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Adaptive mesh refinement (AMR) provides an attractive means of significantly reducing computational
costs while simultaneously maintaining a high degree of fidelity in regions of the domain requiring it.
In the present work, an analysis of the performance of AMR supported by simulations is undertaken for
liquid injection and spray formation problems. These problems are particularly challenging from a com-
putational cost perspective since the associated interfacial area typically grows by orders of magnitude,
leading to similar growth in the number of highly refined cells. While this increase in cell numbers di-
rectly contributes to a declining performance for AMR, a second less obvious factor is the decaying trend
for the cell-based speedup, ©. A theoretical analysis is presented, leading to a closed-form estimate for
this cell-based speedup, namely ®f = ./Kr sm//Kr.amr. Where «r is the Frobenius condition number, and
SM corresponds to a static mesh case. It is shown that for spray formation problems, the typical growth
in kpamg is more pronounced than kpgy causing a decline in ® and consequently diminishing the AMR
performance. Additional contributing sources are also examined, which include the role of load balancing
and the choice of linear solvers for the Poisson system.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The use of adaptive mesh refinement (AMR) is widely accepted
as a computationally efficient way to solve various types of par-
tial differential equations (Harten and Hyman, 1983; Berger and
Oliger, 1984; Berger and Colella, 1989; Miller and Miller, 1981;
Adjerid and Flaherty, 1986; Brandt, 1977; Babuvska and Rhein-
boldt, 1978; Verfiirth, 1994; Dorfler, 1996; Riviere et al., 1999; Hor-
nung and Trangenstein, 1997; DeZeeuw and Powell, 1993) by dy-
namically allocating a high level of numerical fidelity in areas re-
quiring it. A common way to achieve this is to reduce the local
grid spacing (Ax) dynamically in regions of high-fidelity demand,
which can be identified through the use of a cost function. Some
examples of these cost functions include local truncation errors
based on Richardson extrapolation (Berger and Oliger, 1984; Berger
and Colella, 1989), magnitude of the velocity gradient (Miller and
Miller, 1981), a fraction of the maximum total velocity differ-
ence (DeZeeuw and Powell, 1993), smearing of a shock discontinu-
ity (Harten and Hyman, 1983), and jumps in flux variables (Adjerid
and Flaherty, 1986; Hornung and Trangenstein, 1997). Besides its
abundant application in Computational Fluid Dynamics (CFD), AMR
has also been successfully applied in cosmological hydrodynam-
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ics (Teyssier, 2002), magnetohydrodynamics (Balsara, 2001), and
strain localization problems (Ortiz and Quigley, 1991) among other
fields.

For two-phase flow problems, the interface is the most obvi-
ous choice for the cost function since good numerical accuracy is
required in its advection and the calculation of its dynamics, e.g.,
surface tension. For instance, in the work of Theodorakakos and
Bergeles (2004), the tagging of the interfacial region is achieved by
monitoring the domain where the liquid fraction varies between
0.2 and 0.8. In the paper by Malik et al. (2007), the tagging is in-
stead executed where the normalized curvature (product of curva-
ture and the cell size) is below a specified constant that is typically
0.2 (Fuster et al., 2009). Common standard problems that are em-
ployed in evaluating the degree of AMR acceleration include rota-
tion of Zalesak sphere (Anjos et al., 2014; Laurmaa et al., 2016),
droplet deformation in the 3D vortical flow (Anjos et al., 2014;
Chen and Yang, 2014), Rayleigh-Taylor instability (Zuzio and Es-
tivalezes, 2011; Xie et al., 2014), and the secondary breakup of
a droplet (Strotos et al., 2016; Yang et al.,, 2016; Tavangar et al.,
2015; Jain et al., 2015). Among these works, the investigations by
Laurmaa et al. (2016), and Zuzio and Estivalezes (2011) further
demonstrate that the smaller the value of the minimum grid size,
AXpmin, the better the odds of attaining a higher AMR speedup.
Overall in all of these cases, significant benefits are reported with
the use of AMR.
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Considering the case of liquid jet injection and spray forma-
tion, an inspection of the literature (Tonini et al., 2008; Xue and
Kong, 2009; Lebas et al., 2009; Fuster et al., 2009; Herrmann,
2010; Shinjo and Umemura, 2010; Jiang et al., 2010; Li and Sote-
riou, 2012; Chen et al., 2013; Fuster et al.,, 2013; Jarrahbashi and
Sirignano, 2014; Ling et al,, 2015; Arienti and Sussman, 2015) re-
veals that AMR is not overwhelmingly used. From the studies that
do employ AMR (Tonini et al., 2008; Xue and Kong, 2009; Fuster
et al.,, 2009; Li and Soteriou, 2012; Chen et al., 2013; Fuster et al.,
2013; Arienti and Sussman, 2015), no comparisons are performed
against a well-designed static refined mesh, e.g., a static mesh (SM)
that is octree refined only in the region where the interface is ex-
pected to be present within the computational time period. For
liquid injection problems, this region can be reasonably estimated
apriori. Usually, in the literature, AMR versus SM comparisons are
performed for situations where the SM is refined at the maximum
level everywhere in the domain, even in regions far from the inter-
face. Under such conditions, almost regardless of the performance
of AMR, it is expected that using AMR will provide significant com-
putational cost savings.

In relatively recent conference presentations (Kuo and Trujillo,
2019; 2018), the present authors have provided empirical evidence
indicating a declining trend in AMR performance with time for lig-
uid injection simulations. This behavior was attributed to a sub-
stantial growth in the interfacial area, which resulted in the re-
spective creation of a large number of refined cells in AMR. Hence,
with this substantial growth of cells, the size of the system being
solved increases, and thus it comes as no surprise that a significant
slow down in speed is observed. However, beyond the empirical
evidence, we did not provide any underlying arguments supported
by theoretical developments to explain the trends observed, so the
present work endeavors to remedy the situation by providing such
analysis. Because the cost of computations is primarily driven by
the solution of the Pressure Poisson Equation, particularly for CFD
problems (Lohner et al., 2011; Jiang and Lai, 2016; Kwak and Kiris,
2010; Johnston and Liu, 2002), the present work focuses on this
aspect. Regardless, for every computational result shown, the dom-
inating costs of the Poisson solution are confirmed. Specifically, the
emphasis of the present work is on the changing linear algebra
characteristics of the Poisson system, as AMR unfolds. While dif-
ferent advanced variations of AMR algorithm and adaptations are
currently in use and development, in the present work our partic-
ular algorithm employs the standard block-based AMR library of
OpenFOAM 2.1.1.

