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1 Introduction

Brill-Noether divisors play a central role in the birational geometry of moduli spaces
of sheaves on surfaces. In this paper, we survey recent Brill-Noether Theorems for
rational surfaces following [CH16] and [CH17b]. The paper grew out of the first
author’s talk at the Abel Symposium in Svolvær, Norway in August 2017. While
this paper is largely a survey, we will also present some new results and examples
on surfaces of general type.

Let X be a smooth, complex projective surface and let H be an ample divisor.
Let v = (rk,ch1,ch2) be the Chern character of a sheaf on X . Gieseker [Gie77]
and Maruyama [Mar78] construct a moduli space MX ,H(v) that parameterizes S-
equivalence classes of H-Gieseker semistable sheaves on X with Chern character v.
The moduli spaces MX ,H(v) carry fundamental information on algebro-geometric
invariants such as linear systems on X and they play a central role in Donaldson’s
theory of differentiable structures [Don90], in representation theory [Nak99] and
mathematical physics [Wit95].

Rank one stable sheaves are of the form L⊗ IZ , where L is a line bundle on X
and IZ is an ideal sheaf of a zero-dimensional scheme on X . Consequently, when
the rank of v is one, the moduli space MX ,H(v) fibers over Picch1(v)(X) with fibers
isomorphic to a Hilbert scheme of points on X . The Hilbert scheme X [n] of n points
on X is a smooth, projective irreducible variety of dimension 2n [Fog68]. Hence,
the basic geometric invariants of MX ,H(v) such as dimension and irreducibility are
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well-understood. When the rank of v is higher, much less is known. The following
questions are open in general.

1. For which Chern characters v is the moduli space MX ,H(v) nonempty?
2. When is MX ,H(v) irreducible and of the expected dimension?
3. What are the singularities of MX ,H(v)? Is MX ,H(v) reduced?

The currently known answers to these questions have two flavors. There are re-
sults that hold on arbitrary surfaces under numerical restrictions on v. For exam-
ple, the Bogomolov inequality, which asserts that the discriminant ∆ of a stable
sheaf has to be nonnegative, imposes strong restrictions on the existence of stable
sheaves. When ∆(v)� 0, then theorems of Donaldson [Don90], Li [LiJ93, LiJ94]
and O’Grady [O’G96] show that the moduli spaces MX ,H(v) behave well. They
are nonempty, irreducible, of the expected dimension and generically smooth (see
[HuL10]). Then there are results on specific surfaces. The question of when MX ,H(v)
is nonempty has been answered for surfaces such as K3 surfaces, Abelian surfaces
and P2 (see [DLP85, HuL10, LeP97, Muk84, Yos99, Yos01]). In these cases, the
moduli spaces are irreducible and often have more structure. For example, when X
is a K3 surface, v is a primitive character and H is sufficiently general, then MX ,H(v)
is a hyperkähler manifold.

When X is a surface of general type and ∆ is positive but small, the moduli space
MX ,H(v) can exhibit pathological behavior. The moduli spaces can be reducible,
nonreduced and can have components of different dimensions (see [Mes97, MS11,
MS13a, MS13b]). The pathological behavior is already present in hypersurfaces in
P3. In §3 we will show the following.

Theorem 1. Given a positive integer k, there exists an integer dk such that for all
d ≥ dk, there exists a moduli space MXd ,H(vd) with at least k components, where Xd
is a very general surface of degree d in P3, H is the hyperplane class and vd is a
Chern character of rank 2.

Consequently, a full understanding of the moduli spaces of sheaves on an arbitrary
surface is likely out of reach.

When the moduli space MX ,H(v) is irreducible and normal, one can ask for finer
topological and birational invariants of MX ,H(v).

1. Compute the ample and effective cones of divisors of MX ,H(v).
2. Run the minimal model program for MX ,H(v) and use wall-crossing to compute

topological invariants of MX ,H(v).

Brill-Noether divisors provide a large class of natural divisors on MX ,H(v)
and play a central role in the birational geometry of these moduli spaces (see
[ABCH13, CHW17]). Let w be a Chern character of a sheaf on X such that the
Euler characteristic χ(v⊗w) = 0. Note that the condition χ(v⊗w) = 0 makes
sense since the Euler characteristic is numerical and can be formally computed us-
ing Riemann-Roch. Let W be a sheaf with Chern character w. Consider the locus

DW := {V ∈MX ,H(v)|h1(X ,W ⊗V ) 6= 0}.
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When DW is not the entire moduli space, it is an effective divisor called the Brill-
Noether divisor associated to W . The Brill-Noether problem asks to determine the
invariants w for which there exists a sheaf W with Chern character w such that
DW is an effective divisor. In particular, when χ(v) = 0, we can take W = OX and
ask whether the cohomology of the general sheaf V ∈MX ,H(v) vanishes. On certain
rational surfaces such as P2 and Hirzebruch surfaces, it is possible to give a complete
classification of Chern characters v for which the general sheaf V ∈ MX ,H(v) has
no cohomology. In §4, following [CH16] we will recall these results.

Recently, Bridgeland stability conditions have led to significant progress in un-
derstanding the birational geometry of MX ,H(v) and computing the ample and effec-
tive cones of MX ,H(v). Using Bridgeland stability, it is possible to construct nef and
effective Brill-Noether divisors. This survey will not discuss these developments;
we instead refer the reader to [CH15] and [Hui17].

The organization of the paper

In §2, we will recall definitions and results on Gieseker stability and review basic
constructions such as elementary modifications and the Serre construction. In §3,
we will discuss unexpected behavior of moduli spaces of sheaves on general type
surfaces when the discriminant is small. In particular, we will prove Theorem 1. In
§4, we will review recent developments on the Brill-Noether Problem for rational
surfaces following [CH16] and [CH17b].

2 Preliminaries

In this section, we collect basic definitions and facts on Gieseker semistability and
prioritary sheaves.

2.1 Gieseker and µ-stability

We refer the reader to [CH15, HuL10, Hui17] and [LeP97] for more detailed in-
formation on Gieseker (semi)stability and moduli spaces of stable sheaves. Let X
be a smooth, complex projective surface and let H be an ample divisor on X . Let v
denote a Chern character on X and define the H-slope µH(v), the total slope ν(v)
and discriminant ∆(v) by the formulae

µH(v) =
c1(v) ·H
r(v) ·H2 , ν(v) =

c1(v)
r(v)

, ∆(v) =
1
2

ν(v)2− ch2(v)
r(v)

,
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respectively. The H-slope, total slope and discriminant of a sheaf V of positive rank
is defined to be the H-slope, total slope and discriminant of its Chern character. The
Chern character (r,ch1,ch2) of a positive rank sheaf can be recovered from (r,ν ,∆).
The advantage is that the slope and the discriminant are additive on tensor products

ν(V ⊗W ) = ν(V )+ν(W )

∆(V ⊗W ) = ∆(V )+∆(W ).

If L is a line bundle on X , then ∆(L) = 0. Consequently, tensoring a sheaf with a
line bundle preserves the discriminant. Set

P(ν) = χ(OX )+
1
2

ν · (ν−KX ).

The Riemann-Roch formula in terms of these invariants reads

χ(V ) = r(V )(P(ν(V ))−∆(V )).

Definition 1. A torsion-free coherent sheaf V is called µH -(semi)stable if for every
nonzero subsheaf W of smaller rank, we have

µH(W ) <
(−)

µH(V ).

The Hilbert polynomial PH,V and the reduced Hilbert polynomials pH,V of a pure
d-dimensional, coherent sheaf V with respect to H are defined by

PH,V (m) = χ(V (mH)) = ad
md

d!
+ l.o.t, pH,V =

PH,V

ad
.

The sheaf V is H-Gieseker (semi)stable if for every proper subsheaf W ,

pH,W (m) <
(−)

pH,V (m)

for m� 0.

Expressing the Hilbert polynomial in terms of µH and ∆ , one obtains the follow-
ing implications

µH -stability =⇒ H-Gieseker stability =⇒

H-Gieseker semistability =⇒ µH -semistability.

