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a b s t r a c t

Vehicular Networked Systems (VNS) are mobile ad hoc networks where vehicles exchange informa-
tion over wireless communication networks to ensure safe and efficient operation. It is, however,
challenging to ensure system safety and efficiency as the wireless channels in VNS are often subject
to state-dependent deep fades where the data rate suffers a severe drop and changes as a function of
vehicle states. Such couplings between vehicle states and channel states in VNS thereby invalidate
the use of separation principle to design event-based control strategies. By adopting a state-dependent
fading channel model, this paper presents a novel self-triggered scheme under which the VNS ensures
efficient use of communication bandwidth while preserving stochastic stability. Under the proposed
self-triggered scheme, this paper presents a novel source coding scheme that tracks vehicle’s states
with performance guarantee in the presence of state-dependent fading channels. The efficacy and
advantages of the proposed scheme over other event-based strategies are verified by a leader–follower
example.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background and motivation

Vehicular Networked Systems (VNS) consist of numerous ve-
icles coordinating their operations by exchanging information
ver a wireless radio communication network. VNS represents
ne type of mobile ad hoc networks that has been deployed
n a variety of safety-critical applications, such as intelligent
ransportation systems with Vehicle to Vehicle (V2V) communi-
ation (Papadimitratos et al., 2009), air transportation systems
with Automatic Dependent Surveillance-Broadcast (ADS-B) (Park
et al., 2014) and underwater autonomous vehicles with optic or
acoustic communication (Akyildiz et al., 2005).

These vehicular networks, however, are often subject to deep
fades where the data rate drops precipitously and remains low
over a contiguous period of time. Such deep fades functionally
depend on the vehicles’ physical states (e.g. inter-vehicle dis-
tance, velocities and heading angles) (Cheng et al., 2007; Tse
& Viswanath, 2005). Deep fades inevitably cause a significant
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degradation on system performance and result in safety issues,
such as vehicle collisions. To maintain system stability and quality
performance, VNS may require a large amount of communication
resources, such as channel bandwidth, to recover the perfor-
mance loss caused by deep fades. The overuse of communication
resources, however, will certainly compromise the long-term op-
erational normalcy of the system since electronic devices have
limited energy. Therefore, system stability and efficiency must be
jointly evaluated to ensure a successful implementation of VNS
in the future.

Recent studies have shown that event-based communication
scheme is an effective approach to utilize less communication
bandwidth than traditional periodic method to maintain a speci-
fied system performance (Wang & Lemmon, 2011b). In an event-
triggered scheme, the transmission of information only occurs
when the variations of system states exceed a predefined state-
dependent threshold. Recent work has shown that the system
performance under such a state-dependent triggering scheme
can be preserved when the communication delay or the number
of consecutive packet loss is bounded (Guinaldo et al., 2012;

ang & Lemmon, 2011b). Such robustness, however, can be
asily violated in VNS where a burst of delay or packet dropouts
ay occur with a nonzero probability. To address this issue,
ur prior work (Hu & Lemmon, 2014) proposed a new event-
riggered scheme that ensures almost sure stability for VNS with
bursty fading channel. By exploring the dependence of channel
onditions on vehicular states, efficient use of channel bandwidth
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nder the event triggered scheme is achieved by increasing trans-
ission time intervals as system states approach equilibrium.
his paper extends the previous results of Hu and Lemmon (2014)

in three nontrivial aspects. First, this paper generalizes the VNS
structure in the prior work (Hu & Lemmon, 2014) that allows
the results of this paper to be applied to a variety of realistic
vehicular applications, such as the leader–follower mobile robotic
system in Tanner et al. (2004) and the air traffic control system
in Park et al. (2014) and Tomlin et al. (2000). Secondly, by relaxing
the uniformly Lipschitz assumption on the system dynamics in
our former results (Hu & Lemmon, 2014), this paper develops
a more general self-triggered and encoder/decoder scheme un-
der which four types of stochastic stability are ensured for VNS.
More importantly, this paper provides sufficient conditions un-
der which the VNS is almost surely asymptotically stable. To the
best of our knowledge, these are the first set of results in the
event-triggering/self-triggering community that consider almost
sure stability for networked control systems. Thirdly, extensive
simulation results are presented in this paper to further demon-
strate the benefits and advantages of our proposed self-triggered
scheme under bursty fading channels against traditional event-
triggered schemes, such as Tabuada (2007), Wang and Lemmon
(2009, 2011b).

Besides stochastic stability considered in this paper, (stochas-
tic) string stability is another challenging problem that needs
to be addressed to ensure ultimate success of VNS in the near
future. Though a significant amount of research efforts has been
devoted to this area over the past decades since the seminal
paper (Swaroop & Hedrick, 1996), few results have been de-
veloped to ensure stochastic string stability for VNS under the
state-dependent fading channels with few exceptions (Hu & Lem-
mon, 2015). The work in Hu and Lemmon (2015) has focused on
developing a distributed switching control strategy to address the
string stability issues rather than a self-triggered communication
strategy considered in this paper. Other research work, such
as Guo and Wang (2014) and Guo and Wen (2015), investigated
oth control and communication policies to ensure string stability
or VNS under the assumption that fading channels are modeled
s independent Bernoulli processes or Markov chains. Such chan-
el models cannot capture the state dependent features in V2V
ommunication systems as verified by recent experimental tests
nd results, e.g., in Cheng et al. (2007), Mecklenbrauker et al.
2011) and Molisch et al. (2009). The results of this paper can
e used as preliminary steps toward addressing string stability
ssues in future work.

.2. Related work and contributions

Research topics on event-based communication and control
ave attracted a great deal of attention in both control and
ommunication communities (Hetel et al., 2017). It is beyond
he scope of this paper to do an exhaustive literature review on
his popular topic. Instead, this section will focus on discussing
he relationship and connection between our proposed work and
he existing research work on event/self triggered schemes under
nreliable communication. For those who are interested in a
omplete review on self-triggered/event-triggered estimation and
ontrol, please see Heemels et al. (2012) for more details.
The issues of stability and performance under event-based

trategies must be carefully examined in the presence of unreli-
ble wireless communication. Prior work in Lehmann and Lunze
2012), Wu et al. (2014) and Zhang et al. (2001) has shown that
he temporal communication failures caused by packet loss or
elay may lead to stability issues for networked control systems.
o address communication issues in networked control systems
ith event-based strategies, a great deal of research work (Dolk
2

t al., 2017a; Dolk & Heemels, 2017; Guinaldo et al., 2012; Peng
Yang, 2013; Wang & Lemmon, 2009, 2011b; Yu & Antsaklis,

013) have been proposed to find sufficient conditions on the
aximum allowable number of successive packet drops (MANSD)
r maximum allowable delay, under which the system stability
nd performance criteria, such as H∞ (Peng & Yang, 2013) and
p (Dolk et al., 2017a; Wang & Lemmon, 2009; Yu & Antsaklis,
013), can be preserved under event/self-triggered strategies.
Two key assumptions for these prior results include that

1) wireless communication channels must be sufficiently reliable
o strictly satisfy the MANSD or maximum allowable delay, and
2) variations on wireless channels must be decoupled from dy-
amics of the vehicle systems. These assumptions, however, may
ot hold for VNS because the state-dependent fading channels in
NS may lead to a burst of packet losses with non-zero probabil-
ties, and are also highly dependent on the vehicle states, such
s inter-vehicle distance, velocities and heading angles (Akki,
994; Cheng et al., 2007). Such a correlation between vehicle and
hannel states clearly invalidates the use of separation principle
n event-triggered design, which is widely adopted in existing
iterature (Borgers & Heemels, 2014; Li et al., 2016).