The contents of the paper are as follows. An analysis of the lin-
ear system solution for the Poisson system is detailed in Section 2,
where the main results from this analysis form the theoreti-
cal foundation for interpreting the subsequent computations. An
overview of the solver is provided in Section 3. The computations
first consider a standard two-phase problem consisting of a stand-
ing wave in Section 4.1. This is followed by progressively more
complicated problems, including liquid injection in a small domain
in Section 4.2 and liquid injection in a larger domain in Section 4.3,
where the latter case reflects the size of computations often found
in engineering and scientific studies of sprays. Towards the end of
the paper in Section 4.4, we examine other potential contributors
to the recorded AMR slowdown, including load balancing or choice
of the linear solver to evaluate whether they can help explain the
trends recorded. Finally, a summary of the work, along with con-
cluding thoughts, are communicated in Section 5.

2. Analysis of AMR performance

The general Poisson linear system to be analyzed is of the
form

AX = b, (1)
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where A is a real N x N symmetric matrix (it can be shown that
under finite volume discretization, the resulting Poisson system
is symmetric). A popular procedure for tackling these types of
systems is through the use of preconditioned conjugate gradient
methods (Quan et al., 2009; Anjos et al., 2014; Theodorakakos and
Bergeles, 2004; Liu, 2013; Moayedi et al., 2017). Let P~! denote the
preconditioner, then the system to be solved is

P~'Ax = Bx =P 'b. (2)

For large systems, a popular family of preconditioners is the in-
complete Cholesky (IC) factorization (Ascher and Greif, 2011). The
overall goal is to ensure that the system, Bx = P~'b, has much bet-
ter clustering of the eigenvalues when compare to A resulting in
significant improvements in convergence.

Defining the iteration index as k, the exact solution to Eq. (1) as
x, the k! iterative solution as x;. the associated error as e, = X; —
X, the energy norm for this error can then be defined as

llexlls = v/ (ex)T (B)ey. (3)

The corresponding error bound is given as a theorem in Ascher and
Greif (2011, pg. 187) and in LeVeque (2007, pg. 93) as

\/Kz(B) -1 ‘ (4)
VB +1)

In this expression, the condition number «, is given as A;/Ay, i.e.,
the ratio of largest to the smallest eigenvalue of the symmetric
positive definite matrix B.

An issue with the use of «; is that while it can be readily com-
puted, an order of magnitude estimate of its value based on the
size of the system, N, is not automatically apparent. As an alterna-
tive, we choose to work with a quantity that is explicitly related to
the size of the problem, i.e., the Frobenius condition number, «F,
defined as (Chehab and Raydan, 2008)

llexl|s
lleolls ~

krp(B) = N + fg(N), where

2
fy(N) = ;[IIB ®) 112 - (1IBlle - 115)"Ir) } (5)

where the Frobenius norm is defined as
[1BI|7 = Tr[(B)" (B)]. (6)

Here Tr is the trace operation. It follows from the Frobenius
condition number that x¢(B) > k3(B) (Chehab and Raydan, 2008,
pg. 2091) and (Trefethen and Bau, 1997)[Theorem 5.3].

In what follows, it is tacitly assume that the condition numbers
are based on B, i.e. kr = kr(B) and «, = k5 (B). Returning to the
upper bound for the error in Eq. (4), we can expand the following
quantity as

Gl (2 N (2
Vg +1 Vo +1)~ VKr+1
= %ﬂ(sincew > K3). (7)

Introducing this into Eq. (4) gives

k k
lells (VR =1\ _5(1__2 \ (g
[leolls = "\ V&F +1 K+ 1
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Fig. 1. Computation time for one iteration of linear solve (Poisson system) versus
number of computational cells, N, corresponding to the small domain case dis-
cussed below in Section 4.2.

Manipulating this expression yields

k
4 <tos [ 2(1- ) |

=log2 + klog (1 - ﬁ)

log ({2

2 3 9)
=log2 — kl:“/éﬂ + %(ﬁ) + O(f+1) i|
( log expansion [53] pg.126)
log (fefe) <log2 — —2Z (since kp > 1).
Solving for k, we have
ksl(«//?FJrl)log(Z”eOHB) (10)
2 llexlls

The expression on the right of this inequality is the upper bound
on the iteration number required to reduce the error for the linear
solve from the initial error ||eg||p to ||ekl|p-

In the present CFD solution procedure, at each physical time
step, the solution of momentum is performed along with the
solution for the advection of the gas-liquid interface through a
Volume-of-Fluid (VoF) formulation. During this step, the Poisson
system is solved in an iterative fashion, where a predetermined er-
ror tolerance is assigned. This error tolerance is directly related to
|lexllz/lleollg- To estimate the computational cost of this solution,
let the upper bound on the number of iterations to achieve the
specified tolerance be denoted as nj,,. Then the associated com-
putational cost for the Poisson solution is

tAt = Niterl1x At (11)
where t1,a; is the computation time per one iteration of the lin-
ear solve. Here t{,A¢ is proportional to the number of floating-
point operations, and the number of operations is proportional to
N (Saad, 2003, pg. 281). Both of these statements lead to

At = NiterCoperN, (12)

where Coper is a constant of proportionality. In our own computa-
tions, we have confirmed this assertion of t2f being linearly related
to N as shown in Fig 1. While values for Coper for either AMR and
SM are similar, these constants are not exactly the same as illus-
trated in Fig. 2. However, for the sake of providing an estimate for
the computational efficiency, we will assume they are equal.
Combining Eqs. (10) and (12) by letting n;,. be the upper
bound on the iterations required for the reduction of ||eg||p to
|len,,,|1g. we obtain an upperbound estimate for the computational
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Fig. 2. Time traces of Coper of AMR contrasted with SM for the small domain case
elaborated in Section 4.2.

cost for the Poisson system as

(@ = 2 (/R + 1>log( ”e°"3>coperzv. (13)

ll€n |1

This expression clearly shows that this upper bound estimate is
proportional to the size of the solution vector, i.e., through N, and
directly related to the square root of the associated Frobenius con-
dition number for the matrix B.