The reverse implications are false in general. However, when c1 ·H and rH2 are
relatively prime, then µH -stability and µH -semistability coincide and all 4 concepts
agree. When the ample class H is fixed or understood from the context, we will
drop it from our notation. We will often refer to Gieseker (semi)stability simply as
(semi)stability.
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Two sheaves V and W are S-equivalent with respect to a notion of stability if
they have the same Jordan-Hölder factors with respect to that notion of stability.
Gieseker [Gie77] and Maruyama [Mar78] prove that there exists a (possibly empty)
projective scheme parameterizing S-equivalence classes of H-Gieseker semistable
sheaves (see [HuL10, Theorem 4.3.4]).

The Bogomolov inequality

The Bogomolov inequality asserts that a µH -semistable sheaf V satisfies ∆(V )≥ 0
and imposes a strong restriction on the existence of semistable sheaves. Since a line
bundle L has ∆(L)= 0, the Bogomolov inequality is sharp. However, the inequalities
may be improved for (nonintegral) slopes depending on the surface X . Given a rank
r and a total slope ν , let ∆ H

min,ν ,r denote the minimal discriminant of a µH -semistable
sheaf with total slope ν and rank at most r. By definition any µH -semistable sheaf
with total slope ν and rank at most r satisfies the inequality ∆ ≥ ∆ H

min,ν ,r. We will
refer to such inequalities as sharp Bogomolov inequalities.

Remark 1. Determining the sharp Bogomolov inequalities on X is equivalent to clas-
sifying Chern characters of µH -semistable sheaves on X . Once there exists a µH -
semistable sheaf V of rank r, total slope ν , and discriminant ∆ H

min,ν ,r, by perform-
ing elementary modifications (explained in detail below) we obtain µH -semistable
sheaves for all integral Chern characters of rank r, total slope ν and ∆ > ∆ H

min,ν ,r.
Similarly, if there exists a µH -stable sheaf of rank r, total slope ν and discriminant
∆0, then there exists a µH -stable sheaf for every integral Chern character of rank r,
total slope ν and discriminant ∆ ≥ ∆0. Furthermore, the main theorem of [CH17a]
shows that the problem of computing the ample cone of MX ,H(v) is also intimately
tied to sharp Bogomolov inequalities.

The existence of Gieseker semistable sheaves is more subtle. For example, on
P2 with H = OP2(1), OP2 ⊕OP2 is a Gieseker semistable sheaf with (r,µH ,∆) =
(2,0,0). However, any Gieseker semistable sheaf with r = 2, µH = 0 and ∆ > 0,
in fact has ∆ ≥ 1. There does not exist a Gieseker semistable sheaf with ∆ = 1

2
since every such sheaf has a section and hence is destabilized by OP2 . Let Ip denote
the ideal sheaf of a point p ∈ P2. The sheaf OP2 ⊕ Ip is a µH -semistable sheaf with
∆ = 1

2 .

2.2 Prioritary sheaves

It is often difficult to construct semistable bundles or check that a given bundle is
semistable. When KX is negative, there is a weaker notion which is easier to work
with.
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Definition 2. Let D be an effective divisor on X . A torsion-free coherent sheaf V
is D-prioritary on X if Ext2(V ,V (−D)) = 0. Let PX ,D(v) denote the stack of D-
prioritary sheaves on X with Chern character v.

If H · (KX +D)< 0, then the stack MX ,H(v) of H-Gieseker semistable sheaves is a
(possibly empty) open substack of PX ,D(v). If V is µH -semistable, then by Serre
duality

Ext2(V ,V (−D)) = Hom(V ,V (KX +D))∗ = 0,

where the last equality follows because µH(V ) < µH(V (KX +D)) by assumption.
Hence, every µH -semistable sheaf is D-prioritary.

This concept is especially useful when X is P2 and D is the hyperplane class L or
X is a birationally ruled surface and D is the fiber class F . We will use the following
fundamental theorem of Walter numerous times.

Theorem 2 (Walter [Wal98]). Let X be a birationally ruled surface with fiber class
F and let v be a Chern character with positive rank. Then the stack PX ,F(v) is
irreducible whenever it is nonempty. Moreover, if rk(v)≥ 2, then the general element
of PX ,F(v) is a vector bundle. In particular, if H is a polarization such that H ·
(KX +F)< 0 and MX ,H(v) is nonempty, then MX ,H(v) is irreducible.

Remark 2. Walter’s theorem generalizes an earlier theorem of Hirschowitz and Las-
zlo [HiL93] which asserts that if v is a positive rank Chern character, then PP2,L(v)
is irreducible whenever it is nonempty.

Remark 3. When X is a Hirzebruch surface, KX +F is anti-effective. Hence, the con-
dition H · (KX +F)< 0 holds for every polarization H. On an arbitrary birationally
ruled surface, F is nef and KX ·F < 0 by adjunction. Since ampleness is an open
condition and nef divisors are in the closure of the ample cone, there exist polariza-
tions H sufficiently close to F such that H · (KX +F)< 0. However, this inequality
in general imposes conditions on the polarization H.

Checking a sheaf is prioritary is much easier than checking it is stable. Prioritary
sheaves are also easier to construct.

Example 1. Let L be the hyperplane class on P2 and let a be an integer. Then vector
bundles of the form OP2(a)m⊕OP2(a+1)r−m are L-prioritary even though they are
not µL-semistable if m 6= 0,r.

Every vector bundle of rank r on a smooth rational curve is a direct sum of line
bundles

⊕r
i=1 OP1(ai). The vector bundle is called balanced if |ai−a j| ≤ 1 for every

1≤ i≤ j ≤ r.
Let D be a smooth curve on X . The condition of being D-prioritary is useful for

understanding the restriction of bundles from X to D and especially useful when
D is a rational curve. Let Fs/S be a complete family of D-prioritary sheaves on X
which are locally free on D. Recall that a family is complete if the Kodaira-Spencer
map κ : TsS→ Ext1(Fs,Fs) is surjective at some point s ∈ S. Then the condition of
being D-prioritary implies that the natural map
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Ext1X (Fs,Fs)→ Ext1D(Fs|D,Fs|D)

is surjective. Consequently, we obtain the following.

Proposition 1 ([CH17b], Proposition 2.6). Let D be a smooth curve on X and let
Fs/S be a complete family of D-prioritary sheaves on X which are locally free on
D. Then the restricted family Fs|D/S is also a complete family. In particular, if D is
a smooth rational curve, then Fs|D is balanced for s ∈U, where U is a nonempty
dense open subset of S.

2.3 Elementary modifications

An elementary modification of a torsion-free sheaf V on X is any sheaf given by an
exact sequence

0→ V ′→ V → Op→ 0,

where p ∈ X is a point. Using the defining exact sequence, the following are imme-
diate:

rk(V ′) = rk(V ), c1(V
′) = c1(V ), ch2(V

′) = ch2(V )−1.

In particular,

χ(V ′) = χ(V )−1, ∆(V ′) = ∆(V )+
1
r
.

Assume φ : F → V ′ is an injective sheaf homomorphism. Composing φ with the
inclusion of V ′ into V , we can view F as a subsheaf of V . Consequently, an ele-
mentary modification of a µH -(semi)stable sheaf is again µH -(semi)stable. As dis-
cussed in Remark 1, elementary modifications of Gieseker (semi)stable sheaves do
not need to be Gieseker (semi)stable.

For future reference, we observe the following easy lemma.

Lemma 1 ([CH17b], Lemma 2.7). Let V ′ be a general elementary modification of
V at a general point p ∈ X. Then:

1. If V is D-prioritary, then V ′ is D-prioritary.
2. H2(X ,V ) = H2(X ,V ′).
3. If h0(X ,V ) > 0, then h0(X ,V ′) = h0(X ,V )− 1 and h1(X ,V ′) = h1(X ,V ). If

h0(X ,V ) = 0, then h1(X ,V ′) = h1(X ,V )+1. In particular, if at most one of h0

or h1 is nonzero for V , then at most one of h0 or h1 is nonzero for V ′.

2.4 The Serre construction

The Serre construction provides a method for constructing locally free sheaves on
any variety, but it takes a particularly simple form on surfaces. Let Z be collection of
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n distinct points on X . We say that Z satisfies the Cayley-Bacharach property with
respect to a line bundle L if any section of L vanishing on a subset Z′ ⊂ Z of n−1
points vanishes on Z.