Another challenge of using event-based strategies under unre-
iable wireless communication is that a strictly positive minimum
nter-event time (MIET) may not be guaranteed if packet loss
r delay is present. As discussed in Mazo and Tabuada (2008),
iolation of MIET leads to Zeno phenomenon that generates in-
inite transmissions or samplings within a finite time interval
nd seriously hinders practical implementation of event-based
trategies. One approach to address the potential Zeno issues is to
ombine time-triggered and event-triggered strategies such that
he event-triggered scheme is designed based on a predefined
quidistant time instances (e.g., periodic event-triggered scheme
roposed in Abdelrahim et al., 2016a, 2016b; Dolk et al., 2017a;
eemels et al., 2013; Peng & Yang, 2013; Tallapragada & Chopra,
012) and switched to a time-triggered scheme if packet loss or
elay occurs (Dolk et al., 2017b; Guinaldo et al., 2012; Lehmann
Lunze, 2012). Although the MIET can be always guaranteed

o be positive under the combined framework of event-triggered
nd time-triggered schemes, it is unclear, however, how efficient
nd effective such combined approaches may be in deep fading
hannels where a long string of consecutive packet loss may
ccur.
Motivated by the challenges discussed above, the objective

f this paper is to design a new self-triggered communication
cheme that ensures both stability of VNS and efficient use
f communication resources by taking into account the state-
ependent and burstiness properties of wireless channels in VNS.
he key difference between the proposed self-triggered scheme
n this paper and the others in the literature, such as Anderson
t al. (2015), Gommans et al. (2014), Wang and Lemmon (2009)
ies in two aspects. First, by adopting a state-dependent bursty
ading channel model proposed in Hu and Lemmon (2013) and
u and Lemmon (2015), this paper explicitly incorporates the
nowledge of correlations between communication channel and
ehicle states into the design process, which allows the self-
riggered scheme to adaptively adjust the transmission frequency
n response to any changes in channel conditions. This paper also
hows that the inclusion of such correlation knowledge from the
hannel model is essential for the proposed self-triggered scheme
o achieve efficient utilization of communication bandwidth. Sec-
nd, unlike the combined framework that relies on a pre-selected
inimum time interval to ensure a positive MIET, the proposed
elf-triggered scheme guarantees Zeno-free (finite number of
ransmissions or samplings over a finite time interval) transmis-
ion behavior in the presence of bursty-fading channels while
till preserving specified system performance. In addition, this
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Fig. 1. Self-triggered vehicular networked system.

aper demonstrates communication efficiency of the proposed
elf-triggered scheme through extensive simulation results that
ompare communication performance under our proposed self-
riggered scheme, such as minimum transmission time interval
nd average transmission time interval, against those under other
xisting event-based strategies (Li et al., 2017; Wang & Lemmon,
011b).
The rest of this paper is organized as follows: Section 2 de-

cribes models of vehicle dynamics, wireless communication and
ontrol systems. Based on system models presented in Section 2,
ection 3 provides formal definitions for stochastic hybrid system
ramework as well as stochastic stability. Section 4 discusses nec-
essary assumptions needed to establish main results of this paper.
With the assumptions stated in Section 4, Section 5 presents
main results of this paper. The main results are applied to a
leader–follower control example introduced in Section 2.5 and
are verified through simulation results provided in Section 6.
Section 7 concludes the paper.

Notations. Let Rn denote a n-dimensional Euclidean vector space,
and R+, Z+ denote nonnegative reals and integers respectively.
The infinity norm of a vector x ∈ Rn is denoted by |x| :=

max1≤i≤n |xi| where xi is the ith element of the vector x. Consider
a real valued function x(·) : R+ → Rn, x(t) denotes the value
that function x(·) takes at time t ∈ R+. The left limit value of x at
time t is denoted by x(t−). Given a time interval [t1, t2) with t1 <

t2 ∈ R+, the essential supremum of the function x(t) over a time
interval [t1, t2) is denoted as |x(t)|[t1,t2) = esssupt∈[t1,t2) ∥x(t)∥
where ∥x(t)∥ is the Euclidean norm of function x at time t . The
function x(t) is essentially bounded if there exists a positive real
M < ∞ such that |x(t)|L∞

= esssupt>0 ∥x(t)∥ ≤ M .

A function α(·) : R+ → R+ is a class K function if it is
continuous and strictly increasing, and α(0) = 0. α(t) is a class
K∞ function if it is class K and radially unbounded. A function
β(·, ·) : R+ × R+ → R+ is a class KL function if β(·, t) is a class
K∞ function for each fixed t ∈ R+ and β(s, t) → 0 for each
s ∈ R+ as t → +∞. β(·, ·) is an exp-KL function if there exist
positive reals ci ∈ R+, i = 1, 2 such that β(s, t) = c1 exp(−c2t)s.

2. System description

Fig. 1 shows a self-triggered control framework for a vehicular
networked system that consists of blocks of Vehicular Dynamics,
Encoder/Transmitter, Event generator, State-dependent fading chan-
nel and Decoder/Controller. The following subsections focus on the
detailed descriptions of these blocks.
 c

3

2.1. Vehicular dynamics

Consider that the dynamics of a vehicular system satisfy the
following nonlinear ODE,

ẋ = f (x, u, w), x(0) = x0 (1)

where x ∈ Rn is the system state that may represent inter-
vehicle distance and relative bearing angles (see Section 2.5 in
this paper or Hu & Lemmon, 2014), u ∈ Rm is control input and
w ∈ Rℓ denotes external disturbance that is essentially ultimately
bounded, i.e. ∃W > 0, s.t. |w|L∞

≤ W . The vector field f (·, ·, ·) :

Rn
× Rm

× Rℓ
→ Rn is a locally Lipschitz function.

The control objective for VNS is to track predefined set-points
in the presence of bursty fading channels. The tracking per-
formance is investigated under two communication constraints:
(1) State measurements x(t) are taken and only available to
controller at discrete time instants tk ∈ R≥0, k ∈ Z≥0; (2) The
sampled state measurements x(tk) used for tracking control, are
encoded by a finite number of symbols and are transmitted over
a fading channel with time varying data rates.

2.2. Event-based communication: Encoder/transmitter and event
generator

The continuous vehicular state x(t) in Fig. 1 is sampled at
discrete time instants {tk}∞k=0 with tk < tk+1 and tk ∈ R+, ∀k ∈

Z+. Such strictly increasing time instants {tk}∞k=0 are generated
by an Event generator, which decides when to transmit state
information. The sampled state x(tk) at time instant tk is quantized
by an Encoder with a fixed number of R blocks of bits {bi(k)}Ri=1.
ach block consists of n binary bits and is used to encode the

state information of vehicle. Thus, the continuous vehicular state
at each discrete time instant tk will be encoded and represented
y one of the 2nR finite symbols. We assume that the symbol

with R blocks of bits is assembled into R number of small packets
with a packet length n, and sequentially transmitted across a
wireless fading channel. In this paper, we assume that the time
spent on quantization and packet-assembly is sufficiently small
and its impact on system stability and performance can be safely
neglected.1

Sequential Transmission in VNS. Unlike most stationary or
slow varying wireless network, wireless channels in VNS often
exhibit much faster variations due to high motions in vehicular
transceivers (Cheng et al., 2007). Recent work has shown that
vehicular wireless channels, such as V2V communication (Pa-
padimitratos et al., 2009), are subject to small coherence time,
which makes the transmission of a large size of packets fairly
challenging. Motivated by this challenge, a sequential communi-
cation scheme is adopted in this paper to sequentially transmit
prioritized small packets over wireless channels (Hu & Lemmon,
2015; Papadimitratos et al., 2009). Specifically, the sequential
transmission scheme ensures that packets with the highest pri-
ority (most significant bits) are received first (Martins et al.,
2006). In comparison to the conventional transmission policy that
wraps all information into one single big packet, the sequential
transmission protocol with small prioritized packets is able to
recover the transmitted information with a reasonable accuracy
in the presence of bursty fading channels.

