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ABSTRACT

Vehicular Networked Systems (VNS) are mobile ad hoc networks where vehicles exchange informa-
tion over wireless communication networks to ensure safe and efficient operation. It is, however,
challenging to ensure system safety and efficiency as the wireless channels in VNS are often subject
to state-dependent deep fades where the data rate suffers a severe drop and changes as a function of
vehicle states. Such couplings between vehicle states and channel states in VNS thereby invalidate
the use of separation principle to design event-based control strategies. By adopting a state-dependent
fading channel model, this paper presents a novel self-triggered scheme under which the VNS ensures
efficient use of communication bandwidth while preserving stochastic stability. Under the proposed
self-triggered scheme, this paper presents a novel source coding scheme that tracks vehicle’s states
with performance guarantee in the presence of state-dependent fading channels. The efficacy and
advantages of the proposed scheme over other event-based strategies are verified by a leader-follower

example.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background and motivation

Vehicular Networked Systems (VNS) consist of numerous ve-
hicles coordinating their operations by exchanging information
over a wireless radio communication network. VNS represents
one type of mobile ad hoc networks that has been deployed
in a variety of safety-critical applications, such as intelligent
transportation systems with Vehicle to Vehicle (V2V) communi-
cation (Papadimitratos et al., 2009), air transportation systems
with Automatic Dependent Surveillance-Broadcast (ADS-B) (Park
et al.,, 2014) and underwater autonomous vehicles with optic or
acoustic communication (Akyildiz et al., 2005).

These vehicular networks, however, are often subject to deep
fades where the data rate drops precipitously and remains low
over a contiguous period of time. Such deep fades functionally
depend on the vehicles’ physical states (e.g. inter-vehicle dis-
tance, velocities and heading angles) (Cheng et al., 2007; Tse
& Viswanath, 2005). Deep fades inevitably cause a significant
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degradation on system performance and result in safety issues,
such as vehicle collisions. To maintain system stability and quality
performance, VNS may require a large amount of communication
resources, such as channel bandwidth, to recover the perfor-
mance loss caused by deep fades. The overuse of communication
resources, however, will certainly compromise the long-term op-
erational normalcy of the system since electronic devices have
limited energy. Therefore, system stability and efficiency must be
jointly evaluated to ensure a successful implementation of VNS
in the future.

Recent studies have shown that event-based communication
scheme is an effective approach to utilize less communication
bandwidth than traditional periodic method to maintain a speci-
fied system performance (Wang & Lemmon, 2011b). In an event-
triggered scheme, the transmission of information only occurs
when the variations of system states exceed a predefined state-
dependent threshold. Recent work has shown that the system
performance under such a state-dependent triggering scheme
can be preserved when the communication delay or the number
of consecutive packet loss is bounded (Guinaldo et al., 2012;
Wang & Lemmon, 2011b). Such robustness, however, can be
easily violated in VNS where a burst of delay or packet dropouts
may occur with a nonzero probability. To address this issue,
our prior work (Hu & Lemmon, 2014) proposed a new event-
triggered scheme that ensures almost sure stability for VNS with
a bursty fading channel. By exploring the dependence of channel
conditions on vehicular states, efficient use of channel bandwidth
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under the event triggered scheme is achieved by increasing trans-
mission time intervals as system states approach equilibrium.
This paper extends the previous results of Hu and Lemmon (2014)
in three nontrivial aspects. First, this paper generalizes the VNS
structure in the prior work (Hu & Lemmon, 2014) that allows
the results of this paper to be applied to a variety of realistic
vehicular applications, such as the leader-follower mobile robotic
system in Tanner et al. (2004) and the air traffic control system
in Park et al. (2014) and Tomlin et al. (2000). Secondly, by relaxing
the uniformly Lipschitz assumption on the system dynamics in
our former results (Hu & Lemmon, 2014), this paper develops
a more general self-triggered and encoder/decoder scheme un-
der which four types of stochastic stability are ensured for VNS.
More importantly, this paper provides sufficient conditions un-
der which the VNS is almost surely asymptotically stable. To the
best of our knowledge, these are the first set of results in the
event-triggering/self-triggering community that consider almost
sure stability for networked control systems. Thirdly, extensive
simulation results are presented in this paper to further demon-
strate the benefits and advantages of our proposed self-triggered
scheme under bursty fading channels against traditional event-
triggered schemes, such as Tabuada (2007), Wang and Lemmon
(2009, 2011b).

Besides stochastic stability considered in this paper, (stochas-
tic) string stability is another challenging problem that needs
to be addressed to ensure ultimate success of VNS in the near
future. Though a significant amount of research efforts has been
devoted to this area over the past decades since the seminal
paper (Swaroop & Hedrick, 1996), few results have been de-
veloped to ensure stochastic string stability for VNS under the
state-dependent fading channels with few exceptions (Hu & Lem-
mon, 2015). The work in Hu and Lemmon (2015) has focused on
developing a distributed switching control strategy to address the
string stability issues rather than a self-triggered communication
strategy considered in this paper. Other research work, such
as Guo and Wang (2014) and Guo and Wen (2015), investigated
both control and communication policies to ensure string stability
for VNS under the assumption that fading channels are modeled
as independent Bernoulli processes or Markov chains. Such chan-
nel models cannot capture the state dependent features in V2V
communication systems as verified by recent experimental tests
and results, e.g., in Cheng et al. (2007), Mecklenbrauker et al.
(2011) and Molisch et al. (2009). The results of this paper can
be used as preliminary steps toward addressing string stability
issues in future work.

1.2. Related work and contributions

Research topics on event-based communication and control
have attracted a great deal of attention in both control and
communication communities (Hetel et al., 2017). It is beyond
the scope of this paper to do an exhaustive literature review on
this popular topic. Instead, this section will focus on discussing
the relationship and connection between our proposed work and
the existing research work on event/self triggered schemes under
unreliable communication. For those who are interested in a
complete review on self-triggered/event-triggered estimation and
control, please see Heemels et al. (2012) for more details.

The issues of stability and performance under event-based
strategies must be carefully examined in the presence of unreli-
able wireless communication. Prior work in Lehmann and Lunze
(2012), Wu et al. (2014) and Zhang et al. (2001) has shown that
the temporal communication failures caused by packet loss or
delay may lead to stability issues for networked control systems.
To address communication issues in networked control systems
with event-based strategies, a great deal of research work (Dolk
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et al,, 2017a; Dolk & Heemels, 2017; Guinaldo et al., 2012; Peng
& Yang, 2013; Wang & Lemmon, 2009, 2011b; Yu & Antsaklis,
2013) have been proposed to find sufficient conditions on the
maximum allowable number of successive packet drops (MANSD)
or maximum allowable delay, under which the system stability
and performance criteria, such as H,, (Peng & Yang, 2013) and
L, (Dolk et al., 2017a; Wang & Lemmon, 2009; Yu & Antsaklis,
2013), can be preserved under event/self-triggered strategies.

Two key assumptions for these prior results include that
(1) wireless communication channels must be sufficiently reliable
to strictly satisfy the MANSD or maximum allowable delay, and
(2) variations on wireless channels must be decoupled from dy-
namics of the vehicle systems. These assumptions, however, may
not hold for VNS because the state-dependent fading channels in
VNS may lead to a burst of packet losses with non-zero probabil-
ities, and are also highly dependent on the vehicle states, such
as inter-vehicle distance, velocities and heading angles (Akki,
1994; Cheng et al., 2007). Such a correlation between vehicle and
channel states clearly invalidates the use of separation principle
in event-triggered design, which is widely adopted in existing
literature (Borgers & Heemels, 2014; Li et al., 2016).