In comparing the performance of calculations using the SM
and AMR strategies, the most straightforward metric is the ratio
of respective computation times, namely tAf/tAA,\flR or simply the
speedup. Another metric that has been employed in multiphase
flow work (Fuster et al., 2009; Zuzio and Estivalezes, 2011; Akhtar
and Kleis, 2013) is the ratio of computational time per computa-
tional cells, namely

_ Ll /Now_ (14)
tamr/Navr
This quantity, ®, represents a comparison of the computational ef-
ficiency between the SM and AMR strategies and is referred to in
the present work as the cell-based speedup between SM and AMR.
Using this metric, we can express the computational time ratio
as

tAt _ NSM (15)
tAAI\f,R Namr™

If we consider an ideal case, for instance ® = 1, where the com-
putational time per cell is the same between AMR and SM, then
Eq. (15) states that t{f/tAt. = Ney/Nayg. This means that the
speedup is directly related to the ratio of computational cells used
in SM over AMR, and since it is generally understood that Ny >
Napmr, this implies an expected large value for the speedup. This is,
in essence, the promise of AMR, that with a significantly reduced
number of computational cells, we can proportionally achieve a
significant speedup.

Based on the upper bound expression provided in Eq. (13), we
can arrive at an estimate for the speedup given by

t4t (VKkEsm+ 1) 10g<2 lleo]la.u )NSM

[len;,, 1s.sm (16)
At T :
Camr ( VKramg + 1) log (2 4!:?J,|ﬁ:n:;§)NAMR

Since this is an estimate for the speedup based on upper
bounds for t4¢ and t{,. it is denoted with subscript E. The ra-
tio of initial (||e0||3) and final (||ep,,, ||g) error differs usually by
orders of magnitude for both SM and AMR. If we can assume that

the difference between initial error levels between SM (||eq|| sm)
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and AMR (||egl|pamr) is ,O(1) the expression above can be ap-

proximated by
tAt KE sMm NSM _ NSM +fB(NSM) « NSM (17)
Namg + fs(Nayg) ~ Namw

tAAz\flRE VEEAMR Navr

where we have made use of the fact that /Krsyy>1 and
VKFamg > 1. In comparing this equation to Eq. (15), we see that
® is not necessarily a constant, especially for the AMR case where
Namr can vary considerably in time. This expression also highlights
the fact that the speedup is not simply related to Ngy;/Nayr as we
shall verify in Section 4. Furthermore, based on this development
the estimate for cell-based speedup becomes

O = NFES _ V/Nswr + f5(Nswr) . (18)
VEEAMR \/Nawig + f5 (Navr)

In Section Appendix A, an expression for the Frobenius condition
number is derived in terms of the eigenvalues of the matrix B as
shown in Eq. (42). This yields the following expression

N Resv (ZNSM )\2 M)1/4(ZNSM )‘z S2M)1/4

" JKEAMR (ZNAMR )\_IzAMR)l/‘l(ZNAMR)L 2 1 1

where A;qy and A;ayg are respectively the eigenvalues of their
corresponding B matrices. However, the estimation of the eigen-
values is not straightforward since the underlying coefficients of
the matrix B are variable. These coefficients are functions of local
density and volume flux, which have drastic temporal changes in a
two-phase flow. Hence, a further simplification of ®¢ beyond the
point shown in Eq. (19) is difficult. However, there are two trends
that are noteworthy. The first is that kr increases with time even
for the SM case, as shown in the small domain cases discussed in
Section 4.2. The second trend is that Nyyr increases tremendously
in liquid injection and atomization problems. Hence, even if the
magnitudes of the eigenvalues remain fairly equal, the overall sum
would increase, leading to an overall increase in «f gyg. Since this
second contribution is absent in SM, this behavior would favor an
increase in AMR that is more pronounced than SM, leading to a de-
crease in ®g. Again this is supported by the results from the liquid
injection cases. Prior to the examination of the AMR performance
via computation, the following section gives a brief overview of the
solver.

3. Numerical solver

To provide a quantitative assessment of the previous analysis,
the algebraic Volume-of-Fluid solver, interFoam, and its AMR
adaption, interDyMFoam, is employed to solve the transport
equation for the cell-based liquid fraction. The interFoamsolver
forms a part of a larger open-source distribution of computa-
tional mechanics solvers and C++ libraries of OpenFOAM version
2.1.1, which is designed for finite volume discretization on collo-
cated grids for the solution of two-phase incompressible flows. The
interFoam solver has been previously verified and validated in
a previous publication from our group (Deshpande et al., 2012).
It has also been used to study the physics associated with spray
formation and interfacial instabilities (Agarwal and Trujillo, 2020;
2018; Trujillo et al., 2018; Deshpande et al., 2015).

The two-phase solution begins with an interface advection step,
which is handled via an algebraic VoF scheme based on a com-
pressive interface capturing methodology advanced by Ubbink and
Issa (1999) and Rusche (2003) with contributions from Henry
Weller. The two-phase momentum equation is composed of an ini-
tial predictor step, which produces a velocity U, which is typically
not divergent free. This is followed by a pressure Poisson solution

International Journal of Multiphase Flow 140 (2021) 103615

having the following form (Deshpande et al., 2012, pg. 10)

> <1:p> (AfP)[Ss| =) U -Sy, (20)
f f

f

where the summation is taken over all faces, f, of a given compu-
tational cell. The interpolation of the predictor velocity to the cell
faces is denoted by Uy; the cell face area vector by Sy, and the op-
erator A? is the gradient normal to each cell face, where P is the
pressure. Due to the two-phase flow conditions, the coefficients
(Ap) s are variable (Deshpande et al., 2012, pg. 10). It can be shown
that the resulting system is symmetric and that it is positive def-
inite. The Poisson system is solved using a Preconditioned Conju-
gate Gradient (PCG) method, with Diagonal Incomplete Cholesky
(DIC) as the preconditioner. The convergence criterion employed is
10-7 based on the normalized residual of the original linear sys-
tem, and this criterion is used in all cases presented in this paper.

