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Abstract—Measurement of volcanic CO2 flux by a drone

swarm poses special challenges. Drones must be able to follow

gas concentration gradients while tolerating frequent drone loss.

We present the LoCUSalgorithm as a solution to this problem

and prove its robustness. LoCUS relies on swarm coordination

and self-healing to solve the task. As a point of contrast we also

implement the MoBSalgorithm, derived from previously pub-

lished work, which allows drones to solve the task independently.

We compare the effectiveness of these algorithms using drone

simulations, and find that LoCUS provides a reliable and efficient

solution to the volcano survey problem. Further, the novel data-

structures and algorithms underpinning LoCUS have application

in other areas of fault-tolerant algorithm research.

Index Terms—Autonomous Drones, Fault-Tolerance, Survey-

ing, Self-Stabilizing Systems, Consensus

I. INTRODUCTION

More than 10% of the world’s population live in the
destructive zone of volcanoes, and a quarter of a million
people have perished in volcanic eruptions in the last 500
years [1]. Volcanoes emit unknown amounts of CO2 and other
climate changing gasses, but only 10 of the approximately
300 currently active volcanoes are characterised by long-
term datasets that enable any assessment of temporal CO2
variability [2]. Measuring volcanic CO2 flux would enable
predictions of eruptions, minimizing loss of life and economic
impact, as well as informing our understanding of greenhouse
gas-driven climate change.

Satellite remote sensing of CO2 is infeasible, so sampling is
currently performed by ground based sensors or aerial surveys
with piloted aircraft [3]. These techniques are costly, danger-
ous, and produce temporally and spatially coarse measure-
ments. UAV present an emerging solution [4] that reduces risk
to volcanologists and has the potential to markedly increase
sampling resolution within volcano plumes.

An international team of research universities recently
demonstrated that UAV can feasibly sample CO2 from an
active volcano in Papua New Guinea [5]. We developed the
dragonfly drone for this task. The dragonfly is capable of
measuring CO2 in real time and has a flight duration of 1 h.
However, drone loss was very common. Sudden and violent
thermal updraughts, acidic plumes, and rugged cliffs were
some of the many conditions that destroyed UAV. Further, the
remoteness of many survey sites and battery life restrictions
necessitate brief missions with small swarms. These hazardous
and difficult conditions motivate the need for reliable perfor-

mance and surveillance algorithms that maximize the chance
of completing the CO2 surveillance task even with the loss of
drones, short flight times, and small swarm sizes.

A key task for volcano surveillance is to locate the maxi-
mum CO2 flux (max flux) in a dynamic gas plume. We propose
the LoCUS algorithm to maintain a spatially dispersed swarm
of drones that can simultaneously measure CO2 concentrations
at different locations and communicate those measurements
across the entire swarm. We use deductive arguments to prove
the loss-tolerance properties of LoCUS, and we test its per-
formance and fault tolerance in simulations. In particular we
show LoCUS guarantees that failed drones are replaced within
flight-time proportional to the square root of swarm size, while
preserving the swarm symmetry essential to efficient gradient
following.

We hypothesise that maintaining a dispersed team of robots
that can simultaneously measure CO2 at different spatial loca-
tions will provide a better estimate of the CO2 gradient, allow-
ing fast navigation to the CO2 source. We further hypothesise
that the benefit of spatially dispersed measurements outweighs
the increased complexity resulting from coordination and self-
healing. To test these hypotheses, we develop an alternative
approach which allows multiple UAV to independently search
for the maximum CO2 flux. We compare LoCUS to MoBS,
an algorithm that combines a ballistic search algorithm for
multiple agents without communication [6] [7] and a gas
gradient following algorithm for robots inspired by Moth
pheromone tracking [8] [9].

II. RELATED WORK

An algorithm for reliably locating max flux using a remote-
sampling robotic-platform requires the following:

1) Search: A search pattern to explore an area to make
initial contact with the plume.

2) Plume Gradient Following: After plume contact is made,
the platform follows the gas plume to the source.