Another challenge of using event-based strategies under unre-
liable wireless communication is that a strictly positive minimum
inter-event time (MIET) may not be guaranteed if packet loss
or delay is present. As discussed in Mazo and Tabuada (2008),
violation of MIET leads to Zeno phenomenon that generates in-
finite transmissions or samplings within a finite time interval
and seriously hinders practical implementation of event-based
strategies. One approach to address the potential Zeno issues is to
combine time-triggered and event-triggered strategies such that
the event-triggered scheme is designed based on a predefined
equidistant time instances (e.g., periodic event-triggered scheme
proposed in Abdelrahim et al.,, 2016a, 2016b; Dolk et al., 2017a;
Heemels et al., 2013; Peng & Yang, 2013; Tallapragada & Chopra,
2012) and switched to a time-triggered scheme if packet loss or
delay occurs (Dolk et al., 2017b; Guinaldo et al., 2012; Lehmann
& Lunze, 2012). Although the MIET can be always guaranteed
to be positive under the combined framework of event-triggered
and time-triggered schemes, it is unclear, however, how efficient
and effective such combined approaches may be in deep fading
channels where a long string of consecutive packet loss may
occur.

Motivated by the challenges discussed above, the objective
of this paper is to design a new self-triggered communication
scheme that ensures both stability of VNS and efficient use
of communication resources by taking into account the state-
dependent and burstiness properties of wireless channels in VNS.
The key difference between the proposed self-triggered scheme
in this paper and the others in the literature, such as Anderson
et al. (2015), Gommans et al. (2014), Wang and Lemmon (2009)
lies in two aspects. First, by adopting a state-dependent bursty
fading channel model proposed in Hu and Lemmon (2013) and
Hu and Lemmon (2015), this paper explicitly incorporates the
knowledge of correlations between communication channel and
vehicle states into the design process, which allows the self-
triggered scheme to adaptively adjust the transmission frequency
in response to any changes in channel conditions. This paper also
shows that the inclusion of such correlation knowledge from the
channel model is essential for the proposed self-triggered scheme
to achieve efficient utilization of communication bandwidth. Sec-
ond, unlike the combined framework that relies on a pre-selected
minimum time interval to ensure a positive MIET, the proposed
self-triggered scheme guarantees Zeno-free (finite number of
transmissions or samplings over a finite time interval) transmis-
sion behavior in the presence of bursty-fading channels while
still preserving specified system performance. In addition, this
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Fig. 1. Self-triggered vehicular networked system.

paper demonstrates communication efficiency of the proposed
self-triggered scheme through extensive simulation results that
compare communication performance under our proposed self-
triggered scheme, such as minimum transmission time interval
and average transmission time interval, against those under other
existing event-based strategies (Li et al.,, 2017; Wang & Lemmon,
2011b).

The rest of this paper is organized as follows: Section 2 de-
scribes models of vehicle dynamics, wireless communication and
control systems. Based on system models presented in Section 2,
Section 3 provides formal definitions for stochastic hybrid system
framework as well as stochastic stability. Section 4 discusses nec-
essary assumptions needed to establish main results of this paper.
With the assumptions stated in Section 4, Section 5 presents
main results of this paper. The main results are applied to a
leader-follower control example introduced in Section 2.5 and
are verified through simulation results provided in Section 6.
Section 7 concludes the paper.

Notations. Let R" denote a n-dimensional Euclidean vector space,
and R4, Z, denote nonnegative reals and integers respectively.
The infinity norm of a vector x € R" is denoted by |x| :=
Maxi<i<p |X;| Where x; is the ith element of the vector x. Consider
a real valued function x(-) : Ry — R", x(t) denotes the value
that function x(-) takes at time t € R . The left limit value of x at
time t is denoted by x(t ™). Given a time interval [t1, t;) with t; <
t; € R4, the essential supremum of the function x(t) over a time
interval [t1, tp) is denoted as [X(t)ly, 1) = €SSSUP;e(ry,ey) IX(E)I]
where ||x(t)|| is the Euclidean norm of function x at time t. The
function x(t) is essentially bounded if there exists a positive real
M < oo such that |x(t)| . = esssup,.q [|x(t)]| < M.

A function «(-) : Ry — Ry is a class K function if it is
continuous and strictly increasing, and «(0) = 0. «(t) is a class
Koo function if it is class K and radially unbounded. A function
B(-,-) : Ry x Ry — Ry is a class KL function if B(-, t) is a class
K~ function for each fixed t € R, and f(s,t) — 0 for each
s € Ry ast — +o00. B(-,-) is an exp-KL function if there exist
positive reals ¢; € Ry, i = 1, 2 such that (s, t) = c; exp(—cyt)s.

2. System description

Fig. 1 shows a self-triggered control framework for a vehicular
networked system that consists of blocks of Vehicular Dynamics,
Encoder/Transmitter, Event generator, State-dependent fading chan-
nel and Decoder/Controller. The following subsections focus on the
detailed descriptions of these blocks.
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2.1. Vehicular dynamics

Consider that the dynamics of a vehicular system satisfy the
following nonlinear ODE,

k:f(X» u7w)7 X(O):XO (1)

where x € R" is the system state that may represent inter-
vehicle distance and relative bearing angles (see Section 2.5 in
this paper or Hu & Lemmon, 2014), u € R™ is control input and
w € R’ denotes external disturbance that is essentially ultimately
bounded, i.e. 3W > 0, s.t. |[w|, < W. The vector field f(-, -, -) :
R" x R™ x R — R" is a locally Lipschitz function.

The control objective for VNS is to track predefined set-points
in the presence of bursty fading channels. The tracking per-
formance is investigated under two communication constraints:
(1) State measurements x(t) are taken and only available to
controller at discrete time instants ty € Rsg, k € Zso; (2) The
sampled state measurements x(t;) used for tracking control, are
encoded by a finite number of symbols and are transmitted over
a fading channel with time varying data rates.

2.2. Event-based communication: Encoder/transmitter and event
generator

The continuous vehicular state x(t) in Fig. 1 is sampled at
discrete time instants {t;};°, with t;y < t;4q and t;y € R4, Vk €
Z,. Such strictly increasing time instants {t};>, are generated
by an Event generator, which decides when to transmit state
information. The sampled state x(t;) at time instant t; is quantized
by an Encoder with a fixed number of R blocks of bits {b;(k) 521.
Each block consists of n binary bits and is used to encode the
state information of vehicle. Thus, the continuous vehicular state
at each discrete time instant f; will be encoded and represented
by one of the 2™ finite symbols. We assume that the symbol
with R blocks of bits is assembled into R number of small packets
with a packet length n, and sequentially transmitted across a
wireless fading channel. In this paper, we assume that the time
spent on quantization and packet-assembly is sufficiently small
and its impact on system stability and performance can be safely
neglected.’

Sequential Transmission in VNS. Unlike most stationary or
slow varying wireless network, wireless channels in VNS often
exhibit much faster variations due to high motions in vehicular
transceivers (Cheng et al,, 2007). Recent work has shown that
vehicular wireless channels, such as V2V communication (Pa-
padimitratos et al., 2009), are subject to small coherence time,
which makes the transmission of a large size of packets fairly
challenging. Motivated by this challenge, a sequential communi-
cation scheme is adopted in this paper to sequentially transmit
prioritized small packets over wireless channels (Hu & Lemmon,
2015; Papadimitratos et al., 2009). Specifically, the sequential
transmission scheme ensures that packets with the highest pri-
ority (most significant bits) are received first (Martins et al.,
2006). In comparison to the conventional transmission policy that
wraps all information into one single big packet, the sequential
transmission protocol with small prioritized packets is able to
recover the transmitted information with a reasonable accuracy
in the presence of bursty fading channels.

