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a b s t r a c t 

Adaptive mesh refinement (AMR) provides an attractive means of significantly reducing computational 

costs while simultaneously maintaining a high degree of fidelity in regions of the domain requiring it. 

In the present work, an analysis of the performance of AMR supported by simulations is undertaken for 

liquid injection and spray formation problems. These problems are particularly challenging from a com- 

putational cost perspective since the associated interfacial area typically grows by orders of magnitude, 

leading to similar growth in the number of highly refined cells. While this increase in cell numbers di- 

rectly contributes to a declining performance for AMR, a second less obvious factor is the decaying trend 

for the cell-based speedup, �. A theoretical analysis is presented, leading to a closed-form estimate for 

this cell-based speedup, namely �E = 

√ 

κF,SM / 
√ 

κF,AMR , where κF is the Frobenius condition number, and 

SM corresponds to a static mesh case. It is shown that for spray formation problems, the typical growth 

in κF,AMR is more pronounced than κF,SM causing a decline in � and consequently diminishing the AMR 

performance. Additional contributing sources are also examined, which include the role of load balancing 

and the choice of linear solvers for the Poisson system. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The use of adaptive mesh refinement (AMR) is widely accepted 

s a computationally efficient way to solve various types of par- 

ial differential equations ( Harten and Hyman, 1983; Berger and 

liger, 1984; Berger and Colella, 1989; Miller and Miller, 1981; 

djerid and Flaherty, 1986; Brandt, 1977; Babuvška and Rhein- 

oldt, 1978; Verfürth, 1994; Dörfler, 1996; Riviere et al., 1999; Hor- 

ung and Trangenstein, 1997; DeZeeuw and Powell, 1993 ) by dy- 

amically allocating a high level of numerical fidelity in areas re- 

uiring it. A common way to achieve this is to reduce the local 

rid spacing ( �x ) dynamically in regions of high-fidelity demand, 

hich can be identified through the use of a cost function. Some 

xamples of these cost functions include local truncation errors 

ased on Richardson extrapolation ( Berger and Oliger, 1984; Berger 

nd Colella, 1989 ), magnitude of the velocity gradient ( Miller and 

iller, 1981 ), a fraction of the maximum total velocity differ- 

nce ( DeZeeuw and Powell, 1993 ), smearing of a shock discontinu- 

ty ( Harten and Hyman, 1983 ), and jumps in flux variables ( Adjerid

nd Flaherty, 1986; Hornung and Trangenstein, 1997 ). Besides its 

bundant application in Computational Fluid Dynamics (CFD), AMR 

as also been successfully applied in cosmological hydrodynam- 
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cs ( Teyssier, 2002 ), magnetohydrodynamics ( Balsara, 2001 ), and 

train localization problems ( Ortiz and Quigley, 1991 ) among other 

elds. 

For two-phase flow problems, the interface is the most obvi- 

us choice for the cost function since good numerical accuracy is 

equired in its advection and the calculation of its dynamics, e.g., 

urface tension. For instance, in the work of Theodorakakos and 

ergeles (2004) , the tagging of the interfacial region is achieved by 

onitoring the domain where the liquid fraction varies between 

.2 and 0.8. In the paper by Malik et al. (2007) , the tagging is in-

tead executed where the normalized curvature (product of curva- 

ure and the cell size) is below a specified constant that is typically 

.2 ( Fuster et al., 2009 ). Common standard problems that are em- 

loyed in evaluating the degree of AMR acceleration include rota- 

ion of Zalesak sphere ( Anjos et al., 2014; Laurmaa et al., 2016 ),

roplet deformation in the 3D vortical flow ( Anjos et al., 2014; 

hen and Yang, 2014 ), Rayleigh-Taylor instability ( Zuzio and Es- 

ivalezes, 2011; Xie et al., 2014 ), and the secondary breakup of 

 droplet ( Strotos et al., 2016; Yang et al., 2016; Tavangar et al., 

015; Jain et al., 2015 ). Among these works, the investigations by 

aurmaa et al. (2016) , and Zuzio and Estivalezes (2011) further 

emonstrate that the smaller the value of the minimum grid size, 

x min , the better the odds of attaining a higher AMR speedup. 

verall in all of these cases, significant benefits are reported with 

he use of AMR. 

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103615
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2021.103615&domain=pdf
mailto:mtrujillo@wisc.edu
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103615
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Considering the case of liquid jet injection and spray forma- 

ion, an inspection of the literature ( Tonini et al., 2008; Xue and 

ong, 2009; Lebas et al., 2009; Fuster et al., 2009; Herrmann, 

010; Shinjo and Umemura, 2010; Jiang et al., 2010; Li and Sote- 

iou, 2012; Chen et al., 2013; Fuster et al., 2013; Jarrahbashi and 

irignano, 2014; Ling et al., 2015; Arienti and Sussman, 2015 ) re- 

eals that AMR is not overwhelmingly used. From the studies that 

o employ AMR ( Tonini et al., 2008; Xue and Kong, 2009; Fuster 

t al., 2009; Li and Soteriou, 2012; Chen et al., 2013; Fuster et al., 

013; Arienti and Sussman, 2015 ), no comparisons are performed 

gainst a well-designed static refined mesh, e.g., a static mesh (SM) 

hat is octree refined only in the region where the interface is ex- 

ected to be present within the computational time period. For 

iquid injection problems, this region can be reasonably estimated 

priori. Usually, in the literature, AMR versus SM comparisons are 

erformed for situations where the SM is refined at the maximum 

evel everywhere in the domain, even in regions far from the inter- 

ace. Under such conditions, almost regardless of the performance 

f AMR, it is expected that using AMR will provide significant com- 

utational cost savings. 

In relatively recent conference presentations ( Kuo and Trujillo, 

019; 2018 ), the present authors have provided empirical evidence 

ndicating a declining trend in AMR performance with time for liq- 

id injection simulations. This behavior was attributed to a sub- 

tantial growth in the interfacial area, which resulted in the re- 

pective creation of a large number of refined cells in AMR. Hence, 

ith this substantial growth of cells, the size of the system being 

olved increases, and thus it comes as no surprise that a significant 

low down in speed is observed. However, beyond the empirical 

vidence, we did not provide any underlying arguments supported 

y theoretical developments to explain the trends observed, so the 

resent work endeavors to remedy the situation by providing such 

nalysis. Because the cost of computations is primarily driven by 

he solution of the Pressure Poisson Equation, particularly for CFD 

roblems ( Löhner et al., 2011; Jiang and Lai, 2016; Kwak and Kiris, 

010; Johnston and Liu, 2002 ), the present work focuses on this 

spect. Regardless, for every computational result shown, the dom- 

nating costs of the Poisson solution are confirmed. Specifically, the 

mphasis of the present work is on the changing linear algebra 

haracteristics of the Poisson system, as AMR unfolds. While dif- 

erent advanced variations of AMR algorithm and adaptations are 

urrently in use and development, in the present work our partic- 

lar algorithm employs the standard block-based AMR library of 

penFOAM 2.1.1. 