1 The time spent on quantization and packet-assembly is often related to
acket processing time. It is well studied that the packet processing time is
ften of the order of microseconds or less (Kurose, 2005), and is thus negligible
ompared to the transmission time interval considered in this paper.
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.3. State-dependent V2V fading channel

The number of successfully received packets Rk at each trans-
mission time instant tk randomly changes due to channel fad-
ing. This paper adopts a state-dependent exponential bounded
burstiness (SD-EBB) model to characterize stochastic variations
on Rk (Hu & Lemmon, 2013). As shown by our recent work (Hu
& Lemmon, 2015), the SD-EBB model was able to describe a wide
range of fading channels including i.i.d. and Markov chain chan-
nels. More importantly, the SD-EBB model explicitly characterizes
the probability bound on channel burstiness and its dependency
on vehicle states, which has been proven to be essential for
system stability (Hu & Lemmon, 2013, 2015). To be specific, let
(·) and γ (·) denote continuous, nonnegative, monotone decreas-
ng functions from R+ to R+. Assume that the probability of
uccessfully receiving Rk packets at time instant tk satisfies

Pr{Rk ≤ h(|x(tk)|) − σ } ≤ e−γ (|x(tk)|)σ (2)

ith σ ∈ [0, h(|x(tk)|)]. The function h(|x(tk)|) in SD-EBB model
s a state-dependent threshold that separates the low bit-rate
egion from the high bit rate region in the channel state space.
t monotonically decreases as vehicle states (e.g. inter-vehicle
eparation and relative bearing angle) deviates from the origin.
he state-dependent function h(|x(tk)|) models the impact of large
cale fading caused by path loss and directional antenna gain on
ata rates (Choudhury et al., 2002; Tse & Viswanath, 2005). The
ariable σ ∈ [0, h(|x(tk)|)] is the dropout burst length in the low
it-rate region. Thus, the left hand side of the SD-EBB model char-
cterizes the probability of fading channels exhibiting a bursty
acket loss with a burst length σ . The right-hand side of the SB-
BB model shows that such a bursty probability is exponentially
ounded. The function γ (|x(tk)|) is a state-dependent exponent in
he probability bound that characterizes how fast the probability
f a bursty dropout decays as a function of dropout burst length
ithin the low bit rate region.
The SD-EBB model can be used in a variety of vehicular ap-

lications, such as leader–follower formation control for ground
ransportation system (Cheng et al., 2007), air transportation
ystems (Park et al., 2014) and autonomous underwater vehi-
les (Akyildiz et al., 2005), where large inter-vehicle distance
nd vehicular velocities cause low data rate and more likely lead
o deep fades, or in ad hoc wireless networks with directional
ntennae where changes in relative bearing angles between the
ransmitter and receiver may cause a deep fade. Example 1 shows
ow the SD-EBB model is obtained and related to the notion of
utage probability which is well-known performance metric for
ading channels.

xample 1. Let Xi(k) ∈ {0, 1} denote a binary random variable
t time instant tk, with Xi(k) = 1 representing the successful
eception of the ith block of bits (packet) and Xi(k) = 0 otherwise,
hen Rk =

∑R
i=1 Xi(k). For a given transmission power p and

hreshold γ0, one has

Pr{Xi(k) = 1} = 1 − Pr{SNR ≤ γ0}

= 1 − Pr{pg2/(ϑ(x(tk))N0) ≤ γ0}

△
= ϖ (x(tk)), (3)

here N0 is the noise power, g is a random variable that char-
cterizes the small scale fading, and ϑ(x(tk)) is a continuous,
ositive and monotonically increasing function that character-
zes path loss and directional antenna gain in wireless channels,
.g., ϑ(x) = cosα/Lν with path loss exponent ν ∈ [2, 4] and
ehicle state x = [L; α] where L is the distance between trans-
itter and receiver, and α is the bearing angle of directional
ntenna (Balanis, 2016; Stüber, 2011). ϖ (|x(t )|) is the successful
k

4

eception probability for the ith block of bits (packet) whose value
ncreases as the vehicle state x moves toward the origin. With
he probability in (3), one can obtain the SD-EBB characterization
n (2) by using the Chernoff inequality (Hu & Lemmon, 2015).
he selection of the functions h(·) and γ (·) depends on fading

characteristics. Take the i.i.d. fading channel as an example with
the state x = [L; α] (L is the inter-vehicle distance and α is
a bearing angle of the directional antenna), suppose that the
channel gain follows a Raleigh distribution (Goldsmith & Chua,
1997), then the functions take the form of h(x) = c1e−c2

L
cosα

and γ (x) = c where the coefficients c1, c2, c > 0 are constant
communication system parameters. Our prior results (please see
Proof of Lemma III.3 in Hu and Lemmon (2015) for more details)
also show how to select the function forms of h(·) and γ (·) for
the case of Markov fading channels.

2.4. Remote tracking control system under event-based dynamic
quantization

The control objective for VNS is to track predefined set-points.
Let xd ∈ Rn denote a desired constant set-point that is known to
both encoder and decoder ahead of time. Let x̂ denote an estimate
of the vehicle state and x̂ ≜ x̂ − xd represent an estimate of the
tracking state. In between the transmission time instants tk, k ∈

Z≥0, the state estimate x̂ and control action u(t) are generated as
follows,
˙̂x = f (x̂ + xd, κ(x̂), 0)

u = κ(x̂), ∀t ∈ [tk, tk+1) (4)

where κ(·) : Rn
→ Rm is a nominal feedback control law

ensuring that the state estimate x̂ in the tracking control system
(4) asymptotically converges to zero. At each transmission time
instant tk, the state estimate x̂(t+k ) is reset to be a new value
btained from a dynamic quantizer. The dynamic quantizer,2 in
he Encoder/Decoder block is defined by three parameters, Rk ∈

Z≥0 (a random variable that defines the number of blocks of
bits received at time instant tk), x̂(tk) (state estimate at time
instant tk) and U(tk) (an auxiliary variable that defines the size of
quantization regions at time instant tk). Consider a box dynamic
quantizer and let x̂(tk) denote the center of a hypercubic box with
an edge length 2U(tk), the quantizer divides the hypercubic box
into 2nRk equal smaller sub-boxes after receiving Rk number of
blocks of bits. The sub-box that contains the true value of vehicle
state x(tk) is encoded by {bi(k)}

Rk
i=0. Let Rk denote a set of symbols

that are represented by the Rk number of binary bits, {bi(k)}
Rk
i=0

and gx : R+ × Rk × Rn
× R+ → Rn denote a function that

pdates the state estimate after receiving a symbol {bi(k)}
Rk
i=0. Let

k ≜ tk − tk−1 denote a time interval for the kth transmission and
et gU : R+ × Rn

× R+ → R+ denote a function that updates
he size of quantization regions. Note that functions gx, gU and
time intervals {Tk}k∈Z+

are parameters that need to be designed to
assure system stability. The methods to design these parameters
are discussed in Section 5. Thus, the new state estimate x̂(t+k )
after receiving a symbol {bi(k)}

Rk
i=0 can be updated according to

the following equations

x̂(t+k ) = gx

(
Tk, {bi(k)}

Rk
i=0, x̂(tk),U(tk)

)
, (5)

U(t+k ) = U(tk)2−Rk (6)

2 As discussed in prior work (Tatikonda & Mitter, 2004; Wong & Brockett,
1999) the use of dynamic quantization assures that the system state can be accu-
rately observed asymptotically. Such asymptotic performance plays an important
role of achieving almost sure asymptotic stability under fading channels.
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Fig. 2. Leader–follower formation control.

ith x̂(t+k ) being the center of a new hypercubic box with an
updated edge length 2U(t+k ). Let Tk ≜ tk − tk−1 denote a time
interval for the kth transmission. Until the (k+1)th transmission,
i.e., time instant tk+1, the size of a quantization region U(tk+1) is
propagated according to

U(tk+1) = gU (Tk+1, x̂(t+k ),U(t+k )). (7)

and then the procedure of (5)–(7) is repeated.
Since both encoder and decoder use Eqs. (5)–(7) to update the

pair {x̂(t+k ),U(t+k )} in the dynamic quantizer, it is important to
ensure that the encoder and decoder are synchronized with the
number of bits that are successfully received. To achieve that, this
paper assumes that there exists a noiseless feedback channel that
reliably delivers acknowledge signals from decoder to encoder to
indicate a successful reception of a block of bits.