1 The time spent on quantization and packet-assembly is often related to
packet processing time. It is well studied that the packet processing time is
often of the order of microseconds or less (Kurose, 2005), and is thus negligible
compared to the transmission time interval considered in this paper.
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2.3. State-dependent V2V fading channel

The number of successfully received packets Ry at each trans-
mission time instant t; randomly changes due to channel fad-
ing. This paper adopts a state-dependent exponential bounded
burstiness (SD-EBB) model to characterize stochastic variations
on R, (Hu & Lemmon, 2013). As shown by our recent work (Hu
& Lemmon, 2015), the SD-EBB model was able to describe a wide
range of fading channels including i.i.d. and Markov chain chan-
nels. More importantly, the SD-EBB model explicitly characterizes
the probability bound on channel burstiness and its dependency
on vehicle states, which has been proven to be essential for
system stability (Hu & Lemmon, 2013, 2015). To be specific, let
h(-) and y(-) denote continuous, nonnegative, monotone decreas-
ing functions from R, to R,. Assume that the probability of
successfully receiving R packets at time instant t; satisfies

Pr{Ry < h(|x(t)]) — 0} < e~7(X®7 2)

with o € [0, h(|x(ty)|)]. The function h(|x(t;)|) in SD-EBB model
is a state-dependent threshold that separates the low bit-rate
region from the high bit rate region in the channel state space.
It monotonically decreases as vehicle states (e.g. inter-vehicle
separation and relative bearing angle) deviates from the origin.
The state-dependent function h(|x(t;)|) models the impact of large
scale fading caused by path loss and directional antenna gain on
data rates (Choudhury et al., 2002; Tse & Viswanath, 2005). The
variable o € [0, h(|x(t,)|)] is the dropout burst length in the low
bit-rate region. Thus, the left hand side of the SD-EBB model char-
acterizes the probability of fading channels exhibiting a bursty
packet loss with a burst length o. The right-hand side of the SB-
EBB model shows that such a bursty probability is exponentially
bounded. The function y(|x(ty)|) is a state-dependent exponent in
the probability bound that characterizes how fast the probability
of a bursty dropout decays as a function of dropout burst length
within the low bit rate region.

The SD-EBB model can be used in a variety of vehicular ap-
plications, such as leader-follower formation control for ground
transportation system (Cheng et al, 2007), air transportation
systems (Park et al., 2014) and autonomous underwater vehi-
cles (Akyildiz et al., 2005), where large inter-vehicle distance
and vehicular velocities cause low data rate and more likely lead
to deep fades, or in ad hoc wireless networks with directional
antennae where changes in relative bearing angles between the
transmitter and receiver may cause a deep fade. Example 1 shows
how the SD-EBB model is obtained and related to the notion of
outage probability which is well-known performance metric for
fading channels.

Example 1. Let X;(k) € {0, 1} denote a binary random variable
at time instant t;, with Xj(k) = 1 representing the successful
reception of the ith block of bits (packet) and X;(k) = 0 otherwise,
then R, = Zﬁ;x{k). For a given transmission power p and
threshold yg, one has

Pr{X;(k) = 1} = 1 — Pr{SNR < yp}
1= Pr{pg?/(9(x(t))No) < ¥o}
@ (X(ty)), (3)

where Ny is the noise power, g is a random variable that char-
acterizes the small scale fading, and ¥(x(t;)) is a continuous,
positive and monotonically increasing function that character-
izes path loss and directional antenna gain in wireless channels,
e.g., ¥(x) = cosa/L" with path loss exponent v € [2,4] and
vehicle state x = [L; o] where L is the distance between trans-
mitter and receiver, and « is the bearing angle of directional
antenna (Balanis, 2016; Stiiber, 2011). @ (|x(tx)|) is the successful

>
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reception probability for the ith block of bits (packet) whose value
increases as the vehicle state x moves toward the origin. With
the probability in (3), one can obtain the SD-EBB characterization
in (2) by using the Chernoff inequality (Hu & Lemmon, 2015).
The selection of the functions h(-) and y(-) depends on fading
characteristics. Take the i.i.d. fading channel as an example with
the state x = [L; o] (L is the inter-vehicle distance and « is
a bearing angle of the directional antenna), suppose that the
channel gain follows a Raleigh distribution (Goldsmith & Chua,
1997), then the functions take the form of h(x) = cle*Qﬁ
and y(x) = c where the coefficients ¢y, c;, ¢ > 0 are constant
communication system parameters. Our prior results (please see
Proof of Lemma II.3 in Hu and Lemmon (2015) for more details)
also show how to select the function forms of h(-) and y(-) for
the case of Markov fading channels.

2.4. Remote tracking control system under event-based dynamic
quantization

The control objective for VNS is to track predefined set-points.
Let x! € R" denote a desired constant set-point that is known to
both encoder and decoder ahead of time. Let X denote an estimate
of the vehicle state and X 2 & — x¢ represent an estimate of the
tracking state. In betwegn the transmission time instants t;, k €
Z=o, the state estimate x and control action u(t) are generated as
follows,

X = f(x + 2%, k%), 0)
vt € [t, 1) (4)

where «(-) R" — R™ is a nominal feedback control law
ensuring that the state estimate x in the tracking control system
(4) asymptotically converges to zero. At each transmission time
instant ¢y, the state estimate R(t,:“ ) is reset to be a new value
obtained from a dynamic quantizer. The dynamic quantizer, in
the Encoder/Decoder block is defined by three parameters, R, €
Z>o (a random variable that defines the number of blocks of
bits received at time instant t;), X(t;) (state estimate at time
instant t;) and U(ty) (an auxiliary variable that defines the size of
quantization regions at time instant ¢). Consider a box dynamic
quantizer and let x(t;) denote the center of a hypercubic box with
an edge length 2U(ty), the quantizer divides the hypercubic box
into 2" equal smaller sub-boxes after receiving R, number of
blocks of bits. The sub-box that contains the true value of vehicle
state x(ty) is encoded by {b;(k) fﬁo‘ Let Ry denote a set of symbols
that are represented by the R, number of binary bits, {b,-(k)}fio
and gz : Ry X Ry x R" x Ry — R" denote a function that
updates the state estimate after receiving a symbol {bi(k)}ﬁo. Let
Tk £ ty — ty—1 denote a time interval for the kth transmission and
let gy : Ry x R" x Ry — R, denote a function that updates
the size of quantization regions. Note that functions gz, gy and
time intervals {Ty}xez, are parameters that need to be designed to
assure system stability. The methods to design these parameters
are discussed in Section 5. Thus, the new state estimate X(t,:r )
after receiving a symbol {bi(k)}fio can be updated according to
the following equations

u=«(x),

xth) = gz(rk, {bik),, X(t), U(tk)>, (5)

U(t") = U(te)2 ™ (6)

2 As discussed in prior work (Tatikonda & Mitter, 2004; Wong & Brockett,
1999) the use of dynamic quantization assures that the system state can be accu-
rately observed asymptotically. Such asymptotic performance plays an important
role of achieving almost sure asymptotic stability under fading channels.
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Follower

Fig. 2. Leader-follower formation control.

with %(tk+ ) being the center of a new hypercubic box with an
updated edge length 2U(t,<+ ). Let T, £ t; — ty_; denote a time
interval for the kth transmission. Until the (k+ 1)th transmission,
i.e,, time instant t,q, the size of a quantization region U(ty,1) is

propagated according to

U(tir1) = gu(Ter, X(6), U(EH)). 7)

and then the procedure of (5)-(7) is repeated.