The contents of the paper are as follows. An analysis of the lin- 

ar system solution for the Poisson system is detailed in Section 2 , 

here the main results from this analysis form the theoreti- 

al foundation for interpreting the subsequent computations. An 

verview of the solver is provided in Section 3 . The computations 

rst consider a standard two-phase problem consisting of a stand- 

ng wave in Section 4.1 . This is followed by progressively more 

omplicated problems, including liquid injection in a small domain 

n Section 4.2 and liquid injection in a larger domain in Section 4.3 ,

here the latter case reflects the size of computations often found 

n engineering and scientific studies of sprays. Towards the end of 

he paper in Section 4.4 , we examine other potential contributors 

o the recorded AMR slowdown, including load balancing or choice 

f the linear solver to evaluate whether they can help explain the 

rends recorded. Finally, a summary of the work, along with con- 

luding thoughts, are communicated in Section 5 . 

. Analysis of AMR performance 

The general Poisson linear system to be analyzed is of the 

orm 

A x = b , (1) 
2 
here A is a real N × N symmetric matrix (it can be shown that 

nder finite volume discretization, the resulting Poisson system 

s symmetric). A popular procedure for tackling these types of 

ystems is through the use of preconditioned conjugate gradient 

ethods ( Quan et al., 2009; Anjos et al., 2014; Theodorakakos and 

ergeles, 2004; Liu, 2013; Moayedi et al., 2017 ). Let P −1 denote the 

reconditioner, then the system to be solved is 

P −1 A x = B x = P −1 b . (2) 

For large systems, a popular family of preconditioners is the in- 

omplete Cholesky (IC) factorization ( Ascher and Greif, 2011 ). The 

verall goal is to ensure that the system, B x = P −1 b , has much bet-

er clustering of the eigenvalues when compare to A resulting in 

ignificant improvements in convergence. 

Defining the iteration index as k, the exact solution to Eq. (1) as 

 , the k th iterative solution as x k , the associated error as e k = x k −
 , the energy norm for this error can then be defined as 

|| e k || B = 

√ 

(e k ) T (B ) e k . (3) 

he corresponding error bound is given as a theorem in Ascher and 

reif (2011 , pg. 187) and in LeVeque (2007 , pg. 93) as 

|| e k || B 
|| e 0 || B ≤ 2 

( √ 

κ2 (B ) − 1 √ 

κ2 (B ) + 1 

) k 

. (4) 

n this expression, the condition number κ2 is given as λ1 /λN , i.e., 

he ratio of largest to the smallest eigenvalue of the symmetric 

ositive definite matrix B . 

An issue with the use of κ2 is that while it can be readily com- 

uted, an order of magnitude estimate of its value based on the 

ize of the system, N, is not automatically apparent. As an alterna- 

ive, we choose to work with a quantity that is explicitly related to 

he size of the problem, i.e., the Frobenius condition number, κF , 

efined as ( Chehab and Raydan, 2008 ) 

κF (B ) = N + f B (N) , where 

f B (N) = 

1 

2 

[
|| B − (B ) −1 || 2 F −

(
|| B || F − || (B ) −1 || F 

)2 
]
, (5) 

here the Frobenius norm is defined as 

|| B || 2 F = T r[(B ) T (B )] . (6) 

ere T r is the trace operation. It follows from the Frobenius 

ondition number that κF (B ) > κ2 (B ) (Chehab and Raydan, 2008, 

g. 2091) and ( Trefethen and Bau, 1997 )[Theorem 5.3]. 

In what follows, it is tacitly assume that the condition numbers 

re based on B, i.e. κF = κF (B ) and κ2 = κ2 (B ) . Returning to the

pper bound for the error in Eq. (4) , we can expand the following

uantity as 

√ 

κ2 − 1 √ 

κ2 + 1 

= 

(
1 − 2 √ 

κ2 + 1 

)
≤

(
1 − 2 √ 

κF + 1 

)

= 

√ 

κF − 1 √ 

κF + 1 

( since κF > κ2 ) . (7) 

Introducing this into Eq. (4) gives 

|| e k || B 
|| e 0 || B ≤ 2 

(√ 

κF − 1 √ 

κF + 1 

)k 

= 2 

(
1 − 2 √ 

κF + 1 

)k 

. (8) 
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Fig. 1. Computation time for one iteration of linear solve (Poisson system) versus 

number of computational cells, N, corresponding to the small domain case dis- 

cussed below in Section 4.2 . 
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Fig. 2. Time traces of C oper of AMR contrasted with SM for the small domain case 

elaborated in Section 4.2 . 
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anipulating this expression yields 

og 
( ‖ e k ‖ B ‖ e 0 ‖ B 

)
≤ log 

[
2 

(
1 − 2 √ 

κF +1 

)k 
]

= log 2 + k log 

(
1 − 2 √ 

κF +1 

)
= log 2 − k 

[
2 √ 

κF +1 
+ 

1 
2 

(
2 √ 

κF +1 

)2 

+ O 

(
2 √ 

κF +1 

)3 
]

( log expansion [53] pg.126 ) 

og 
( ‖ e k ‖ B ‖ e 0 ‖ B 

)
≤ log 2 − 2 k √ 

κF +1 ( since κF � 1 ) . 

(9) 

olving for k, we have 

k ≤ 1 

2 

( 
√ 

κF + 1) log 

(
2 

|| e 0 || B 
|| e k || B 

)
. (10) 

he expression on the right of this inequality is the upper bound 

n the iteration number required to reduce the error for the linear 

olve from the initial error || e 0 || B to || e k || B . 
In the present CFD solution procedure, at each physical time 

tep, the solution of momentum is performed along with the 

olution for the advection of the gas-liquid interface through a 

olume-of-Fluid (VoF) formulation. During this step, the Poisson 

ystem is solved in an iterative fashion, where a predetermined er- 

or tolerance is assigned. This error tolerance is directly related to 

| e k || B / || e 0 || B . To estimate the computational cost of this solution, 

et the upper bound on the number of iterations to achieve the 

pecified tolerance be denoted as n iter . Then the associated com- 

utational cost for the Poisson solution is 

t �t = n iter t 1 ×�t , (11) 

here t 1 ×�t is the computation time per one iteration of the lin- 

ar solve. Here t 1 ×�t is proportional to the number of floating- 

oint operations, and the number of operations is proportional to 

(Saad, 2003, pg. 281) . Both of these statements lead to 

t �t = n iter C oper N, (12) 

here C oper is a constant of proportionality. In our own computa- 

ions, we have confirmed this assertion of t �t being linearly related 

o N as shown in Fig 1 . While values for C oper for either AMR and

M are similar, these constants are not exactly the same as illus- 

rated in Fig. 2 . However, for the sake of providing an estimate for 

he computational efficiency, we will assume they are equal. 

Combining Eqs. (10) and (12) by letting n iter be the upper 

ound on the iterations required for the reduction of || e 0 || B to 

| e n || B , we obtain an upperbound estimate for the computational 

iter 

3 
ost for the Poisson system as 

t �t 
U = 

1 

2 

( 
√ 

κF + 1) log 

(
2 

|| e 0 || B 
|| e n iter 

|| B 
)

C oper N. (13) 

his expression clearly shows that this upper bound estimate is 

roportional to the size of the solution vector, i.e., through N, and 

irectly related to the square root of the associated Frobenius con- 

ition number for the matrix B . 