Theorem 3 ([HuL10], Theorem 5.1.1). There exists a locally free extension V of
the form

0→ L1→ V → L2⊗ IZ → 0

if and only if Z satisfies the Cayley-Bacharach property with respect to the line
bundle L−1

1 ⊗L2⊗KX .

Below we will use the Serre construction to construct vector bundles on hyper-
surfaces in P3.

3 Pathological behavior for small ∆

Let X ⊂ P3 be a very general surface of degree d and let H denote the hyper-
plane class. In this section, following ideas of Mestrano and Simpson [MS13b],
we use Hilbert schemes of space curves to construct components of moduli spaces
MX (2,1,n) of H-Gieseker semistable sheaves on X with rk = 2, c1 = H and c2 = n
if d� 0. As an application, we show that for any number k > 0, there is a number
dk such that if d ≥ dk, then there are moduli spaces MX (2,1,n) with at least k irre-
ducible components. We warn the reader that in this section it is more convenient to
use c2 = n instead of ch2 =

d2

2 −n. We will also omit the ample H from our notation
since it will always be the hyperplane class.

By the Noether-Lefschetz theorem, PicX ∼= Z, generated by OX (1). We have
KX = OX (d−4). By the restriction sequence

0→ OP3(k−d)→ OP3(k)→ OX (k)→ 0,

the line bundles OX (k) all have H1(OX (k)) = 0, and if k < d then H0(OX (k)) ∼=
H0(OP3(k)). Thus for k < d the sections of OX (k) can be interpreted as surfaces in
P3.

3.1 The construction

Let He,g be the Hilbert scheme of curves of degree e ≥ 3 and genus g in P3, and
let R = Re,g ⊂He,g be an open subset of an irreducible component of He,g pa-
rameterizing nondegenerate smooth irreducible curves which are transverse to X .
Let C ⊂ P3 be a general curve parameterized by R. By Riemann-Roch, the Hilbert
polynomial of OC is

χ(OC(m)) = em−g+1.
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We further assume that d ≥ 5 is large enough that the following two properties
hold.

1. The following cohomology groups vanish:

h1(OC(d−4)) = 0, h1(IC⊂P3(d−4)) = 0, and h1(IC⊂P3(d−3)) = 0.

2. The curve C can be cut out by homogeneous forms of degree d−3.

By passing to an open subset of R, we can without loss of generality assume the
above properties hold for every curve C parameterized by R. These properties guar-
antee that many other cohomology groups vanish.

Lemma 2. If k ≥ d−4, then the sheaves OC(k) and IC⊂P3(k) have no higher coho-
mology.

Proof. Exact sequences of the form

0→ OC(d−4)→ OC(k)→ OZ → 0

for Z zero-dimensional show that H1(OC(d−4)) = 0 implies H1(OC(k)) = 0. The
sequences

0→ IC⊂P3(k)→ OP3(k)→ OC(k)→ 0

then show that H2(IC⊂P3(k)) = H3(IC⊂P3(k)) = 0. Recall that a smooth irreducible
curve C ⊂ P3 is called k-normal if H1(IC⊂P3(k)) = 0. Since C is (d− 3)-normal
and OC(d− 4) is nonspecial, we also have that C is k-normal for all k ≥ d− 3 by
[ACGH85, Exercise III.D-5].

We put

n := n(d,e,g) = h0(OC(d−3))+1 = e(d−3)−g+2.

Then C∩X consists of de > n points. Let Z ⊂C∩X be a collection of n points. We
study rank 2 bundles E on X which fit as extensions

0→ OX → E → IZ⊂X (1)→ 0.

Proposition 2. We have ext1(IZ⊂X (1),OX ) = 1. Let E be the sheaf given by a non-
trivial extension class. Then E is a µ-stable vector bundle in MX (2,1,n).

Let UR(n) ⊂ MX (2,1,n) be the locus parameterizing the sheaves E which can
be constructed by varying C in R and choosing the scheme Z ⊂C∩X arbitrarily.
Then UR(n) is irreducible and dimUR(n) = dimR ≥ 4e.

Proof. First view the curve C and a collection Z′ ⊂ C of n− 1 points as fixed; we
claim that there is a surface X ⊂ P3 of degree d which contains Z′ but does not
contain C. Consider the restriction sequence

0→ IC⊂P3(d)→ IZ′⊂P3(d)→ IZ′⊂C(d)→ 0.
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Then
χ(IZ′⊂C(d)) = ed−g+1− (n−1) = 3e > 0,

so h0(IZ′⊂C(d))> 0. Also h1(IC⊂P3(d)) = 0 by our choice of d, so there is a surface
X of degree d which vanishes on Z′ and does not contain C.

Let W ⊂ PH0(OP3(d)) be the subset of surfaces which do not contain C, and
consider the correspondence

Σ = {(X ,Z′) : Z′ ⊂C∩X} ⊂W ×Symn−1 C.

Then Σ is irreducible by a standard monodromy argument, and dominates the sec-
ond factor. Therefore the locus of (X ,Z′) such that Z′ imposes n−1= h0(OC(d−3))
conditions on sections of OC(d−3) is a dense open subset. Hence if X is very gen-
eral and Z ⊂ C ∩ X is any collection of n points, then h0(IZ⊂C(d − 3)) = 0 and
h1(IZ⊂C(d−3)) = 1. Since H0(OP3(d−3))→ H0(OC(d−3)) is surjective, we see
that Z imposes n−1 conditions on surfaces of degree d−3. Then by Serre duality
we have

ext1(IZ⊂X (1),OX ) = ext1(OX , IZ⊂X (d−3)) =

h1(IZ⊂X (d−3)) = h1(IZ⊂P3(d−3)) = 1.

The sheaf E is a vector bundle since the scheme Z satisfies the Cayley-Bacharach
property for the line bundle KX (1) = OX (d−3): every section of OX (d−3) which
vanishes at some n− 1 points Z′ ⊂ Z vanishes on C and so vanishes at all of Z.
The Chern class computation is elementary. The defining sequence for E shows that
no line bundle OX (k), k ≥ 1, admits a nonzero map to E . Since c1(E ) is odd, the
µ-stability of E follows.

Given a bundle E constructed by this method, observe that every section of
OP3(d − 3) which vanishes along Z also has to contain the nondegenerate irre-
ducible curve C. This implies that the collection of points Z is not coplanar, and
therefore h0(E ) = 1. This unique section allows us to uniquely recover the sheaf
IZ(1) as the cokernel of the inclusion OX → E . Since the ideal of C is generated in
degree d−3 or less, we can recover C as the common zero locus of all the forms in
H0(IZ(d−3)). Thus there is a quasifinite mapping UR(n)→R given by sending E
to C, and dimUR(n) = dimR. The dimension estimate dimR ≥ 4e for components
of the Hilbert scheme parameterizing smooth curves is well-known. The irreducibil-
ity of UR(n) is immediate from the irreducibility of Σ .

Remark 4. The previous discussion can be modified to allow R to be either the
Hilbert scheme of lines or conics which intersect X transversely. We still have
ext1(IZ⊂X (1),OX ) = 1, and E is a µ-stable vector bundle in MX (2,1,n). Varying
C and Z still sweeps out a locus UR(n)⊂MX (2,1,n). However, since C is degener-
ate the dimension estimate for UR(n) changes as follows:

1. If R parameterizes lines, we have n = d − 1. Since h0(IZ(1)) = 2 we get
h0(E ) = 3, and E no longer determines the line C. Any sheaf E ∈UR(n) arises
from up to a 2-dimensional family of schemes Z, so dimUR(n) ≥ 4− 2 = 2.
Equality holds; see Remark 5.
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2. If R parameterizes conics, we have n= 2d−4. Here h0(IZ(1)) = 1 and h0(E ) =
2, and E no longer determines the conic C. By the same considerations as above,
dimUR(n)≥ 8−1 = 7, and again equality holds by Remark 5.

3.2 Tangent space

Let SR(n) be an irreducible component of MX (2,1,n) which contains UR(n). In
this section we study the tangent space to MX (2,1,n) at points of UR(n) to find an
upper bound on the dimension of SR(n). This computation generalizes a computa-
tion from [MS13b] in the case where d = 6 and R parameterizes twisted cubics.