2.5. Leader–follower formation control

The system model considered in Eq. (1) can be illustrated via
leader–follower control example shown in Fig. 2. The leader–

ollower example will also be used as a simulation example in
ection 6. The kinematic model for both vehicles in the leader–
ollower example is provided as follows:

˙x,i = vi cos θi, ṗy,i = vi sin θi, θ̇i = ωi. (8)

here px,i, py,i, i = 1, 2 are the horizontal and vertical positions
f leader (i = 1) and follower (i = 2), respectively, and θi, i = 1, 2
re orientations of leader and follower relative to the horizon.
ased on the kinematic model in (8), the leader–follower system
n Fig. 2 satisfies the following ODE (Hu & Lemmon, 2015),

L̇ = v1 cosα − v2 cosφ − dω2 sinφ

α̇ =
1
L (−v1 sinα − v2 sinφ + dω2 cosφ) + ω1

(9)

where d is the length from the center of vehicle to its front. v1
and ω1 are leader’s speed and angular velocity, while v2 and ω2
are follower’s speed and angular velocity. L is the inter-vehicle
distance that is measurable by both leader and follower, α and φ
are relative bearing angles of leader to follower and follower to
leader respectively. It is assumed that α is only measurable to the
leader, and φ is available for the follower. What is not directly
known to the follower is the bearing angle α. Therefore, the
leader–follower pair characterizes a vehicular networked system
that requires the leader to transmit its bearing angle α to the
ollower over a wireless communication channel. The wireless
hannel is accessed by a directional antenna that is mounted at
he back of the leader where the channel exhibits exponential
urstiness and satisfies the state dependent EBB characterization
n (2) with (L, α) as the vehicle state x. As shown in Fig. 2, the
irectional antenna has a radiation range from −

π
2 ≤ α ≤

π
2 out

of which the communication channel is assumed to be zero.
 m

5

With limited information on α, the control objective is to have
the follower adjust its speed v2 and angular velocity ω2 to achieve
desired inter-vehicle separation Ld and bearing angle αd almost
surely in the presence of deep fades. A standard input to state
feedback linearization method is used to generate control inputs
(v2, ω2) over each transmission time interval [tk, tk+1),[

v2

ω2

]
=

[
− cosφ −L sinφ

−
sinφ

d
L
d cosφ

]([
KL(Ld − L)
Kα(αd − α̂)

]
−

[ cos α̂ 0

−
sin α̂
L 1

][
v1

ω1

])
(10)

here (KL, Kα) are the controller gains. α̂ represents the predic-
ion of bearing angle over [tk, tk+1) that satisfies

˙̂ = Kα(αd − α̂), α̂(tk) = αq(tk) (11)

ith the bearing angle estimate αq(tk) as an initial value.
Let gv : R+ → R+ and gω : R → R denote functions

hat characterize how the leader changes its speed and angular
elocity respectively, in response to inter-vehicle distance L and
elative bearing angle α. The real values of speed v1 and angular
elocity ω1 can then be modeled by adding essentially bounded
oise. Mathematically, one has v1 = gv(L)+ n1 and ω1 = gω(α)+
2 with |ni|∞ ≤ M, i = 1, 2. With the controller in (10) and
11), the closed-loop dynamics of inter-vehicle distance L and
earing angle α therefore satisfy following differential equations
ver time interval [tk, tk+1).

L̇ = KL(Ld − L) + (gv(L) + n1)(cosα − cos α̂)

α̇ =
(gv (L)+w1)

L (sin α̂ − sinα) + Kα(αd − α̂)
+ gω(α) + n2 − gω(α̂)

(12)

or all k ∈ Z+. The dynamic model presented in (12) will be used
o simulate leader–follower networked system in Section 6.

. Problem formulation

Let x(t) = x(t)− xd denote the tracking error and e(t) ≜ x(t)−
(x̂(t) − xd) = x(t) − x̂(t) denote the estimation error induced by
bursty fading channels. The closed-loop dynamics of VNS defined
in (1), (2), (4) and (5)–(7) can be reformulated as below,

ẋ(t) = fx(x, e, w), ∀t ∈ (tk, tk+1) (13a)

ė(t) = fe(x, e, w), ∀t ∈ (tk, tk+1) (13b)

U(tk+1) = fU (Tk+1, Rk, x(tk), e(t+k ),U(tk)) (13c)

e(t+k ) = he(Tk, Rk, x(tk), e(tk),U(tk)) (13d)

U(t+k ) = hU (Rk,U(tk)) (13e)

where

fx(x, e, w) ≜ f (x + xd, κ(x − e), w)

fe(x, e, w) ≜ fx(x, e, w) − f (x − e + xd, κ(x − e), 0)

fU (T , R, x, e+,U) ≜ gU (T , x − e+
+ xd, 2−RU)

he(T , R, x, e,U) ≜ x − gx(T , R, x − e + xd,U)

hU (R,U) ≜ 2−RU .

qs. (13a) and (13b) represent continuous dynamics of the closed-
oop VNS, while Eq. (13c) characterizes a controlled
tochastic process. Eqs. (13d) and (13e) represent the stochas-
ic jumps for continuous and discrete states, respectively. The
andomness of this stochastic hybrid systems comes from the
tochastic process {Rk}

∞

k=0 that is assumed to satisfy the SD-EBB
odel in (2).
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Under the closed-loop VNS framework, the objective of this
paper is to design an event based communication scheme to
ensure stochastic stability for VNSs in (13). In particular, this
paper considers both sample-based and mean stability. Sample-
based stability emphasizes the behavior of almost all sample
paths toward or around the origin while mean stability stresses
system behavior in expectation. Besides stochastic stability, this
paper also requires that the designed event-based communi-
cation scheme must ensure Zeno-free transmission. The formal
definitions of Zeno-free transmissions and stochastic stability are
provided as below,

Definition 2 (Zeno-free Transmission). A transmission sequence
I = {tk}Nk=0 with N ∈ Z+ is said to be Zeno-free if ∀0 ≤ k ≤ N−1,
there always exists a τ > 0 such that tk+1 − tk ≥ τ .

Definition 3 (Stochastic Stability Kozin, 1969). Consider a closed-
loop VNS framework defined in (13), and let x0 ≜ x(0) − xd ∈ Rn

denote the initial state,

E1 The system in (13) with w = 0 is asymptotically stable in
expectation with respect to origin, if for any given ϵ > 0,
there exists δ(ϵ) such that |x0| ≤ δ implies

E
{
|x(t)|

}
< ϵ (14)

and limt→∞ E
{
|x(t)|

}
= 0.

E2 The system in (13) with |w|L∞
≤ M is uniformly asymptot-

ically bounded in expectation, if for a given (∆(M), ∆0(M))
with ∆0, ∆ > 0, there exists a ϵ(M, ∆0) > 0 such that for
|x(0)| ≤ ∆0,

E
{
|x(t)|

}
≤ ϵ(M, ∆0) ∀t ∈ R≥0 (15)

and limt→∞ E
{
|x(t)|

}
≤ ∆(M).

P1 The system in (13) with w = 0 is almost surely asymptotically
stable with respect to origin, if for any given ϵ, ϵ′ > 0, there
exists δ(ϵ, ϵ′) such that |x0| ≤ δ implies

Pr
{
sup
t≥0

|x(t)| ≥ ϵ′
}

< ϵ (16)

and Pr
{
limτ→∞ supt≥τ

⏐⏐x(t)|≥ ϵ′
}

= 0.
P2 The system in (13) with |w|L∞

≤ M is practically stable in
probability if for a given (∆(M), ∆0(M)) with 0 < ∆0 < ∆

and for any ϵ′ > 0, there exists a ϵ(M, ∆) > 0 such that for
|x(0)| ≤ ∆0,

lim
t→+∞

Pr{|x(t)| ≥ ∆ + ϵ′
} ≤ ϵ(M, ∆). (17)

emark 1. Among all four definitions of stochastic stability,
lmost sure asymptotic stability is the strongest one that requires
lmost all samples of the system trajectories defined in (13)
symptotically converge to origin with probability one. The no-
ion of mean stability (E1) is weaker because it only requires that
he expected value of system trajectory’s magnitude asymptoti-
ally goes to zero. In general, mean stability does not imply almost
ure asymptotic stability while the latter implies the former. For
ore discussions on stochastic stability, please refer to Kozin

1969).

emark 2. If a non-vanishing but bounded external disturbance
s present in VNS, asymptotic stability (i.e., E1 and P1) cannot
e guaranteed. The notion of practical stability defined in E2
nd P2 is therefore introduced to characterize system behavior
round a compact set in expectation or in probability. Specifically,
niformly asymptotic boundedness in expectation (E2) requires that
he expectation of a norm of system states is uniformly bounded
 u

6

nd asymptotically converges to a constant that depends on the
agnitude of external disturbance. The notion of practical sta-
ility in probability requires that the probability (P2) of system
rajectories leaving a compact set is bounded from above by a
unction that depends on both the magnitude of external distur-
ance and the size of compact set. By Markov’s Inequality, it is
traightforward to show that E2 implies P2.

With VNS system framework and notions of stochastic sta-
ility defined, the problem of this paper is formally stated as
elow

roblem 4. Consider a closed-loop VNS formulated in (13), the
roblem is to design functions gx and gU , and determine the trans-

mission time intervals {Tk}k∈Z+
under which the VNS satisfies the

stochastic stability notions defined in Definition 3.

4. Assumptions

This section presents two main assumptions that are needed
to establish our main results.