In comparing the performance of calculations using the SM 

nd AMR strategies, the most straightforward metric is the ratio 

f respective computation times, namely t �t 
SM 

/t �t 
AMR 

or simply the 

peedup . Another metric that has been employed in multiphase 

ow work ( Fuster et al., 2009; Zuzio and Estivalezes, 2011; Akhtar 

nd Kleis, 2013 ) is the ratio of computational time per computa- 

ional cells, namely 

� = 

t �t 
SM 

/N SM 

t AMR /N AMR 

. (14) 

his quantity, �, represents a comparison of the computational ef- 

ciency between the SM and AMR strategies and is referred to in 

he present work as the cell-based speedup between SM and AMR. 

sing this metric, we can express the computational time ratio 

s 

t �t 
SM 

t �t 
AMR 

= �
N SM 

N AMR 

. (15) 

f we consider an ideal case, for instance � = 1 , where the com- 

utational time per cell is the same between AMR and SM, then 

q. (15) states that t �t 
SM 

/t �t 
AMR 

= N SM 

/N AMR . This means that the 

peedup is directly related to the ratio of computational cells used 

n SM over AMR, and since it is generally understood that N SM 

�
 AMR , this implies an expected large value for the speedup. This is, 

n essence, the promise of AMR , that with a significantly reduced 

umber of computational cells, we can proportionally achieve a 

ignificant speedup. 

Based on the upper bound expression provided in Eq. (13) , we 

an arrive at an estimate for the speedup given by 

t �t 
SM 

t �t 
AMR E 

= 

( 
√ 

κF,SM 

+ 1) log 

(
2 

|| e 0 || B,SM 

|| e n iter 
|| B,SM 

)
N SM 

( 
√ 

κF,AMR + 1) log 

(
2 

|| e 0 || B,AMR 

|| e n iter 
|| B,AMR 

)
N AMR 

. (16) 

Since this is an estimate for the speedup based on upper 

ounds for t �t 
SM 

and t �t 
AMR 

, it is denoted with subscript E. The ra- 

io of initial ( || e 0 || B ) and final ( || e n iter 
|| B ) error differs usually by

rders of magnitude for both SM and AMR. If we can assume that 

he difference between initial error levels between SM ( || e 0 || B,SM 

) 
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nd AMR ( || e 0 || B,AMR ) is , O(1) the expression above can be ap-

roximated by 

t �t 
SM 

t �t 
AMR E 

∼= 

√ 

κF,SM √ 

κF,AMR 

N SM 

N AMR 

= 

√ 

N SM 

+ f B (N SM 

) √ 

N AMR + f B (N AMR ) 
× N SM 

N AMR 

, (17) 

here we have made use of the fact that 
√ 

κF,SM 

� 1 and 

 

κF,AMR � 1 . In comparing this equation to Eq. (15) , we see that 

is not necessarily a constant, especially for the AMR case where 

 AMR can vary considerably in time. This expression also highlights 

he fact that the speedup is not simply related to N SM 

/N AMR as we

hall verify in Section 4 . Furthermore, based on this development 

he estimate for cell-based speedup becomes 

�E 
∼= 

√ 

κF,SM √ 

κF,AMR 

= 

√ 

N SM 

+ f B (N SM 

) √ 

N AMR + f B (N AMR ) 
. (18) 

n Section Appendix A , an expression for the Frobenius condition 

umber is derived in terms of the eigenvalues of the matrix B as 

hown in Eq. (42) . This yields the following expression 

�E 
∼= 

√ 

κF,SM √ 

κF,AMR 

= 

( 
∑ N SM 

i =1 
λ2 

i,SM 

) 1 / 4 ( 
∑ N SM 

i =1 
λ−2 

i,SM 

) 1 / 4 

( 
∑ N AMR 

i =1 
λ2 

i,AMR 
) 1 / 4 ( 

∑ N AMR 

i =1 
λ−2 

i,AMR 
) 1 / 4 

, (19) 

here λi,SM 

and λi,AMR are respectively the eigenvalues of their 

orresponding B matrices. However, the estimation of the eigen- 

alues is not straightforward since the underlying coefficients of 

he matrix B are variable. These coefficients are functions of local 

ensity and volume flux, which have drastic temporal changes in a 

wo-phase flow. Hence, a further simplification of �E beyond the 

oint shown in Eq. (19) is difficult. However, there are two trends 

hat are noteworthy. The first is that κF increases with time even 

or the SM case, as shown in the small domain cases discussed in 

ection 4.2 . The second trend is that N AMR increases tremendously 

n liquid injection and atomization problems. Hence, even if the 

agnitudes of the eigenvalues remain fairly equal, the overall sum 

ould increase, leading to an overall increase in κF,AMR . Since this 

econd contribution is absent in SM, this behavior would favor an 

ncrease in AMR that is more pronounced than SM, leading to a de- 

rease in �E . Again this is supported by the results from the liquid 

njection cases. Prior to the examination of the AMR performance 

ia computation, the following section gives a brief overview of the 

olver. 

. Numerical solver 

To provide a quantitative assessment of the previous analysis, 

he algebraic Volume-of-Fluid solver, interFoam , and its AMR 

daption, interDyMFoam , is employed to solve the transport 

quation for the cell-based liquid fraction. The interFoam solver 

orms a part of a larger open-source distribution of computa- 

ional mechanics solvers and C++ libraries of OpenFOAM version 

.1.1, which is designed for finite volume discretization on collo- 

ated grids for the solution of two-phase incompressible flows. The 

nterFoam solver has been previously verified and validated in 

 previous publication from our group ( Deshpande et al., 2012 ). 

t has also been used to study the physics associated with spray 

ormation and interfacial instabilities ( Agarwal and Trujillo, 2020; 

018; Trujillo et al., 2018; Deshpande et al., 2015 ). 

The two-phase solution begins with an interface advection step, 

hich is handled via an algebraic VoF scheme based on a com- 

ressive interface capturing methodology advanced by Ubbink and 

ssa (1999) and Rusche (2003) with contributions from Henry 

eller. The two-phase momentum equation is composed of an ini- 

ial predictor step, which produces a velocity U , which is typically 

ot divergent free. This is followed by a pressure Poisson solution 
4 
aving the following form ( Deshpande et al., 2012 , pg. 10) 

∑ 

f 

(
1 

A p 

)
f 

(�⊥ 
f P ) | S f | = 

∑ 

f 

U f · S f , (20) 

here the summation is taken over all faces, f, of a given compu- 

ational cell. The interpolation of the predictor velocity to the cell 

aces is denoted by U f ; the cell face area vector by S f , and the op-

rator �⊥ 
f 

is the gradient normal to each cell face, where P is the 

ressure. Due to the two-phase flow conditions, the coefficients 

A p ) f are variable ( Deshpande et al., 2012 , pg. 10). It can be shown

hat the resulting system is symmetric and that it is positive def- 

nite. The Poisson system is solved using a Preconditioned Conju- 

ate Gradient (PCG) method, with Diagonal Incomplete Cholesky 

DIC) as the preconditioner. The convergence criterion employed is 

0 −7 based on the normalized residual of the original linear sys- 

em, and this criterion is used in all cases presented in this paper. 