Since both encoder and decoder use Egs. (5)-(7) to update the
pair {x(t,), U(t;")} in the dynamic quantizer, it is important to
ensure that the encoder and decoder are synchronized with the
number of bits that are successfully received. To achieve that, this
paper assumes that there exists a noiseless feedback channel that
reliably delivers acknowledge signals from decoder to encoder to
indicate a successful reception of a block of bits.

2.5. Leader-follower formation control

The system model considered in Eq. (1) can be illustrated via
a leader-follower control example shown in Fig. 2. The leader-
follower example will also be used as a simulation example in
Section 6. The kinematic model for both vehicles in the leader-
follower example is provided as follows:

Pui = viCOS6;, Pyi=v;siné, 6 = w;. (8)

where py;, pyi, i = 1, 2 are the horizontal and vertical positions
of leader (i = 1) and follower (i = 2), respectively, and 6;,i = 1, 2
are orientations of leader and follower relative to the horizon.
Based on the kinematic model in (8), the leader-follower system
in Fig. 2 satisfies the following ODE (Hu & Lemmon, 2015),

I: =

d =

V1 COS & — V3 COS ¢ — dw; Sin¢

1 : : 9)
7 (—vrsina — vy sing + dw; cos @) + w;
where d is the length from the center of vehicle to its front. v,
and w are leader’s speed and angular velocity, while v, and w,
are follower’s speed and angular velocity. L is the inter-vehicle
distance that is measurable by both leader and follower, o and ¢
are relative bearing angles of leader to follower and follower to
leader respectively. It is assumed that « is only measurable to the
leader, and ¢ is available for the follower. What is not directly
known to the follower is the bearing angle «. Therefore, the
leader-follower pair characterizes a vehicular networked system
that requires the leader to transmit its bearing angle « to the
follower over a wireless communication channel. The wireless
channel is accessed by a directional antenna that is mounted at
the back of the leader where the channel exhibits exponential
burstiness and satisfies the state dependent EBB characterization
in (2) with (L, ) as the vehicle state x. As shown in Fig. 2, the
directional antenna has a radiation range from —% <« < 7 out
of which the communication channel is assumed to be zero.
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With limited information on «, the control objective is to have
the follower adjust its speed v, and angular velocity w; to achieve
desired inter-vehicle separation L; and bearing angle «y almost
surely in the presence of deep fades. A standard input to state
feedback linearization method is used to generate control inputs
(v2, wy) over each transmission time interval [t, tyi1),

v | —cos¢ —Lsing Ki(Lg — L)
[ w2 ]_ —m Leosg ([ Kolog — @) }

cose@ O V1
- 1llo

where (K;, K, ) are the controller gains. & represents the predic-
tion of bearing angle over [ty, ty;+1) that satisfies

a(te) = a’(t) (11)

with the bearing angle estimate «%(t;) as an initial value.

let g, : Ry — Ry and g, : R — R denote functions
that characterize how the leader changes its speed and angular
velocity respectively, in response to inter-vehicle distance L and
relative bearing angle «. The real values of speed v; and angular
velocity w; can then be modeled by adding essentially bounded
noise. Mathematically, one has v; = g,(L)+n; and w1 = g,(a) +
ny with |nj|l < M,i = 1,2. With the controller in (10) and
(11), the closed-loop dynamics of inter-vehicle distance L and
bearing angle « therefore satisfy following differential equations
over time interval [t, tgi1).

& = Ky(og — &),

L = Ki(lg—L)~+ (g,(L)+ n1)cosa — cos&)
a = w(sin& —sina) + K, (g — &) (12)
+gw(a) +ny — ga)(&)

for all k € Z... The dynamic model presented in (12) will be used
to simulate leader-follower networked system in Section 6.

3. Problem formulation

Let x(t) = x(t) — x? denote the tracking error and e(t) 2 x(t) —
(X(t) — x4) = x(t) — X(t) denote the estimation error induced by
bursty fading channels. The closed-loop dynamics of VNS defined
in (1), (2), (4) and (5)-(7) can be reformulated as below,

X(t) = fi(®, e, w),  Vt € (b, tiy) (13a)
é(t) = fe(x, e, w), Vt € (ty, tys1) (13b)
U(ticr1) = fuTir, Ri, X(t), e(t), U(t)) (13c)
e(ty) = he(Tk, Ry, X(ty), e(tx), U(tx)) (13d)
U(ty) = hy(Re, U(t)) (13e)
where
feX, e, w) 2 f(X+ x4, k(X — e), w)

>

fu(T,R, X, eT, gu(T, % — et + x4, 27R0)
ho(T,R,X,e,U) 2 X — ge(T,R,x —e + x%, U)
hy(R,U) 2 27Ry.

)

fe(X, e, w) £ fz(x, e, w) — f(x—e—l—xd k(x —e),0)
U)
)

Eqgs. (13a) and (13b) represent continuous dynamics of the closed-
loop VNS, while Eq. (13c) characterizes a controlled
stochastic process. Eqs. (13d) and (13e) represent the stochas-
tic jumps for continuous and discrete states, respectively. The
randomness of this stochastic hybrid systems comes from the
stochastic process {Ry}p2, that is assumed to satisfy the SD-EBB
model in (2).
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Under the closed-loop VNS framework, the objective of this
paper is to design an event based communication scheme to
ensure stochastic stability for VNSs in (13). In particular, this
paper considers both sample-based and mean stability. Sample-
based stability emphasizes the behavior of almost all sample
paths toward or around the origin while mean stability stresses
system behavior in expectation. Besides stochastic stability, this
paper also requires that the designed event-based communi-
cation scheme must ensure Zeno-free transmission. The formal
definitions of Zeno-free transmissions and stochastic stability are
provided as below,

Definition 2 (Zeno-free Transmission). A transmission sequence
= {tk}k’\’:0 with N € Z, is said to be Zeno-free if VO < k < N—1,
there always exists a > 0 such that tp 1 — t > 7.

Definition 3 (Stochastic Stability Kozin, 1969). Consider a closed-
loop VNS framework defined in (13), and let X, 2 x(0) — x¢ € R"
denote the initial state,

E1 The system in (13) with w = 0 is asymptotically stable in
expectation with respect to origin, if for any given ¢ > 0,
there exists §(¢) such that |Xy| < § implies

E{|x(t)|} <€ (14)

and lim;_. o E{|X(t)|} = 0.

E2 The system in (13) with [w|,_ < M is uniformly asymptot-
ically bounded in expectation, if for a given (A(M), Ao(M))
with Ag, A > 0, there exists a ¢(M, Ag) > 0 such that for
x(0)| < Ao,

E{X(t)]} < €(M, Ag) Vt € Rxg (15)

and lim;_. o E{|X(t)|} < A(M).

P1 The system in (13) with w = 0 is almost surely asymptotically
stable with respect to origin, if for any given ¢, ¢’ > 0, there
exists 8(e, €') such that |xg| < & implies

Pr{sup [x(t)| > €'} <€ (16)
t>0

and Pr{lim,_, sup;- |X(t)|> €'} = 0.

P2 The system in (13) with |w|, < M is practically stable in
probability if for a given (A(M), Ag(M)) with 0 < Ag < A
and for any €’ > 0, there exists a ¢(M, A) > 0 such that for

[X(0)] < Ao,
lim Pr{|x(t)] > A + €'} < e(M, A). (17)
t—+00

Remark 1. Among all four definitions of stochastic stability,

almost sure asymptotic stability is the strongest one that requires
almost all samples of the system trajectories defined in (13)
asymptotically converge to origin with probability one. The no-
tion of mean stability (E1) is weaker because it only requires that
the expected value of system trajectory’s magnitude asymptoti-
cally goes to zero. In general, mean stability does not imply almost
sure asymptotic stability while the latter implies the former. For
more discussions on stochastic stability, please refer to Kozin
(1969).

