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Abstract: We consider the regression problem of estimating functions on RD but supported on
a d-dimensional manifold M ⊂ RD with d � D. Drawing ideas from multi-resolution analysis
and nonlinear approximation, we construct low-dimensional coordinates on M at multiple scales,
and perform multiscale regression by local polynomial fitting. We propose a data-driven wavelet
thresholding scheme that automatically adapts to the unknown regularity of the function, allowing
for efficient estimation of functions exhibiting nonuniform regularity at different locations and scales.
We analyze the generalization error of our method by proving finite sample bounds in high probability
on rich classes of priors. Our estimator attains optimal learning rates (up to logarithmic factors) as
if the function was defined on a known Euclidean domain of dimension d, instead of an unknown
manifold embedded in RD. The implemented algorithm has quasilinear complexity in the sample size,
with constants linear in D and exponential in d. Our work therefore establishes a new framework for
regression on low-dimensional sets embedded in high dimensions, with fast implementation and strong
theoretical guarantees.
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1. Introduction

High-dimensional data challenge classical statistical models and require new understanding of
tradeoffs in accuracy and efficiency. The seemingly quantitative fact of the increase of dimension has
qualitative consequences in both methodology and implementation, demanding new ways to break
what has been called the curse of dimensionality. On the other hand, the presence of inherent
nonuniform structure in the data calls into question linear dimension reduction techniques, and
motivates a search for intrinsic learning models. In this paper we explore the idea of learning and
exploiting the intrinsic geometry and regularity of the data in the context of regression analysis. Our
goal is to build low-dimensional representations of high dimensional functions, while ensuring good
generalization properties and fast implementation. In view of the complexity of the data, we allow
interesting features to change from scale to scale and from location to location. Hence, we will
develop multiscale methods, extending classical ideas of multi-resolution analysis beyond regular
domains and to the random sample regime.

In regression, the problem is to estimate a function from a finite set of random samples. The
minimax mean squared error (MSE) for estimating functions in the Hölder space Cs([0, 1]D), s > 0,
is O(n−2s/(2s+D)), where n is the number of samples. The exponential dependence of the minimax
rate on D manifests the curse of dimensionality in statistical learning, as n = O(ε−(2s+D)/s) points are
generally needed to achieve accuracy ε. This rate is optimal (in the minimax sense), unless further
structural assumptions are made [28, 32]. If the samples concentrate near a d-dimensional set with
d � D, and the function belongs to a nonuniform smoothness space BS , with S > s, we may hope
to find estimators converging in O(n−2S/(2S +d)). In this quantified sense, we may break the curse of
dimensionality by adapting to the intrinsic dimension and regularity of the problem.

A possible approach to this problem is based on first performing dimension reduction, and then
regression in the reduced space. Linear dimension reduction methods include principal component
analysis (PCA) [24,25,39], for data concentrating on a single subspace, or subspace clustering [8,9,18,
36,47], for a union of subspaces. Going beyond linear models, we encounter isomap [43], locally linear
embedding [40], local tangent space alignment [49], Laplacian eigenmaps [2], Hessian eigenmap [15]
and diffusion map [12]. Besides the classical Principal Component Regression [26], in [33] diffusion
map is used for nonparametric regression expanding the unknown function over the eigenfunctions
of a kernel-based operator. It is proved that, when data lie on a d-dimensional manifold, the MSE
converges in O(n−1/O(d2)). This rate depends only on the intrinsic dimension, but does not match the
minimax rate in the Euclidean space. If infinitely many unlabeled points are sampled, so that the
eigenfunctions are exactly computed, the MSE can achieve optimal rates for Sobolev functions with
smoothness parameter at least 1. Similar results hold for regression with the Laplacian eigenmaps [50].

Some regression methods have been shown to automatically adapt to the intrinsic dimension and
perform as well as if the intrinsic domain was known. Results in this direction have been established
for local linear regression [4], k-nearest neighbors [29], and kernel regression [31], where optimal
rates depending on the intrinsic dimension were proved for functions in C2, C1, and Cs with s ≤ 1,
respectively. Kernel methods such as kernel ridge regression are also known to adapt to the intrinsic
dimension [41, 48], while suitable variants of regression trees have been proved to attain intrinsic
yet suboptimal learning rates [30]. On the other hand, dyadic partitioning estimates with piecewise
polynomial regression can cover the whole scale of spaces Cs, s > 0 [21], and be combined with
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wavelet thresholding techniques to optimally adapt to broader classes of nonuniform regularity [5, 6].
However, such estimators are cursed by the ambient dimension D, due to the exponential cardinality
of a dyadic partition of the D-dimensional hypercube.

This paper aims at generalizing dyadic partitioning estimates [5, 6] to predict functions supported
on low-dimensional sets, with optimal performance guarantees and low computational cost. We tie
together ideas in classical statistical learning [20, 21, 45], multi-resolution analysis [12, 13, 38], and
nonlinear approximation [11,16,17]. Our main tool is geometric multi-resolution analysis (GMRA) [1,
34,35,37], which is a multiscale geometric approximation scheme for point clouds in high dimensions
concentrating near low-dimensional sets. Using GMRA we learn low-dimensional local coordinates
at multiple scales, on which we perform a multiscale regression estimate by fitting local polynomials.
Inspired by wavelet thresholding techniques [5,6,11], we then compute differences between estimators
at adjacent scales, and retain the locations where such differences are large enough. This empirically
reveals where higher resolution is required to attain a good approximation, generating a data-driven
partition which adapts to the local regularity of the function.

Our approach has several distinctive features:

(i) it is multiscale, and is therefore well-suited for data sets containing variable structural information
at different scales;

(ii) it is adaptive, allowing the function to have localized singularities or variable regularity;

(iii) it is entirely data-driven, that is, it does not require a priori knowledge about the regularity of the
function, and rather learns it automatically from the data;

(iv) it is provable, with strong theoretical guarantees of optimal performance on large classes of priors;

(v) it is efficient, having straightforward implementation, minor parameter tuning, and low
computational cost.