After the Poisson solution, a corrector step follows. Subsequent 

o this step, a mesh adaptation is performed where the cost func- 

ion employed is |∇α| × �x . Here |∇α| is the magnitude of the 

iquid fraction gradient, and �x is the local cell size. The selection 

f this cost function follows published procedures used in two- 

hase flow AMR cases as documented in Fuster et al. (Fuster et al., 

009, pg. 554) . Refinement occurs if 

|∇α| × �x > ε1 , (21) 

here ε1 is a user-defined threshold value. Under refinement, the 

iven cell is recursively split into eight smaller child cells following 

he octree structure shown in Fig. 3 . For a N le v el AMR, where the 

ell is refined ( N le v el − 1 ) times, the sizes of the child cells, denoted

s �x c , are given by 

�x c = �x p 
/

2 

N le v el −1 . (22) 

ere �x p is the parent cell size. For the sake of narrowing the 

cope of the present investigation, we mainly consider a three- 

evel AMR ( N le v el = 3 ), that is, only three levels of grid size, �x 1 ,

x 2 , and �x 3 are considered, where �x 1 = �x p , �x 2 = �x 1 / 2

nd �x 3 = �x 2 / 2 (although a higher AMR is also available in

nterDyMFoam ). Once a refinement has taken place, the flow 

ariable is mapped from the parent cell to the child cells by as- 

igning them the same value, 

ξc,i = ξp , i = 1 , 2 , 3 , ., 8 , (23) 

here ξc,i is the value of the child cell i, and ξp is the value of 

he parent cell. Other schemes for mapping parent-child or child- 

arent are presented in the literature ( Theodorakakos and Berge- 

es, 2004; Xue and Kong, 2009 ), which apply to more general grid 

tructures. 

Conversely, if any cell satisfies the coarsening criterion given 

y 

|∇α| × �x < ε2 , (24) 

he cluster of the associated cells will be combined to recover 

he parent cell, as shown in Fig. 3 . Here ε2 is also a user-defined

hreshold with ε2 < ε1 . The flow variable for the parent cell is ob- 

ained from 

ξp = 

1 

8 

8 ∑ 

i =1 

ξc,i . (25) 

verall, Eqs. (23) and (25) apply to all flow variables, namely liquid 

raction, velocity, and pressure, which are cell-centered. The val- 

es for ε1 and ε2 are adjusted so that the gas-liquid interface is 

ounded by roughly five cells on either side of the interface. This 

rovides adequate support for the advection operation and allows 

s to take between three to five global time steps between each 
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refinement

coarsening

Fig. 3. Mesh operation steps of octree-based AMR employed in the present study (all hexahedral cells): refinement (from left to right) and coarsening (from right to left). 

Fig. 4. Examples of grid interfaces for gradient and flux calculations. 
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esh adaptation operation. However, towards the end of the com- 

utation, the refinement region fills a sizable fraction of the en- 

ire domain due to the intensity of the liquid breakup process, and 

nder these conditions, the mesh adaptation frequency can be ex- 

ended to approximately every ten times steps without ill effect. 

In addition to cell-centered quantities being mapped among re- 

ned and coarse regions, gradient and flux information are also 

andled accordingly at the boundaries between coarse and refined 

egions (grid interface). For instance, the x -component of the gra- 

ient of a flow variable ξ at the grid interface is calculated as fol- 

ows, 

∂ x ξ
(1 , 2) 
f 

= 

ξ2 − ξ1 

L x / 4 + L x / 8 

, 

∂ x ξ
(2 , 3) 
f 

= 

ξ3 − ξ2 

L x / 8 + L x / 8 

, (26) 

ertaining to the configuration depicted in Fig. 4 . Here ξi is the 

alue of ξ at cell i and ∂ x ξ
( j,k ) 
f 

is the derivative evaluated at the 

oundary between cells j and k . Likewise, the volume flux between 

ells j and k, denoted by φ( j,k ) 
f 

, is calculated as 

φ(1 , 2) 
f 

= 

[ 
U 1 

L x / 8 

L x / 4 + L x / 8 

+ U 2 
L x / 4 

L x / 4 + L x / 8 

] 
· S f 1 , 

φ(2 , 3) 
f 

= 

[ 
U 2 

L x / 8 

L x / 8 + L x / 8 

+ U 3 
L x / 8 

L x / 8 + L x / 8 

] 
· S f 2 , (27) 
(

5 
here S f 1 is the product of the cell face area and its unit normal

utward vector pertaining to faces f 1 = { ∂ �1 ∩ �(1 , 2) 
�x 

} . Similarly, 

 f 2 
pertains to the faces f 2 = { ∂ �2 ∩ �(2 , 3) 

�x 
} . 

. Results and discussion 

The section begins by computing and analyzing the AMR perfor- 

ance for a standard flow problem that often appears in the mul- 

iphase flow literature ( Zuzio and Estivalezes, 2011; Popinet, 2009 ). 

he purpose of this first exercise is to evaluate whether a similar 

evel of performance is obtained in the current computations. 

The next set of exercises consists of liquid injection and spray 

ormation, which is the main focus of the work. In the first set 

f calculations, a relatively small domain under carefully selected 

onditions is employed to allow for seamless calculation of all rel- 

vant linear algebra metrics, e.g., the Frobenius condition number. 

he goal here is to provide insights originating from the analy- 

is into the observed drop in AMR speedup. The second set of 

njection problems are much larger and reflect the type of cases 

xecuted in physics and engineering pursuits. The examination 

s focused on determining whether the pattern observed for the 

maller injection cases is similarly observed in the larger spray 

roblems. Since all of this work is based on the conjugate gradi- 

nt method, in the last section, a multigrid scheme for solving the 

oisson system is employed to detect whether similar patterns of 

erformance are observed. Furthermore, the potential issue of load 

alancing is discussed and supported by additional injection calcu- 

ations. 

.1. Standing wave cases 

An illustration of the standing wave cases is shown in Fig. 5 cor- 

esponding to both the AMR and SM strategies. The extent of the 

omain in the horizontal and vertical direction is respectively 100 

m and 400 μm . The initial conditions for velocity and interface 

osition are 

u (x , t = 0) = 0 

y �(t = 0) = [200 + 5 sin (2 πx/ 100)] μm. (28) 

t the bottom of the domain, a zero Neumann condition for the 

ressure and the liquid fraction is employed; the no-slip bound- 

ry condition is used for the velocity. On the left and right faces, 

 zero gradient condition is prescribed. On the front and back 

aces, a periodic condition is employed. At the top of the domain, 

e use a zero Neumann condition for liquid fraction and velocity 

nd a zero Dirichlet condition for total pressure. The AMR refine- 

ent criterion is |∇α| × �x > 10 −4 , while the coarsening criterion 

s |∇α| × �x < 0 . 5 × 10 −4 . Additionally, the physical properties are

ncluded in Table 1 . Here ρ and μ are mass density and viscos- 

ty, respectively, σ is the surface tension coefficient, and subscripts 

L, G ) denote liquid and gas, respectively. 
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Fig. 5. Illustration of the standing wave problem with SM on the left and AMR on the right. The AMR process results in a much tighter high-resolution band of cells 

surrounding the interface in comparison to the SM strategy. 