Let E ∈UR(n). Since E is locally free, we have Ext1(E ,E )∼=H1(E ∗⊗E ). Since
E has rank 2, we have E ∗ ∼= E (−1). Also, E ∗⊗E splits as a direct sum

E ∗⊗E ∼= (E ⊗E )(−1)∼= (Sym2 E ⊕
2∧

E )(−1)∼= V ⊕OX

where V := (Sym2 E )(−1). Since h1(OX ) = 0, we find that h1(V ) is the dimension
of the tangent space to the moduli space at E .

Applying Sym2 to the exact sequence defining E and twisting by OX (−1), we
see that the bundle V fits in the exact sequence

0→ E (−1)→ V → I2Z⊂X (1)→ 0.

Here, 2Z ⊂ X is the subscheme defined by the square of the ideal IZ⊂X of Z, so it
consists of a union of n planar double points and has length 3n. We write 2C for the
“rope” in P3 defined by the square of the ideal IC⊂P3 . Thus a surface contains 2C if
and only if it is singular at every point of C.

Lemma 3. We have H0(I2Z⊂X (d− 3)) ∼= H0(I2C⊂P3(d− 3)). That is, every degree
d−3 form tangent to X at each point of Z is singular along the entire curve C.

Proof. Let F ∈H0(I2Z⊂X (d−3))⊂H0(OP3(d−3)) and let Y denote the zero locus
of F . Then Y is a surface of degree d− 3 containing Z, so Y contains C. Since C
intersects X transversely and Y is tangent to X at the points of Z, we find that Y is
singular at each point of Z. Then the partial derivatives ∂F/∂Xi each vanish at every
point of Z. Since the partials have degree d−4, they must then also contain C, and
therefore the partials of F vanish identically along C. Therefore

F ∈ H0(I2C⊂P3(d−3)).

The opposite containment is obvious.

Slavov computes the Hilbert polynomial of O2C as follows.

Lemma 4 ([Sla16]). The Hilbert polynomial of O2C is
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χ(O2C(m)) = 3em−4e−5g+5.

It is convenient to define

α = h0(I2C⊂P3(d−3))−χ(I2C⊂P3(d−3)),

so that in particular α = 0 if d is sufficiently large. We now estimate the dimension
of the tangent space.

Proposition 3. The dimension h1(V ) of the tangent space to MX (2,1,n) at E ∈
UR(n) satisfies the inequalities

4e+2g+α ≤ h1(V )≤ 5e+2g−3+α.

Proof. Since E is stable we have h0(V ) = 0. The Euler characteristic χ(V ) is com-
puted using the exact sequences as follows.

χ(V ) = χ(E (−1))+χ(I2Z⊂X (1))
= χ(OX (−1))+χ(OX )+χ(OX (1))−4n

=

(
d
3

)
+1+

(
d−1

3

)
+4+

(
d−2

3

)
−4(e(d−3)−g+2)

We compute h2(V ) by noting V is self-dual so h2(V ) = h0(V (d− 4)). Then we
have an exact sequence

0→ H0(E (d−5))→ H0(V (d−4))→ H0(I2Z⊂X (d−3)) δ→ H1(E (d−5)).

Now we compute the cohomology of E (d−5). We have

h0(E (d−5)) = h0(OX (d−5))+h0(IZ⊂X (d−4))

= h0(OP3(d−5))+h0(IC⊂P3(d−4))

=

(
d−2

3

)
+h0(OP3(d−4))−h0(OC(d−4))

=

(
d−2

3

)
+

(
d−1

3

)
− (e(d−4)−g+1).

Note that E (d−5) is Serre dual to E . So,

χ(E (d−5)) = χ(E ) = χ(OX )+χ(OX (1))−n

= 1+
(

d−1
3

)
+4+

(
d−2

3

)
− (e(d−3)−g+2).

Also h2(E (d−5)) = h0(E ) = 1, and therefore

h1(E (d−5)) = h0(E (d−5))+h2(E (d−5))−χ(E (d−5)) = e−3.
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By Lemma 3 and 4 we have

h0(I2Z⊂X (d−3)) = h0(I2C⊂P3(d−3))
= α +χ(I2C⊂P3(d−3))
= α +χ(OP3(d−3))−χ(O2C(d−3))

= α +

(
d
3

)
− (3e(d−3)−4e−5g+5).

Combining these results, we conclude

h1(V ) = h2(V )−χ(V )

≤ h0(E (d−5))+h0(I2Z⊂X (d−3))−χ(V )

= 5e+2g−3+α

with equality if δ is 0 and

h1(V ) = h2(V )−χ(V )

≥ h0(E (d−5))+h0(I2Z⊂X (d−3))−h1(E (d−5))−χ(V )

= 4e+2g+α

with equality if δ is surjective.

Remark 5. As in Remark 4, a similar result holds if R parameterizes lines or conics
transverse to X , but adjustments need to be made since the curve C is degenerate:

1. if R parameterizes lines then h0(E )= 3, so h1(E (d−5))= e−1 and the bounds
become the equality h1(V ) = 2+α . Furthermore, α = 0 so long as d ≥ 3, so
UR(n) is smooth and dense in SR(n).

2. If R parameterizes conics then h0(E ) = 2, so h1(E (d− 5)) = e− 2 and the
bounds become the equality h1(V ) = 7+α . We have α = 0 for d ≥ 5, so UR(n)
is smooth and dense in SR(n).

Combining the results in this section yields the following dimension estimates.

Corollary 1. With the assumptions above, the irreducible component SR(n) of
MX (2,1,n) which contains UR(n) has dimension satisfying

4e≤ dimSR(n)≤ 5e+2g−3+α.

It is typically challenging to compute the dimension of SR(n) exactly. For ex-
ample, if g > 0 then the expected dimension 4e of UR(n) is strictly smaller than the
lower bound 4e+2g on the dimension of the tangent space. It is not clear when the
closure of UR(n) is a component of the moduli space. If UR(n) is dense in SR(n)
and of dimension smaller than 4e+2g, then SR(n) is everywhere nonreduced.

The case when R parameterizes twisted cubic curves is easy to analyze.
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Corollary 2. Suppose d ≥ 6 and R parameterizes twisted cubic curves which are
transverse to X. Then the closure of UR(n) in MX (2,1,n) is an irreducible compo-
nent of dimension 12 which is smooth at all points of UR(n).

Proof. The inequality d ≥ 5 is sufficient to ensure that the assumptions on d in this
section are satisfied. On the other hand, d ≥ 6 is needed to give α = 0; we have
α = 1 if d = 5. Then by Corollary 1, both UR(n) and SR(n) have dimension 12
and the tangent space at any point of UR(n) has dimension 12.

3.3 Elementary modifications

In the previous subsection we used an open irreducible subset R ⊂He,g to construct
a locus UR(n) in MX (2,1,n) if d = degX is sufficiently large. Here we have n =
n(d,e,g) = e(d − 3)− g + 2. We now use elementary modifications to construct
additional loci in MX (2,1,s) for every s≥ n.

Definition 3. Let s≥ n. The locus UR(s)⊂MX (2,1,s) is the set of all sheaves which
can be obtained from sheaves in UR(n) by a sequence of s− n elementary modifi-
cations at distinct points of X .

Given a sheaf E ∈ UR(n), a sheaf in UR(s) is constructed by choosing s− n
points p1, . . . , ps−n of X and a hyperplane in the fiber Epi for each i. Since UR(n)
is irreducible, it follows that UR(s) is irreducible of dimension dim(R)+3(s−n).
Let SR(s)⊂MX (2,1,s) be an irreducible component containing UR(s). Our main
result in this section bounds the dimension of SR(s).

Proposition 4. We have

4e+3(s−n)≤ dimSR(s)≤ 5e+2g−3+α +4(s−n).

Proof. The lower bound follows from the previous paragraph. Repeated application
of the next lemma and Proposition 3 gives the upper bound.

Lemma 5. Suppose E is a stable rank r torsion-free sheaf on a surface X, let p ∈ X
be a point where E is locally free, and let E ′ be an elementary modification of E at
p:

0→ E ′→ E → Op→ 0. (1)

Then
ext1(E ′,E ′)≤ ext1(E ,E )+2r.