We will prove that, for functions supported on a d-dimensional manifold and belonging to a rich
model class characterized by a smoothness parameter S , the MSE of our estimator converges at rate
O((log n/n)2S/(2S +d)). This model class contains classical Hölder continuous functions, but further
accounts for potential nonuniform regularity. Our results show that, up to a logarithmic factor, we
attain the same optimal learning rate as if the function was defined on a known Euclidean domain of
dimension d, instead of an unknown manifold embedded in RD. In particular, the rate of convergence
depends on the intrinsic dimension d and not on the ambient dimension D. In terms of computations,
all the constructions above can be realized by algorithms of complexity O(n log n), with constants
linear in the ambient dimension D and exponential in the intrinsic dimension d.

The remainder of this paper is organized as follows. We conclude this section by defining some
general notation and formalizing the problem setup. In Section 2 we review geometric
multi-resolution analysis. In Section 3 we introduce our multiscale regression method, establish the
performance guarantees, and discuss the computational complexity of our algorithms. The proofs of
our results are collected in Section 4, with some technical details postponed to Appendix A.

Notation. f . g and f & g mean that there exists a positive constant C, independent on any variable
upon which f and g depend, such that f ≤ Cg and f ≥ Cg, respectively. f � g means that both
f . g and f & g hold. The cardinality of a set A is denoted by #A. For x ∈ RD, ‖x‖ denotes the
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Euclidean norm and Br(x) denotes the Euclidean ball of radius r centered at x. Given a subspace
V ⊂ RD, we denote its dimension by dim(V) and the orthogonal projection onto V by ProjV . Let
f , g : M → R be two functions, and let ρ be a probability measure supported on M. We define
the inner product of f and g with respect to ρ as 〈 f , g〉 :=

∫
M

f (x)g(x)dρ. The L2 norm of f with
respect to ρ is ‖ f ‖ := (

∫
M
| f (x)|2dρ)

1
2 . Given n i.i.d. samples {xi}

n
i=1 of ρ, the empirical L2 norm

of f is ‖ f ‖n := 1
n

∑n
i=1 | f (xi)|2. The L∞ norm of f is ‖ f ‖∞ := sup ess | f |. We denote probability

and expectation by P and E, respectively. For a fixed M > 0, TM is the truncation operator defined
by TM(x) := min(|x|,M)sign(x). We denote by 1 j,k the indicator function of an indexed set C j,k (i.e.,
1 j,k(x) = 1 if x ∈ C j,k, and 0 otherwise).

Setup. We consider the problem of estimating a function f : M → R given n samples {(xi, yi)}ni=1,
where

• M is an unknown Riemannian manifold of dimension d isometrically embedded in RD, with
d � D;

• ρ is an unknown probability measure supported onM;

• {xi}
n
i=1 are independently drawn from ρ;

• yi = f (xi) + ζi;

• f is bounded, with ‖ f ‖∞ ≤ M;

• {ζi}
n
i=1 are i.i.d. sub-Gaussian random variables with sub-Gaussian norm ‖ζi‖ψ2 ≤ σ

2, independent
of the xi’s.

We wish to construct an estimator f̂ of f minimizing the mean squared error

MSE := E‖ f − f̂ ‖2 = E

∫
M

| f (x) − f̂ (x)|2dρ.

2. Geometric multi-resolution analysis

Geometric multi-resolution analysis (GMRA) is an efficient tool to build low-dimensional
representations of data concentrating on or near a low-dimensional set embedded in high dimensions.
To keep the presentation self-contained, we summarize here the main ideas, and refer the reader
to [1,34,37] for further details. Given a probability measure ρ supported on a d-dimensional manifold
M ⊂ RD, GMRA performs the following steps:

(1). Construct a multiscale tree decomposition T ofM into nested cells T := {C j,k}k∈K j, j∈Z, where j
represents the scale and k the location. Here K j is a location index set.

(2). Compute a local principal component analysis on each C j,k. Let c j,k be the mean of x on C j,k, and
V j,k the d-dimensional principal subspace of C j,k. Define P j,k := c j,k + ProjV j,k

(x − c j,k).

An ideal multiscale tree decomposition should satisfy assumptions (A1)÷(A5) below for all integers
j ≥ jmin:
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(A1) For every k ∈ K j and k′ ∈ K j+1, either C j+1,k′ ⊆ C j,k or ρ(C j+1,k′∩C j,k) = 0. The children of C j,k are
the cells C j+1,k′ such that C j+1,k′ ⊆ C j,k. We assume that 1 ≤ amin ≤ #{C j+1,k′ : C j+1,k′ ⊆ C j,k} ≤ amax

for all k ∈ K j and j ≥ jmin. Also, for every C j,k, there exists a unique k′ ∈ K j−1 such that
C j,k ⊆ C j−1,k′ . We call C j−1,k′ the parent of C j,k.

(A2) ρ
(
M\

⋃
k∈K j

C j,k

)
= 0, i.e., Λ j := {C j,k}k∈K j is a partition ofM, up to negligible sets.

(A3) There exists θ1 > 0 such that #Λ j ≤ 2 jd/θ1.

(A4) There exists θ2 > 0 such that, if x is drawn from ρ conditioned on C j,k, then ‖x − c j,k‖ ≤ θ22− j

almost surely.

(A5) Let λ j,k
1 ≥ λ

j,k
2 ≥ . . . ≥ λ

j,k
D be the eigenvalues of the covariance matrix Σ j,k of ρ|C j,k , defined in

Table 1. Then:

(i) there exists θ3 > 0 such that, for every j ≥ jmin and k ∈ K j, λ
j,k
d ≥ θ32−2 j/d;

(ii) there exists θ4 ∈ (0, 1) such that λ j,k
d+1 ≤ θ4λ

j,k
d .

These are natural properties for multiscale partitions generalizing dyadic partitions to nonEuclidean
domains [10]. (A1) establishes that the cells constitute a tree structure. (A2) says that the cells at scale
j form a partition. (A3) guarantees that there are at most 2 jd/θ1 cells at scale j. (A4) ensures that the
diameter of all cells at scale j is bounded by 2− j, up to a uniform constant. (A5)(i) assumes that the best
rank d approximation to the covariance of a cell is close to the covariance matrix of a d-dimensional
Euclidean ball, while (A5)(ii) assumes that the cell has significantly larger variance in d directions than
in all the remaining ones.

Since all cells at scale j have similar diameter, Λ j is called a uniform partition. A master tree T
is a tree satisfying the properties above. A proper subtree T̃ of T is a collection of nodes of T with
the properties: the root node is in T̃ ; if a node is in T̃ , then its parent is also in T̃ . Any finite proper
subtree T̃ is associated with a unique partition Λ = Λ(T̃ ) consisting of its outer leaves, by which we
mean those nodes that are not in T̃ , but whose parent is.