Assumption 5. Consider a closed-loop VNS defined in (13), the
subsystem x defined in (13a) is input-to-state stable (ISS) from x
to estimation error e and external disturbance w. In particular,
assume that there exist a concave class KL function β(·, ·), a class
K function χ2(·) and a positive constant χ1 > 0 such that

|x(t)| ≤ β(|x(t0)|, t − t0) + χ1(|e|[t0,t]) + χ2(|w|[t0,t]) (18)

he subsystem x is exponentially input-to-state stable (Exp-ISS) if
β(·, ·) is an exp-KL and χ2(·) is a linear function.

Remark 3. The ISS assumption is used to ensure stability in
xpectation (E1 and E2 in Definition 3) while the assumption
f exp-ISS is needed for almost sure asymptotic stability (P1 in
efinition 3) .

ssumption 6. Suppose there exist 0 < w1 < w2, Lx, Le, Lw ∈ R+

and a nonnegative definite functionW (e) such that the subsystem
e in Eq. (13b) satisfies

w1|e| ≤ W (e) ≤ w2|e| (19a)

∇W (e)fe(x, e, w) ≤ LeW (e) + Lx|x| + Lw|w| (19b)

Remark 4. Assumption 6 is equivalent to the Exp-ISS assumption
for subsystem e with respect to x and w (Nešić & Teel, 2004). This
assumption is weaker than the uniformly Lipschitz assumption
stated in Hu and Lemmon (2014) since the latter is a special
case (Lx = 0) of the former. To see this, the uniformly Lips-
chitz assumption suggests that there exists a Lf > 0 such that
|f (x, u, w) − f (x̂, u, 0)| ≤ Lf (|x − x̂| + |w|), ∀, x, x̂ ∈ Ωx where
Ωx is a compact set. This uniformly Lipschitz assumption on the
vector field f implies that d|e|

dt ≤ Lf |e| + Lf |w| which is a special
ase of (19b) with Lx = 0.

. Main results

This section presents the development of a self-triggered com-
unication scheme to ensure stochastic stability for VNS defined

n (13). In particular, the proposed self-triggered transmission
cheme generates a (sporadic) transmission sequence {tk}∞k=0 un-
der which the VNS in (13) is either asymptotically stable in ex-
ectation (Theorem 8) or almost surely asymptotically stable (The-
rem 9) without external disturbances (w = 0), and either
niformly asymptotically bounded in expectation (Theorem 10) or
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ractically stable in probability (Theorem 11) with bounded exter-
al disturbances. Under the self-triggered transmission scheme,
he second main result (Proposition 12) of this paper is to con-
truct a feasible event-based encoder/decoder pair (i.e., function
x in (5) and gU in (7)) in which the event-based dynamic quan-

tizer does not saturate at any transmission time instant, that
is, system states in (13) are guaranteed to be captured by the
proposed event-based encoder/decoder.

The following technical lemma is needed to prove the main
results by showing that the expectation of quantization resolution
E(2−Rk ) can be bounded by a function of the system state under
a state-dependent bursty fading channel.

Lemma 7 (Hu & Lemmon, 2014). Consider a SD-EBB channel model
in (2), define a function G(s) = e−h(s)γ (s)(1+h(s)γ (s)), s ∈ R+, then

E(2−Rk+1 ) ≤ G(|x(k + 1)|) (20)

and G(s) ∈ [0, 1], ∀s ∈ R+ is a strictly increasing function with
G(s) → 0 ⇐⇒ h(s)γ (s) → +∞ and G(s) → 1 ⇐⇒ h(s)γ (s)
→ 0.

Proof. The proof is omitted due to the space limitation. Please
refer to Hu and Lemmon (2014) for the details of the proof.

Remark 5. The function G(·) is directly related to functions h(·)
and γ (·) in the SD-EBB model and can therefore be viewed as a
priori knowledge of the state-dependent fading channel.

Inequality (20) implies that quantization error decreases as the
system state x approaches its origin. It is easy to see that G(|x|) →

1 as h(|x|) → 0, which corresponds to the scenario where vehicles
are far apart and beyond communication range. This paper will
focus on the situation when vehicles are within communication
range and the SD-EBB model provides a reasonable bound on
channel conditions. In particular, let Ωx = {x ∈ Rn

⏐⏐|x| <

G−1(w1/w2)} with w2 > w1 > 0 defined in Assumption 6, denote
the region that communications between vehicles are available.
Since G(·) ∈ [0, 1] is a continuous and strictly monotonically
increasing function, the inverse of G(·) exists and is also contin-
uous, strictly monotonically increasing. Thus, Ωx is a nonempty
and open set and G(|x|) < 1, ∀x ∈ Ωx. The stability results in
Section 5.1 will be examined under the situation that vehicles are
ithin the communication range, i.e., x ∈ Ωx.

.1. Self-triggering to achieve stochastic stability

A self-triggered scheme is developed in this section to ensure
tochastic stability defined in Definition 3. With Assumptions 5
and 6, this section first presents two theorems showing that the
VNS defined in (13) can asymptotically track pre-defined set-
points in expectation (Theorem 8) under the ISS assumption or
almost surely (Theorem 9) under the exp-ISS assumption without
external disturbances, i.e., w = 0.

Theorem 8. Consider a closed-loop VNS in (13) without external
disturbance (w = 0) and a SD-EBB channel model in (2), suppose
the ISS assumptions in Assumptions 5 and 6 hold, the system is
asymptotically stable in expectation with respect to the origin, if the
transmission time instants {tk} are generated by

tk+1 = tk +
1
Le

ln
(
1 +

1 −
w2
w1

G(|x(tk)|)
w2
w1

G(|x(tk)|) +
Lxχ1
Lew1

)
. (21)

ithin the communication range, i.e., x ∈ Ωx. FurthermoreFur-
hermore, if the vehicle system is within the communication range,
.e., x ∈ Ωx, there exists ∆ > 0 such that the transmission time
nterval tk+1 − tk ≥ ∆, ∀k ∈ Z+, i.e. the self triggered scheme in
(21) assures Zeno-free behavior.
7

Proof. See the Appendix.

Remark 6. The transmission time intervals {Tk}∞k=0 with Tk =

k+1 − tk generated by (21) monotonically increase when system
tates, such as inter-vehicle distance and bearing angles, move
oward the origin. This property implies that VNS under the pro-
osed self-triggered scheme can transmit less frequently when
good channel condition is guaranteed by either reducing inter-
ehicle distance or aligning directional antennae mounted in both
ehicles. The function G in (21) defined in Lemma 7 quantitatively
ssesses and predicts how channel conditions vary as a function
f system states. Such quantitative predictions on channel con-
itions are used in the design of a self triggered communication
cheme to ensure an efficient utilization of channel bandwidth by
daptively adjusting its transmission frequency.

heorem 9. Suppose all conditions and assumptions in Theorem 8
old, and the subsystem x is Exp-ISS (i.e., Exp-ISS in Assumption 5)
olds, the VNS in (13) without external disturbance is almost surely
symptotically stable with respect to origin if the transmission time
equence is recursively generated by (21). The non-Zeno transmis-
ion is guaranteed if vehicles are within the communication range
i.e., x ∈ Ωx).

roof. The proof is provided in the Appendix.

Since the strong notion of asymptotic stability cannot be guar-
nteed in the presence of non-vanishing disturbance, this section
hows that weak notions of uniformly asymptotic boundedness in
xpectation (E2) and practical stability in probability (P2) can be
chieved under the self triggered scheme defined in (21).

heorem 10. Consider the VNS defined in (13) with essentially
ounded external disturbance |w|L∞

≤ M, and suppose the fading
hannel satisfies the SD-EBB characterization defined in (2). Suppose
he ISS assumption in Assumptions 5 and 6 holds, if the transmission
ime sequence {tk} is generated by (21), then the system in (13) is
niformly asymptotically bounded in expectation (E2).

roof. See the Appendix.

heorem 11. Suppose the hypothesis in Theorem 10 holds, then
he system in (13) is practically stable in probability (P2). More
pecifically, there exists a class KL function βϵ(·, ·) such that

lim
t→+∞

Pr{|x(t)| ≥ ∆ + ϵ} ≤ βϵ(M, ∆). (22)

roof. See the Appendix.

emark 7. The probability bound in (22) measures the safety
evel as a function of the size of a safe region ∆ as well as the
agnitude of external disturbance M . This safety metric provides
trade-off between the choices of ∆ and M , which shows that

he system is more likely to be safe with a smaller magnitude of
xternal disturbance M and a larger safety region ∆.