3) Failure Resistance: The collection of robots needs to
respond to failures to maintain a cohesive structure.

Schleich et. al. [10] proposes searching an area using a
fully-connected swarm of drones and compares this against
a random and pheromone-following approach. They find that
a fully-connected swarm satisfies base-station connectivity re-
quirements while achieving slightly better survey performance
for larger swarm sizes. This motivates LoCUS, as keeping the
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Fig. 1: MoBS simulation with 16 drones and a smooth plume.
The red lines trace each drone’s independent search for the
plume using golden ratio spokes from the center of the arena.
After each drone contacts the plume, it switches to a Moth
pheromone inspired search algorithm to find the max flux.

swarm in contact provides benefits that outweigh the overhead
of maintaining swarm connectivity.

Neumann et. al. [11] compares 3 algorithms for plume
gradient following: the surge-cast algorithm, the Dung Beetle
(zig-zag) algorithm, and the pseudo-gradient algorithm using
a single robot agent. Through the author’s experiments, in
both simulation and physical robots, they validate all three
algorithms promising for micro UAVs each under different
ciricumstances. Our approach uses multiple robots for plume
gradient following, with MoBS closely resembling the surge-
cast algorithm and LoCUS resempling pseudo-gradient algo-
rithm across the swarm formation.

Chen et. al. [12] apply a Particle Swarm Optimization
algorithm to follow a gas plume gradient in an indoor en-
vironment. This approach requires full swarm connectivity to
communicate global arena information throughout the swarm.
This motivates keeping the swarm connected with coordinated
movement for gradient descent.

In [13], Cabrita et. al. investigate locating the max flux
using Gaussian parameter estimation leveraging a simulated
annealing error minimisation approach. They test this algo-
rithm successfully on a swarm of 5 robots. We implement a
similar model in MoBS and LoCUS, but we only use the local
gradient to navigate the plume in the case of MoBS, and the
gradient that spans the swarm’s full extent in LoCUS. We use
their simple linear fit to determine the direction of the CO2
gradient.

Flocking algorithms are effective at coordinating movement
while being failure resistant. Souissi et. al. [14] and Yang
et. al. [15] propose leader based approaches for moving a
swarm flock while maintaining a given shape and detecting
and recovering from failures. Their algorithms keep the swarm
together during movement. LoCUS, on the other hand, makes
theoretical guarantees about swarm symmetry as drones are
lost, given a small collection of drones in close enough

Fig. 2: LoCUS simulation with 16 drones and a perturbed
plume. The red lines trace the swarm’s Archimedes Spiral
search for the plume. After contacting the plume, the swarm
follows leverages its simultaneous spatially dispersed measure-
ments to descend the gradient to the max flux.

proximity that all drones can maintain communication with
each other. Our approach could be applied to heal traditional
flocking algorithms like the one presented in [16].

Paliotta et. al. [17] present a plume gradient following
agent based model for three fully networked agents [18]
[19] [20]. We extend this structured plume gradient following
approach with LoCUS by increasing the swarm size, tuning
agent capabilities to mimic our dragonfly robotic platform, and
adding a fault recovery mechanism.

III. DERIVATION AND ANALYSIS OF LOCUS

The LoCUS algorithm ensures a fully connected swarm with
efficient recovery from drone failures. A LoCUS swarm is able
to be controlled as a single unit, by directing all members
of the swarm at once. We first discuss the basic algorithm
assuming no failures, and then discuss how the swarm recovers
from drone failures and resumes its mission.

Let N be the total number of autonomous drones in the
system. Each drone has a unique ID in {1, . . . , N} and a
communication radius Rmax and a safety radius Rmin. Each
drone can communicate with any drone within Rmax distance,
but requires a minimum distance between any two drones in
the swarm to be Rmin to avoid collisions.