Remark 2. If a non-vanishing but bounded external disturbance
is present in VNS, asymptotic stability (i.e., E1 and P1) cannot
be guaranteed. The notion of practical stability defined in E2
and P2 is therefore introduced to characterize system behavior
around a compact set in expectation or in probability. Specifically,
uniformly asymptotic boundedness in expectation (E2) requires that
the expectation of a norm of system states is uniformly bounded
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and asymptotically converges to a constant that depends on the
magnitude of external disturbance. The notion of practical sta-
bility in probability requires that the probability (P2) of system
trajectories leaving a compact set is bounded from above by a
function that depends on both the magnitude of external distur-
bance and the size of compact set. By Markov’s Inequality, it is
straightforward to show that E2 implies P2.

With VNS system framework and notions of stochastic sta-
bility defined, the problem of this paper is formally stated as
below

Problem 4. Consider a closed-loop VNS formulated in (13), the
problem is to design functions gg and gy, and determine the trans-
mission time intervals {Ty}xez, under which the VNS satisfies the
stochastic stability notions defined in Definition 3.

4. Assumptions

This section presents two main assumptions that are needed
to establish our main results.

Assumption 5. Consider a closed-loop VNS defined in (13), the
subsystem x defined in (13a) is input-to-state stable (ISS) from x
to estimation error e and external disturbance w. In particular,
assume that there exist a concave class K£ function (-, -), a class
K function x(-) and a positive constant x; > 0 such that

Ix(0)] = B(IX(to)l, t — to) + X1(lelieg.1) + xalwliey.ry) (18)

The subsystem x is exponentially input-to-state stable (Exp-ISS) if
B(-,-) is an exp-K L and x(-) is a linear function.

Remark 3. The ISS assumption is used to ensure stability in
expectation (E1 and E2 in Definition 3) while the assumption
of exp-ISS is needed for almost sure asymptotic stability (P1 in
Definition 3) .

Assumption 6. Suppose there exist 0 < wq < wy, Ly, L., L, € Ry
and a nonnegative definite function W(e) such that the subsystem
e in Eq. (13b) satisfies

wile] < W(e) < wsle|

VW(elfe(x, e, w) < LeW(e) + Li|x| + Ly |w]

(19a)
(19b)

Remark 4. Assumption 6 is equivalent to the Exp-ISS assumption
for subsystem e with respect to x and w (NeSi¢ & Teel, 2004). This
assumption is weaker than the uniformly Lipschitz assumption
stated in Hu and Lemmon (2014) since the latter is a special
case (Ly = 0) of the former. To see this, the uniformly Lips-
chitz assumption suggests that there exists a Ly > 0 such that
If(x, u, w) — f(&,u,0)] < Le(]x—X| + |w|),V,x,X € £, where
§2y is a compact set. This uniformly Lipschitz assumption on the
vector field f implies that % < Lrle| + L¢|w| which is a special
case of (19b) with L, = 0.

5. Main results

This section presents the development of a self-triggered com-
munication scheme to ensure stochastic stability for VNS defined
in (13). In particular, the proposed self-triggered transmission
scheme generates a (sporadic) transmission sequence {t};2, un-
der which the VNS in (13) is either asymptotically stable in ex-
pectation (Theorem 8) or almost surely asymptotically stable (The-
orem 9) without external disturbances (w = 0), and either
uniformly asymptotically bounded in expectation (Theorem 10) or
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practically stable in probability (Theorem 11) with bounded exter-
nal disturbances. Under the self-triggered transmission scheme,
the second main result (Proposition 12) of this paper is to con-
struct a feasible event-based encoder/decoder pair (i.e., function
g, in (5) and gy in (7)) in which the event-based dynamic quan-
tizer does not saturate at any transmission time instant, that
is, system states in (13) are guaranteed to be captured by the
proposed event-based encoder/decoder.

The following technical lemma is needed to prove the main
results by showing that the expectation of quantization resolution
E(27R) can be bounded by a function of the system state under
a state-dependent bursty fading channel.

Lemma 7 (Hu & Lemmon, 2014). Consider a SD-EBB channel model
in (2), define a function G(s) = e~ "Y1+ h(s)y(s)), s € Ry, then

E(Q2 1) < G(Ix(k + 1)) (20)

and G(s) € [0,1],VYs € R, is a strictly increasing function with
G(s) > 0 < h(s)y(s) > +oocand G(s) > 1 <= h(s)y(s)
— 0.

Proof. The proof is omitted due to the space limitation. Please
refer to Hu and Lemmon (2014) for the details of the proof.

Remark 5. The function G(-) is directly related to functions h(-)
and y(-) in the SD-EBB model and can therefore be viewed as a
priori knowledge of the state-dependent fading channel.

Inequality (20) implies that quantization error decreases as the
system state x approaches its origin. It is easy to see that G(|x|) —
1 as h(|x|) — 0, which corresponds to the scenario where vehicles
are far apart and beyond communication range. This paper will
focus on the situation when vehicles are within communication
range and the SD-EBB model provides a reasonable bound on
channel conditions. In particular, let 2, = {x € ]R”]Ix| <
G~ Y(w1/wy)} with wy > wq > 0 defined in Assumption 6, denote
the region that communications between vehicles are available.
Since G(-) € [0, 1] is a continuous and strictly monotonically
increasing function, the inverse of G(-) exists and is also contin-
uous, strictly monotonically increasing. Thus, £2, is a nonempty
and open set and G(|x|) < 1,Vx € £2. The stability results in
Section 5.1 will be examined under the situation that vehicles are
within the communication range, i.e., x € £2,.

5.1. Self-triggering to achieve stochastic stability

A self-triggered scheme is developed in this section to ensure
stochastic stability defined in Definition 3. With Assumptions 5
and 6, this section first presents two theorems showing that the
VNS defined in (13) can asymptotically track pre-defined set-
points in expectation (Theorem 8) under the ISS assumption or
almost surely (Theorem 9) under the exp-ISS assumption without
external disturbances, i.e., w = 0.

Theorem 8. Consider a closed-loop VNS in (13) without external
disturbance (w = 0) and a SD-EBB channel model in (2), suppose
the ISS assumptions in Assumptions 5 and 6 hold, the system is
asymptotically stable in expectation with respect to the origin, if the
transmission time instants {t,} are generated by

P RN et ria oLl
k+1 = e T — H( " =
Le S2GUx(t)]) + 2L

Lewq

). 1)

within the communication range, i.e., X € 2. FurthermoreFur-
thermore, if the vehicle system is within the communication range,
i.e., X € $2y there exists A > 0 such that the transmission time
interval ty 1 — ty > A,Vk € Z,, ie. the self triggered scheme in
(21) assures Zeno-free behavior.
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Proof. See the Appendix.

Remark 6. The transmission time intervals {T;};2, with T, =
tk+1 — tr generated by (21) monotonically increase when system
states, such as inter-vehicle distance and bearing angles, move
toward the origin. This property implies that VNS under the pro-
posed self-triggered scheme can transmit less frequently when
a good channel condition is guaranteed by either reducing inter-
vehicle distance or aligning directional antennae mounted in both
vehicles. The function G in (21) defined in Lemma 7 quantitatively
assesses and predicts how channel conditions vary as a function
of system states. Such quantitative predictions on channel con-
ditions are used in the design of a self triggered communication
scheme to ensure an efficient utilization of channel bandwidth by
adaptively adjusting its transmission frequency.