In practice, the master tree T is not given. We will construct one by an application of the cover tree
algorithm [3] (see [34, Algorithm 3]). In order to make the samples for tree construction and function
estimation independent from each other, we split the data in half and use one subset to construct
the tree and the other one for local PCA and regression. From now on we index the training data as
{(xi, yi)}2n

i=1, and split them in {(xi, yi)}2n
i=1 = {(xi, yi)}ni=1∪{(xi, yi)}2n

i=n+1. Running Algorithm [34, Algorithm
3] on {xi}

2n
i=n+1, we construct a family of cells {Ĉ j,k}k∈K j, jmin≤ j≤ jmax which satisfies (A1)÷(A4) with high

probability if ρ is doubling∗; furthermore, ifM is a Cs, s ∈ (1,∞), d-dimensional closed Riemannian
manifold isometrically embedded in RD, and ρ is the volume measure onM, then (A5) is satisfied as
well:

Proposition 1 (Proposition 14 in [34]). Assume ρ is a doubling probability measure on M with
doubling constant C1. Then, the Ĉ j,k’s constructed from [34, Algorithm 3] satisfy:

(a1) (A1) with amax = C2
1(24)d and amin = 1;

∗ρ is doubling if there exists C1 > 1 such that C−1
1 rd ≤ ρ(M∩ Br(x)) ≤ C1rd for any x ∈ M and r > 0; C1 is called the doubling

constant of ρ. See also [10, 14].
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(a2) let M̂ =
⋃ jmax

j= jmin

⋃
k∈K j

Ĉ j,k; for any ν > 0,

P

{
ρ(M\ M̂) >

28ν log n
3n

}
≤ 2n−ν;

(a3) (A3) with θ1 = C−1
1 4−d;

(a4) (A4) with θ2 = 3.

If additionally M is a Cs, s ∈ (1,∞), d-dimensional closed Riemannian manifold isometrically
embedded in RD, and ρ is the volume measure onM, then

(a5) (A5) is satisfied when j is sufficiently large.

Since there are finite training points, the constructed master tree has a finite number of nodes. We
first build a tree whose leaves contain a single point, and then prune it to the largest subtree whose
leaves contain at least d training points. This pruned tree associated with the Ĉ j,k’s is called the data
master tree, and denoted by Tn. The Ĉ j,k’s cover M̂, which represents the part of M that has been
explored by the data. Even though assumption (A2) is not exactly satisfied, we claim that (a2) is
sufficient for our performance guarantees, for example in the case where ‖ f ‖∞ ≤ M. Indeed, simply
estimating f onM\ M̂ by 0, for any ν > 0 we have

P

{∫
M\M̂

‖ f ‖2dρ ≥
28M2ν log n

3n

}
≤ 2n−ν and E

∫
M\M̂

‖ f ‖2dρ ≤
56M2ν log n

3n1+ν
.

In view of these bounds, the rate of convergence onM \ M̂ is faster than the ones we will obtain on
M̂. We will therefore assume (A2), thanks to (a2). Also, it may happen that conditions (A3)÷(A5) are
satisfied at the coarsest scales with very poor constants θ. Nonetheless, it will be clear that in all that
follows we may discard a few coarse scales, and only work at scales that are fine enough and for which
(A3)÷(A5) truly capture in a quantitative way the local geometry ofM. Since regression is performed
on an independent subset of data, we can assume, by conditioning, that the Ĉ j,k’s are given and satisfy
the required assumptions. To keep the notation simple, from now on we will use C j,k instead of Ĉ j,k,
andM in place of M̂, with a slight abuse of notation.

Besides cover tree, there are other methods that can be applied in practice to obtain multiscale
partitions, such as METIS [27], used in [1], iterated PCA [42], and iterated k-means. These methods
can be computationally more efficient than cover tree, but lead to partitions where the properties
(A1)÷(A5) are not guaranteed to hold.

After constructing the multiscale tree T , GMRA computes a collection of affine projectors {P j :
RD → RD} j≥ jmin . The main objects of GMRA in their population and sample version are summarized
in Table 1. Given a suitable partition Λ ⊂ T , M can be approximated by the piecewise linear set
{P j,k(C j,k)}C j,k∈Λ.
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Table 1. Objects of GMRA. V j,k and V̂ j,k are the eigenspaces associated with the largest d
eigenvalues of Σ j,k and Σ̂ j,k, respectively.

oracles empirical counterparts

ρ(C j,k) ρ̂(C j,k) := n̂ j,k

n , n̂ j,k := #{xi : xi ∈ C j,k}

c j,k := 1
ρ(C j,k)

∫
C j,k

xdρ ĉ j,k := 1
n̂ j,k

∑
xi∈C j,k

xi

Σ j,k := 1
ρ(C j,k)

∫
C j,k

(x − c j,k)(x − c j,k)T dρ Σ̂ j,k := 1
n̂ j,k

∑
xi∈C j,k

(xi − ĉ j,k)(xi − ĉ j,k)T

V j,k := arg min
dim V=d

1
ρ(C j,k)

∫
C j,k
‖x − c j,k − ProjV(x − c j,k)‖2dρ V̂ j,k := arg min

dim V=d

1
n̂ j,k

∑
xi∈C j,k

‖x − ĉ j,k − ProjV(x − ĉ j,k)‖2

P j,k(x) := c j,k + ProjV j,k
(x − c j,k) P̂ j,k(x) := ĉ j,k + ProjV̂ j,k

(x − ĉ j,k)

3. Multiscale polynomial regression

Given a multiscale tree decomposition {C j,k} j,k and training samples {(xi, yi)}ni=1, we construct a
family { f̂ j,k} j,k of local estimates of f in two stages: first we compute local coordinates on C j,k using
GMRA outlined above, and then we estimate f|C j,k by fitting a polynomial of order ` on such
coordinates. A global estimator f̂ `

Λ
is finally obtained by summing the local estimates over a suitable

partition Λ. Our regression method is specified in Algorithm 1. The explicit constructions of the
constant (` = 0) and linear (` = 1) local estimators are detailed in Table 2.