A. Balanced Range-Limited Trees

Definition 1. Given Rmin, Rmax > 0 and an integer n > 0,
an (Rmin, Rmax)-Range-Limited Tree on n nodes is a rooted
tree, where the distance between any two nodes is at least
Rmin and at most s. In particular, a maximal (Rmin, Rmax)-
Range-Limited Tree is one in which the distance between the
parent node and any of its children is Rmax. The ratio ⇢ =
Rmax/Rmin is the spread of this tree.

As with standard k-ary trees, we can define the height of
a Range-Limited Tree T node in terms of the heights of
its children. We define the height of the root node as zero
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is deterministic and can be computed locally to determine
placement in the swarm (see Section III-A1). The blue regions
denote parent/child communication links.

and then, recursively, the height of T , denoted height (T ), as
height (T ) = 1+maxi {height (Ti)}, where the maximum is
over the height of all children Ti of T . Similarly, we define
the level of a node as level(Ti) = 1+ level(Ti.parent), where
Ti.parent is the parent node of Ti. For this recurrence, the root
node is defined to be level zero. Thus, the root node has the
largest height in the tree but is located at the lowest level.

Definition 2. Let T be a Range-Limited Tree. We say that T
is Balanced if for every node in T , the difference in the heights
between any two of its children is at most one, i.e., for every
node Ti 2 T with children T (1)

i , . . . , T (m)
i , it must hold that

|height (Ti)� height (Tj)|  1 for all i 6= j.

Each node maintains a pointer to its heir in the tree. This is
crucial to achieve fault tolerance in LoCUS. We define the heir
of a node as its successor, if it exists, or its predecessor, other-
wise. If neither a successor or predecessor exists, the node is a
leaf node and the heir is null. To define a successor node, we
first define an inorder traversal of the tree, denoted in(T ). Let
T (1), . . . , T (m) be the children of the root node for T . Then,
the inorder traversal of T prints the IDs of these nodes in the
following order (here, · represents the concatenation operator):
in(T (1)) · · · in(T bm

2 c) · ID(T ) · in(T bm
2 c+1) · · · in(T (m)).

Note that the inorder traversal is unique for a given tree. We
can now define the successor and predecessor of a node.

Definition 3. Node Tj is a successor of the node Ti in the
tree T if ID(Tj) immediately follows ID(Ti) in the inorder
traversal of T . Similarly, we say that Tj is a predecessor of
Ti if ID(Tj) immediately comes before ID(Ti) in the inorder
traversal of T . In all cases, a node is either a leaf, or either
its successor or predecessor is a leaf node of tree T .

1) Formation Algorithm: The LoCUS algorithm swarm
takes the shape of an (Rmin,Rmax)-Balanced Range-Limited
Tree. A balanced Range-Limited Tree layout obtains maximal

spatial coverage while maintaining a minimum separation
between drones to avoid collisions, and keeps drones within
communication range.

Lemma 1 (Number of Nodes at a Given Level). Let T be a
maximal balanced (r, s)-Range-Limited Tree on N nodes with
⇢ = s/r. Then, the number of nodes at level zero is given as
n0(⇢) = 1, and for each k > 0, the number of nodes at level

k is nk(⇢) =
�

2⇡
sin�1( k

⇢ )

⌫
. This is the calculation of the whole

number of nodes that fit on a circle at radius s⇥ k separated
by distance r.

Drones deterministically compute their location in the
swarm with respect to tree layout. This computation is local
to the drones and can be calculated purely by the drone IDs
(see Figure 3). From Lemma 1, we know that the number of
drones at level k is nk(⇢). Thus, the space of drone IDs can
be partitioned based the levels in which the drones belong.
For example, the drone with ID 1 is the root node and has
level zero, whereas the drones with IDs from 2 to n1(⇢) + 1
all belong to level one.

Each node (besides the root) in the LoCUS tree structure
holds a parent reference and list of children. This facilitates
bidirectional communication throughout the swarm, as re-
quired by the LoCUS algorithm. Parent nodes are calculated
by the closest node in the previous layer.

Lemma 2 (Number of Levels). The number of levels in a
maximal balanced (r, s)-Range-Limited Tree on N nodes with
⇢ = s/r is O

⇣p
N/⇢

⌘
.