Theorem 9. Suppose all conditions and assumptions in Theorem 8
hold, and the subsystem X is Exp-ISS (i.e., Exp-ISS in Assumption 5)
holds, the VNS in (13) without external disturbance is almost surely
asymptotically stable with respect to origin if the transmission time
sequence is recursively generated by (21). The non-Zeno transmis-
sion is guaranteed if vehicles are within the communication range
(ie, x € §2y).

Proof. The proof is provided in the Appendix.

Since the strong notion of asymptotic stability cannot be guar-
anteed in the presence of non-vanishing disturbance, this section
shows that weak notions of uniformly asymptotic boundedness in
expectation (E2) and practical stability in probability (P2) can be
achieved under the self triggered scheme defined in (21).

Theorem 10. Consider the VNS defined in (13) with essentially
bounded external disturbance |w|, < M, and suppose the fading
channel satisfies the SD-EBB characterization defined in (2). Suppose
the ISS assumption in Assumptions 5 and 6 holds, if the transmission
time sequence {t} is generated by (21), then the system in (13) is
uniformly asymptotically bounded in expectation (E2).

Proof. See the Appendix.

Theorem 11. Suppose the hypothesis in Theorem 10 holds, then
the system in (13) is practically stable in probability (P2). More
specifically, there exists a class KL function B.(-, -) such that

Jim Pr([R(t)| = A+ ¢} < B(M, A) (22)

Proof. See the Appendix.

Remark 7. The probability bound in (22) measures the safety
level as a function of the size of a safe region A as well as the
magnitude of external disturbance M. This safety metric provides
a trade-off between the choices of A and M, which shows that
the system is more likely to be safe with a smaller magnitude of
external disturbance M and a larger safety region A.

5.2. Event-based encoder/decoder design

The stability results hold under the hypothesis that system
states X(tx) at each time instant t, Yk € Zso must be captured
by the encoder and decoder defined in (5)-(7) with parame-
ters (R(t,:r ), U(tk+ ) representing the centroid and size of dynamic
quantizer respectively. This hypothesis is proved in the following
proposition by showing that an Encoder/Decoder pair can be de-
signed to recursively construct and synchronize the parameters

2 . . . . .. 2+
(Ax(t,f), U(t,f)) as time increases. For notation simplicity, let x, :=
X(t+) and U = U().
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Proposition 12. Suppose Assumptions 5 and 6 hold, and let {t;};
denote a transmission time sequence generated by (21) and T, =
ter1 — tr. Suppose the initial value of the pair (§0 , U(}L ) and the
number of successfully received bits Ry, Vk € Z=, are known to the
Encoder and Decoder l:é/ noiseless feedback channels, if the sequence

of information pairs {x, , U,j},j’; is constructed by

LeTy _ 1

2 Riet L, e ~t
Ut = < 2 el 1 AR

Nk+1 V1 vile

+ LwM + LXXZ(M) ))s (233)
~+ n Rk le+1 ~+
Xy = Ul 28 Z Eq(bj(k + 1)) + DX, Ti). (23b)

=1

where np = 1 — %(emk — 1) > 0, and &(s, t) is the solution to

the following differential equation
X =[x 0,0), X0)=s. (24)

where f(-, -, -) is defined in (13a) and q(-) : {0, 1}" — {—1,1}"
is a function that maps the binary value of the bit vector to a n
dimensional vector whose elements are £1, i.e.,

{1 if the ith bit in bit-vector b is 1,

(h) =
4i(b) —1 otherwise.

then the estimation error e(k) = X(ty) — ;?,:r is bounded as
— 2+
[x(t) — X, | < U (25)

forall k € Zs.
Proof. See the Appendix.

Remark 8. 71, > 0 holds Vk € Z if the self-triggered scheme in
(21) is adopted. The recursive functions in (23a) and (23b) cor-
respond to the Encoder/Decoder structure defined in (5)-(7). The
Encoder/Decoder design in (23a) and (23b) generalizes the result
in Hu and Lemmon (2014). One can recover the Encoder/Decoder
structure in Hu and Lemmon (2014) by setting Ly = 0. This
generalization is possible due to Assumption 6 which is weaker
than the uniformly Lipschitz assumption in Hu and Lemmon
(2014).

Remark 9. Eq. (23b) is a recursive rule updating the centroid
of a dynamical uniform quantizer (Martins et al., 2006). The
structure of solution @(s, t) can be determined offline by solving
the nonlinear differential equation (24) (nominal system without
considering the network effect) with an initial value. In general,
obtaining an analytic solution for a nonlinear ODE (24) is difficult,
but one can obtain approximation on the solution by integrating

the function f; from ¢t to t; + Ty, i.e., q§(§;, Ty) = ﬁ(tk +Ty) =
X(t5) + fi"”" fe(X(t), 0, 0)dt. However, the analytic solution can
be obtained if the function f is linear, e.g., f(x, 0, 0) = Ax, then
one has @(x, Ty) = exp(ATy ).

6. Simulation results

This section presents simulation results examining advantages
of the proposed self triggered scheme over traditional event trig-
gered schemes in the leader-follower example. In the simulation,
the mathematical model presented in (12) is used to simulate
dynamics of the leader-follower system.

A two-state Markov chain model is used to simulate the fad-
ing channel between the leader and the follower. The two-state
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Markov chain model has one state representing the good chan-
nel state and the other representing the bad channel state. The
good channel state means that a transmitted bit is successfully
received, while the bad state means that a transmitted bit is
lost. Following the two-state Markov chain model in Zhang and
Kassam (1999), this simulation uses p;; = 0.08@ to represent
the transition probability from a good state to a bad state, and
P21 = 0.08\/§ % to represent the transition probability

from a bad state to a good state, where r = Céw and p is the
transmission power. It is clear that the transition matrix for this
two-state Markov chain model is a function of vehicular states (L
and «) for a fixed transmission power p. Following the results

in Hu and Lemmon (2015), the SD-EBB functions used in this
simulation are h(e, L) = 0.8Re O pesa and yla, L) = 822,
with R = 4 as the total number of bits transmitted over each
time interval and p = 8 as the transmission power level. The
initial inter-vehicle distance and bearing angle are L(0) = 15 m
and «(0) = -—30°. The controller gains are K, = K, = 1.
Let the leader’s speed v; and angular velocity w; be v; = 0.8L
and w; = 2.2¢, respectively. The theoretical results are verified
based on a Monte Carlo simulation method under which each
simulation example is run 100 times over a time interval from
0to 10 s.

The first simulation is to verify almost surely asymptotic sta-
bility of the leader-follower example under the proposed self-
triggered scheme in (21) (Theorem 9). The upper plots in Fig. 3
show the maximum (red dashed-dot lines) and minimum (blue
dashed lines) value of inter-vehicle distance L and bearing angle
« over all the 100 samples from 0 to 10 s. From these plots,
one can easily see that the maximum and minimum values of
the system states asymptotically converge to desired set-points
Ly = 4 (m) and oy = 20° as time increases. This is the
behavior that one would expect if a system is almost surely
asymptotically stable. The lower plots in Fig. 3 show one sample
of the inter-transmission time interval T (left plot) and the
number of received bits R (right plot) that are used to achieve
system performance shown in the upper plots. The transmission
time interval Ty is generated by (21). It is clear from the plots
that the self-triggered transmission policy starts with a small T}
when the leader-follower communication begins in a bad channel
region due to a large inter-vehicle distance and bearing angle.
As the leader-follower system gradually approaches its desired
formation, the self-triggered communication scheme adaptively
increases the inter-transmission time interval to ensure efficient
use of communication bandwidth.