In order to analyze the performance of our method, we introduce the oracle estimator f `
Λ

based on
the distribution ρ, defined by

π j,k : C j,k → R
d, π j,k(x) := VT

j,k(x − c j,k),

p`j,k := arg min
p∈P`

∫
C j,k

|y − p ◦ π j,k(x)|2dρ,

f `j,k := TM[p`j,k ◦ π j,k]

f `Λ :=
∑

C j,k∈Λ

f `j,k1 j,k,

and split the MSE into a bias and a variance term:

E‖ f − f̂ `Λ‖
2 ≤ 2 ‖ f − f `Λ‖

2︸     ︷︷     ︸
bias2

+2E‖ f `Λ − f̂ `Λ‖
2︸        ︷︷        ︸

variance

. (1)

The bias term is a deterministic approximation error, and will be handled by assuming suitable
regularity models for ρ and f (see Definitions 1 and 3). The variance term quantifies the stochastic
error arising from finite-sample estimation, and will be bounded using concentration inequalities (see
Proposition 2). The role of Λ, encoded in its size #Λ, is crucial to balance (1). We will discuss two
possible choices: uniform partitions in Section 3.1, and adaptive at multiple scales in Section 3.2.
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Algorithm 1 GMRA regression

Input: training data {xi, yi}
2n
i=1, intrinsic dimension d, bound M, polynomial order `, approximation

type (uniform or adaptive).
Output: multiscale tree decomposition Tn, partition Λ, piecewise `-order polynomial estimator f̂ `

Λ
.

1: construct a multiscale tree Tn by [34, Algorithm 3] on {xi}
2n
i=n+1;

2: compute centers ĉ j,k and subspaces V̂ j,k by empirical GMRA on {xi}
n
i=1;

3: define coordinates π̂ j,k on C j,k:

π̂ j,k : C j,k → R
d, π̂ j,k(x) := V̂T

j,k(x − ĉ j,k);

4: compute local estimators ĝ`j,k by solving the following least squares problems over the space P` of
polynomials of degree ≤ `:

p̂`j,k := arg min
p∈P`

1
n̂ j,k

n∑
i=1

|yi − p ◦ π̂ j,k(xi)|21 j,k(xi), ĝ`j,k := p̂`j,k ◦ π̂ j,k; (2)

5: truncate ĝ`j,k by M:
f̂ `j,k := TM [̂g`j,k];

6: construct a uniform (see Section 3.1) or adaptive (see Section 3.2) partition Λ;
7: define the global estimator f̂ `

Λ
by summing the local estimators over the partition Λ:

f̂ `Λ :=
∑

C j,k∈Λ

f̂ `j,k1 j,k.

Table 2. Constant and linear local estimators. The truncation in [Λ j,k]d regularizes the least
squares problem, which is ill-posed due to the small eigenvalues {λ j,k

l }
D
l=d+1.

oracles empirical counterparts

piecewise constant (` = 0)

g0
j,k(x) := y j,k := 1

ρ(C j,k)

∫
C j,k

ydρ ĝ0
j,k(x) := ŷ j,k := 1

n̂ j,k

∑
xi∈C j,k

yi

f 0
j,k(x) := TM[g0

j,k(x)] f̂ 0
j,k(x) := TM [̂g0

j,k(x)]

piecewise linear (` = 1)

g1
j,k(x) := [π j,k(x)T 2− j]β j,k ĝ1

j,k(x) := [̂π j,k(x)T 2− j]̂β j,k

β j,k :=
[

[Λ j,k]−1
d 0

0 22 j

]
1

ρ(C j,k)

∫
C j,k

y
[
π j,k(x)

2− j

]
dρ β̂ j,k :=

[
[Λ̂ j,k]−1

d 0
0 22 j

]
1

n̂ j,k

∑
xi∈C j,k

yi

[
π̂ j,k(xi)

2− j

]
[Λ j,k]d := diag(λ j,k

1 , . . . , λ
j,k
d ) [Λ̂ j,k]d := diag(̂λ j,k

1 , . . . , λ̂
j,k
d )

f 1
j,k(x) := TM[g1

j,k(x)] f̂ 1
j,k(x) := TM [̂g1

j,k(x)]
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3.1. Uniform partitions

A first natural choice for Λ is a uniform partition Λ j := {C j,k}k∈K j , j ≥ jmin. At scale j, f is estimated
by f̂ `

Λ j
=

∑
k∈K j

f̂ `j,k1 j,k. The bias ‖ f − f `
Λ j
‖ decays at a rate depending on the regularity of f , which can

be quantified as follows:

Definition 1 (model class A`
s). A function f : M → R is in the class A`

s for some s > 0 with respect
to the measure ρ if

| f |A`
s

:= sup
T

sup
j≥ jmin

‖ f − f `
Λ j
‖

2− js < ∞,

where T ranges over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)÷(A5).

We capture the case where the bias is roughly the same on every cell with the following definition:

Definition 2 (model class A`,∞
s ). A function f : M → R is in the class A`,∞

s for some s > 0 with
respect to the measure ρ if

| f |
A
`,∞
s

:= sup
T

sup
j≥ jmin

sup
k∈K j

‖( f − f `j,k)1 j,k‖

2− js
√
ρ(C j,k)

< ∞,

where T ranges over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)÷(A5).

ClearlyA`,∞
s ⊂ A`

s. These classes contain uniformly regular functions on manifolds, such as Hölder
functions.

Example 1. LetM be a closed smooth d-dimensional Riemannian manifold isometrically embedded
in RD, and let ρ be the volume measure onM. Consider a function f : M → R and a smooth chart
(U, φ) on M. The function f̃ : φ(U) → R defined by f̃ (v) = f ◦ φ−1(v) is called the coordinate
representation of f . Let λ = (λ1, . . . , λd) be a multi-index with |λ| := λ1 + . . . + λd = `. The `-order
λ-derivative of f is defined as

∂λ f (x) := ∂λ( f ◦ φ−1).

Hölder functions C`,α onM with ` ∈ N and α ∈ (0, 1] are defined as follows: f ∈ C`,α if the `-order
derivatives of f exist, and

| f |C`,α := max
|λ|=`

sup
x,z

|∂λ f (x) − ∂λ f (z)|
d(x, z)α

< ∞,

d(x, z) being the geodesic distance between x and z. We will always assume to work at sufficiently fine
scales at which d(x, z) � ‖z − x‖RD . Note that C`,1 is the space of `-times continuously differentiable
functions onM with Lipschitz `-order derivatives. We have C`,α ⊂ A`,∞

`+α with | f |
A
`,∞
`+α
≤ θ`+α2 d`| f |C`,α/`!.