Proof. We first apply Ext(E ,−) to the Sequence (1), and obtain the long exact se-
quence

0→ Hom(E ,E ′)→ Hom(E ,E )→ Hom(E ,Op)→

Ext1(E ,E ′)→ Ext1(E ,E )→ Ext1(E ,Op).
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We have Hom(E ,E ) = C · id by stability, and the map Hom(E ,E )→ Hom(E ,Op)
carries id to the nonzero map E → Op defining E ′. Therefore Hom(E ,E ) →
Hom(E ,Op) is injective and Hom(E ,E ′) = 0. Also

hom(E ,Op) = r and ext1(E ,Op) = 0

since E is locally free. Putting this all together,

ext1(E ,E ′) = ext1(E ,E )+ r−1.

Next we apply Ext(−,E ′) to Sequence (1) and get an exact sequence

Ext1(E ,E ′)→ Ext1(E ′,E ′)→ Ext2(Op,E
′),

so

ext1(E ′,E ′)≤ ext1(E ,E ′)+ ext2(Op,E
′) = ext1(E ,E )+ r−1+ ext2(Op,E

′).

Finally ext2(Op,E ′) = r+1: by Serre duality, ext2(Op,E ′) = hom(E ′,Op). Apply-
ing Ext(−,Op) to Sequence (1) we have an exact sequence

0→ Hom(Op,Op)→ Hom(E ,Op)→ Hom(E ′,Op)→

Ext1(Op,Op)→ Ext1(E ,Op) = 0.

Here hom(Op,Op) = 1, ext1(Op,Op) = 2, and hom(E ,Op) = r, so ext2(Op,E ′) =
r+1, completing the proof.

3.4 Comparing components

We now use our dimension estimates on the components SR(s) to show that if
d� 0, then there are moduli spaces of sheaves MX (2,1,s) with as many components
as we like.

Separating two loci

First suppose R = Re,g ⊂He,g and R ′ = Re′,g′ ⊂He′,g′ are two open irreducible
subsets, where e < e′. Then we have

n := n(d,e,g) = e(d−3)−g+2
n′ := n(d,e′,g′) = e′(d−3)−g′+2.
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Therefore for d� 0, we have n < n′. Then for any s ≥ n′ we can consider the two
components SR(s) and SR′(s) of MX (2,1,s).

Theorem 4. With the above notation, if d � 0, then the components SR(n′) and
SR′(n′) are distinct.

Proof. We need only see that dimSR(n′)> dimSR′(n′). By Proposition 4 and our
formulas for n and n′, we have

dimSR(n′)≥ 4e+3(n′−n) = 3(e′− e)d +C1

dimSR′(n
′)≤ 5e′+2g′−3 =C2

where Ci are constants which depend (at most) on e,g,e′,g′, but not on d. Since
e′ > e, the required inequality follows for d� 0.

If the surface X is fixed and s increases past n′, then the components SR(s) and
SR′(s′) eventually coincide since the moduli space MX (2,1,s) is irreducible for s�
0. We now quantify how large we can allow s to be while still guaranteeing that
these components are distinct.

Proposition 5. Suppose d � 0. Then there is a constant C depending on e,g,e′,g′

such that if
n′ ≤ s≤ (4e′−3e)d +C

then the components SR(s) and SR′(s) are distinct.

Note that 4e′−3e > e′ since e′ > e, while n′ grows like e′d +C as d increases. So,
the range of numbers s where the components can be separated increases with d.

Proof. Again we use Proposition 4 to estimate

dimSR(s)≥ 4e+3(s−n) =−3ed +3s+C3

dimSR′(s)≤ 5e′+2g′−3+4(s−n′) =−4e′d +4s+C4

where the Ci are constants depending on e,g,e′,g′. Then we will have

−3ed +3s+C3 >−4e′d +4s+C4

so long as s < (4e′−3e)d +C5.

Separating multiple loci

Now suppose we consider a list of k open irreducible sets R i = Rei,gi ⊂Hei,gi , and
that the degrees satisfy e1 < · · ·< ek. Let ni = n(d,ei,gi); then for d� 0 the largest
ni is nk. As d increases, the number nk grows like ekd +C. By Proposition 5, if
4ei+1−3ei > ek whenever 1≤ i< k then the component SRi+1(nk) will have smaller
dimension than SRi(nk) for large enough d. Thus we have proved the following
result.
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Proposition 6. Suppose e1 < · · ·< ek satisfy 4ei+1−3ei > ek for 1≤ i < k. Then if
d� 0, the components SRi(nk) are all distinct for 1≤ i≤ k.

This easily implies the following more qualitative theorem.

Theorem 5. For any integer k, there is a number dk � 0 such that if d ≥ dk then a
very general surface X ⊂ P3 of degree d has some moduli space MX (2,1,s) with at
least k components.

Proof. By Proposition 6 it is enough to see that there are arbitrarily long sequences
of positive integers e1 < · · ·< ek such that 4ei+1−3ei > ek. Such sequences are easy
to construct. For a crude example, the sequence 4k−2k−1 < 4k−2k−2 < · · ·< 4k−20

does the trick since

4(4k−2i)−3(4k−2i+1) = 4k +2i+1 > 4k−20

for i≥ 0.

Remark 6. When ∆(v) is small, we would expect the geometry of MX ,H(v) to exhibit
the same pathologies as the Hilbert scheme of curves in P3. It would be interesting
to make this precise.

4 Brill-Noether Theorems

In this section, we discuss recent progress in Brill-Noether theory of moduli spaces
of sheaves on surfaces. This section is based on [CH16] and [CH17b]. We will first
discuss the theory for P2. We will then discuss the case of Hirzebruch surfaces and
del Pezzo surfaces. Finally, we will make some remarks for general surfaces and
give a few examples for hypersurfaces in P3.

Rank 1 sheaves

If rkv= 1, then any torsion free sheaf with Chern character v is of the form L⊗IZ for
a line bundle L and an ideal sheaf of points IZ . The long exact sequence associated
to

0→ L⊗ IZ → L→ L⊗OZ → 0,

shows that H2(X ,L)∼= H2(X ,L⊗ IZ). Furthermore, if Z is a general set of n points,
the map H0(X ,L)→ H0(X ,L⊗OZ) has maximal rank. Consequently, if L has no
higher cohomology, then L⊗ IZ has no higher cohomology as long as Z is a general
set of points on X with |Z| ≤ h0(X ,L). Furthermore, when |Z| ≥ h0(X ,L), then L⊗IZ
has no global sections. We conclude that for a general set of points Z on X , L⊗ IZ
has at most one nonzero cohomology group if and only if one of the following holds
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1. The line bundle L has no higher cohomology, or
2. We have h2(X ,L) = 0 and |Z| ≥ h0(X ,L), or
3. We have h0(X ,L) = |Z| and h1(X ,L) = 0.

From now on, we will always assume that rkv≥ 2.

The projective plane

Let L denote the hyperplane class on P2. Göttsche and Hirschowitz [GHi94] show
that the general sheaf in MP2,L(v) has at most one nonzero cohomology group.

Theorem 6 (Göttsche-Hirschowitz [GHi94]). Let v be a stable Chern character
with rk(v) ≥ 2. Then the general sheaf V ∈MP2,L(v) has at most one nonzero co-
homology group.

In particular, if χ(v) < 0, then the general stable sheaf V has h1(V ) = −χ(v).
If χ(v) ≥ 0 and µH(v) ≥ 0, then h0(V ) = χ(v). If χ(v) ≥ 0 and µH(v) < 0, then
h2(V ) = χ(v). Hence, the Göttsche-Hirschowitz Theorem computes the cohomol-
ogy of a general stable sheaf on P2. We will give two simple proofs of the theorem
to illustrate the techniques.

Proof (Proof Sketch 1). First, by Serre duality, we may assume that µ(v) ≥ − 3
2 . If

the Serre dual sheaf has only one nonzero cohomology group, so does the original
sheaf. We can apply Serre duality because the general sheaf of rank at least 2 in
MP2,L(v) is a vector bundle. This fails when rk(v) = 1. For example, χ(Ip(−3)) = 0,
but h1(P2, Ip(−3)) = h2(P2, Ip(−3)) = 1 for any ideal sheaf of a point p ∈ P2.