The second simulation is to compare performance of the pro-
posed self-triggered scheme in (21) against conventional event-
triggered scheme in Wang and Lemmon (2011a). For the
purpose of comparison, a state dependent event-triggered scheme
in Wang and Lemmon (2011a) was used to trigger the transmis-
sion whenever the estimation error exceeded a state dependent
threshold. Let |e(t)] = |a(t) —a(t)] < 0.1591|[a(t) — og, L(t)
— Lg]| be the triggering condition, and the threshold was selected
to assure the same convergent performance as our self-triggered
method but in the absence of channel fading.

Fig. 4 shows the comparison of both transmission time interval
and tracking performance for the leader-follower example under
proposed self-triggered scheme (marked by red squares) in (21)
and event-triggered scheme (marked by blue diamonds) in Wang
and Lemmon (2011a) over a wide range of formations, from
ag = 0° to ag = 50°. The tracking performance is compared by
calculating the expected® average tracking error of inter-vehicle

3 The expectation is approximated by the average of 100 sample runs,
. 10 10
ie. ]E% Jo () = xfidt & 335 3190 & [ |xi(t) — x?|dt where x = [L; o] and x;
is the ith sample run.
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distance and bearing angles over a time interval [0, 10]. The
bottom plots of Fig. 4 show that both triggering schemes achieve
quite similar tracking performance for inter-vehicle distance L
and bearing angle « over all desired formations. The results in
the top left plot of Fig. 4 show that the minimum transmission
time interval Tp;, that is used to achieve the tracking perfor-
mance under our proposed self-triggered scheme (around Ty, =
0.04 s) is approximately 40 times larger than that generated
by the event-triggered scheme (T;,;; = 0.001 s). Note that
the minimum transmission time interval determines the channel
bandwidth that is actually needed in vehicular networks. This
observation implies that our proposed self-triggered scheme al-
lows much more efficient use of communication bandwidth than
the traditional event-triggered methods by providing much larger
minimum transmission time interval. The comparison of average
transmission time intervals under both triggered schemes is pro-
vided in the top-right plot of Fig. 4, which shows that the average
interval generated by self-triggered scheme is relatively close to
that of the event-triggered one when desired formations are posi-
tioned in good channel regions, such as ag = 0°, 10°, 20°. When
the desired formation configuration approaches bad channel re-
gions, such as og = 30°,40°, 50°, our proposed self-triggered
scheme reacts to those formation changes by adaptively adjusting
the average transmission time intervals. As shown in the top right
plot of Fig. 4, the average transmission time interval decreases to
ensure sufficient information updates as the desired formations
approach bad channel regions.

Fig. 5 shows the probability distribution of the transmission
interval over 100 runs under the proposed self-triggered scheme
(top plot) and traditional event-triggered scheme in Wang and
Lemmon (2011a) (bottom plot) when the desired formation is
in good channel region, &y = 0°. The result shows that even
in the good channel region, nearly 30% of the time intervals
generated by the event-triggered scheme proposed in Wang and
Lemmon (2011a) (top plot in Fig. 5) are below 0.01 s while the
percentage of small time intervals below 0.01 s in our proposed
self-triggered scheme is 0. This is not surprising since the state-
dependent threshold |e(t)] < 0.1591|[«(t) — ag, L(t) — Lg]| in
event-triggered scheme, is very sensitive to any small changes on
the system states and easy to be violated when they are around
the equilibrium.

In this simulation, we are also interested in testing how robust
both triggered schemes are against a wide range of fading levels.
The robustness of both triggered schemes is evaluated by exam-
ining how frequently a small transmission time interval occurs
due to channel fading from a3y = 0° to oy = 50°. Fig. 6 shows
probability distributions of the transmission time interval lying in
each of the intervals U?=O[i>x< 0.01, (i+ 1)*0.01] s under the pro-
posed self-triggered scheme (bottom plot) and event-triggered
scheme (top plot). The results show that nearly 30% percent of the
time intervals generated by the event-triggered scheme in Wang
and Lemmon (2011a) lies in the interval [0, 0.01] s while the
percentage generated by the self-triggered scheme in (21) is O
under all levels of channel fading. This suggests that our proposed
self-triggered scheme is more robust against channel fading than
traditional event-triggered schemes.

7. Conclusion

This paper developed a novel self-triggered scheme for VNS
in the presence of state-dependent fading channels. By using a
state-dependent fading channel model, the results showed that
the proposed self-triggered schemes can achieve efficient use
of communication bandwidth with Zeno-free transmission while
ensuring four types of stochastic stability. Under the proposed
self-triggered scheme, this paper also presented a new source
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coding scheme under which vehicle’s states were tracked with
performance guarantee even when channel states are time vary-
ing and are stochastically changed as a function of vehicle states.
Simulation results of a leader-follower example demonstrated
that the proposed self-triggered scheme was more efficient in
bandwidth utilization and more resilient to deep fading than
traditional event-triggered schemes.

Appendix

Proof of Theorem 8. Let t;, denote the time instant for the kth
transmission event and consider the dynamic evolution of the
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estimation over the time interval [ty, ty11). Since Assumption 6
holds, one has W(e) < elet=tW (e(t;")) + ix(eL@(t 1 — 1)l g 0)-
Since wile] < W(e) < wsle|, one further has el = le(t)] <
e elelt=tje(£;)] + - LX < (e —1)[x|y, ). Taking the expectation
on both sides of the above inequality y1elds

E(le(t)])
wy _ _ L (eLe(tit") — ]) _
< —elWEQTROYE(le(t)]) + T—————E(|X] (4, 1))
w1 wiLe
Wy [ Ly(elet=t) — 1)
< el WG R(|e(t)]) + = ()
w1 wile
where G, := G(|x(t¢)]). The first inequality holds due to the

quantization, |e(t,jr ) = 27 Re|e(ty)| and the fact that the ran-
dom variable R(k) at time t; is independent of e(t;) (before the
jump). The second inequality holds because of technical Lemma 7.
Suppose the next transmission time instant t;,; is generated
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by Eq. (21), then one has
E(Ie(tk+1)|)
(-1 + Lxy L _ kﬂ
w] Lewq X w1 -
E(le(te)l) + — E(Xlj.0.1))
Gr ::jf + i::;i wiLe Gy w2 + t;)l(): tisti41)
<1 VX

for all x € £2, = {x € R"|G(|x]) < w1/w,}. Similarly, by Assump-

tion 5, one has E(|x(t)) < E(B(Ix(t)l, t — t)) + X1E(lely,.n) <
BE(x(t)D), t — t) + X1E(lely,..)) where the class KL function
B(s, t) is concave with respect to s, and thus the second inequality
holds due to the Jensen’s inequality. It is clear from the represen-
tation of E(|e(t)]) and E(|x(t)|) that the subsystems with states
E(le(t)]) and E(|x(t)|) are interconnected with linear gains y% and
X1 . Since

Ly 1- Gk%

1° Loy
w L wy xX1
1Le Gy wr + Lowy

_ LxY]
LeGrwy + Lyx4

(1-G-2)<1 (26)
w

1

and k € Zsq is arbitrarily chosen, one knows the system with
states E(|x]) and E(|e(t)|) is asymptotically stable by the small-
gain theorem, i.e. lim;_, o, E(|x(t)|) — 0. The stability argument
is therefore proved.

The Zeno-free transmission generated by Eq. (21
proved by considering that Vx € £2,

) can also be

1— 22G(Ix])
w1
wy LxXx4 (27)
w1 G(|X|) + Lewq

holds. This leads to a strictly positive transmission time inter-
val defined by Eq. (21). Since the function G(]|x|) monotonically
increases w.r.t. the state |x|, then one knows that the function
in (27) monotonically decreases w.r.t. |x|. Thus, the transmission
time interval T generated by (21) monotonically decreases w.r.t.
|x|. The proof is complete.