The proof is in Appendix A.

Example 2. LetM be a smooth closed Riemannian manifold isometrically embedded in RD, and let ρ
be the volume measure onM. Let Ω ⊂ M such that Γ := ∂Ω is a smooth and closed dΓ-dimensional
submanifold with finite reach†. Let g = a1Ω + b1Ω{ for some a, b ∈ R, where 1S denotes the indicator

†The reach of M is an important global characteristic of M. Let D(M) := {y ∈ RD : ∃! x ∈ M s.t. ‖x − y‖ = infz∈M ‖z − y‖},
Mr := {y ∈ RD : infx∈M ‖x − y‖ < r}. Then reach(M) := sup{r ≥ 0 :Mr ⊂ D(M)}. See also [19].
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function of a set S . Then g ∈ A`
(d−dΓ)/2 for every ` = 0, 1, 2, . . .; however, g < A`,∞

s for any s > 0. The
proof is in Appendix A.

When we take uniform partitions Λ = Λ j in (1), the squared bias satisfies

‖ f − f `Λ j
‖2 ≤ | f |2

A`
s
2−2 js

whenever f ∈ A`
s, which decreases as j increases. On the other hand, Proposition 2 shows that the

variance at the scale j satisfies

E‖ f `Λ j
− f̂ `Λ j

‖2 ≤ O
(

j2 jd

n

)
,

which increases as j increases. Choosing the optimal scale j? in the bias-variance tradeoff, we obtain
the following rate of convergence for uniform estimators:

Theorem 1. Suppose ‖ f ‖∞ ≤ M and f ∈ A`
s for ` ∈ {0, 1} and s > 0. Let j? be chosen such that

2− j? := µ

(
log n

n

) 1
2s+d

for µ > 0. Then there exist positive constants c := c(θ1, d, µ) and C := C(θ1, d, µ) for ` = 0, or
c := c(θ1, θ2, θ3, d, µ) and C := C(θ1, θ2, θ3, d, µ) for ` = 1, such that:

(a) for every ν > 0 there is cν > 0 such that

P

‖ f − f̂ `Λ j?
‖ > (| f |A`

s
µs + cν)

(
log n

n

) s
2s+d

 ≤ Cn−ν,

where cν := cν(ν, θ1, d,M, σ, s, µ) for ` = 0, and cν := cν(ν, θ1, θ2, θ3, d,M, σ, s, µ) for ` = 1;

(b) E‖ f − f̂ `
Λ j?
‖2 ≤

(
| f |2
A`

s
µs + c max(M2, σ2)

) (
log n

n

) 2s
2s+d .

Theorem 1 is proved in Section 4. Note that the rate depends on the intrinsic dimension d instead of
the ambient dimension D. Moreover, the rate is optimal (up to logarithmic factors) at least in the case
of C`,α functions onM, as discussed in Example 1.

3.2. Adaptive partitions

Theorem 1 is not fully satisfactory for two reasons: (i) the choice of the optimal scale requires
knowledge of the regularity of the unknown function; (ii) no uniform scale can be optimal if the
regularity of the function varies at different locations and scales. We thus propose an adaptive estimator
which learns near-optimal partitions from data, without knowing the possibly nonuniform regularity of
the function. Adaptive partitions may be selected by a criterion that determines whether or not a cell
should be picked or not. The quantities involved in this selection are summarized in Table 3, along
with their empirical versions.
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Table 3. Local approximation difference between scales.

oracles empirical counterparts

W`
j,k := ( f `

Λ j
− f `

Λ j+1
)1 j,k Ŵ`

j,k := ( f̂ `
Λ j
− f̂ `

Λ j+1
)1 j,k

∆`
j,k := ‖W`

j,k‖ ∆̂`
j,k := ‖Ŵ`

j,k‖n

∆`
j,k plays the role of the magnitude of a wavelet coefficient in typical wavelet thresholding

constructions, and reduces to it in the case of Haar wavelets on Euclidean domains by dyadic
partitioning. It measures the local difference in approximation between two consecutive scales: a
large ∆`

j,k suggests a significant reduction of error if we refine C j,k to its children. Intuitively, we
should truncate the master tree to the subtree including the nodes where this quantity is large.
However, if too few samples exist in a node, then the empirical counterpart ∆̂`

j,k can not be trusted. We
thus proceed as follows. We set a threshold τn decreasing in n, and let T̂n(τn) be the smallest proper
subtree of Tn containing all C j,k’s for which ∆̂`

j,k ≥ τn. Crucially, τn may be chosen independently of
the regularity of f (see Theorem 2). We finally define our adaptive partition Λ̂n(τn) as the partition
associated with the outer leaves of T̂n(τn). The procedure is summarized in Algorithm 2.

Algorithm 2 Adaptive partition
Input: training data {(xi, yi)}ni=1, multiscale tree decomposition Tn, local `-order polynomial estimates
{ f̂ `j,k} j,k, threshold parameter κ.

Output: adaptive partition Λ̂n(τn).
1: compute the approximation difference ∆̂`

j,k on every node C j,k ∈ Tn;
2: set the threshold τn := κ

√
(log n)/n;

3: select the smallest proper subtree T̂n(τn) of Tn containing all C j,k’s with ∆̂`
j,k ≥ τn;

4: define the adaptive partition Λ̂n(τn) associated with the outer leaves of T̂n(τn).

To provide performance guarantees for our adaptive estimator, we need to define a proper model
class based on oracles. Given any master tree T satisfying assumptions (A1)÷(A5) and a threshold
τ > 0, we let T (τ) be the smallest subtree of T consisting of all the cells C j,k’s with ∆`

j,k ≥ τ. The
partition made of the outer leaves of T (τ) is denoted by Λ(τ).

Definition 3 (model class B`s). A function f :M→ R is in the class B`s for some s > 0 with respect to
the measure ρ if

| f |p
B`s

:= sup
T

sup
τ>0

τp#T (τ) < ∞, p =
2d

2s + d
,

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)÷(A5).