Table 1 

Physical properties for the standing wave case. 

Liquid density ρL = 997 kg/ m 

3 

Liquid viscosity μL = 8 . 899 × 10 −4 kg/(m-s) 

Gas density ρG = 1 . 177 kg/ m 

3 

Gas viscosity μG = 1 . 846 × 10 −5 kg/(m-s) 

Coefficient of surface tension σ = 0 . 072 kg/ s 2 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Fig. 6. Time history of the AMR computational time of each calculation (per mesh 

adaptation interval) over the total computation time (per mesh adaptation interval) 

for the standing wave problem. The time instant where mesh adaptation is executed 

is denoted as t adv . 
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To confirm whether the Poisson system is the most dominant 

actor in the AMR total computation time, Fig. 6 plots the ratio 

f time cost for each calculation over total time cost per mesh 

daptation interval. The calculations include interface transport, 

wo-phase momentum, Poisson solution, refinement and coarsen- 

ng of the mesh, and overhead. The difference between the total 

ime cost and the joint cost of all calculations is viewed as over- 

ead costs. Also, during the mesh adaption interval, mesh coars- 

ning/refinement occurs only once, while interface transport, two- 

hase momentum, and Poisson solution occur at each time step 

ithin this interval. The results show that the Poisson solution 
6 
overs around 55% of the total computation time, confirming our 

xpectations. For the overhead costs, they are on par with the liq- 

id fraction advection and momentum predictor but well below 

he Poisson solution. 

The performance results in terms of t �t 
SM 

/t �t 
AMR 

and cell-based 

peedup, �, are shown respectively in Figs. 7 a and 7 b. In terms 

f the recorded values of � from the simulation results, these are 

onsistently around one for the entire computation time window. 

ith values of � at approximately one and t �t 
SM 

/t �t 
AMR 

remaining 

early at four, implies that the ratio N AMR /N SM 

is similarly constant 

t ≈ 0 . 25 . This behavior indicates that the morphology of the two- 

hase flow is not substantially changing in time, i.e., while the in- 

erface �(t) is unsteady, the extent of this interface | �(t) | does 

ot change significantly. In subsequent sections, we will see that 

his characteristic plays a fundamental role in the performance of 

MR. The results presented here confirm the superior performance 

btained with AMR and corroborate previous results ( Zuzio and Es- 

ivalezes, 2011; Popinet, 2009 ) with this standing wave problem. 

.2. Small domain liquid injection cases 

For the small domain liquid injection cases, the region of inves- 

igation corresponds to (L x , L y , L z ) = (75 , 200 , 500) μm as shown in

ig. 8 , where the injector orifice is centered on the left-hand x − y 

lane. Again the primary reason for examining the performance of 

MR under these conditions is that it allows for the direct evalu- 

tion of the Frobenius condition number and related parameters. 

hese calculations are performed on a single CPU core (2.4 GHz 

eon E5645), avoiding any potential load balancing issues, which 

re discussed in Section 4.4 . In the present simulations, the do- 

ain is initially quiescent, and at t = 0 , injection is initiated via

he following inlet profile, 

U (r) = U in j (1 − r/R ) 1 / 7 e z , (29) 

here r is the radial coordinate, and the injection occurs 

n the e z direction. The one-seventh power law stems from 

he scaling of the mean injection velocity profile in channel 

ows ( Schlichting et al., 1974 ). The parameters characterizing the 

njection conditions are included in Table 2 . In choosing the phys- 

cal properties, the main motivator was ensuring that hydrody- 

amic breakup occurs relatively soon after injection, primarily to 

inimize the extent of the domain. Again having the focus of the 
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Fig. 7. AMR performance metrics for the standing wave problem. 

Fig. 8. Illustration of the configuration used in the liquid injection simulations (small domain). 

Table 2 

Physical properties and injection conditions for the small domain 

cases. 

Injection speed U in j = 50 m/s 

Injector radius R = 25 μm 

Liquid density ρL = 10 0 0 kg/ m 

3 

Liquid viscosity μL = 1 × 10 −5 kg/(m-s) 

Gas density ρG = 100 kg/ m 

3 

Gas viscosity μG = 1 × 10 −6 kg/(m-s) 

Coefficient of surface tension σ = 0 . 01 kg/ s 2 

Number of computational cells in SM N SM = 38 , 880 
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resent work on the numerical performance issue, we are not in- 

erested in obtaining physical quantities from the simulations, and 

hus, the computations are, to a certain degree, physically unre- 

olved. The AMR refinement criterion is |∇α| × �x > 10 −4 , while 

he coarsening criterion is |∇α| × �x < 0 . 9 × 10 −4 . 

A three-level mesh refinement is employed, where the mini- 

um grid size, �x min = 4.17 m. For the SM cases, the refined re-

ion, �re f , i.e. where �x = �x min is assigned as 

re f = 

{
(x, y, z) ∈ R 

3 | x ∈ (−27 . 5 , 27 . 5) μm, 

y ∈ (−85 , 85) μm, z ∈ (0 , 475) μm 

}
. (30) 
7 
t the wall surrounding the nozzle exit, the no-slip boundary con- 

ition for the velocity is prescribed and a zero Neumann condi- 

ion for the liquid fraction and pressure. On the remaining part 

f boundaries, we employ a zero Dirichlet condition for pressure, 

hich specifies the total pressure to be zero, and zero Neumann 

ondition for liquid fraction and velocity except for reverse flow, in 

hich case this boundary switches to zero Dirichlet condition. 

A visualization of the results is presented in Fig. 9 , which shows

he deformation of the liquid jet leading into the formation of a 

ushroom structure at the jet tip. As the calculation proceeds, 

maller liquid structures are observed becoming detached from the 

ain jet, and towards the end of the computation, the jet tip is on

he verge of breaking up. The underlying AMR grid is also shown 

ccompanying the visualization of the liquid jet. 

An examination of the AMR computational cost for all calcula- 

ions in Fig. 10 reveals that the Poisson costs remain the most sig- 

ificant contributor to the overall calculation burden. The time to 

dapt the mesh and the overhead costs are not negligible but are 

oticeably smaller than the Poisson solution. In terms of the AMR 

ehavior, the ratio of computational time per time step shown in 

ig. 11 a indicates that in contrast to the standing wave problem, 

here is a precipitous decrease in performance. The theoretical es- 

imate is superimposed on these calculations, which match reason- 

bly well with the recorded simulation results and reproduce the 

bserved trend. 



C.-W. Kuo and M.F. Trujillo International Journal of Multiphase Flow 140 (2021) 103615 

Fig. 9. Evolution of the liquid jet injection process and underlying AMR for the small domain case. 