.2. Event-based encoder/decoder design

The stability results hold under the hypothesis that system
tates x(tk) at each time instant tk, ∀k ∈ Z≥0 must be captured
by the encoder and decoder defined in (5)–(7) with parame-
ters (x̂(t+k ),U(t+k )) representing the centroid and size of dynamic
quantizer respectively. This hypothesis is proved in the following
proposition by showing that an Encoder/Decoder pair can be de-
signed to recursively construct and synchronize the parameters
(x̂(t+k ),U(t+k )) as time increases. For notation simplicity, let x̂

+

k :=

x̂(tk+ ) and U+

k := U(t+k ).
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roposition 12. Suppose Assumptions 5 and 6 hold, and let {tk}∞k=0
enote a transmission time sequence generated by (21) and Tk =

k+1 − tk. Suppose the initial value of the pair (x̂
+

0 ,U+

0 ) and the
number of successfully received bits Rk, ∀k ∈ Z≥0, are known to the
Encoder and Decoder by noiseless feedback channels, if the sequence
of information pairs {x̂

+

k ,U+

k }
∞

k=1 is constructed by

+

k+1 =
2−Rk+1

ηk+1

(
v2

v1
eLeTkU+

k +
eLeTk − 1

v1Le

(
Lxβ(|x̂

+

k | + U+

k , 0)

+ LwM + Lxχ2(M)
))

, (23a)

x̂
+

k+1 = U+

k+12
Rk+1

Rk+1∑
j=1

1
2j q

(
bj(k + 1)

)
+ Φ(x̂

+

k , Tk), (23b)

where ηk = 1 −
Lxα1
w1Le

(eLeTk − 1) > 0, and Φ(s, t) is the solution to
the following differential equation

ẋ = fx(x, 0, 0), x(0) = s. (24)

here fx(·, ·, ·) is defined in (13a) and q(·) : {0, 1}n → {−1, 1}n
is a function that maps the binary value of the bit vector to a n
dimensional vector whose elements are ±1, i.e.,

qi(b) =

{
1 if the ith bit in bit-vector b is 1,
−1 otherwise.

then the estimation error e(k) = x(tk) − x̂
+

k is bounded as

x(tk) − x̂
+

k | ≤ Uk (25)

or all k ∈ Z≥0.

roof. See the Appendix.

emark 8. ηk > 0 holds ∀k ∈ Z+ if the self-triggered scheme in
21) is adopted. The recursive functions in (23a) and (23b) cor-
respond to the Encoder/Decoder structure defined in (5)–(7). The
Encoder/Decoder design in (23a) and (23b) generalizes the result
in Hu and Lemmon (2014). One can recover the Encoder/Decoder
structure in Hu and Lemmon (2014) by setting Lx = 0. This
generalization is possible due to Assumption 6 which is weaker
than the uniformly Lipschitz assumption in Hu and Lemmon
(2014).

Remark 9. Eq. (23b) is a recursive rule updating the centroid
of a dynamical uniform quantizer (Martins et al., 2006). The
structure of solution Φ(s, t) can be determined offline by solving
the nonlinear differential equation (24) (nominal system without
considering the network effect) with an initial value. In general,
obtaining an analytic solution for a nonlinear ODE (24) is difficult,
but one can obtain approximation on the solution by integrating
the function fx from tk to tk + Tk, i.e., Φ(x̂

+

k , Tk) = x̂(tk + Tk) =

x̂(t+k ) +
∫ tk+Tk
tk

fx(x̂(t), 0, 0)dt . However, the analytic solution can
e obtained if the function fx is linear, e.g., f (x, 0, 0) = Ax, then
ne has Φ(x̂+

k , Tk) = exp(ATk)x̂+

k .

6. Simulation results

This section presents simulation results examining advantages
of the proposed self triggered scheme over traditional event trig-
gered schemes in the leader–follower example. In the simulation,
the mathematical model presented in (12) is used to simulate
dynamics of the leader–follower system.

A two-state Markov chain model is used to simulate the fad-
ing channel between the leader and the follower. The two-state
8

Markov chain model has one state representing the good chan-
nel state and the other representing the bad channel state. The
good channel state means that a transmitted bit is successfully
received, while the bad state means that a transmitted bit is
lost. Following the two-state Markov chain model in Zhang and
Kassam (1999), this simulation uses p12 = 0.08

√
π
2 r to represent

the transition probability from a good state to a bad state, and
p21 = 0.08

√
π
2

√
r

e0.25r−1
to represent the transition probability

from a bad state to a good state, where r =
L

p cosα
and p is the

transmission power. It is clear that the transition matrix for this
two-state Markov chain model is a function of vehicular states (L
and α) for a fixed transmission power p. Following the results
in Hu and Lemmon (2015), the SD-EBB functions used in this
simulation are h(α, L) = 0.8Re−0.25 L

p cosα and γ (α, L) = 8 p cosα

L ,
ith R = 4 as the total number of bits transmitted over each

time interval and p = 8 as the transmission power level. The
initial inter-vehicle distance and bearing angle are L(0) = 15 m
and α(0) = −30◦. The controller gains are KL = Kα = 1.
et the leader’s speed v1 and angular velocity ω1 be v1 = 0.8L
nd ω1 = 2.2α, respectively. The theoretical results are verified
ased on a Monte Carlo simulation method under which each
imulation example is run 100 times over a time interval from
to 10 s.
The first simulation is to verify almost surely asymptotic sta-

ility of the leader–follower example under the proposed self-
riggered scheme in (21) (Theorem 9). The upper plots in Fig. 3
how the maximum (red dashed-dot lines) and minimum (blue
ashed lines) value of inter-vehicle distance L and bearing angle
over all the 100 samples from 0 to 10 s. From these plots,

ne can easily see that the maximum and minimum values of
he system states asymptotically converge to desired set-points
d = 4 (m) and αd = 20◦ as time increases. This is the
ehavior that one would expect if a system is almost surely
symptotically stable. The lower plots in Fig. 3 show one sample

of the inter-transmission time interval Tk (left plot) and the
number of received bits Rk (right plot) that are used to achieve
system performance shown in the upper plots. The transmission
time interval Tk is generated by (21). It is clear from the plots
that the self-triggered transmission policy starts with a small Tk
when the leader–follower communication begins in a bad channel
region due to a large inter-vehicle distance and bearing angle.
As the leader–follower system gradually approaches its desired
formation, the self-triggered communication scheme adaptively
increases the inter-transmission time interval to ensure efficient
use of communication bandwidth.

The second simulation is to compare performance of the pro-
posed self-triggered scheme in (21) against conventional event-
triggered scheme in Wang and Lemmon (2011a). For the
purpose of comparison, a state dependent event-triggered scheme
in Wang and Lemmon (2011a) was used to trigger the transmis-
sion whenever the estimation error exceeded a state dependent
threshold. Let |e(t)| = |α(t) − α̂(t)| ≤ 0.1591|[α(t) − αd, L(t)
−Ld]| be the triggering condition, and the threshold was selected
to assure the same convergent performance as our self-triggered
method but in the absence of channel fading.

Fig. 4 shows the comparison of both transmission time interval
and tracking performance for the leader–follower example under
proposed self-triggered scheme (marked by red squares) in (21)
and event-triggered scheme (marked by blue diamonds) in Wang
and Lemmon (2011a) over a wide range of formations, from
αd = 0◦ to αd = 50◦. The tracking performance is compared by
calculating the expected3 average tracking error of inter-vehicle

3 The expectation is approximated by the average of 100 sample runs,
.e., E 1

10

∫ 10
0 |x(t) − xd|dt ≈

1
100

∑100
i=1

1
10

∫ 10
0 |xi(t) − xd|dt where x = [L;α] and xi

is the ith sample run.
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istance and bearing angles over a time interval [0, 10]. The
bottom plots of Fig. 4 show that both triggering schemes achieve
uite similar tracking performance for inter-vehicle distance L
nd bearing angle α over all desired formations. The results in
he top left plot of Fig. 4 show that the minimum transmission
ime interval Tmin that is used to achieve the tracking perfor-
ance under our proposed self-triggered scheme (around Tmin =