The general stable sheaf V on P2 admits a Gaeta resolution of the form

0→ OP2(a−2)k→ OP2(a−1)l⊕OP2(a)m→ V → 0, or

0→ OP2(a−2)k⊕OP2(a−1)l → OP2(a)m→ V → 0,

where a is the largest integer such that χ(V (−a))≥ 0 but χ(V (−a−1))< 0,

m = χ(V (−a)), k =−χ(V (−a−1) and l = | rk(V )+ k−m|.

The sign of rk(V )+ k−m determines which of the two resolutions V admits (see
[Gae51] for ideal sheaves of general points).

If a≥ 0, then V clearly has no higher cohomology. Since µ(V )≥− 3
2 ,

µ(V ∗(−3))≤−3
2
.

By Serre duality and stability, h2(P2,V ) = h0(P2,V ∗(−3)) = 0. When a < 0, then
V clearly has no global sections. Since h2(P2,V ) = 0, we conclude that the only
nonzero cohomology group can be H1(P2,V ).
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Proof (Proof Sketch 2). Alternatively, we can prove a slightly more general theorem.
By Serre duality, we may assume that µ(v)≥− 3

2 . By the division algorithm, we can
write µ(v) = a+ m

r , where a is an integer and 0≤ m < r. Then

V = OP2(a)r−m⊕OP2(a+1)m,

is an L-prioritary sheaf with slope µ(v). Since µ(v)≥− 3
2 , a≥−2. Consequently, V

has no higher cohomology. A simple computation shows that ∆(V )≤ 0. By Lemma
1, taking general elementary modifications of V , we obtain L-prioritary sheaves
with at most one nonzero cohomology group for every integral Chern character v
with rk(v)≥ 2 and ∆(v)≥ 0. Since the stack of prioritary sheaves is irreducible and
vanishing of cohomology is an open condition, we conclude that the general sheaf
in the corresponding stacks also have at most one nonzero cohomology group. In
particular, if v is a stable Chern character, the Gieseker semistable sheaves form an
open subset of PL(v) and the general semistable sheaf has at most one nonzero
cohomology group.

We obtain the following corollary of the proof.

Corollary 3. Let v be a Chern character such that rk(v)≥ 2 and ∆(v)≥ 0. Then the
general prioritary sheaf V ∈PL(v) has at most one nonzero cohomology group.

Both of these strategies can be used to obtain Brill-Noether theorems on other
surfaces. The weak Brill-Noether theorem has many applications. One application
is the classification of globally generated vector bundles. Define a Chern character
v to be a globally generated Chern character if the general prioritary sheaf with
character v is globally generated. One needs to exercise some caution with this
notion because being globally generated is not an open condition.

Example 2. The vector bundle V defined as the cokernel of the natural map

0→ OP2(−d)→ OP2 ⊗H0(P2,OP2(d))→ V → 0

is semistable and globally generated [LeP97]. However, when d ≥ 3, the general
member of the moduli space is not globally generated. This is easiest to see when
d ≥ 4. In that case, χ(v) < rk(v). The general sheaf has only a χ(v)-dimensional
space of sections, so has no chance of being globally generated. When d = 3, χ(v)=
rk(v) and the moduli space is positive dimensional. The general sheaf has only 9
sections which fail to generate the sheaf along a curve.

However, if the higher cohomology of the sheaves vanishes, then the condition of
being globally generated is an open condition

Theorem 7 ([BGJ16], [CH17b]). Let v be an integral Chern character on P2 such
that rk(v) ≥ 2, ∆(v) ≥ 0. Then the Chern character v is globally generated if and
only if µ(v)≥ 0 and one of the following holds:

1. We have µ(v)> 0 and χ(v(−1))≥ 0.
2. We have µ(v)> 0, χ(v(−1))< 0, and χ(v)≥ rk(v)+2.
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3. We have µ(v)> 0, χ(v(−1))< 0, and χ(v)≥ rk(v)+1 and

v = (rkv+1)ch(OP2)− ch(OP2(−2)).

4. We have µ(v) = 0 and v = rk(v)ch(OP2).

Proof. If V is globally generated, then its determinant is also globally generated.
We therefore have µ(V )≥ 0. If µ(V ) = 0, then by Riemann-Roch χ(V )≤ rk(V )
with equality if and only if ∆(V ) = 0. Since a globally generated bundle V needs
to have at least rk(V ) independent sections and for the general sheaf there is
only one nonzero cohomology group, we conclude that µ(V ) = ∆(V ) = 0 and
v = rk(v)ch(OP2).

If χ(v(−1))≥ 0, then the general sheaf in PP2,L(v) has a Gaeta resolution with
a≥ 1. Then the general sheaf is clearly a quotient of a globally generated bundle. If
χ(v(−1))< 0 and χ(v)≥ rk(v)+2, then the general sheaf in PP2,L(v) has a Gaeta
resolution of the form

0→ OP2(−2)k⊕OP2(−1)l → Om
P2 → V → 0, or

0→ OP2(−2)k→ OP2(−1)l⊕Om
P2 → V → 0.

In the first case, V is the quotient of a globally generated vector bundle, hence
globally generated. The most interesting case is the second case. By the assumption
that χ(V )≥ rk(V )+2, we have that m≥ rk(V )+2. Therefore, k≥ l+2. To show
that V is globally generated, it suffices to show that H1(P2,V ⊗ Ip) = 0 for every
point p ∈ P2. By the long exact sequence of cohomology, it suffices to show that the
map

φ : H1(P2, Ip(−2))k→ H1(P2, Ip(−1))l

is surjective. Consider the sequence

0→M→ OP2(−2)k→ OP2(−1)l → 0.

Since the map is general, it is surjective and M is a vector bundle. Clearly M does
not have any cohomology. Tensoring the standard exact sequence

0→ Ip→ OP2 → Op→ 0

with M, we see that H2(P2, Ip⊗M) = 0. Consequently, the map φ is surjective and
V is globally generated. Finally, if χ(V ) = rk(V )+1 and V is globally generated,
then there is a surjective map Or+1

P2 → V . The kernel of this map is a line bundle
OP2(−d). If d = 1, then χ(V (−1)) = 0. If d ≥ 3, then χ(V )< r and it is not possi-
ble for the general prioritary sheaf with Chern character v to be globally generated.
The only remaining possibility is for d = 2. In that case, χ(V ) = r+1 and this is the
Gaeta resolution of the general sheaf. This concludes the classification of globally
generated Chern characters on P2.

The following problem remains open.
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Problem 1. Classify the Chern characters v on P2 such that the general prioritary
sheaf of character v is ample.

Note that if V is a vector bundle such that V (−1) is globally generated, then
V is ample. Thus the classification of globally generated Chern characters gives a
sufficient condition for the general bundle to be ample. In particular, if rk(v) ≥ 2,
µ(v)≥ 1, ∆(v)≥ 0 and χ(v(−1))≥ rk(v)+2, then the general prioritary sheaf with
Chern character v is ample. However, an ample vector bundle on P2 does not have
to have any sections. For example, Gieseker [Gie71] proves that a general vector
bundle with resolution

0→ OP2(−d)2→ OP2(−1)4→ V → 0

is ample for d� 0. It is easy to see that we need d ≥ 7. However, we do not know
whether d = 7 is sufficient. In general, an ample bundle must satisfy µ(v) ≥ 1 and
µ2

2 > ∆

r+1 . It would be interesting to determine conditions under which the converse
also holds.

Hirzebruch surfaces

Following [CH16] and [CH17b], we now explain how to obtain analogues of Corol-
lary 3 and Theorem 7 for Hirzebruch surfaces.

Let e be a nonnegative integer and let Fe denote the Hirzebruch surface P(OP1⊕
OP1(e)). We refer the reader to [Cos06a] or [Har77] for a detailed description of
Hirzebruch surfaces. The surface Fe admits a natural projection π to P1. Let F de-
note the class of a fiber of π . The surface contains a section E with self-intersection
−e. When e ≥ 1, this section is unique. The Picard group Pic(Fe) = ZE⊕ZF and
the intersection product is given by

E2 =−e, E ·F = 1, F2 = 0.

Express the total slope of a Chern character v by

ν(v) =
k
r

E +
l
r

F.

