t

mt
)

δtR, (7)

where
∑
R∈(A

t

mt
)
ptR = 1 by construction.

Then, if χt = 1 and ηt is a decommissioning of a parking spot, we have

E [1r(t)] =
∑

R∈(A
t

mt
)

s.t. `t∈R

ptR

=
∑

R∈(A
t

mt
)

s.t. `t∈R

δtR +
∑

R∈(A
t

mt
)

s.t. `t∈R

πtR definition of δtR

≤
∑

R∈(A
t

mt
)

δtR +
∑

R∈(A
t

mt
)

s.t. `t∈R

πtR

=
∑

R∩Dt 6=∅

πtR +
∑

R∈(A
t

mt
)

s.t. `t∈R

πtR definition of δtR

= ~ct · ~πt definition of ~ct.

Let T = {t | ηt is a decommissioning}.
The Multiplicative Weights guarantee from [7] gives us that

∀R ∈
(

[d]

mt

)
,
∑
t∈T

~ct · ~πt ≤ (1 + ε)
∑
t∈T

ctR +
ln
(
[d]
mt

)
ε

Let us choose R to be the last mt legs that die; the result follows.
Lastly, to see that the claim holds, let τ̃ denote the last time t such that χt = 0. Then for t 6∈ {τ, ..., τ̃},

it follows that E [1r(t)] = E
[
1r′′(t)

]
. Next, for any t ∈ {τ, ..., τ̃}, let rt′ denote the request corresponding

to r′′t . Then the number of holes at time t under r′′ is at least the number of holes at time t′ under r by

construction of r′′, thus E [1r(t)] ≥ E
[
1r′′(t)

]
. The claim follows, completing the proof.

6 Conclusion

The obvious immediate open question is whether a poly-log competitive posted-price algorithm exists
for online metric matching on a general tree metric. The most immediate problem that one runs into
when trying to apply the approach of [13], and that we apply here, is that it is not at all clear what the
“right” choice of experts is. Each of the natural choices has fundamental issues that seem challenging to
overcome.
Acknowledgements: We thank Anupam Gupta, Aditya Krishnan, and Alireza Samadian for extensive
helpful discussions.

References

1. Calgary ParkPlus Homepage, https://www.calgaryparking.com/parkplus
2. SFpark Homepage, http://sfpark.org/
3. SFpark Wikipedia page, https://en.wikipedia.org/wiki/SFpark

12 M. Bender. J. Gilbert and K. Pruhs

4. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-competitive deterministic al-
gorithm for online matching on a line. In: Workshop on Approximation and Online Algorithms. pp. 11–22
(2014)

5. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online matching on the line. In: Latin
American Symposium on Theoretical Informatics. LNCS, vol. 10807, pp. 52–65. Springer (2018)

6. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: A meta-algorithm and applications.
Theory oF Computing 8, 121–164 (2012)

7. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and
applications. Theory of Computing 8(6), 121–164 (2012). https://doi.org/10.4086/toc.2012.v008a006,
http://www.theoryofcomputing.org/articles/v008a006

8. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to
load balancing and machine scheduling. Journal of the ACM 44(3) (May 1997)

9. Azar, Y., Kalyanasundaram, B., Plotkin, S.A., Pruhs, K., Waarts, O.: On-line load balancing of temporary
tasks. Journal of Algorithms 22(1), 93–110 (1997)

10. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized O(log2 k)-competitive algorithm for metric
bipartite matching. Algorithmica 68(2), 390–403 (2014)

11. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Symposium on
Foundations of Computer Science. pp. 184–193 (1996)

12. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: ACM Symposium on Theory of Comput-
ing. pp. 161–168 (1998)

13. Bender, M., Gilbert, J., Krishnan, A., Pruhs, K.: Competitively pricing parking in a tree (WINE). Lecture
Notes in Computer Science, vol. 12495, pp. 220–233. Springer (2020)

14. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Pricing online decisions: Beyond auctions. CoRR abs/1504.01093
(2015), http://arxiv.org/abs/1504.01093

15. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Pricing online decisions: Beyond auctions. In: ACM-SIAM Symposium
on Discrete Algorithms. pp. 73–91 (2015)

16. Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Dynamic pricing of servers on trees. In: Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques. LIPIcs, vol. 145, pp. 10:1–10:22 (2019)

17. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics.
Journal of Computer and System Sciences 69(3), 485–497 (2004)

18. Feldman, M., Fiat, A., Roytman, A.: Makespan minimization via posted prices. In: ACM Conference on
Economics and Computation. pp. 405–422 (2017)

19. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theoretical Computer Science 332(1-3),
251–264 (2005)

20. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In: International Colloquium
on Automata, Languages, and Programming. pp. 424–435 (2012)

21. Im, S., Moseley, B., Pruhs, K., Stein, C.: Minimizing maximum flow time on related machines via dynamic
posted pricing. In: European Symposium on Algorithms. pp. 51:1–51:10 (2017)

22. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. Journal of Algorithms 14(3), 478–488 (1993)
23. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and stable

marriages. Theoretical Computer Science 127(2), 255–267 (1994)
24. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Workshop on Approximation and

Online Algorithms. Lecture Notes in Computer Science, vol. 2909, pp. 179–191. Springer (2003)
25. Meyerson, A., Nanavati, A., Poplawski, L.J.: Randomized online algorithms for minimum metric bipartite

matching. In: ACM-SIAM Symposium on Discrete Algorithms. pp. 954–959 (2006)
26. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric bipartite matching problem.

In: Symposium on Foundations of Computer Science. pp. 505–515 (2017)
27. Peserico, E., Scquizzato, M.: Matching on the line admits no $o(\sqrt{\log n})$-competitive algorithm. CoRR

abs/2012.15593 (2020), https://arxiv.org/abs/2012.15593
28. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a line. In:

Symposium on Computational Geometry. LIPIcs, vol. 99, pp. 67:1–67:14 (2018)
29. Shoup, D., Pierce, G.: SFpark: Pricing Parking by Demand (2013), https://www.accessmagazine.org/fall-

2013/sfpark-pricing-parking-demand/