.04 s) is approximately 40 times larger than that generated
y the event-triggered scheme (Tmin = 0.001 s). Note that
he minimum transmission time interval determines the channel
andwidth that is actually needed in vehicular networks. This
bservation implies that our proposed self-triggered scheme al-
ows much more efficient use of communication bandwidth than
he traditional event-triggered methods by providing much larger
inimum transmission time interval. The comparison of average

ransmission time intervals under both triggered schemes is pro-
ided in the top-right plot of Fig. 4, which shows that the average
nterval generated by self-triggered scheme is relatively close to
hat of the event-triggered one when desired formations are posi-
ioned in good channel regions, such as αd = 0◦, 10◦, 20◦. When
he desired formation configuration approaches bad channel re-
ions, such as αd = 30◦, 40◦, 50◦, our proposed self-triggered
cheme reacts to those formation changes by adaptively adjusting
he average transmission time intervals. As shown in the top right
lot of Fig. 4, the average transmission time interval decreases to
nsure sufficient information updates as the desired formations
pproach bad channel regions.
Fig. 5 shows the probability distribution of the transmission

nterval over 100 runs under the proposed self-triggered scheme
top plot) and traditional event-triggered scheme in Wang and
emmon (2011a) (bottom plot) when the desired formation is
n good channel region, αd = 0◦. The result shows that even
n the good channel region, nearly 30% of the time intervals
enerated by the event-triggered scheme proposed in Wang and
emmon (2011a) (top plot in Fig. 5) are below 0.01 s while the
ercentage of small time intervals below 0.01 s in our proposed
elf-triggered scheme is 0. This is not surprising since the state-
ependent threshold |e(t)| ≤ 0.1591|[α(t) − αd, L(t) − Ld]| in
vent-triggered scheme, is very sensitive to any small changes on
he system states and easy to be violated when they are around
he equilibrium.

In this simulation, we are also interested in testing how robust
oth triggered schemes are against a wide range of fading levels.
he robustness of both triggered schemes is evaluated by exam-
ning how frequently a small transmission time interval occurs
ue to channel fading from αd = 0◦ to αd = 50◦. Fig. 6 shows
robability distributions of the transmission time interval lying in
ach of the intervals ∪

9
i=0[i ∗ 0.01, (i+ 1) ∗ 0.01] s under the pro-

osed self-triggered scheme (bottom plot) and event-triggered
cheme (top plot). The results show that nearly 30% percent of the
ime intervals generated by the event-triggered scheme in Wang
nd Lemmon (2011a) lies in the interval [0, 0.01] s while the
ercentage generated by the self-triggered scheme in (21) is 0
nder all levels of channel fading. This suggests that our proposed
elf-triggered scheme is more robust against channel fading than
raditional event-triggered schemes.

. Conclusion

This paper developed a novel self-triggered scheme for VNS
n the presence of state-dependent fading channels. By using a
tate-dependent fading channel model, the results showed that
he proposed self-triggered schemes can achieve efficient use
f communication bandwidth with Zeno-free transmission while
nsuring four types of stochastic stability. Under the proposed
elf-triggered scheme, this paper also presented a new source
9

Fig. 3. The maximum and minimum trajectories of L(m) and α(degree) un-
der the self-triggered scheme in (21) (top plots) and one sample of the
nter-transmission time interval Tk and number of received bits Rk (bottom
lots).

Fig. 4. Comparison of minimum transmission time interval (top left plot),
average (top right plot) transmission time intervals and tracking errors in
distance (bottom left plot) and bearing angle (bottom right plot) under desired
bearing angles αd = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦ .

oding scheme under which vehicle’s states were tracked with
erformance guarantee even when channel states are time vary-
ng and are stochastically changed as a function of vehicle states.
imulation results of a leader–follower example demonstrated
hat the proposed self-triggered scheme was more efficient in
andwidth utilization and more resilient to deep fading than
raditional event-triggered schemes.

ppendix

roof of Theorem 8. Let tk denote the time instant for the kth
ransmission event and consider the dynamic evolution of the
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Fig. 5. Distribution of inter-transmission time interval under self-triggered
scheme in Theorem 9 and traditional event-triggered scheme (Wang & Lemmon,
2011a).

Fig. 6. Distribution of small inter-transmission time intervals under self-
riggered scheme in (21) and event-triggered scheme (Wang & Lemmon, 2011a)
nder desired bearing angles αd = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦ .

stimation over the time interval [tk, tk+1). Since Assumption 6
olds, one has W (e) ≤ eLe(t−tk)W (e(t+k )) +

Lx
Le
(eLe(t−tk) − 1)|x|[tk,t).

ince w1|e| ≤ W (e) ≤ w2|e|, one further has |e|[tk,t) = |e(t)| ≤
w2
w1

eLe(t−tk)|e(t+k )|+ Lx
w1Le

(eLe(t−tk)−1)|x|[tk,t). Taking the expectation
n both sides of the above inequality yields

(|e(t)|)

≤
w2

w1
eLe(t−tk)E(2−R(k))E(|e(tk)|) +

Lx(eLe(t−tk) − 1)
w1Le

E(|x|[tk,t))

≤
w2

w1
eLe(t−tk)GkE(|e(tk)|) +

Lx(eLe(t−tk) − 1)
w1Le

E(|x|[tk,t))

here Gk := G(|x(tk)|). The first inequality holds due to the
quantization, |e(t+k )| = 2−Rk |e(tk)| and the fact that the ran-
om variable R(k) at time tk is independent of e(tk) (before the
ump). The second inequality holds because of technical Lemma 7.
uppose the next transmission time instant t is generated
k+1

10
by Eq. (21), then one has

E(|e(tk+1)|)

≤

Gk
w2
w1

(1 +
Lxχ1
Lew1

)

Gk
w2
w1

+
Lxχ1
Lew1  

<1

E(|e(tk)|) +
Lx

w1Le

1 − Gk
w2
w1

Gk
w2
w1

+
Lxχ1
Lew1  

γx

E(|x|[tk,tk+1))

or all x ∈ Ωx = {x ∈ Rn
|G(|x|) < w1/w2}. Similarly, by Assump-

ion 5, one has E(|x(t)|) ≤ E(β(|x(tk)|, t − tk)) + χ1E(|e|[tk,t)) ≤

(E(|x(tk)|), t − tk) + χ1E(|e|[tk,t)) where the class KL function
β(s, t) is concave with respect to s, and thus the second inequality
holds due to the Jensen’s inequality. It is clear from the represen-
tation of E(|e(t)|) and E(|x(t)|) that the subsystems with states
(|e(t)|) and E(|x(t)|) are interconnected with linear gains γx and

χ1 . Since

χ1 ·
Lx

w1Le

1 − Gk
w2
w1

Gk
w2
w1

+
Lxχ1
Lew1

=
Lxχ1

LeGkw2 + Lxχ1
(1 − Gk

w2

w1
) < 1 (26)

nd k ∈ Z≥0 is arbitrarily chosen, one knows the system with
tates E(|x|) and E(|e(t)|) is asymptotically stable by the small-
gain theorem, i.e. limt→∞ E(|x(t)|) → 0. The stability argument
is therefore proved.

The Zeno-free transmission generated by Eq. (21) can also be
proved by considering that ∀x ∈ Ωx

1 −
w2
w1

G(|x|)
w2
w1

G(|x|) +
Lxχ1
Lew1

> 0 (27)

holds. This leads to a strictly positive transmission time inter-
val defined by Eq. (21). Since the function G(|x|) monotonically
increases w.r.t. the state |x|, then one knows that the function
in (27) monotonically decreases w.r.t. |x|. Thus, the transmission
time interval T generated by (21) monotonically decreases w.r.t.
|x|. The proof is complete.