After the Poisson solution, a corrector step follows. Subsequent
to this step, a mesh adaptation is performed where the cost func-
tion employed is |Va| x Ax. Here |Va| is the magnitude of the
liquid fraction gradient, and Ax is the local cell size. The selection
of this cost function follows published procedures used in two-
phase flow AMR cases as documented in Fuster et al. (Fuster et al.,
2009, pg. 554). Refinement occurs if

|Va| x Ax > €, (21)

where € is a user-defined threshold value. Under refinement, the
given cell is recursively split into eight smaller child cells following
the octree structure shown in Fig. 3. For a Nj,,; AMR, where the
cell is refined (Njee — 1) times, the sizes of the child cells, denoted
as Axc, are given by

Axe = Axp [ 2Nea™, (22)

Here Ax, is the parent cell size. For the sake of narrowing the
scope of the present investigation, we mainly consider a three-
level AMR (Njee; = 3), that is, only three levels of grid size, Axq,
Ax,, and Axs are considered, where Axy = Axp, Axy = Axq/2
and Ax3 = Ax,/2 (although a higher AMR is also available in
interDyMFoam). Once a refinement has taken place, the flow
variable is mapped from the parent cell to the child cells by as-
signing them the same value,

Ei=£&p, 1=1273,.8, (23)

where &.; is the value of the child cell i, and &, is the value of
the parent cell. Other schemes for mapping parent-child or child-
parent are presented in the literature (Theodorakakos and Berge-
les, 2004; Xue and Kong, 2009), which apply to more general grid
structures.
Conversely, if any cell satisfies the coarsening criterion given
by
|Va| x Ax < €3, (24)
the cluster of the associated cells will be combined to recover
the parent cell, as shown in Fig. 3. Here €, is also a user-defined

threshold with €, < €. The flow variable for the parent cell is ob-
tained from

00\'—‘

8
Z (25)

Overall, Egs. (23) and (25) apply to all flow variables, namely liquid
fraction, velocity, and pressure, which are cell-centered. The val-
ues for €; and €, are adjusted so that the gas-liquid interface is
bounded by roughly five cells on either side of the interface. This
provides adequate support for the advection operation and allows
us to take between three to five global time steps between each
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Fig. 3. Mesh operation steps of octree-based AMR employed in the present study (all hexahedral cells): refinement (from left to right) and coarsening (from right to left).
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Fig. 4. Examples of grid interfaces for gradient and flux calculations.

mesh adaptation operation. However, towards the end of the com-
putation, the refinement region fills a sizable fraction of the en-
tire domain due to the intensity of the liquid breakup process, and
under these conditions, the mesh adaptation frequency can be ex-
tended to approximately every ten times steps without ill effect.

In addition to cell-centered quantities being mapped among re-
fined and coarse regions, gradient and flux information are also
handled accordingly at the boundaries between coarse and refined
regions (grid interface). For instance, the x-component of the gra-
dient of a flow variable & at the grid interface is calculated as fol-
lows,

9 5(1,2) _ & —-&

*f Le/4+Ly/8

9.£@3) _ & -6 7 26

Xéf Ly/8 + Lx/8 (26)
pertaining to the conﬁguratipn depicted in Fig. 4. Here §; is the
value of & at cell i and Bxéf“'k) is the derivative evaluated at the

boundary between cells j and k. Likewise, the volume flux between
cells j and k, denoted by d)fcf'k), is calculated as

L/8 L,/4
(1,2) _ X X )
#'7 = v /4 +L8 UZLX/4+LX/8] Sis
L8 L/8
(2,3) _ X X )
e L8+ L8 " LB +LX/8] Sp 2D)

where Sy, is the product of the cell face area and its unit normal
outward vector pertaining to faces f; = {02, mF(A])QZ)}. Similarly,
Sy, pertains to the faces f, = {092, ﬁF(AZf)}.

4. Results and discussion

The section begins by computing and analyzing the AMR perfor-
mance for a standard flow problem that often appears in the mul-
tiphase flow literature (Zuzio and Estivalezes, 2011; Popinet, 2009).
The purpose of this first exercise is to evaluate whether a similar
level of performance is obtained in the current computations.

The next set of exercises consists of liquid injection and spray
formation, which is the main focus of the work. In the first set
of calculations, a relatively small domain under carefully selected
conditions is employed to allow for seamless calculation of all rel-
evant linear algebra metrics, e.g., the Frobenius condition number.
The goal here is to provide insights originating from the analy-
sis into the observed drop in AMR speedup. The second set of
injection problems are much larger and reflect the type of cases
executed in physics and engineering pursuits. The examination
is focused on determining whether the pattern observed for the
smaller injection cases is similarly observed in the larger spray
problems. Since all of this work is based on the conjugate gradi-
ent method, in the last section, a multigrid scheme for solving the
Poisson system is employed to detect whether similar patterns of
performance are observed. Furthermore, the potential issue of load
balancing is discussed and supported by additional injection calcu-
lations.

4.1. Standing wave cases

An illustration of the standing wave cases is shown in Fig. 5 cor-
responding to both the AMR and SM strategies. The extent of the
domain in the horizontal and vertical direction is respectively 100
pm and 400 pm. The initial conditions for velocity and interface
position are

ux,t=0)=0
yr(t =0) =[200 + 5sin(2wx/100) | pum. (28)

At the bottom of the domain, a zero Neumann condition for the
pressure and the liquid fraction is employed; the no-slip bound-
ary condition is used for the velocity. On the left and right faces,
a zero gradient condition is prescribed. On the front and back
faces, a periodic condition is employed. At the top of the domain,
we use a zero Neumann condition for liquid fraction and velocity
and a zero Dirichlet condition for total pressure. The AMR refine-
ment criterion is |Va| x Ax > 10~4, while the coarsening criterion
is |Va| x Ax < 0.5 x 10~4. Additionally, the physical properties are
included in Table 1. Here p and p are mass density and viscos-
ity, respectively, o is the surface tension coefficient, and subscripts
(L, G) denote liquid and gas, respectively.
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Fig. 5. Illustration of the standing wave problem with SM on the left and AMR on the right. The AMR process results in a much tighter high-resolution band of cells
surrounding the interface in comparison to the SM strategy.

Table 1

Physical properties for the standing wave case.

Liquid density

Liquid viscosity

Gas density

Gas viscosity

Coefficient of surface tension

pL =997 kg/m3

/= 8.899x 10~* kg/(m-s)
pc =1.177 kg/m?

g = 1.846x 10> kg/(m-s)
o =0.072 kg/s?
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Fig. 6. Time history of the AMR computational time of each calculation (per mesh
adaptation interval) over the total computation time (per mesh adaptation interval)
for the standing wave problem. The time instant where mesh adaptation is executed
is denoted as t,gy.