Let V = OFe(−E − (e+ 1)F)a⊕OFe(−F)b⊕Oc
Fe

. Then a simple calculation
shows that ∆(V ) ≤ 0 and V is both F-prioritary and E-prioritary. Furthermore,
every slope in the quadrilateral in the ( k

r ,
l
r )-plane with vertices

(−1,−e−1), (0,0), (0,−1), (−1,−e−1)

can be expressed as the slope of a bundle V or V ∗(−E− (e+ 1)F). Furthermore,
these bundles have no higher cohomology. Translates of this quadrilateral by classes
of nef line bundles, covers the region defined by the inequalities ν(v) ·F ≥−1 and
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ν(v) ·E ≥ −1. Using elementary modifications and Lemma 1, one concludes the
following.

Theorem 8 ([CH17b], Theorem 3.1). Let v be an integral Chern character on Fe
with positive rank r and ∆ ≥ 0. Then the stack PFe,F(v) of F-prioritary sheaves is
nonempty and irreducible. Let V ∈PFe,F(v) be a general sheaf.

1. If ν(v) ·F ≥ −1, then h2(Fe,V ) = 0. If ν(v) ·F ≤ −1, then h0(Fe,V ) = 0. In
particular, if ν(v) ·F =−1, then both h0 and h2 vanish and h1(Fe,V ) =−χ(v).

2. If ν(v) ·F > −1 and ν(v) ·E ≥ −1, then V has at most one nonzero coho-
mology group. Thus if χ(v) ≥ 0, then h0(Fe,V ) = χ(v), and if χ(v) ≤ 0, then
h1(Fe,V ) =−χ(v).

3. If ν(v) ·F >−1 and ν(v) ·E <−1, then H0(Fe,V ) = H0(Fe,V (−E)), hence
the Betti numbers of V are inductively determined using the previous two parts.

4. If ν(v) ·F <−1 and rk(v)≥ 2, then Serre duality determines the Betti numbers
of V .

We call a Chern character v nonspecial if there exists an F-prioritary sheaf V
with Chern character v such that V has at most one nonzero cohomology group. In
particular, we obtain a classification of nonspecial Chern characters on Fe.

Corollary 4 ([CH17b], Corollary 3.9). Let v be an integral Chern character on Fe
with positive rank and ∆(v) ≥ 0, and suppose ν(v) ·F ≥ −1. Then v is nonspecial
if and only if one of the following holds.

1. We have ν(v) ·F =−1.
2. We have ν(v) ·F >−1 and ν(v) ·E ≥−1.
3. If ν(v) ·F > −1 and ν(v) ·E < −1, let m be the smallest positive integer such

that either ν(v(−mE)) ·F ≤−1 or ν(v(−mE)) ·E ≥−1.

a. If ν(v(−mE)) ·F ≤−1, then v is nonspecial.
b. If ν(v(−mE)) ·F >−1, then v is nonspecial if and only if χ(v(−mE))≤ 0.

The following corollary when χ(v)≥ 0 is easier to remember.

Corollary 5 ([CH17b], Corollary 3.10). Let v be a positive rank Chern character
on Fe such that ∆(v)≥ 0, χ(v)≥ 0 and F ·ν(v)≥−1. Then v is nonspecial if and
only if F ·ν(v) =−1 or E ·ν(v)≥−1.

As in the case of P2, we may use the Brill-Noether theorems to characterize the
globally generated Chern characters. Let V a general prioritary sheaf in PFe,F(v)
with ∆(V ) ≥ 0. If V is globally generated, then its determinant has to be globally
generated and nef. If in addition ν(V ) ·F = 0, then the restriction of V to every
fiber must be trivial. Hence, V must be a pullback from P1. Since V is F-prioritary
and globally generated, we conclude that V = OFe(aF)m⊕OFe((a+ 1)F)r−m for
some a≥ 0 and m≥ 0. We may now assume that ν(V ) ·F > 0. Since V is general,
the restriction of V to every fiber will be globally generated. If χ(V (−F))≥ 0, then
the exact sequence
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0→ V (−F)→ V → V |F → 0

allows us to lift the section of V |F to sections of V on Fe since by the cohomology
computations H1(Fe,V (−F)) = 0. If χ(V (−F))< 0, then as in the case of P2, we
need to resort to a Gaeta-type resolution.

Theorem 9 ([CH17b], Theorem 4.1). Let v be an integral Chern character on Fe
of positive rank and assume that

∆(v)≥ 1
4

if e = 0, ∆(v)≥ 1
8

if e = 1, ∆(v)≥ 0 if e≥ 2.

Then the general sheaf V ∈PFe,F(v) admits a Gaeta-type resolution

0→ L(−E− (e+1)F)a→ L(−E− eF)b⊕L(−F)c⊕Ld → V → 0, (2)

for some line bundle L and nonnegative integers a,b,c,d.

First, assume that there exists an exact sequence of the form (2). Then the expo-
nents in the exact sequence (2) can be formally calculated using the Euler charac-
teristic:

a =−χ(V (−L−E−F)), b =−χ(V (−L−E)),

c =−χ(V (−L−F)), d = χ(V (−L)).

We now treat a,b,c,d as functions of L defined by these Euler characteristics. As-
sume that we can find a line bundle L such that a,b,c,d are all nonnegative. Then we
can define V by the sequence (2). Since Hom(L(−E− (e+1)F)a,L(−E− eF)b⊕
L(−F)c⊕Ld) is globally generated, the cokernel of a general homomorphism de-
fines a torsion free sheaf V . An easy check shows that the general sheaf given by
such a resolution is F-prioritary and such sheaves provide a complete family of
F-prioritary sheaves. It then follows that the general F-prioritary sheaf has such a
resolution since the stack of F-prioritary sheaves is irreducible. Finally, using the
inequalities on ∆ , one shows that one can always find a line bundle L that makes the
exponents a,b,c,d nonnegative (see [CH17b]).

If χ(V (−F))< 0 and V is globally generated, we consider

0→M → O
χ(V )
Fe

→ V → 0,

where M is a vector bundle with character v. Then M has no cohomology,
h1(Fe,M (−F)) = 0 and M ∗ is globally generated. Conversely, if we can construct
such a vector bundle M , we obtain a globally generated F-prioritary vector bundle
V with Chern character v. As in the case of P2, one constructs M and check that
M ∗ is globally generated directly from the Gaeta-type resolution provided by Theo-
rem 9. We obtain the following classification of globally generated Chern characters
on Fe.
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Theorem 10 ([CH17b], Theorem 5.1). Let v be a Chern character on Fe, e ≥ 1
such that rk(v) ≥ 2, ∆(v) ≥ 0 and ν(v) is nef. Then v is globally generated if and
only if one of the following holds:

1. We have ν(v) ·F = 0 and v= ch(π∗(OP1(a)m⊕OP1(a+1)r−m)) for some a≥ 0.
2. We have ν(v) ·F > 0 and χ(v(−F))≥ 0.
3. We have ν(v) ·F > 0, χ(v(−F))< 0 and χ(v)≥ r+2.
4. We have e = 1, ν(v) ·F > 0, χ(v(−F))< 0, χ(v)≥ r+1 and

v = (rk(v)+1)ch(OF1)− ch(OF1(−2E−2F)).

Since P1×P1 admits two fibration structures, the theorem has to account for both
fibrations.

Theorem 11 ([CH17b], Theorem 5.2). Let v be a Chern character on P1×P1 such
that rk(v)≥ 2, ∆(v)≥ 0 and ν(v) is nef. Let F1 and F2 be the classes of the two rul-
ings. The Chern character v is globally generated if and only if one of the following
holds

1. We have ν(v) ·Fi = 0 for some i ∈ {1,2} and

v = ch(OP1×P1(aFi)
m⊕OP1×P1((a+1)Fi)

r−m)

for some a≥ 0.
2. We have ν(v) ·Fi > 0 for i ∈ {1,2} and χ(v(−Fi))≥ 0 for some i ∈ {1,2}.
3. We have ν(v) ·Fi > 0 and χ(v(−Fi))≤ 0 for i ∈ {1,2} and χ(v)≥ rk(v)+2.

As in the case of P2, it would be very interesting to classify the Chern characters
of ample stable (or F-prioritary) bundles on Fe.