This is also a bound on the maximum height of the tree
and hence, the maximum number of communication hops
required for any node in the tree to transmit a message to
any other node in the tree. In particular, when ⇢ is low (i.e.
when the communication radius is not too large compared to
the safety radius), then the diameter of the tree is O(

p
N),

however, when the communication radius is large, say with
⇢ = ⌦

⇣
N

logN

⌘
, then the diameter of this tree becomes

O(logN), which is similar to that of a tree with constant
arity. Communication is highly efficient in this case and the
latency for transmitting messages is low.

2) Insertion of Nodes: Always insert at the first available
leaf node so that insertion cost is O(1). Insertions do not affect
the balance of the tree, since no new levels are created unless
the previous level is completely full.

3) Deletion of Nodes: Replace the deleted node by its
heir. If the deleted node is a leaf node, then there is no heir
replacement for this node and hence, there is no deletion cost.
However, when a node at height h � 1 fails, then its heir is
located at a communication hop distance of O

⇣p
N/⇢� h

⌘

from this failed node. Hence, although only O(1) link changes
happen upon this replacement, the total number of messages
sent is O

⇣p
N/⇢� h

⌘
.
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Fig. 4: A schematic of single failure recovery in the LoCUS algorithm. When a node fails, a signal is sent to its parent and
children to stop the swarm movement and inform the heir. The heir node then travels to the location of the failed node and
the neighboring nodes update their local information.

B. Handling Drone Failures
The use of the Balanced Range Limited Trees data structure

offers the swarm resilience against arbitrarily many crash
failures, even when all but one drone remains in the system.
We achieve this robustness as follows (see Figure 4) – When
a node fails, a signal is sent to its parent and children to stop
the swarm movement and inform the heir. This signal can
be sent out when the node believes it is about to fail, for
example when its battery is critically low, or by its parent and
children when it fails to respond to a heartbeat. Upon receiving
this signal, the heir node travels to the location of the failed
node and replaces it in the swarm. Finally, because the tree
structure changed, heirs are recalculated on ancestor nodes of
the replacement heir node’s original leaf location.

Since each drone stores its heir information, it can directly
inform the heir drone when it believes a failure is inevitable.
For the case when the failure happens without any signal being
sent out, the child drones use their parentHeir field to contact
the heir drone in the swarm for recovery. If there are no child
drones, then the failed drone does not require any recovery
mechanism since it is already in the last layer of the swarm.

To ensure that drones do not collide with other drones
while the swarm is rearranged, the heir drone descends to
a distance of Rmin and travels at this height to its destination
(see Figure 5), at which point it climbs back up to the given
elevation. The swarm must stop moving during this recovery
phase to avoid complicating communications and movement
when the swarm is disconnected.

This heir-based recovery scheme achieves a reformation
cost of O

⇣p
N/⇢

⌘
– the bound on height (T ) – by only

inducing local adjustment in the swarm, without disturbing
other drones. Note that moving one drone to replace its heir
would be approximately equal to drones between the heir and
the failing drone shifting up in the tree.

Failed Node Heir Node

Rmin

Fig. 5: The heir replaces the failed node by flying under the
swarm at a safe distance to prevent collisions.

C. Handling Simultaneous Drone Failures

If both a drone and its heir drone fail at the same time,
and the swarm uses the algorithm above to simultaneously
recover from both, then it will enter a deadlock scenario. We
introduce the following algorithm for handling simultaneous
failures with the caveat that it requires global knowledge of the
swarm state to execute. A more advanced distributed version
of this algorithm that executes without global knowledge is
possible, but we leave this analysis and implementation for
future work.

Outer-Level First (OLF): In this scheme, we use the fact
the failures in outer levels of the swarm cost less to recover
than failures on the inner levels. This is because the distance
to the heir node is smaller in outer levels. For example,
leaf nodes may be removed from the swarm outright without
replacement, a node at height (T ) /2 would require its heir to
move Rmax height (T ) /2 distance, and the root node would
require its heir to move Rmax height (T ) distance to replace.
Thus, whenever a node gets a failure signal, it first checks
to see if there is any existing failure recovery that is active
in any of its children. If yes, it waits for those to finish, then
proceeds to process the signal from its parent. Concretely, this
is implemented by gathering a set of failures across the swarm,
and processing them in descending order by height (Ti).