In general, the truncated tree T (τ) grows as the threshold τ decreases. For elements in B`s, we
have control on the growth rate, namely #T (τn) . τ−p. In the classical case of dyadic partitions of
the Euclidean space with uniform measure, B`s is well understood as a nonlinear approximation space
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containing a scale of Besov spaces [11]. The class B`s is indeed rich, and contains in particular A`,∞
s ,

while additionally capturing functions of nonuniform regularity.

Lemma 1. A`,∞
s ⊂ B`s. If f ∈ A`,∞

s , then f ∈ B`s and | f |B`s ≤ (amin/θ1)
2s+d

2d | f |
A
`,∞
s

.

The proof is given in Appendix A.

Example 3. Let g be the function in Example 2. Then g ∈ B`d(d−dΓ)/(2dΓ) for every ` = 0, 1, 2, . . .. Notice
that g ∈ A`

(d−dΓ)/2, so g has a larger regularity parameter s in the B`s model than in theA`
s model.

We will also need a quasi-orthogonality condition ensuring that the functions W`
j,k representing the

approximation difference between two scales are almost orthogonal across scales.

Definition 4. We say that f satisfies quasi-orthogonality of order ` with respect to the measure ρ if
there exists a constant B0 > 0 such that, for any proper subtree S of any tree T satisfying assumptions
(A1)÷(A5), ∥∥∥∥ ∑

C j,k∈T\S

W`
j,k

∥∥∥∥2
≤ B0

∑
C j,k∈T\S

‖W`
j,k‖

2.

The following lemma shows that f ∈ B`s, along with quasi-orthogonality, implies a certain
approximation rate of f by f `

Λ(τ) as τ→ 0. The proof is given in Appendix A.

Lemma 2. If f ∈ B`s ∩ (L∞ ∪A`
t ) for some s, t > 0, and f satisfies quasi-orthogonality of order `, then

‖ f − f `Λ(τ)‖
2 ≤ Bs,d| f |

p
Bs
τ2−p ≤ Bs,d| f |2Bs

#Λ(τ)−
2s
d , p =

2d
2s + d

,

with Bs,d := B02p ∑
`≥0 2−`(2−p).

The main result of this paper is the following performance analysis of adaptive estimators, which is
proved in Section 4.

Theorem 2. Let ` ∈ {0, 1} and M > 0. Suppose ‖ f ‖ ≤ M and f satisfies quasi-orthogonality of order
`. Set τn := κ

√
log n/n. Then:

(a) For every ν > 0 there exists κν := κν(amax, θ2, θ3, d,M, σ, ν) > 0 such that, whenever f ∈ B`s for
some s > 0 and κ ≥ κν, there are r,C > 0 such that

P

‖ f − f̂ `
Λ̂n(τn)
‖ > r

(
log n

n

) s
2s+d

 ≤ Cn−ν .

(b) There exists κ0 := κ0(amax, θ2, θ3, d,M, σ) such that, whenever f ∈ B`s for some s > 0 and κ ≥ κ0,
there is C̄ > 0 such that

E‖ f − f̂ `
Λ̂n(τn)
‖2 ≤ C̄

(
log n

n

) 2s
2s+d

.

Here r depends on θ2, θ3, amax, d, M, s, | f |B`s , σ, B0, ν, κ; C depends on θ2, θ3, amax, amin, d, s, | f |B`s , κ;
C̄ depends on θ2, θ3, amax, amin, d, M, s, | f |B`s , B0, κ.
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Theorem 2 is more satisfactory than Theorem 1 for two reasons: (i) the same rate is achieved for
a richer model class; (ii) the estimator does not require a priori knowledge of the regularity of the
function, since the choice of κ is independent of s.

For a given accuracy ε, in order to achieve MSE . ε2, the number of samples we need is nε &
(1/ε)

2s+d
s log(1/ε). When s is unknown, we can determine s as follows: we fix a small n0, and run

Algorithm 2 with 2n0, 4n0, . . . , 2 jn0, . . . samples. For each sample size, we evenly split data into a
training set to build the adaptive estimator, and a test set to evaluate the MSE. According to Theorem 2,
the MSE scales as (log n/n)

2s
2s+d . Therefore, the slope in the log-log plot of the MSE versus n gives an

approximation of −2s/(2s + d). This could be formalized by a suitable adaptation of Lepski’s method.

3.3. Computational complexity

The computational cost of Algorithms 1 and 2 may be split as follows:

Tree construction. Cover tree itself is an online algorithm where a single-point insertion or removal
takes cost at most O(log n). The total computational cost of the cover tree algorithm is CdDn log n,
where C > 0 is a constant [3].

Local PCA. At every scale j, we perform local PCA on the training data restricted to the C j,k for every
k ∈ K j using the random PCA algorithm [22]. Recall that n̂ j,k denotes the number of training points
in C j,k. The cost of local PCA at scale j is in the order of

∑
k∈K j

Ddn̂ j,k = Ddn, and there are at most
c log n scales where c > 0 is a constant, which gives a total cost of cDdn log n.

Multiscale regression. Given n̂ j,k training points on C j,k, computing the low-dimensional coordinates
π̂ j,k(xi) for all xi ∈ C j,k costs Ddn̂ j,k, and solving the linear least squares problem (2), where the matrix
is of size n̂ j,k × d`, costs at most n̂ j,kd2`. Hence, constructing the `-order polynomials at scale j takes∑

k∈K j
Ddn̂ j,k + d2`n̂ j,k = (Dd + d2`)n, and there are at most c log n scales, which sums up to c(Dd +

d2`)n log n.

Adaptive approximation. We need to compute the coefficients ∆̂ j,k for every C j,k, which costs 2(Dd +

d` )̂n j,k on C j,k, and 2c(Dd + d`)n log n for the whole tree.

In summary, the total cost of constructing GMRA adaptive estimators of order ` is

CdDn log n + (4Dd + d2` + d`)cn log n.

The cost scales linearly with the number of samples n up to a logarithmic factor, and linearly with the
ambient dimension D.

4. Proofs

We analyze the error of our estimator by a bias-variance decomposition as in (1). We present the
variance estimate in Section 4.1, the proofs for uniform approximations in Section 4.2, and for adaptive
approximations in Section 4.3.