To confirm whether the Poisson system is the most dominant
factor in the AMR total computation time, Fig. 6 plots the ratio
of time cost for each calculation over total time cost per mesh
adaptation interval. The calculations include interface transport,
two-phase momentum, Poisson solution, refinement and coarsen-
ing of the mesh, and overhead. The difference between the total
time cost and the joint cost of all calculations is viewed as over-
head costs. Also, during the mesh adaption interval, mesh coars-
ening/refinement occurs only once, while interface transport, two-
phase momentum, and Poisson solution occur at each time step
within this interval. The results show that the Poisson solution

hovers around 55% of the total computation time, confirming our
expectations. For the overhead costs, they are on par with the lig-
uid fraction advection and momentum predictor but well below
the Poisson solution.

The performance results in terms of tsAn/tl/tAAAfm and cell-based
speedup, ®, are shown respectively in Figs. 7a and 7 b. In terms
of the recorded values of ® from the simulation results, these are
consistently around one for the entire computation time window.
With values of ® at approximately one and tsAlvtl/tAAnE/R remaining
nearly at four, implies that the ratio Nayr/Nsy is similarly constant
at ~ 0.25. This behavior indicates that the morphology of the two-
phase flow is not substantially changing in time, i.e., while the in-
terface I'(t) is unsteady, the extent of this interface |I'(t)| does
not change significantly. In subsequent sections, we will see that
this characteristic plays a fundamental role in the performance of
AMR. The results presented here confirm the superior performance
obtained with AMR and corroborate previous results (Zuzio and Es-
tivalezes, 2011; Popinet, 2009) with this standing wave problem.

4.2. Small domain liquid injection cases

For the small domain liquid injection cases, the region of inves-
tigation corresponds to (Lx, Ly, L) = (75, 200, 500)4m as shown in
Fig. 8, where the injector orifice is centered on the left-hand x — y
plane. Again the primary reason for examining the performance of
AMR under these conditions is that it allows for the direct evalu-
ation of the Frobenius condition number and related parameters.
These calculations are performed on a single CPU core (2.4 GHz
Xeon E5645), avoiding any potential load balancing issues, which
are discussed in Section 4.4. In the present simulations, the do-
main is initially quiescent, and at t =0, injection is initiated via
the following inlet profile,

U(r) = Upnj(1 = 1/R)"e,, (29)

where r is the radial coordinate, and the injection occurs
in the e, direction. The one-seventh power law stems from
the scaling of the mean injection velocity profile in channel
flows (Schlichting et al., 1974). The parameters characterizing the
injection conditions are included in Table 2. In choosing the phys-
ical properties, the main motivator was ensuring that hydrody-
namic breakup occurs relatively soon after injection, primarily to
minimize the extent of the domain. Again having the focus of the
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Fig. 7. AMR performance metrics for the standing wave problem.

Fig. 8. Illustration of the configuration used in the liquid injection simulations (small domain).

Table 2
Physical properties and injection conditions for the small domain
cases.

Injection speed

Injector radius

Liquid density

Liquid viscosity

Gas density

Gas viscosity

Coefficient of surface tension
Number of computational cells in SM

Ujnj = 50 m/s
R=25pum

pL = 1000 kg/m?

= 1x 107> kg/(m-s)
pc = 100 kg/m?

e = 1x 1076 kg/(m-s)
o =0.01 kg/s?

Nsy = 38, 880

present work on the numerical performance issue, we are not in-
terested in obtaining physical quantities from the simulations, and
thus, the computations are, to a certain degree, physically unre-
solved. The AMR refinement criterion is |Va| x Ax > 10~4, while
the coarsening criterion is |[Va| x Ax < 0.9 x 1074,

A three-level mesh refinement is employed, where the mini-
mum grid size, Axy,;, = 4.17 m. For the SM cases, the refined re-
gion, Q,s, i.e. where Ax = Axp, is assigned as

Qs = {(x.y,2) e R? | x € (~27.5,27.5)pum,
y € (=85,85)um, z € (0,475)um}. (30)

At the wall surrounding the nozzle exit, the no-slip boundary con-
dition for the velocity is prescribed and a zero Neumann condi-
tion for the liquid fraction and pressure. On the remaining part
of boundaries, we employ a zero Dirichlet condition for pressure,
which specifies the total pressure to be zero, and zero Neumann
condition for liquid fraction and velocity except for reverse flow, in
which case this boundary switches to zero Dirichlet condition.

A visualization of the results is presented in Fig. 9, which shows
the deformation of the liquid jet leading into the formation of a
mushroom structure at the jet tip. As the calculation proceeds,
smaller liquid structures are observed becoming detached from the
main jet, and towards the end of the computation, the jet tip is on
the verge of breaking up. The underlying AMR grid is also shown
accompanying the visualization of the liquid jet.

An examination of the AMR computational cost for all calcula-
tions in Fig. 10 reveals that the Poisson costs remain the most sig-
nificant contributor to the overall calculation burden. The time to
adapt the mesh and the overhead costs are not negligible but are
noticeably smaller than the Poisson solution. In terms of the AMR
behavior, the ratio of computational time per time step shown in
Fig. 11a indicates that in contrast to the standing wave problem,
there is a precipitous decrease in performance. The theoretical es-
timate is superimposed on these calculations, which match reason-
ably well with the recorded simulation results and reproduce the
observed trend.
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g. 9. Evolution of the liquid jet injection process and underlying AMR for the small domain case.

An ideal case is also included in Fig. 11a, which treats ® as be-
1 T T T T T ing equal to one. Under these ideal conditions, the speedup be-
oo comes t4t /At = Noy/Naug. i.e., it scales with the reduction in to-
. tal number of computational cells. As evidenced in Fig. 11a, this
-—P ideal case matches very well with the simulation results, which
-+ mesh indicates that the decaying performance of AMR is being largely fu-
< overhead 1 eled by an increase in computational cells. This is a noticeable differ-
ence between spray problems and other two-phase flow problems.
In sprays, there is a tremendous growth of the interfacial area
while hydrodynamic breakup and liquid penetration take place.
The interface monotonically grows, eventually occupying almost
the entire domain.