IV. THE MOBS ALGORITHM AND ITS IMPLEMENTATION

The MoBS algorithm takes a different approach to the max
flux problem by allowing each UAV to navigate independently.
Each UAV starts at the center of the arena and picks a
uniformly random angle between 0� and 360� and sets 100
waypoints in 1m increments from the center in that direction
to produce spokes to search the arena. At each waypoint the
UAV collects a gas plume sample and reacts accordingly. The
UAV continues to follow the spoke waypoints if a reading
of less than 0.005. Otherwise, the UAV changes strategies
into the moth-pheromone chemotaxis algorithm inspired by
[8]. Subsequent spokes are build by adding 2⇡/� rad to the
previous spoke angle where � is the golden ratio 1.618 that has
been shown to search best given no communication amongst
members of the swarm [6].

The moth-pheromone chemotaxis algorithm compares the
gas reading at the current time step against the previous time
step and determines if the signal has increased or decreased.
If the signal increased then the drone continues moving in
the same direction. If the signal stays the same or decreases
then the drone moves in a new uniformly random direction. A
zero signal detected for greater than 4 time steps reverts the
drone back to continue the golden ratio driven spoke search
algorithm. Because there is never any communication among
UAV in MoBS, failed UAV stop collecting samples but have
no impact on other UAV.

V. EXPERIMENTAL METHODS

We measure performance of both algorithms for a range
of swarm sizes and failure scenarios in simulation. Given the
practical limitation of battery life on flight time, our primarily
interest is minimizing the time to find the max CO2 flux.
We halt the simulation when the max flux is found (a drone
samples within 1m of the max flux location), if the entire
swarm is in a failed state, or when 17.3 h of simulation time
has passed (106 time steps).

We implement the LoCUS and MoBS algorithms in Au-
tonomous Robots Go Swarming (ARGoS) [21].1 ARGoS is
a C++ and Lua based physics multi-robot simulator and is
suitable for proof-of-concept simulations, while preserving
realistic physical dynamics with the DYN3D physics engine.
We use ARGoS to simulate Spiri UAV (Pleiades Robotics
Inc) including 3 dimensional locality (GPS) inputs and go-to
coordinate capabilities. Additionally, we are able to command
N drones in the simulation. These capabilities make ARGoS a
natural fit for experimental investigation of LoCUS and MoBS.

The gas plume is modeled in ARGoS as a simple two
dimensional slice of a Gaussian plume [22] with a source max
flux location (x and y), stack height (H = 10m), wind speed
(u = 50m/s), emission rate (Q = 2kg/s), and diffusion rate
(K = 1kg/s):

UNPERTURBED(x, y) =
Q

2⇡Kx
exp

✓
�u(y2 +H2)

4Kx

◆
(1)

1Implementation source code can be found at https://tinyurl.com/tne7tzu

The source of the plume is located at a uniformly random
location in the simulation within 100m of the UAV take-off
location. Each UAV may detect the gas concentration at its
given coordinate as a floating point value between 0 (low) and
1 (high) gas concentration signals. To limit the experimental
variance, we only vary the location of the plume and not
the shape, intensity, or rotation of the plume. We test the
algorithms against the smooth plume described in (1) and a
perturbed version of the plume designed to make following
the gradient more realistic and challenging:

PERTURBED(x, y) = (0.8+0.2 sin(4x)) UNPERTURBED(x, y)
(2)

Our two failure models in these experiments are motivated
by flying a swarm of UAV to gather volcano gas CO2 emission
data.

Generic Failures: To represent a UAV battery failure,
crashes, or other miscellaneous failures that increase in like-
lihood as flight time increases, we use a uniform failure
probability per drone per time step given by pf > 0, which
depends on the number of drones existing in the system at
time t.