Fig. 10. Time history of the AMR computational time of each calculation (per mesh 

adaptation interval) over the total computation time (per mesh adaptation interval) 

for the small domain injection problem. The time instant where mesh adaptation is 

executed is denoted as t adv . 
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8 
An ideal case is also included in Fig. 11 a, which treats � as be-

ng equal to one. Under these ideal conditions, the speedup be- 

omes t �t 
SM 

/t �t 
AMR 

= N SM 

/N AMR , i.e., it scales with the reduction in to-

al number of computational cells. As evidenced in Fig. 11 a, this 

deal case matches very well with the simulation results, which 

ndicates that the decaying performance of AMR is being largely fu- 

led by an increase in computational cells . This is a noticeable differ- 

nce between spray problems and other two-phase flow problems. 

n sprays, there is a tremendous growth of the interfacial area 

hile hydrodynamic breakup and liquid penetration take place. 

he interface monotonically grows, eventually occupying almost 

he entire domain. 

A secondary contributor to the worsening performance of AMR 

s also a slight decline in cell-based speedup, as shown in Fig. 11 a.

eginning at approximately t = 2 μs, the behavior for � shows a 

eclining trend, and beyond roughly t = 8 μs, its value becomes 

ess than one. Superimposed on the simulation results, the theo- 

etical estimate, �E , is also included, and while it overpredicts the 

ctual � during the early phase of injection, it agrees relatively 

ell in the latter part of the computation time. Since it was in this 
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Fig. 11. Decay of the AMR speedup shown in (a) and associated cell-based speedup (b) for the small domain case. 

Fig. 12. Growth of the Frobenius condition number shown in (a) and associated components (b) for the small domain case. 
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Table 3 

Physical properties and injection conditions for the larger domain cases. 

Injection velocity U in j = (10 0 , 20 0 , 30 0) m/s 

Injector radius R = 45 μm 

Liquid density ρL = 688 . 03 kg/ m 

3 

Liquid viscosity μL = 4 . 78 × 10 −4 kg/(m-s) 

Gas density ρG = 50 kg/ m 

3 

Gas viscosity μG = 1 . 88 × 10 −5 kg/(m-s) 

Coefficient of surface tension σ = 0 . 02 kg/ s 2 

Number of computational cells in SM N SM = 59 , 301 , 368 

v

H

t

e

t

p

m

i

a  

t

atter part when we observed the declining efficiency of AMR, we 

an look at the theoretical estimate for explanations. 

Again the theoretical estimate is given by the ratio of square 

oots of the Frobenius number (See Eq. 18 and surrounding text) 

 

√ 

κF,SM 

/ 
√ 

κF,AMR ) . While values for κF increase in time for both 

MR and SM, as shown in Fig. 12 a, the growth is quite more pro-

ounced for the AMR case. This results in the declining trend ob- 

erved in Fig. 11 a. To inspect what contributes more meaningfully 

o κF,AMR , a plot of its components is included in Fig. 12 b for both

M and AMR. The variation in N AMR definitely plays a role in the 

bserved growth in κF,AMR . However, the more significant contribu- 

ions originate from f B (N AMR ) (see Eq. 5 for the definitions), which 

roduces in large part the decrease in the observed performance 

f �E and similarly for �. 

.3. Large domain liquid injection cases 

In the present computations, the shape of the domain is the 

ame as the one shown in Fig. 8 with the exception that the ex- 

ent is now (L x , L y , L z ) = (1260 , 1260 , 90 0 0) μm . The physical prop-

rties for these cases corresponding to Diesel injection in a pres- 

urized air environment and are listed in Table 3 . Also, three differ- 

nt injection conditions are considered corresponding to increases 

n U in j . 
9 
The simulations are initiated by injecting fluid via the following 

elocity profile, 

U (r) = U in j (1 − r/R ) 1 / 7 e z + 0 . 01 U in j [1 − (1 − r/R ) 1 / 7 ] e r . (31) 

ere we impose a radial component to reflect some extent 

he small deviation from pure axial flow observed in typical 

ngineering nozzle flows such as the ECN Spray A configura- 

ion ( Agarwal and Trujillo, 2018 ). The calculation is performed in 

arallel using 180 CPU cores (2.5 GHz Intel Xeon). The AMR refine- 

ent criterion is |∇α| × �x > 10 −4 , while the coarsening criterion 

s |∇α| × �x < 0 . 9 × 10 −4 . 

The time evolution of the spray as well as the underlying AMR 

re shown in Figs. 13 and 14 , respectively ( U in j = 300 m/s). In

he beginning phase of injection, the jet tip is still present as a 
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Fig. 13. Snapshots of the large liquid injection case ( U in j = 300 m/s) at three different times displays the evolution of the hydrodynamic breakup process. 

Fig. 14. Evolution of the AMR grid corresponding to the same snapshots captured in Fig. 13 . 
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ushroom-shaped object. As the calculation proceeds, this tip be- 

omes fragmented, creating a population of droplets, which are 

ropelled both radially and axially. This progression of droplets is 

hat drives the local refinement. Since the population of droplets 

nd distorted liquid structures is numerous, the adaptive mesh 

rows to fill a relatively large domain. As shown in Fig. 15 , the

oisson system solution remains the largest fraction of the compu- 

ation cost hovering above 65% for much of the AMR computation. 

he overhead costs are higher than all other costs except pressure. 

verhead varies between approximately 17% and 33% of the pres- 

ure cost for this large domain case. 

Concerning the performance of AMR, a similar pattern to the 

revious small-domain cases is observed. The results for speedup 

nd cell-based speedup are shown in Figs. 16 a and 16 b with re-

pect to three different injection conditions. The most noticeable 

ifference for the larger cases is that the drop in AMR performance 

s even more accentuated. In fact, towards the end of the computa- 

ion, the benefits offered by AMR are practically negligible as t �t 

AMR 

10 
s roughly the same as t �t 
SM 

. This drop in performance occurs faster 

ith increasing injection speed as the cloud of droplets and liga- 

ents occupy the physical domain more quickly. 

While we may be tempted to blame responsibility for the de- 

aying AMR performance to the much larger rise in N AMR , this 

s not the full story. A significant part of this observed behav- 

or is due to a decrease in the cell-based speedup, �, as shown 

n Fig. 16 b. In the latter part of the computation, � dips below 

ne, which indicates that the computational efficiency of AMR is 

ower than SM. In terms of linear algebra metrics, this implies that 

he Frobenius condition number for AMR is larger than the cor- 

esponding values for SM. Unfortunately for this case, due to its 

ize, which is approximately 1525 times larger in N SM 

than for the 

mall domain case, we are unable to provide Frobenius condition 

etrics. 

An insightful exercise is to compare the performance of these 

MR calculations with the ideal case ( � = 1 ). The results, in terms 

f the histories of the computational time ratios, are shown in 
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Fig. 15. Time history of the AMR computational time of each calculation (per mesh adaptation interval) over the total computation time (per mesh adaptation interval) for 

the large domain injection problem ( U in j = 300 m/s). 