4.1. Variance estimate

The following proposition bounds the variance of 0-order (piecewise constant) and 1st-order
(piecewise linear) estimators over an arbitrary partition Λ.
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Proposition 2. Suppose ‖ f ‖∞ ≤ M and let ` ∈ {0, 1}. For any partition Λ, let f `
Λ

and f̂ `
Λ

be the optimal
approximation and the empirical estimators of order ` on Λ, respectively. Then, for every η > 0,

(a) P
{
‖ f `

Λ
− f̂ `

Λ
‖ > η

}
≤

C0#Λ exp
(
−

nη2

c0 max(M2,σ2)#Λ

)
for ` = 0

C1d#Λ exp
(
−

nη2

c1 max(d4 M2,d2σ2)#Λ

)
for ` = 1,

(b) E‖ f `
Λ
− f̂ `

Λ
‖2 ≤

 c0 max(M2,σ2)#Λ log(C0#Λ)
n for ` = 0

c1 max(d4 M2,d2σ2)#Λ log(C1d#Λ)
n for ` = 1,

for some absolute constants c0,C0 and some c1,C1 depending on θ2, θ3.

Proof. Since f `
Λ

and f̂ `
Λ

are bounded by M, we define Λ− := {C j,k ∈ Λ : ρ(C j,k) ≤
η2

4M2#Λ
}, and observe

that ∑
C j,k∈Λ−

‖( f `Λ − f̂ `Λ)1 j,k‖
2 ≤ η2.

We then restrict our attention to Λ+ := Λ \ Λ− and apply Lemma 5 with t =
η√

ρ(C j,k)#Λ
. This leads to

(a), while (b) follows from (a) by integrating over η > 0. �

4.2. Proof of Theorem 1

Notice that #Λ j ≤ 2 jd/θ1 by (A3). By choosing j? such that 2− j? = µ
(

log n
n

) 1
2s+d for some µ > 0, we

have

‖ f − f `Λ j?
‖ ≤ | f |A`

s
2− j?s ≤ | f |A`

s
µs

(
log n

n

) s
2s+d

.

Moreover, by Proposition 2,

P

‖ f `Λ j?
− f̂ `Λ j?

‖ ≥ cν

(
log n

n

) s
2s+d

 ≤


C0
θ1µd (log n)−

d
2s+d n

−

(
θ1µ

dc2
ν

c0 max(M2 ,σ2)
− d

2s+d

)
(` = 0)

C1d
θ1µd (log n)−

d
2s+d n

−

(
θ1µ

dc2
ν

c1 max(d4 M2 ,d2σ2)
− d

2s+d

)
(` = 1)

≤ Cn−ν

provided that θ1µ
dc2
ν

c0 max(M2,σ2) −
d

2s+d > ν for ` = 0 and θ1µ
dc2
ν

c1 max(d4 M2,d2σ2) −
d

2s+d > ν for ` = 1. �

4.3. Proof of Theorem 2

We begin by defining several objects of interest:

• Tn: the data master tree whose leaves contain at least d points of training data. It can be viewed
as the part of a multiscale tree that our training data have explored. Notice that

#Tn ≤

∞∑
j=0

a− j
min

n
d

=
amin

amin − 1
n
d
≤ amin

n
d
.

• T : a complete multiscale tree containing Tn. T can be viewed as the union Tn and some empty
cells, mostly at fine scales with high probability, that our data have not explored.
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• T (τ): the smallest subtree of T which contains {C j,k ∈ T : ∆`
j,k ≥ τ}.

• Tn(τ) := T (τ) ∩ Tn.

• T̂n(τ): the smallest subtree of Tn which contains {C j,k ∈ Tn : ∆̂`
j,k ≥ τ}.

• Λ(τ): the adaptive partition associated with T (τ).

• Λn(τ): the adaptive partition associated with Tn(τ).

• Λ̂n(τ): the adaptive partition associated with T̂n(τ).

• Suppose T 0 and T 1 are two subtrees of T . If Λ0 and Λ1 are two adaptive partitions associated
with T 0 and T 1 respectively, we denote by Λ0 ∨ Λ1 and Λ0 ∧ Λ1 the partitions associated to the
trees T 0 ∪ T 1 and T 0 ∩ T 1 respectively.

• Let b = 2amax + 5 where amax is the maximal number of children that a node has in Tn.

Inspired by the analysis of wavelet thresholding procedures [5,6], we split the error into four terms,

‖ f − f̂ `
Λ̂n(τn)
‖ ≤ e1 + e2 + e3 + e4,

where

e1 := ‖ f − f `
Λ̂n(τn)∨Λn(bτn)

‖ e2 := ‖ f `
Λ̂n(τn)∨Λn(bτn)

− f `
Λ̂n(τn)∧Λn(τn/b)

‖

e3 := ‖ f `
Λ̂n(τn)∧Λn(τn/b)

− f̂ `
Λ̂n(τn)∧Λn(τn/b)

‖ e4 := ‖ f̂ `
Λ̂n(τn)∧Λn(τn/b)

− f̂ `
Λ̂n(τn)
‖.

The goal of the splitting above is to handle the bias and variance separately, as well as to deal with
the fact the partition built from those C j,k such that ∆̂`

j,k ≥ τn does not coincide with the partition
which would be chosen by an oracle based on those C j,k such that ∆`

j,k ≥ τn. This is accounted by the

terms e2 and e4 which correspond to those C j,k such that ∆̂`
j,k is significantly larger or smaller than ∆`

j,k
respectively, and which will be proved to be small in probability. The e1 and e3 terms correspond to
the bias and variance of oracle estimators based on partitions obtained by thresholding the unknown
oracle change in approximation ∆`

j,k.

Since Λ̂n(τn) ∨ Λn(bτn) is a finer partition than Λn(bτn), we have

e1 ≤ ‖ f − f `Λn(bτn)‖ ≤ ‖ f − f `Λ(bτn)‖ + ‖ f `Λ(bτn) − f `Λn(bτn)‖ =: e11 + e12 .

The e11 term is treated by a deterministic estimate based on the model class B`s: by Lemma 2 we have

e2
11 ≤ Bs,d| f |

p
B`s

(bκ)2−p(log n/n)
2s

2s+d ,

The term e12 accounts for the error on the cells that have not been explored by our training data, which
is small:

P{e12 > 0} ≤ P{∃ C j,k ∈ T (bτn) \ Tn(bτn)}
= P{∃ C j,k ∈ T (bτn) : ∆`

j,k ≥ bτn and ρ̂(C j,k) < d/n}
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≤
∑

C j,k∈T (bτn)

P{∆`
j,k ≥ bτn and ρ̂(C j,k) < d/n}.