A secondary contributor to the worsening performance of AMR
is also a slight decline in cell-based speedup, as shown in Fig. 11a.
0 2 4 6 8 10 12 Beginning at approximately t = 2us, the behavior for ® shows a

tadv (,us) declining trend, and beyond roughly t = 8us, its value becomes
less than one. Superimposed on the simulation results, the theo-
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Fig. 10. Time history of the AMR computational time of each calculation (per mesh — yotica] estimate, @, is also included, and while it overpredicts the
adaptation interval) over the total computation time (per mesh adaptation interval)

for the small domain injection problem. The time instant where mesh adaptation is acma‘l S} during the early phase of i.nject.ion, it. agre;es relétivel.y
executed is denoted as tog,. well in the latter part of the computation time. Since it was in this
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Fig. 12. Growth of the Frobenius condition number shown in

latter part when we observed the declining efficiency of AMR, we
can look at the theoretical estimate for explanations.

Again the theoretical estimate is given by the ratio of square
roots of the Frobenius number (See Eq. 18 and surrounding text)
(VKr.sm//Kramr)- While values for «p increase in time for both
AMR and SM, as shown in Fig. 12a, the growth is quite more pro-
nounced for the AMR case. This results in the declining trend ob-
served in Fig. 11a. To inspect what contributes more meaningfully
to kr Mg, @ plot of its components is included in Fig. 12b for both
SM and AMR. The variation in Njyr definitely plays a role in the
observed growth in «p apg. However, the more significant contribu-
tions originate from fg(Nayr) (see Eq. 5 for the definitions), which
produces in large part the decrease in the observed performance
of ®¢ and similarly for ®.

4.3. Large domain liquid injection cases

In the present computations, the shape of the domain is the
same as the one shown in Fig. 8 with the exception that the ex-
tent is now (Ly, Ly, L;) = (1260, 1260, 9000) um. The physical prop-
erties for these cases corresponding to Diesel injection in a pres-
surized air environment and are listed in Table 3. Also, three differ-
ent injection conditions are considered corresponding to increases
in Uinj-

0.5 . . .
0 2 4 6 8 10 12
t(ps)
(b)
5
55 x10 i
e
TR |
2F x---"""-'x .x‘"ﬂx
— .-"x““ -.x"‘
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(a) and associated components (b) for the small domain case.

Table 3
Physical properties and injection conditions for the larger domain cases.

Injection velocity

Injector radius

Liquid density

Liquid viscosity

Gas density

Gas viscosity

Coefficient of surface tension
Number of computational cells in SM

U = (100, 200, 300) m/s
R=45um

pL = 688.03 kg/m3

i =4.78 x 104 kg/(m-s)
pc = 50 kg/m?

g = 1.88 x 107> kg/(m-s)
o =0.02 kg/s?

Ny = 59, 301, 368

The simulations are initiated by injecting fluid via the following
velocity profile,

U(r) = Upnj(1 —1/R)/7€, 4+ 0.01Upnj[1 — (1 = 1/R)"]er.  (31)

Here we impose a radial component to reflect some extent
the small deviation from pure axial flow observed in typical
engineering nozzle flows such as the ECN Spray A configura-
tion (Agarwal and Trujillo, 2018). The calculation is performed in
parallel using 180 CPU cores (2.5 GHz Intel Xeon). The AMR refine-
ment criterion is |Va| x Ax > 10~4, while the coarsening criterion
is |Va| x Ax < 0.9 x 1074

The time evolution of the spray as well as the underlying AMR
are shown in Figs. 13 and 14, respectively (Uy; =300 m/s). In
the beginning phase of injection, the jet tip is still present as a
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Fig. 13. Snapshots of the large liquid injection case (Uj,;

=300 my/s) at three different times displays the evolution of the hydrodynamic breakup process.
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Fig. 14. Evolution of the AMR grid corresponding to the same snapshots captured in Fig. 13.

mushroom-shaped object. As the calculation proceeds, this tip be-
comes fragmented, creating a population of droplets, which are
propelled both radially and axially. This progression of droplets is
what drives the local refinement. Since the population of droplets
and distorted liquid structures is numerous, the adaptive mesh
grows to fill a relatively large domain. As shown in Fig. 15, the
Poisson system solution remains the largest fraction of the compu-
tation cost hovering above 65% for much of the AMR computation.
The overhead costs are higher than all other costs except pressure.
Overhead varies between approximately 17% and 33% of the pres-
sure cost for this large domain case.

Concerning the performance of AMR, a similar pattern to the
previous small-domain cases is observed. The results for speedup
and cell-based speedup are shown in Figs. 16a and 16b with re-
spect to three different injection conditions. The most noticeable
difference for the larger cases is that the drop in AMR performance
is even more accentuated. In fact, towards the end of the computa-

tion, the benefits offered by AMR are practically negligible as tfnfm

10

is roughly the same as t&y. At This drop in performance occurs faster
with increasing injection speed as the cloud of droplets and liga-
ments occupy the physical domain more quickly.

While we may be tempted to blame responsibility for the de-
caying AMR performance to the much larger rise in Ngypg, this
is not the full story. A significant part of this observed behav-
ior is due to a decrease in the cell-based speedup, ®, as shown
in Fig. 16b. In the latter part of the computation, ® dips below
one, which indicates that the computational efficiency of AMR is
lower than SM. In terms of linear algebra metrics, this implies that
the Frobenius condition number for AMR is larger than the cor-
responding values for SM. Unfortunately for this case, due to its
size, which is approximately 1525 times larger in Ng; than for the
small domain case, we are unable to provide Frobenius condition
metrics.

An insightful exercise is to compare the performance of these
AMR calculations with the ideal case (® = 1). The results, in terms
of the histories of the computational time ratios, are shown in



C.-W. Kuo and M.E. Trujillo

International Journal of Multiphase Flow 140 (2021) 103615

1 T T T T T

= 0.8

@)

:"3

Q .

£ 06 e

z s
mes

S 0.4f overhead

[<b}

z

S 0.2f

Fig. 15. Time history of the AMR computational time of each calculation (per mesh adaptation interval) over the total computation time (per mesh adaptation interval) for

the large domain injection problem (Uj,; = 300 m/s).
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Fig. 16. Decay of AMR performance as measured by (a) the speedup and (b) cell-based speedup corresponding to the large domain cases.