Fig. 16. Decay of AMR performance as measured by (a) the speedup and (b) cell-based speedup corresponding to the large domain cases. 
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igs. 17 a, 17 b, and 17 c corresponding to the different injection 

peeds. The trend captured in all three injection conditions indi- 

ates that at an early time instant when the number of computa- 

ional cells in AMR is low, the performance is better than the ideal 

ase ( � > 1 ). A likely reason for this behavior can be found by con-

idering the theoretical estimate for �, i.e. �E = 

√ 

κF,SM 

/ 
√ 

κF,AMR . 

or instance, during the early injection period, κF,AMR 
 κF,SM 

due 

n part to the much lower number of cells in AMR. However, once 

he liquid population envelops a greater portion of the domain, 

he reverse trend unfolds. During this latter period, which high- 

ights the greater portion of the total computation time, the effi- 

iency of AMR becomes worse than SM. While the computational 

ost savings in terms of pure t �t is better than SM; it ceases 

o reflect the benefits afforded by a substantially lower compu- 

ational cell count. A time history of the ratio N AMR /N SM 

for each 

f the three injection cases included in Fig. 17 d highlights this 
bservation. o

11 
.4. Other potential contributors to AMR performance deterioration 

Besides the Poisson solution costs, there may be other contrib- 

tors to the decline of AMR performance that merit exploration. A 

ommon source of concern is load imbalance issues. In the present 

omputations, domain decomposition based on Scotch method is 

sed for parallelization ( Guide, 2012 ), and under this methodol- 

gy, a load imbalance would result if a given part of the domain 

as a much higher grid density than another part. Under this sce- 

ario, CPU(s) handling calculations in the higher grid density re- 

ion would naturally be more strained than those CPU(s) responsi- 

le for the lowest grid density region and would cause a bottleneck 

n performance. The highest grid density is located where atomiza- 

ion is most vigorous and is characterized by a local cell size equal 

o �x min . In both AMR and SM, there are CPUs that are handling

alculations in this high grid density region, and thus both meth- 

ds are exposed to equivalent levels of bottleneck behavior. 
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Fig. 17. Comparison of the recorded AMR performance against the ideal case of � = 1 (a,b,c) indicates that beyond the initial period, the recorded AMR performance declines 

substantially even to the point where it has a speedup near or below one, even though (d) the number of computational cells for AMR is uniformly lower than SM (large 

domain case). 
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Nevertheless, for the small domain cases, the drop in perfor- 

ance measured by � is approximately 15% ( Fig. 11 a), while for 

he larger domain cases, the drop in � is slightly more than one 

rder of magnitude ( Fig. 16 b). Hence, it is natural to question 

hether the trends observed are, in fact, due to a progressively 

iminishing value for 
√ 

κF,SM 

/ 
√ 

κF,AMR or a load balance problem. 

ince values for the Frobenius condition number are unavailable 

or the larger domain cases and the performance deterioration for 

MR manifests itself more strongly for larger cases, one option for 

tudying the behavior is to consider the largest reasonable case for 

hich a single CPU core calculation can be performed. This is the 

ase examined in the present work. For the sake of curiosity, ad- 

itional calculations performed with 4 and 8 CPU cores are also 

eported. 

The conditions for these load balancing calculations match 

hose of Table 2 with the exception that R = 20 μm and 

 in j = 150 m/s, and that the domain extent is (L x , L y , L z ) =
160 , 160 , 1700) μm . The total number of cells for the SM case is

 SM 

= 2,785,280, and the AMR refinement criterion is |∇α| × �x > 

0 −6 , and for coarsening |∇α| × �x < 0 . 5 × 10 −6 . 

The results in terms of the time evolution for � are presented 

n Figs. 18 a and 18 b. While the values are not expected to be the

ame, since the parallel scaling is not 100%, the overall declining 

rend is similar among all cases considered. For these calculations, 
12 
he reference is the single-core computation since, by definition, 

o load balancing issues exist under this mode of calculation. In 

he beginning phase of the calculation, the 4-core and 8-core exe- 

utions have lower performance than the single-core case but still 

rovide significant benefits in terms of speedup over the SM case. 

owever, as the calculation proceeds, all cases exhibit the same 

eclining trend, with the 8-core execution showing marginal gains 

ver the other cases. Hence, the trend of downward AMR perfor- 

ance is exhibited even in single-core computations showing a 

rop in performance in a speedup by approximately two orders of 

agnitude and a drop in a cell-based speedup by approximately 

ne order of magnitude. 

A second concern is the choice of a numerical method for solv- 

ng the Poisson system. In the present work, we employed the 

CG solver as outlined in Section 2 , and while we do not intend

o engage in an exhaustive examination of the solution character- 

stics subject to various linear system solution methods, it is in- 

tructive to at least consider an alternative method that is com- 

on in CFD. This alternative method is the Generalized Geometric- 

lgebraic Multi-grid solver, which is exercised on the large domain 

pray case ( U in j = 300 m/s) using the same DIC preconditioner as 

he PCG calculations. The results are presented in Fig. 19 a and re- 

eal that using a different linear solve leads to the same pattern 

f decaying AMR performance. The ideal case ( � = 1 ) is employed 
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Fig. 18. AMR performance employing 1, 4, and 8 CPU core executions shows a similar pattern of decay. 

Fig. 19. AMR performance solving the PPE using Generalized Geometric-Algebraic Multi-grid corresponding to the large liquid injection case ( U in j = 300 m/s). 

Fig. 20. Illustration of an octree-refined static mesh using a telescoping strategy for handling spray problems. With increasing distance from injection, the radial spread 

of the liquid grows, and thus the extent of radial refinement conforms to this spread. Mesh refinement does not encompass the entire length of the domain; hence, the 

finest level of resolution is only provided in the near field or during the initial period of injection. For studies focused only on primary atomization physics or liquid core 

breakup ( Agarwal and Trujillo, 2018 ), this mesh refinement strategy is adequate. 
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o illustrate this behavior. Towards the end of the computation, the 

omputational time per timestep is almost the same between AMR 

nd SM, although the number of cells employed in AMR is substan- 

ially lower. Additionally, the cell-based speedup dips below one, 

s shown in Fig. 19 b, in a similar fashion to the PCG cases reported

reviously. 

. Conclusions 

Due to the dominant cost of Pressure Poisson solution in the 

imulation of spray problems, the present work has focused on the 

omputational costs of this solution as a way to understand the de- 

lining trend in AMR performance. From the definition of speedup, 

hich is repeated here as t �t 
SM 

/t �t 
AMR 

= �(N SM 

/N AMR ) , two contribu-

ions to the performance of AMR are the cell-based speedup ( �) 
13 
nd the ratio of computational cells. For spray problems, which are 

haracterized by a huge increase in interfacial area, it is logical to 

xpect a decrease in speedup as the liquid injection and atomiza- 

ion unfold, since the interfacial area growth is intrinsically associ- 

ted with an increase in N AMR . However, as shown in the present 

ork, a less obvious contributor is the decrease in the cell-based 

peedup. 

As derived in Section 2 , a theoretical estimate for the cell- 

ased speedup is obtained, namely �E = 

√ 

κF,SM 

/ 
√ 

κF,AMR , where 

F is the Frobenius condition number for the respective SM and 

MR Poisson systems. It is shown that as the calculation of at- 

mization unfolds, there is a noticeable decline in κF,SM 

/κF,AMR 

eading directly to the decrease in cell-based speedup. Under cer- 

ain conditions, AMR does not lead to an advantage, i.e., t �t 
SM 

/t �t 
AMR 

s at or below one, even though the total number of computa- 
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f

ional cells in AMR is lower than the corresponding SM. To ex- 

mine why κF increases more pronouncedly for AMR versus SM, 

e can refer to the eigenvalue product equality with κF , i.e. κF = 

 ∑ N 
i =1 λ

2 
i 

√ ∑ N 
i =1 λ

−2 
i 

. Since N naturally increases with AMR but 

ot with SM, even if the magnitude of λi , i = 1 , 2 , . . . , N, remain

uite the same, this behavior would lead to the more rapid growth 

f κF,AMR compared with κF,SM 

. 