In-Plume Failures: We use the gas plume emissions reading
r at time t to drive the probability of failure on each drone
given by pfr > 0. This models the higher probability of
failure as corrosive gases or temperatures associated with more
concentrated volcano gas emissions are encountered.

Drone failure is represented by a boolean flag on the drone
controller that, if enabled, stops the drone from moving or
receiving further waypoints from its parent. Once a drone fails,
it is never recovered.

A. Implementation of LoCUS

The LoCUS algorithm arranges members of the swarm by
distributing each drone through space using specified Rmin and
Rmax. The unique ID of each member of the swarm allows
a unique 2D location offset from the central root node to
be calculated. The drones are distributed in a plane by each
offset using a constant height of 10m. Each drone’s parent is
assigned by finding the closest drone in the previous shell of
the swarm. This parent/child relationship constructs the data
structure pivotal to maintaining communication throughout the
swarm.

We implement a recursive algorithm to distribute navigation
waypoints by communicating them from the root drone down
through its children, to its children’s children, and so on.
When waypoints are distributed, the swarm offset location for
each drone is added to the waypoint to ensure that the swarm
maintains Rmin and Rmax.

At takeoff, the root LoCUS drone is given the initial starting
position. Using the recursive waypoint distribution, this initial
starting position waypoint directs the swarm to assemble the
shell structure exhibited by Figure 3.

To make initial contact with the plume, the swarm is
directed from the root to follow the Archimedes’ spiral. For



coordinated swarm search, the Archimedes’ spiral has been
shown to find targets faster than a spoke algorithm [23]. This
search pattern is created by building waypoints along the
spiral. Each waypoint is calculated to space the arms of the
spiral by the radius of the largest full swarm shell and an
incremented angle. Using the radius of the swarm ensures that
we have full coverage of the simulation arena.

After a waypoint is reached, a plume gas reading is sampled
from each drone and communicated via the tree structure up
to the root drone where the readings (val) and associated
gps coordinates (x, y) are aggregated into the uav array. The
aggregated data is input into matrix and vector form and fit
with a slope (b) using linear regression in the form Ab+✏ = y
by minimizing ✏ through least squares approximation provided
by the Eigen C++ library [24]:
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75
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y

(3)
The slope of this linear fit (b[1], b[2]) is used to provide

a normal vector to direct the swarm to perform a gradient
descent in the direction of the highest plume signal. If a zero
magnitude linear slope is found, then the swarm continues to
follow the Archimedes spiral.

Failures are handled as follows. First, once a waypoint is
reached, failures in the swarm are queried for from the root.
This is a recursive call, similar to the waypoint distribution, to
gather a set of the failed status of the entire connected swarm.
For these experiments and for simplicity, we implement the
Outer-Level First (OLF) scheme failure recovery model. This
scheme requires global knowledge of the swarm as it uses
failed drones to determine the status of their children. We
then proceed to heal the swarm as outlined in III-B Handling
Failures remove each of the failed drones and replace them
by their heir in order, waiting for each heir to take the place
of the failed drone before proceeding to the next failed drone.
After the replacement, heirs of all ancestors up to the root are
recalculated to take into account the change in the swarm. Of
course, if a failed drone is found to have no heir (a leaf drone)
then they are removed from the swarm without replacement.

Once all failures are processed a swarm re-balance is
executed to ensure a consistent minimum radius to the swarm.
This iteratively removes leaf drones from the deepest branches
of the tree and inserts them into the shallowest branches
of the tree. The root node executes this operation until
heightmax � heightmin  1. Once there are no more failures
in the swarm and the swarm is re-balanced, then the next
waypoint is calculated and the swarm movement continues.

We observed corner-case scenarios where the swarm oscil-
lated between two points, never moving towards the max flux
location. To resolve this, we added both a 0.1m random offset
and a uniformly random rotation to the swarm between 0� and
45� at each waypoint. This randomization strategy allowed to

swarm to exit these oscillating corner cases.