Figs. 17a, 17b, and 17c¢ corresponding to the different injection
speeds. The trend captured in all three injection conditions indi-
cates that at an early time instant when the number of computa-
tional cells in AMR is low, the performance is better than the ideal
case (® > 1). A likely reason for this behavior can be found by con-
sidering the theoretical estimate for ©, i.e. ®f = /K sum//KF.AMR-
For instance, during the early injection period, kramr < Kpsm due
in part to the much lower number of cells in AMR. However, once
the liquid population envelops a greater portion of the domain,
the reverse trend unfolds. During this latter period, which high-
lights the greater portion of the total computation time, the effi-
ciency of AMR becomes worse than SM. While the computational
cost savings in terms of pure tAf is better than SM; it ceases
to reflect the benefits afforded by a substantially lower compu-
tational cell count. A time history of the ratio Napr/Nsy for each
of the three injection cases included in Fig. 17d highlights this
observation.

1

4.4. Other potential contributors to AMR performance deterioration

Besides the Poisson solution costs, there may be other contrib-
utors to the decline of AMR performance that merit exploration. A
common source of concern is load imbalance issues. In the present
computations, domain decomposition based on Scotch method is
used for parallelization (Guide, 2012), and under this methodol-
ogy, a load imbalance would result if a given part of the domain
has a much higher grid density than another part. Under this sce-
nario, CPU(s) handling calculations in the higher grid density re-
gion would naturally be more strained than those CPU(s) responsi-
ble for the lowest grid density region and would cause a bottleneck
in performance. The highest grid density is located where atomiza-
tion is most vigorous and is characterized by a local cell size equal
to AXpin. In both AMR and SM, there are CPUs that are handling
calculations in this high grid density region, and thus both meth-
ods are exposed to equivalent levels of bottleneck behavior.
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Fig. 17. Comparison of the recorded AMR performance against the ideal case of ® =1 (a,b,c) indicates that beyond the initial period, the recorded AMR performance declines
substantially even to the point where it has a speedup near or below one, even though (d) the number of computational cells for AMR is uniformly lower than SM (large

domain case).

Nevertheless, for the small domain cases, the drop in perfor-
mance measured by © is approximately 15% (Fig. 11a), while for
the larger domain cases, the drop in ® is slightly more than one
order of magnitude (Fig. 16b). Hence, it is natural to question
whether the trends observed are, in fact, due to a progressively
diminishing value for ,/Krsy/./Kramg OF a load balance problem.
Since values for the Frobenius condition number are unavailable
for the larger domain cases and the performance deterioration for
AMR manifests itself more strongly for larger cases, one option for
studying the behavior is to consider the largest reasonable case for
which a single CPU core calculation can be performed. This is the
case examined in the present work. For the sake of curiosity, ad-
ditional calculations performed with 4 and 8 CPU cores are also
reported.

The conditions for these load balancing calculations match
those of Table 2 with the exception that R=20um and
Uppj = 150m/s, and that the domain extent is (Ly,Ly,L;) =
(160, 160, 1700) um. The total number of cells for the SM case is
Ngy = 2,785,280, and the AMR refinement criterion is |[Vo| x Ax >
10-6, and for coarsening |Vo/| x Ax < 0.5 x 1076,

The results in terms of the time evolution for ® are presented
in Figs. 18a and 18b. While the values are not expected to be the
same, since the parallel scaling is not 100%, the overall declining
trend is similar among all cases considered. For these calculations,

the reference is the single-core computation since, by definition,
no load balancing issues exist under this mode of calculation. In
the beginning phase of the calculation, the 4-core and 8-core exe-
cutions have lower performance than the single-core case but still
provide significant benefits in terms of speedup over the SM case.
However, as the calculation proceeds, all cases exhibit the same
declining trend, with the 8-core execution showing marginal gains
over the other cases. Hence, the trend of downward AMR perfor-
mance is exhibited even in single-core computations showing a
drop in performance in a speedup by approximately two orders of
magnitude and a drop in a cell-based speedup by approximately
one order of magnitude.

A second concern is the choice of a numerical method for solv-
ing the Poisson system. In the present work, we employed the
PCG solver as outlined in Section 2, and while we do not intend
to engage in an exhaustive examination of the solution character-
istics subject to various linear system solution methods, it is in-
structive to at least consider an alternative method that is com-
mon in CFD. This alternative method is the Generalized Geometric-
Algebraic Multi-grid solver, which is exercised on the large domain
spray case (Uy; = 300 m/s) using the same DIC preconditioner as
the PCG calculations. The results are presented in Fig. 19a and re-
veal that using a different linear solve leads to the same pattern
of decaying AMR performance. The ideal case (® = 1) is employed
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Fig. 18. AMR performance employing 1, 4, and 8 CPU core executions shows a similar pattern of decay.

3 . 1 :
10 ——1-core; 3-level refinement
—— 4-core; 3-level refinement
102 -+-8-core; 3-level refinement
S
=
ESEY
~ 10
e
100 T T e——
1 . . L
10
0 5 10 15 20
t(ps)
()
10
~o-Up,;=300m/s (simulation)
{ o|==U;,;=300m/s (ideal case of @ = 1)
s 9
= 10" i :
1= | |
= RS A 0\%@&&3
3 olo Bl A8
sy 100 .------é sssspEnmmnn g"'& .A)-
1 L . L
10
0 4 8 12 16
t(ps)
@

Fig. 19. AMR performance solving the PPE using Generalized Geometric-Algebraic Multi-grid corresponding to the large liquid injection case (Uj;; = 300 m/s).

SM

Fig. 20. Illustration of an octree-refined static mesh using a telescoping strategy for handling spray problems. With increasing distance from injection, the radial spread
of the liquid grows, and thus the extent of radial refinement conforms to this spread. Mesh refinement does not encompass the entire length of the domain; hence, the
finest level of resolution is only provided in the near field or during the initial period of injection. For studies focused only on primary atomization physics or liquid core

breakup (Agarwal and Trujillo, 2018), this mesh refinement strategy is adequate.

to illustrate this behavior. Towards the end of the computation, the
computational time per timestep is almost the same between AMR
and SM, although the number of cells employed in AMR is substan-
tially lower. Additionally, the cell-based speedup dips below one,
as shown in Fig. 19b, in a similar fashion to the PCG cases reported
previously.