Del Pezzo surfaces and more general rational surfaces

Let X be the blowup of P2 at r points p1, . . . , pk. If k ≤ 8 and the points are in gen-
eral position, then X is a del Pezzo surface. We refer the reader to [Bea83, Cos06b,
Har77] for more detailed information on del Pezzo surfaces. Let L denote the pull-
back of the hyperplane class from P2 and let E1, . . . ,Er denote the exceptional divi-
sors lying over p1, . . . , pk. Then Pic(X)∼=ZL⊕ZE1⊕·· ·⊕ZEk and the intersection
form is given by

L2 = 1, L ·Ei = 0, Ei ·E j =−δi, j,

where δi, j denotes the Krönecker delta function. When X is a del Pezzo surface,
the (−1)-curves and −KX generate the effective cone of curves on X . Furthermore,
the cohomology of line bundles is completely known. When X is a more general
blowup, even the cohomology of line bundles is not known. Consequently, it is un-
realistic to expect a full computation of the cohomology of all higher rank sheaves.
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Let v be a Chern character of rank r and let the total slope be ν(v) = δL−
∑

k
i=1 αiEi. Then we have that

δ = d +
q
r
, αi = ai +

qi

r

for some integers d,q,ai and qi with 0≤ q < r and 0≤ qi < r. Set

γ(v) =
q2

2r2 −
q
2r

+
k

∑
i=1

(
qi

2r
− q2

i
2r2

)
.

Theorem 12 ([CH16], Theorem 4.5). Let X be the blowup of P2 at k distinct points.
Let v be a positive rank Chern character on X with total slope

ν(v) = δL−α1E1 · · ·−αkEk

with δ ≥ 0 and αi ≥ 0. Suppose that the line bundle

bδcL−dα1eE1 · · ·−dαkeEk

does not have higher cohomology. Assume that ∆(v) ≥ γ(v). Then PX ,L−E1(v) is
nonempty and the general sheaf in PX ,L−E1(v) has at most one nonzero cohomology
group.

To prove the theorem it suffices to consider the direct sum of line bundles V =
L1⊕·· ·⊕Lk, where each line bundle L j has the form

n jL−
k

∑
i=1

m j,iEi

with n j ∈ {bδc,dδe} and m j,i ∈ {bαic,dαie}. By choosing L j appropriately, we can
arrange that ν(V )= ν(v). Then each L j is a line bundle with no higher cohomology.
It is easy to check that V is (L−E1)-prioritary and has ∆(V ) = γ(v). The theorem
follows by taking elementary modifications of V .

It is possible to choose the direct sum of line bundles more carefully to obtain
sharper bounds when k is small. We refer the reader to [CH16, §5] when X is a del
Pezzo surface of large degree.

Other surfaces

Determining the cohomology of the general stable sheaf and classifying the Chern
characters v such that the general stable sheaf with Chern character v is globally gen-
erated or stable are important problems on any surface. The theory is most developed
for K3 surfaces thanks to the work of Leyenson, Markman, Mukai, O’Grady, Yosh-
ioka and many others. We refer the reader to [O’G97, Ley12, Mrk01] for further



26 Izzet Coskun and Jack Huizenga

details and references. We close this section with a few general remarks on Brill-
Noether statements on general surfaces. First, an asymptotic weak Brill-Noether
statement holds on any smooth projective surface.

Proposition 7. Let X be a smooth projective surface and let H be an ample divisor.
Let v be a Chern character with ∆(v)� 0. Let V ∈ MX ,H(v) be a general sheaf.
Then the only nonzero cohomology group of V can be H1(X ,V ).

Proof. Let vD denote the Serre dual Chern character of v. Observe that ∆(v) =
∆(vD). Assume that ∆(v) ≥ δ , where δ is the O’Grady bound that guarantees that
both MX ,H(v) and MX ,H(vD) are irreducible and the general member is a stable bun-
dle. If the general sheaf V ∈MX ,H(v) has only H1, we are done. If V has any global
sections, replace V by h0(X ,V ) general elementary modifications V1. Then V1 is a

slope stable sheaf, has no H0, and has discriminant ∆(V1) = ∆(V )+ h0(X ,V )
rk(V ) > δ .

Hence, the moduli space containing V1 is irreducible. We can find a locally free
slope-stable sheaf V2 with no H0 since vanishing of H0 is an open condition. If
V2 has only H1, we are done. Otherwise, replace V2 by its Serre dual V3. Apply
h0(X ,V3) = h2(X ,V2) general elementary modifications to V3. The resulting sheaf
V4 has vanishing H0 and H2 and is slope stable. A general deformation V5 of V4
is locally free and also has vanishing H0 and H2. The Serre dual of V5 gives the
desired bundle. For v with ∆(v)≥ ∆(V5), the only nonzero cohomology group of a
general sheaf in MX ,H(v) can be H1.

Since the moduli spaces for small ∆ are not necessarily irreducible, even when
there is a stable sheaf with at most one nonzero cohomology group, there may still
be entire components of the moduli space where more than one cohomology group
is nonzero. One can already find such examples on Enriques surfaces. The following
example is due to Nuer and Yoshioka.

Example 3 ([NY17], §10). Nuer and Yoshioka show that there is a component of the
moduli space of rank 2 sheaves on an Enriques surface X whose general element is
given by an extension of the form

0→ IZ → V → OX (KX )→ 0,

where Z is a zero-dimensional scheme of length 2. Observe that h1(X ,V ) =
h2(X ,V ) = 1 .

On surfaces of general type, even very ample line bundles can have nonzero
higher cohomology. Consequently, we would not expect the higher cohomology of
higher rank sheaves to vanish either.

Example 4. Let X be a very general hypersurface of degree d ≥ 5 in P3. Let Z be
d−1 collinear points on X . Then a general extensions of the form

0→ OX → V → IZ(1)→ 0
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is slope stable. By §3, such extensions form a component of the moduli space
MX ((2,1,d − 1)) of rank 2 sheaves with c1 equal to the hyperplane class and
c2 = d− 1. The long exact sequence of cohomology associated to the defining se-
quence of V and Serre duality show that

h0(X ,V ) = 3, h2(X ,V ) =

(
d−1

3

)
+

(
d−2

3

)
−d +3.

The line bundle OX (m) has no higher cohomology for m ≥ d− 3. More generally,
consider extensions of the form

0→ OX (m)→ V (m)→ IZ(m+1)→ 0.

Since h2(X , IZ(m)) 6= 0 for m < d − 4, we conclude that V has nonvanishing h0

and h2 for 0 ≤ m < d − 4. On the other hand, the higher cohomology of V (m)
vanishes for m≥ d−4. This is immediate for m≥ d−3 by the long exact sequence
of cohomology. The only case to discuss is m = d−4. We have

0→ H1(X ,V (d−4))→ H1(X , IZ(d−3))→

H2(X ,OX (d−4))→ H2(X ,V (d−4))→ 0.

Moreover, H1(X , IZ(d−3))∼= H2(X ,OX (d−4))∼=C. The Serre dual W of V (d−
4) fits in the exact sequence

0→ OX (−1)→W → IZ → 0,

hence h0(X ,W )= h2(X ,V (d−4))= 0. We conclude that the higher cohomology of
V (m) vanishes for m≥ d−4. Observe that V is µ-stable and has ∆(V ) = 3

8 d− 1
2 .

Let v be a Chern character of rank 2 on X with µ(v) = 2m+1
2 for m ≥ d − 4. If

∆(v) ≥ 3
8 d− 1

2 , there exist stable sheaves with Chern character v that have at most
one nonzero cohomology group.

Remark 7. It would be interesting to explore the following questions further.

1. Let X be a projective surface such that Pic(X) = ZH for an ample divisor H.
Assume that H1(X ,mH)=H2(X ,mH)= 0 for m≥m0. Assume that ν(v)= µH
for µ > m0. Does there exist a sheaf V ∈ MX ,H(v) with at most one nonzero
cohomology group? What additional assumptions are necessary for surfaces of
higher Picard rank?

2. Assume that the general sheaf in MX ,H(v) has no higher cohomology and ν(v)
is ample. Let V ∈ MX ,H(v) be a general sheaf. What additional assumptions
guarantee that if h0(X ,V )≥ r+2, then V is globally generated?
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