B. Experimental Setup
The experimental factors we explore in simulation are

swarm size, whether the plume gradient is smooth or per-
turbed, the failure rate, and whether the failure rate increases
with gas concentration. For the LoCUS algorithm, we set
Rmin = 3m and Rmax = 3m. The response variables are
whether the max flux was found, the elapsed time before
encountering the plume, and the total time taken to find the
max flux.

To compare LoCUS and MoBS we perform the following
four experiments. In experiment 1, we compare the time to
find max flux of the smooth plume for LoCUS and MoBS in
100 trials with both failure probabilities set to 0 by varying the
swarm size from 2 to 20 UAV. In experiment 2, we duplicate
experiment 1 using the perturbed plume. These first two
experiments are designed to compare the times to encounter
the plume and navigate to the maximum flux of LoCUS
and MoBS without failures. In experiment 3, we vary the
generic failure probability from 10�1 to 10�6, set the in-plume
failure probability to 0 (so that the probability of failure is the
same inside and outside of the plume), and use the smooth
plume over 100 trials with a swarm size of 20. In experiment
4, we duplicate experiment 3 but vary the in-plume failure
probability from 10�1 to 10�6 and set the generic failure
probability to 0. The last two experiments measure the impact
of failures on LoCUS and MoBS. In each of these experiments
we compare the performance of LoCUS with healing enabled
and disabled. This enables us to assess whether maintaining
symmetry though healing is worth the time taken to repair the
swarm.

VI. EXPERIMENTAL RESULTS

A. Experiment 1: Unperturbed Navigation
Experiment 1 compares the time to reach max flux of the

unperturbed in swarms of 5 to 20 UAV for LoCUS and MoBS
depicted in Figure 6 with the unhashed bars. We find that, for
smaller swarm sizes (up to the 5 UAV shown), the average
time and standard deviation to plume contact and max flux for
LoCUS is significantly smaller than MoBS. For larger swarm
sizes (10, 20), MoBS reaches plume contact on average faster.
LoCUS navigates from plume contact to max flux in about the
same time as MoBS, but LoCUS has less variance in time to
achieve both plume contact and max flux.

B. Experiment 2: Perturbed Navigation
Experiment 2 extends experiment 1 using the perturbed

plume depicted in Figure 6 with the hashed bars. We find
that the difference in plume dynamics significantly increases
the average time to max flux for the MoBS algorithm, but
the LoCUS time to max flux remains short. This increases the
average time to max flux for MoBS so that is slower than
LoCUS for all swarm sizes tested. Additionally, the standard
deviation for MoBS is much larger than that of LoCUS which
is partly driven by several outliers that lasted up to 344, 124,



Fig. 6: Time to find the max flux (top, purple) and initial
plume contact (bottom, orange) for LoCUS and MoBS for
swarm sizes 5, 10, and 20 in the unperturbed and perturbed
plumes. Stars show the median time to max flux and error bars
are one standard deviation centered at the mean.

and 31 minutes for 5, 10 and 20 UAV respectively. These times
risk failure for the drones to return given the UAV battery
capacity.

C. Experiment 3: Generic Failure Effects

Experiment 3 includes generic failure probabilities from
10�1 to 10�6 including a specialized version of LoCUS
that does not heal from failures as depicted in Figure 7.
We find that, with generic failures, LoCUS and MoBS both
respond similarly to the failure probability by beginning to
unsuccessfully complete the max flux location task between
the probability of failures of 10�4 and 10�3. This is contrasted
against the LoCUS without healing that responds much earlier
to the probability of failure at about 10�5.

D. Experiment 4: In-Plume Failure Effects

Experiment 4 extends experiment 3 using the in-plume
failure model. With in-plume failures, LoCUS and MoBS both
begin to fail to complete the max flux location task at failure
rates of 10�2. This is contrasted against the LoCUS without
healing that fails to complete the task with much lower UAV
failure probabilities of about 10�4.