5. Conclusions

Due to the dominant cost of Pressure Poisson solution in the
simulation of spray problems, the present work has focused on the
computational costs of this solution as a way to understand the de-
clining trend in AMR performance. From the definition of speedup,
which is repeated here as t4t/tAl: = © (Nsy/Naur). two contribu-
tions to the performance of AMR are the cell-based speedup (®)

13

and the ratio of computational cells. For spray problems, which are
characterized by a huge increase in interfacial area, it is logical to
expect a decrease in speedup as the liquid injection and atomiza-
tion unfold, since the interfacial area growth is intrinsically associ-
ated with an increase in Nyypr. However, as shown in the present
work, a less obvious contributor is the decrease in the cell-based
speedup.

As derived in Section 2, a theoretical estimate for the cell-
based speedup is obtained, namely ®f = ,/Krsy/./Kramr. Where
kr is the Frobenius condition number for the respective SM and
AMR Poisson systems. It is shown that as the calculation of at-
omization unfolds, there is a noticeable decline in & sy/KFamr
leading directly to the decrease in cell-based speedup. Under cer-
tain conditions, AMR does not lead to an advantage, i.e., tSANfl/tAf

AMR
is at or below one, even though the total number of computa-
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tional cells in AMR is lower than the corresponding SM. To ex-
amine why «f increases more pronouncedly for AMR versus SM,
we can refer to the eigenvalue product equality with «, i.e. kp =

VI A2 /3, A7, Since N naturally increases with AMR but

not with SM, even if the magnitude of A;,i=1,2,..., N, remain
quite the same, this behavior would lead to the more rapid growth
of kg amr compared with K gy.

We should keep in mind that for arriving at the previously
mentioned conclusion, the AMR computations were performed
against a well-tailored static mesh, which employs octree refine-
ment but in a fixed or static manner. This is depicted in Fig. 20.
In general, if comparisons are performed against a highly refined
mesh, where the grid spacing is Ax,;, everywhere in the compu-
tational domain, the speedup values will almost certainly stay well
above one for the entire duration of the simulation. Also, these ob-
servations hold for a particular type of two-phase flow problems,
such as those characterizing sprays, where an explosive growth of
interfacial area occurs. As shown in the above injection cases, for
these problems, interfacial area production is so severe that AMR
typically results in an entire region being completely refined rather
than the case for more mild two-phase problems, where generally
isolated narrow bands of refinement would characterize the mesh.
Hence, under atomization conditions, an alternative is to employ
static refinement in the local region associated with the high inter-
facial area density rather than incur the additional costs of AMR.

In many two-phase flow problems not characterized by huge
increases of interfacial area, variations in (Ngy/Nayg) are expected
to be mild, resulting in near steady values for ®. The standing
wave case examined in Section 4.1 falls under this category. Un-
der these conditions, the speedup values will be in proportion to
(Nsm/Namr) (see content around Eq. 15), and the computational
cost savings will scale directly with the savings in the number of
computational cells.
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Appendix A. Simplified expression for «r

To further explore the makeup of ®f, let us return to the
original definition of kr (Eq. 5) and focus on fz(N). Since B is
a symmetric matrix, this yields BT =B and (B-1)T = (BT)~! = B!
(Lay et al., 2016, pg. 107). Thus fg(N) can be recast as,

fz(N) = %{Tr[(B —B )T (B B—l)]
*(llBlhzc = 2||BIIFl|B7"||F + [|B~! II%>}
1

= {Tr[(BT _B)(B- B*l)]
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—[Tr(BTB) —2/Tr(BTB)/Tr{(B-1)TB 1] + Tr[(B’1)TB’1]] }

% {Tr[BTB —B 'B—B'B 14+ (B! )2]
—[Tr(Bz) —2/Tr(B)/Tr{(B-1)?] + Tr[(B")z]] }

{Tr(BZ) — 2N+ Tr[(B~1)?]
—[Tr(Bz) —2J/Tr(B) JTr(B-1)2] + Tr[ (B~ )2]] }

_ %{_ZN_[_NW rr[(w]]}
—N +/Tr(B2)/Tr(B-2). (32)

Introducting Eq. (32) into Eq. (5) gives

kr(B) = N+ fg(N) = /Tr(B2)\/Tr(B-2). (33)

To reduce this further, we note that B is symmetric, so it is
therefore orthogonally diagonalizable (Lay et al., 2016, pg. 398).
Moreover, it admits a spectral decomposition (Lay et al., 2016,
pg. 399), namely

N —

B=QDQ!, (34)

where Q is the matrix whose columns are the eigenvectors of B,
and D is the diagonal matrix composed of the eigenvalues of B.
Additionally,

B> =(QDQ )(QDQ ") =QD*Q ", (35)

which can be generalized to n, i.e. B =QD"Q~!. Since B and D
are similar matrices, they have the same traces (Lay et al., 2016,
pg. 296), thus

N
Tr(D) = > A;=Tr(B) (36)
i=1
and
N
Tr(B?) =Tr(D*) =) Al (37)
i=1

For the B~! case, we have that
B'B=1
B-1(QDQ ") = I(from Eq. 34)
B~'(@DQ M) (QD'Q™") =1(@D7'Q™")
B'=QD'Q" (38)
which similarly leads to
B2=QD?Q ", (39)

or more generally to B-" = QD "Q~1. To obtain a simplified rela-
tion for Tr(B~2) requires an explicit expression for D!, which can
be obtained as follows,

N
> Dy (D71)y; = 8;(8yis the Kronecker delta)
k=1
N
Ai Z(Sik(D‘])kj = §;; (summation convention not implied)
k=1
1:i8i;(D71);; = 8;j(summation convention not implied)

(D71)ij = 2168y (40)

Not surprising ly, D! is also a diagonal matrix. By inspection it
follows that (D‘z)ij = )\;281»]» (summation convention not implied).

14


https://doi.org/10.13039/100000001

C.-W. Kuo and M.E. Trujillo

From Eq. (39), B2 and D=2 are similar matrices. Therefore, they
both have the same traces, namely

N

Tr(B2) =Tr(D7?) =) A%

i=1

(41)

Putting Egs. (37) and (41) into Eq. (33) gives a final expression for
the Frobenius condition number as

N
Kp(B) = /Tr(B?),/Tr(B2) = [ Y A7
i=1

1 1/2

(42)

/2 N
DA
i=1
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