We should keep in mind that for arriving at the previously 

entioned conclusion, the AMR computations were performed 

gainst a well-tailored static mesh, which employs octree refine- 

ent but in a fixed or static manner. This is depicted in Fig. 20 .

n general, if comparisons are performed against a highly refined 

esh, where the grid spacing is �x min everywhere in the compu- 

ational domain, the speedup values will almost certainly stay well 

bove one for the entire duration of the simulation. Also, these ob- 

ervations hold for a particular type of two-phase flow problems, 

uch as those characterizing sprays, where an explosive growth of 

nterfacial area occurs. As shown in the above injection cases, for 

hese problems, interfacial area production is so severe that AMR 

ypically results in an entire region being completely refined rather 

han the case for more mild two-phase problems, where generally 

solated narrow bands of refinement would characterize the mesh. 

ence, under atomization conditions, an alternative is to employ 

tatic refinement in the local region associated with the high inter- 

acial area density rather than incur the additional costs of AMR. 

In many two-phase flow problems not characterized by huge 

ncreases of interfacial area, variations in (N SM 

/N AMR ) are expected 

o be mild, resulting in near steady values for �. The standing 

ave case examined in Section 4.1 falls under this category. Un- 

er these conditions, the speedup values will be in proportion to 

N SM 

/N AMR ) (see content around Eq. 15 ), and the computational 

ost savings will scale directly with the savings in the number of 

omputational cells. 

eclaration of Competing Interest 

None. 

cknowledgements 

The support from the National Science Foundation (Number 

703825 ) is gratefully acknowledged. Our thanks are also due to 

he Center for High Throughput Computing (CHTC) at UW-Madison 

or providing computing resources, along with Joshua Leach, for 

dministering the computing resources within the research group. 

dditionally, this work partially used the Extreme Science and En- 

ineering Discovery Environment (XSEDE) Bridges regular memory 

t the Pittsburgh Supercomputing Center through allocation TG- 

TS180037. The authors are grateful for the access granted to this 

esource. 

ppendix A. Simplified expression for κF 

To further explore the makeup of �E , let us return to the 

riginal definition of κF ( Eq. 5 ) and focus on f B (N) . Since B is

 symmetric matrix, this yields B T = B and (B −1 ) T = (B T ) −1 = B −1 

Lay et al., 2016, pg. 107) . Thus f B (N) can be recast as, 

f B (N) = 

1 

2 

{
T r 

[ (
B − B −1 

)
T 
(
B − B −1 

)] 

−
(
|| B || 2 F − 2 || B || F || B −1 || F + || B −1 || 2 F 

)}

= 

1 

2 

{
T r 

[ 
(B T − B −1 )(B − B −1 ) 

] 
14 
−
[ 

T r(B T B ) − 2 
√ 

T r(B T B ) 
√ 

T r[(B −1 ) T B −1 ] + T r 
[
(B −1 ) T B −1 

]] }

= 

1 

2 

{
T r 

[ 
B T B − B −1 B − B T B −1 + (B −1 ) 2 

] 

−
[ 

T r(B 2 ) − 2 
√ 

T r(B 2 ) 
√ 

T r[(B −1 ) 2 ] + T r 
[
(B −1 ) 2 

]] }

= 

1 

2 

{
T r(B 2 ) − 2 N + T r[(B −1 ) 2 ] 

−
[ 

T r(B 2 ) − 2 
√ 

T r(B 2 ) 
√ 

T r[(B −1 ) 2 ] + T r[(B −1 ) 2 ] 
] }

= 

1 

2 

{
− 2 N −

[ 
− 2 

√ 

T r(B 2 ) 
√ 

T r[(B −1 ) 2 ] 
] }

= −N + 

√ 

T r(B 2 ) 
√ 

T r(B −2 ) . (32) 

Introducting Eq. (32) into Eq. (5) gives 

κF (B ) = N + f B (N) = 

√ 

T r(B 

2 ) 
√ 

T r(B 

−2 ) . (33) 

To reduce this further, we note that B is symmetric, so it is 

herefore orthogonally diagonalizable (Lay et al., 2016, pg. 398) . 

oreover, it admits a spectral decomposition (Lay et al., 2016, 

g. 399) , namely 

B = Q DQ 

−1 , (34) 

here Q is the matrix whose columns are the eigenvectors of B, 

nd D is the diagonal matrix composed of the eigenvalues of B . 

dditionally, 

B 

2 = (Q DQ 

−1 )(Q DQ 

−1 ) = Q D 

2 Q 

−1 , (35) 

hich can be generalized to n, i.e. B n = Q D 

n Q 

−1 . Since B and D

re similar matrices, they have the same traces (Lay et al., 2016, 

g. 296) , thus 

T r(D ) = 

N ∑ 

i =1 

λi = T r(B ) (36) 

nd 

T r(B 

2 ) = T r(D 

2 ) = 

N ∑ 

i =1 

λ2 
i . (37) 

For the B −1 case, we have that 

B 

−1 B = I 

B 

−1 (Q DQ 

−1 ) = I (from Eq. 34) 

B 

−1 (Q DQ 

−1 )(Q D 

−1 Q 

−1 ) = I(Q D 

−1 Q 

−1 ) 

B 

−1 = Q D 

−1 Q 

−1 , (38) 

hich similarly leads to 

B 

−2 = Q D 

−2 Q 

−1 , (39) 

r more generally to B −n = Q D 

−n Q 

−1 . To obtain a simplified rela-

ion for T r(B −2 ) requires an explicit expression for D 

−1 , which can

e obtained as follows, 

N ∑ 

k =1 

D ik (D 

−1 ) k j = δi j (δij is the Kronecker delta ) 

λi 

N ∑ 

k =1 

δik (D 

−1 ) k j = δi j (summation convention not implied) 

λi δii (D 

−1 ) i j = δi j (summation convention not implied) 

(D 

−1 ) i j = λ−1 
i 

δi j . (40) 

ot surprising ly, D 

−1 is also a diagonal matrix. By inspection it 

ollows that (D 

−2 ) i j = λ−2 
i 

δi j (summation convention not implied). 
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rom Eq. (39) , B −2 and D 

−2 are similar matrices. Therefore, they 

oth have the same traces, namely 

T r 
(
B 

−2 
)

= T r 
(
D 

−2 
)

= 

N ∑ 

i =1 

λ−2 
i 

. (41) 

utting Eqs. (37) and (41) into Eq. (33) gives a final expression for 

he Frobenius condition number as 

κF (B ) = 

√ 

T r(B 

2 ) 

√ 

T r 
(
B 

−2 
)

= 

( 

N ∑ 

i =1 

λ2 
i 

) 1 / 2 ( 

N ∑ 

i =1 

λ−2 
i 

) 1 / 2 

. (42) 
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