VII. DISCUSSION

LoCUS provides a failure-tolerant structure for exploring
and pinpointing the max flux location of a CO2 plume. LoCUS
guarantees that a group of drones can communicate to each
other simultaneous spatially dispersed measurements which
can be used to calculate a gas gradient better than an individual
drone. This is particularly useful for finding the location of
maximum flux in a perturbed plume such as those produced
by volcanos in dynamic environments. LoCUS provides a

Fig. 7: Success rates in 100 trials with generic and in-plume
failures with 20 drones. The left thin solid lines are LoCUS
with healing disabled and the right thick solid lines are LoCUS
with healing enabled. The two left orange thin and thick
solid lines are LoCUS with generic failures, while the green
right solid lines are LoCUS with in-plume failures. MoBS
success counts are graphed using dashed and dotted lines –
the left dashed line is MoBS with generic failures and the
right dotted line is MoBS with in-plume failures. This shows
how significant healing is to LoCUS successfully completing
the max flux location task.

way re-form the swarm given the inevitable failure of drones
in hazardous conditions present when monitoring gas efflux
from volcanoes. We compare LoCUS with the fully dispersed
MoBS algorithm and show in experiments 1 and 2 that the
LoCUS algorithm is able to find the max flux of a plume, both
smooth and perturbed, at least as fast as the MoBS algorithm
in expectation, but with substantially smaller variation. The
better worst-case performance of LoCUS is important given
time limits imposed by battery life. Additionally, the LoCUS
algorithm is able to find the max flux faster than MoBS
after initial plume contact, particularly in a perturbed plume
simulations.

For large swarms, the MoBS algorithm makes initial contact
with the plume faster than LoCUS on average. The superior
performance of MoBS at finding the plume, and LoCUS of
finding the source once in a plume, suggests an approach
that combines the best of both algorithms. For large swarms,
we may perform the initial search for the plume using the
more dispersed golden spoke algorithm used in MoBS. Then,
when contact is made, a LoCUS structured formation can
leverage nearby drones to perform gradient descent informed
by communication among drones. Future work can explore
the benefits of a fully dispersed set of spokes, with the first
drone that contacts the plume calling nearby UAV to join
together once the plume is found. Alternatively, sufficiently
many UAV could be divided into multiple small LoCUS sub-
swarms to use spoke search to contact the plume and LoCUS



enabled gradient descent by each independent sub-swarm once
it contacts the plume.

LoCUS relies heavily on its loss recovery model in order to
maintain communication between spatially dispersed drones
to perform a more robust gradient descent once a plume has
been found (see the red lines within the plume in Figure 2).
The loss recovery model allows the swarm to reorganise once a
failure has been detected and continue to rely on receiving CO2
measurements from multiple locations. In practice, we ob-
served LoCUS successfully locating max flux with failures in a
majority of the swarm, even down to a single remaining drone.
We also observed that the loss recovery time is so fast that
it is dominated by the time to encounter the plume and time
to max flux. Thus, the time to recover the swarm formation
is worth the superior gradient following performance provided
by having spatially dispersed measurements. In experiments 3
and 4 we show that self-healing is critical to the success of
LoCUS gradient following.

In comparison to MoBS, LoCUS is especially vulnerable
to the in-plume failures. This is (ironically) because LoCUS
brings the entire swarm into the plume and quickly closer to
the source, putting swarm members in jeopardy due to more
in-plume failures as the source is approached near the source
of volcano efflux. In contrast, some of the UAV in MoBS spend
more time out of the plume, making them less susceptible
to in-plume failures. The results in experiment 4 show that
even in the worst case for LoCUS, it can leverage the healing
algorithm to mitigate this problem to complete the max flux
task nearly as often as MoBS.

Being able to reliably and quickly determine the max CO2
flux with drones that are limited to a maximum 1 h flight time,
with practical swarm sizes for transportation to remote and
hazardous regions, and are tolerant of drone loss is critical
to the study of volcano behaviour. With LoCUS, we have
demonstrated an algorithm that solves the CO2 max flux task
faster than, and approximately as reliably as a more dispersed
approach.
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