Proof of Theorem 9. Following the proof techniques used in
Theorem 8, one can obtain that the VNS in (13) is exponentially
stable in expectation with respect to origin under the Exp-ISS
assumption stated in Assumption 5. Specifically, there must exist
an exp-KL function β(s, t) = c1 exp(−c2t)s such that ∀x(0),
E(|x(t)|) ≤ c1 exp(−c2t)|x(0)|, ∀t ∈ R≥0. To prove the almost
surely asymptotic stability, let τ ′ > τ ≥ 0 denote any time
instant such that τ ≤ t ≤ τ ′ holds, for any given ϵ′ > 0, consider
the following probability bound,

Pr{ sup
τ≤t<τ ′

|x(t)| ≥ ϵ′
} ≤ E

{
sup

τ≤t<τ ′

|x(t)|
}
/ϵ′

≤ E
{∫ τ ′

τ

|x(t)|dt
}
/ϵ′

≤

∫ τ ′

τ

E
{
|x(t)|

}
dt/ϵ′

≤

∫ τ ′

τ

c1 exp(−c2t)|x(0)|dt/ϵ′
≤

c1|x(0)|
c2ϵ′

[
e−c2τ

− e−c2τ ′]
(28)

here the first inequality holds due to the Markov inequality
nd the third inequality holds by exchanging the expectation and
ntegration due to the measurability of the solution process |x(t)|
and the finiteness of the integral from time τ to τ ′. Let τ ′

→

+∞, the probability bound in (28) is Pr{supτ≤t |x(t)| ≥ ϵ′
} ≤

c1|x(0)|
c2ϵ′ e−c2τ

≤
c1|x(0)|
c2ϵ′ . Let ϵ :=

c1|x(0)|
c2ϵ′ , then there indeed exists a

unction δ(ϵ, ϵ′) =
c2ϵ′

c1
such that Pr{supτ≤t |x(t)| ≥ ϵ′

} ≤ ϵ for
ny |x(0)| ≤ δ(ϵ, ϵ′). Furthermore, since τ is arbitrarily chosen,

consider the following integral∫
∞

0
Pr{sup

τ≤t
|x(t)| ≥ ϵ′

}dτ ≤

∫
∞

0

c1|x(0)|
c2ϵ′

e−c2τdτ =
c1|x(0)|
c22ϵ′

.

(29)
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y the Borel–Cantelli Lemma, the finite integral in (29) implies
hat Pr{limτ→∞ supτ≤t |x(t)| ≥ ϵ′

} = 0 and then almost surely
asymptotic stability defined in (16) holds. The proof is complete.

roof of Theorem 10. By Assumptions 5 and 6, ∀t > tk ∈ R+, k ∈

Z+, one has E(|x(t)|) ≤ β(E(|x(tk)|), t − tk)+χ1E(|e|[tk,t))+χ2(M)
ith |w|L∞

≤ M , and

(|e(t)|) ≤
w2

w1
eLe(t−tk)G(|x(tk)|)E(|e(tk)|) +

LwM
w1Le

(eLe(t−tk) − 1)

+
Lx

w1Le
(eLe(t−tk) − 1)E(|x|[tk,t))

Since under the self-triggered scheme in (21), the condition in
(26) assures that the small-gain theorem holds for the intercon-
nected system of E(|x(t)|) and E(|e(t)), the system with states
X(t) := [E(|x(t)|);E(|e(t))] is then input to state stable with
espect to the external disturbance (Jiang & Wang, 2001). In
articular, there exist a class KL function β ′(·, ·) and a class K
unction χ (·) such that |X(t)| ≤ β ′(|X(0)|, t)+χ (M). Thus, ∀|x0| ≤

∆0, one knows that E{|x(t)|} ≤ β ′(∆0, 0)+ χ (M) ≜ ϵ(M, ∆0) and
imt→+∞ E{|x(t)|} ≤ χ (M). The proof is complete.

Proof of Theorem 11. Suppose the claim in Theorem 10 holds,
for any given ϵ > 0, the probability of the system state x exiting
given set Ωs = {x ∈ Rn

||x|≤ ∆} at time t can be bounded by
Pr{|x(t)| ≥ ∆+ϵ} ≤

E(|x(t)|)
∆+ϵ

≤
β ′(E(|x(0)|,t))+χ (M)

∆+ϵ
. The first inequality

ollows by Markov’s Inequality and the second inequality holds
ue to the input to state stability. Taking the limit of time to
nfinity leads to limt→+∞ Pr{|x| ≥ ∆ + ϵ} ≤

χ (M)
∆+ϵ

. Thus, the VNS
n (13) with bounded external disturbance is practically stable in
robability with the probability bound ϵ(M, ∆) =

χ (M)
∆+ϵ

. The proof
s complete.

roof of Proposition 12. The proof is based on an induction
ethod. Since we assume that the encoder and decoder share the

nitial value of x̂
+

0 and U+

0 and the actual value of initial state x(0)
ies in the hypercubic box with x̂

+

0 being its centroid and 2U+

0
eing its edge length, the case of k = 0 holds. Next, suppose the
ase of k holds, i.e., the state x(tk) at time instant tk lies in the
ypercubic box with parameters (x̂

+

k ,U+

k ) and |x(tk) − x̂
+

k | ≤ U+

k .
In the sequel, we show that the case of (k+ 1)th holds under the
recursive equations (23a) and (23b).

First, consider the estimation error e(t) := x(t) − (x̂ − xd) =

x(t) − x̂ over time interval [tk, tk+1), ∀k ∈ Z≥0. Let t− and t+
denote the time instants before and after the bits are received
respectively. By Assumption 6, one has

|e(t)| ≤
w2

w1
eLe(t−tk)|e(t+k )| +

Lx
w1Le

(eLe(t−tk) − 1)|x|[tk,t)

+
Lw

w1Le
(eLe(t−tk) − 1)M (30)

imilarly, Assumption 5 leads to

x|[tk,t) ≤ β(|x(tk)|, 0) + χ1|e|[tk,t) + χ2(M) (31)

Substituting (31) into (30) and letting t = t−k+1, since |e(tk+1)| =

|e(t)|[tk,t), one has
(
1 −

Lxχ1

w1Le
(eLeTk − 1)

)
  

ηk+1

|e(t−k+1)| ≤
w2
w1

eLeTk |e(t+k )|

eLeTk−1
w1Le

(
Lxβ(|x(tk)|, 0)+LwM+Lxχ2(M)

)
. Since the transmission

sequence {tk} is generated by (21) and the small-gain condition
(26) holds, ηk > 0, ∀k ∈ Z+. Suppose |e(t+k )| ≤ U+

k , then the
following inequality

|e(t−k+1)| ≤
1

(
w2 eLeTkU+

k +
eLeTk − 1 (

Lxβ(|x̂
+

k | + U+

k , 0)

ηk+1 w1 w1Le

11
+ LwM + Lxχ2(M)
))

:= Uk+1 (32)

olds due to ηk > 0 and |x(tk)| ≤ |x̂
+

k | + U+

k . Upon successfully
receiving Rk+1 blocks of bits at time t+k+1, one has |e(t+k+1)| ≤

2−Rk+1 |e(t−k+1)|. Let U
+

k+1 :=
2−Rk+1
ηk+1

(
w2
w1

eLeTkU+

k +
eLeTk−1

w1Le

(
Lxβ(|x̂

+

k |+

U+

k , 0) + LwM + Lxχ2(M)
))

, then |e(t+k+1)| ≤ U+

k+1. Since the

ransmission time interval [tk, tk+1] is selected arbitrarily, {U+

k }

s a sequence of upper bounds on the estimation errors {e(t+k )},
.e., |x(tk) − x̂

+

k | ≤ U+

k , ∀k ∈ Z≥0.
Secondly, the state estimate x̂

+

k+1 is updated by selecting the
centroid of an updated hypercubic box that contains x(tk+1). To be
pecific, during the time interval [tk, tk+1), the centroid x̂(t) of the
hypercubic box is updated by both encoder and decoder accord-
ing to the dynamic equation ˙̂x = fx(x, 0, 0) with initial value x̂

+

k .
The centroid of the expanded hypercubic box at time instant t−k+1

before receiving new information bits, is Φ(x̂(tk), Tk) := x̂(t−k+1) =

x̂
+

k +
∫ tk+Tk
tk

fx(x̂, 0, 0)dt . By inequality (32), one knows that the
state x(tk+1) is guaranteed to lie in an expanded hypercubic box
with the centroid x̂(t−k+1) and the size Uk+1. Upon receiving Rk+1
blocks of bits at time instant tk+1, the expanded hypercubic box
is partitioned into 2nRk+1 number of sub-boxes with each sub-
box’s centroid being encoded by a binary sequence {bj}

Rk+1
j=1 . Thus,

or a given centroid Φ(x̂(tk), Tk), a given box length Uk+1 and
{bj}

Rk+1
j=1 , the function q(bji) ∈ {−1, 1} decodes the ith bit in the

jth block as a relative ‘‘position’’ to the centroid Φ(x̂(tk), Tk). By a
uniform quantization method (Martins et al., 2006), the centroid
of the sub-box that contains the actual state x(tk+1) is thus x̂

+

k+1 =

k+1
∑Rk+1

j=1
1
2j
q
(
bj(k + 1)

)
+ Φ(x̂

+

k , Tk). The proof is complete.
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