Proof of Theorem 9. Following the proof techniques used in
Theorem 8, one can obtain that the VNS in (13) is exponentially
stable in expectation with respect to origin under the Exp-ISS
assumption stated in Assumption 5. Specifically, there must exist
an exp-K£ function B(s,t) = cjexp(—cyt)s such that Vx(0),
E([x(t)]) < c1exp(—ct)[x(0)|,Vt € Rso. To prove the almost
surely asymptotic stability, let 7 > 7 > 0 denote any time
instant such that T < t < t’ holds, for any given ¢’ > 0, consider
the following probability bound,
e

suz{f |¥(t)|dt}/e/§/ E{|x(t)|}dt /e

T’ —
< [ cexp-canmoie < U e

T Cre
where the first inequality holds due to the Markov inequality
and the third inequality holds by exchanging the expectation and
integration due to the measurability of the solution process |x(t)|
and the finiteness of the integral from time z to t’. Let 7/ —
+o00, the probability bound in (28) is Pr{sup,, [x(t)] > €'} <

we‘cﬂ < C‘C‘;io)l Let € = % then there indeed exists a

function §(e, €’) = sz such that Pr{suprq [x(t)] > €'} < € for
any |x(0)] < (e, € ). Furthermore, since t is arbitrarily chosen,
consider the following integral

I I

sup [x(t)]

T<t<t’

Pr{ sup [X(t)| > €'} < IE{

T<t<t/

—e™2"] (28)

_ alxo)

C]lx( )| —szd
sze’

Pr{sup [x(t)| > €'}dr <
c€’

<t

(29)



B. Hu

By the Borel-Cantelli Lemma, the finite integral in (29) implies
that Pr{lim,_,, sup, -, [X(t)] > €'} = 0 and then almost surely
asymptotic stability defined in (16) holds. The proof is complete.

Proof of Theorem 10. By Assumptions 5 and 6, Vt > t, € Ry, k €
Z, one has E(x(t)]) < B(E(Ix(te)]), t — te) + X1 E(lel g, ) + x2(M)
with [w|, <M, and

(eLe(f—fk) _

L,M
B(le(D)]) = =G x(t)DECle(tl) + = 1)

1le

+ wlLe(eLe“ ® — DE(IX]1.0))

Since under the self-triggered scheme in (21), the condition in
(26) assures that the small-gain theorem holds for the intercon-
nected system of E(|x(t)|) and E(|e(t)), the system with states
X(t) [E(|x(t)]); E(]e(t))] is then input to state stable with
respect to the external disturbance (Jiang & Wang, 2001). In
particular, there exist a class K£ function g'(-,-) and a class K
function x(-) such that [X(t)| < B/(IX(0)|, t)+ x(M). Thus, V|xg| <
Ag, one knows that E{|x(t)|} < B'(Ag, 0)+ x(M) £ €(M, Ag) and
lim;_ 400 E{|X(t)|} < x(M). The proof is complete.

Proof of Theorem 11. Suppose the claim in Theorem 10 holds,
for any given € > 0, the probability of the system state x exiting
a given set 2, = {X € R”l|§|§ A} at time t can be bounded by
Pr{|x(t)] > A+e} < A":(f)') < ﬂ(E“"(O)‘ O1£xM) The first inequality
follows by Markov’s Inequality and the second inequality holds
due to the input to state stability. Taking the limit of time to
infinity leads to lim;_, ;o Pr{|x| > A + €} < }Z%)~ Thus, the VNS
in (13) with bounded external disturbance is practically stable in
probability with the probability bound €(M, A) = The proof
is complete.

A+e

Proof of Proposition 12. The proof is based on an induction
method. Since we assume that the encoder and decoder share the
initial value of X, and UO+ and the actual value of initial state x(0)

lies in the hypercubic box with ?;r being its centroid and ZUJr
being its edge length, the case of k = 0 holds. Next, suppose the
case of k holds, i.e., the state x(t;) at time instant t; lies in the
hypercubic box with parameters (X,j, Ut) and [x(ty) — Xk+| < Ut
In the sequel, we show that the case of (k 4+ 1)th holds under the
recursive equations (23a) and (23b).

First, consider the estimation error e(t) := X(t) — (¥ — x¢) =
x(t) — X over time interval [ty, ty+1), Yk € Zso. Let t~ and t™
denote the time instants before and after the bits are received
respectively. By Assumption 6, one has

w2 _ L
le(t)] ===t Wle(t;")] + —— (e "® — D)[x|y,, )
w1 wile
Ly,
+ (el — )M (30)
ll)]Le
Similarly, Assumption 5 leads to
Xlre.0) = BUX(EI 0) + Xqlel g0 + x2(M) (31)

Substituting (31) into (30) and letting t = t,_ ;, since |e(tx1)| =

0)
|6(¢)ljg., Ome has (1 — 2R (e 1)) et )l < Z2elTele(t])

W1ile
eleTk _1 _ e . .
+5n (Lxﬂ(lx(tk)|,O)—i—LwM—i-Lxxz(M) . Since the transmission

sequence {t;} is generated by (21) and the small-gain condition
(26) holds, nk > 0,Vk € Z,. Suppose le(t))| < U, then the
following inequality

1
le(t )l <— (

Mk+1

LeTy _
w2 Le'TkUJr + u

~+
L.B(|x U, o
b prvl CLCARN VS
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+ LyM + Ly x2(M) )>1= Uk41 (32)

At
holds due to n, > 0 and [x(t)| < [X, | + U,f. Upon successfully
receiving R,y blocks of bits at time ;" ;, one has |e(t; ;)| <

L T

=t (LR 1+

2 Rk+1

w2 LeTk U+
Nk-+1 +

27 Retle(t, ) Let Uy = W

Us,0) + L,M + LXXZ(M))>, then |e(ty, ;)| < Ug,. Since the

transmission time interval [ty, ty4+1] is selected arbitrarily, {Uk+ }
is a sequence of upper bounds on the estimation errors {e(t,f IR

ie., |x(tk)—xk | < Uk ,Vk € Z>p.
Secondly, the state estimate xk +1 is updated by selecting the
centroid of an updated hypercubic box that contains x(tx.1). To be

specific, during the time interval [ty, t;1), the centroid X(t) of the
hypercubic box is updated by both encoder and decoder accord-

. . . 2 _ . s ~+
ing to the dynamic equation X = fx(x, 0, 0) with initial value X, .
The centroid of the expanded hypercubic box at time instant ¢,_
before receiving new information bits, is @ (x(ty), Tx) == X(t,, ;) =

§k+ + fé"”"f;(i 0, 0)dt. By inequality (32), one knows that the
state x(tx+1) is guaranteed to lie in an expanded hypercubic box
with the centroid x(t,_ ;) and the size Uy4q. Upon receiving Ry
blocks of bits at time instant t; 1, the expanded hypercubic box
is partitioned into 2™+ number of sub-boxes with each sub-
box’s centroid being encoded by a binary sequence {b; Yz "“ . Thus,

for a given centroid & (x| ( x), Tx), a given box length Uk+1 and
{b; }R"“ the function q(b;;) € {—1, 1} decodes the ith bit in the

jth block as a relative “position” to the centroid @(x(tk), Ty). By a
uniform quantization method (Martins et al., 2006), the centroid

— 2+
of the sub-box that contains the actual state X(t11) is thus X, ; =
Uiit ZRkT 2Iq( (k + 1)) + @(xk , Ty). The proof is complete.
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