According to (4), we have (∆`
j,k)

2 ≤ 4‖ f ‖2∞ρ(C j,k). Then every C j,k with ∆`
j,k ≥ bτn satisfies ρ(C j,k) &

b2κ2

‖ f ‖2∞
(log n/n). Hence, provided that n satisfies b2κ2

‖ f ‖2∞
log n & 2d, we have

P{∆`
j,k ≥ bτn and ρ̂(C j,k) < d/n} ≤ P

{
|ρ(C j,k) − ρ̂(C j,k)| ≥

1
2
ρ(C j,k) and ρ(C j,k) &

b2κ2

‖ f ‖2∞

log n
n

}
≤ 2n

− 3b2κ2

28‖ f ‖2∞ ,

where the last inequality follows from Lemma 3(b). Therefore, by Definition 3 we obtain

P{e12 > 0} . #T (bτn)n
− 3b2κ2

28‖ f ‖2∞ ≤ | f |p
B`s

(bτn)−pn
− 3b2κ2

28‖ f ‖2∞ ≤ | f |p
B`s

(bκ)−pn
−

(
3b2κ2

28‖ f ‖2∞
−1

)
≤ | f |p

B`s
(bκ)−pn−ν

as long as 3b2κ2

28‖ f ‖2∞
− 1 > ν. To estimate Ee2

12, we observe that, thanks to Lemma 6,

e2
12 =

∑
C j,k∈Λn(bτn)\Λ(bτn)

∑
C j′ ,k′∈Λ(bτn)

C j′ ,k′⊂C j,k

‖( f `j,k − f `j′,k′)1 j′,k′‖
2 . M2.

Hence, by choosing ν = 1 > 2s
2s+d we get

Ee2
12 . ‖ f ‖

2
∞P{e12 > 0} . ‖ f ‖2∞| f |

p
B`s

(bκ)−p(log n/n)
2s

2s+d .

The term e3 is the variance term which can be estimated by Proposition 2 with Λ = Λ̂n(τn) ∧
Λn(τn/b). We plug in η = r(log n/n)

s
2s+d . Bounding #Λ by #Λn(τn/b) ≤ #Λn ≤ n/d (as our data master

tree has at d points in each leaf) outside the exponential, and by #Λn(τn/b) ≤ #Λ(τn/b) ≤ | f |p
B`s

(τn/b)−p

inside the exponential, we get the following estimates for e3:

P

e3 > r
(
log n

n

) s
2s+d

 ≤


C0n
1− r2κp

c0bp | f |p
B`s

max{M2 ,σ2}
(` = 0)

C1n
1− γ2κp

c1bp | f |p
B`s

max{d4 M2 ,d2σ2}
(` = 1),

where C0 = C0(θ2, θ3, amax, d, s, | f |B`s , κ) and C1 = C1(θ2, θ3, amax, d, s, | f |B`s , κ). We obtain
P{e3 > r(log n/n)

s
2s+d } ≤ Cn−ν as long as r is chosen large enough to make the exponent smaller than

−ν.
To estimate Ee2

3, we apply again Propositions 2 and with #Λ ≤ | f |p
B`s

(b/κ)p(log n/n)−
d

2s+d , obtaining

Ee2
3 ≤ C̄(log n/n)

2s
2s+d .

Next we estimate e2 and e4. Since T̂n(τn) ∩ Tn(τn/b) ⊆ T̂n(τn) ∪ Tn(bτn) and Tn(bτn) ⊆ Tn(τn/b),
we have e2 > 0 if and only if there is a C j,k ∈ Tn such that either C j,k is in T̂n(τn) but not in Tn(τn/b),
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or C j,k is in Tn(bτn) but not in T̂n(τn). This means that either ∆̂`
j,k ≥ τn but ∆`

j,k < τn/b, or ∆`
j,k ≥ bτn but

∆̂`
j,k < τn. As a consequence,

P{e2 > 0} ≤
∑

C j,k∈Tn

P
{
∆̂`

j,k ≥ τn and ∆`
j,k < τn/b

}
+

∑
C j,k∈Tn

P
{
∆`

j,k ≥ bτn and ∆̂`
j,k < τn

}
,

and analogously
P{e4 > 0} ≤

∑
C j,k∈Tn

P
{
∆̂`

j,k ≥ τn and ∆`
j,k < τn/b

}
.

We can now apply Lemma 7: we use (b) with η = τn/b, and (a) with η = τn. We obtain that

P{e2 > 0} + P{e4 > 0} ≤

C(amin, d)n
1− κ2

c0b2 max{M2 ,σ2} (` = 0)

C(θ2, θ3, amin, d)n
1− κ2

c1b2 max{d4 M2 ,d2σ2} (` = 1).

We have P{e2 > 0}+ P{e4 > 0} ≤ Cn−ν provided that κ is chosen such that the exponents are smaller
than −ν.

We are left to deal with the expectations. As for e2, Lemma 6 implies e2 . M, which gives rise to,
for ν = 1 > 2s

2s+d ,
Ee2

2 . M2P{e2 > 0} ≤ CM2(log n/n)
2s

2s+d .

The same bound holds for e4, which concludes the proof of Theorem 1. �

4.4. Basic concentration inequalities

This section contains the main concentration inequalities of the empirical quantities on their oracles.
For piecewise linear estimators, some quantities used in Lemma 5 are decomposed in Table 4. All
proofs are collected in Appendix A.

Table 4. Decomposition of piecewise linear estimators into quantities used in Lemma 5.

oracles empirical counterparts

f j,k(x) = TM

(
[(x − c j,k)T 2− j]Q j,kr j,k

)
f̂ j,k(x) = TM

(
[(x − ĉ j,k)T 2− j]Q̂ j,k̂r j,k

)
Q j,k :=

[
[Σ j,k]†d 0

0 22 j

]
Q̂ j,k :=

[
[̂Σ j,k]†d 0

0 22 j

]
[Σ j,k]

†

d := V j,k[Λ j,k]−1
d V j,k

T [̂Σ j,k]
†

d := V̂ j,k[Λ̂ j,k]d
−1

(V̂ j,k)T

r j,k := 1
ρ(C j,k)

∫
C j,k

y
[

(x−c j,k)
2− j

]
dρ r̂ j,k := 1

n̂ j,k

∑
xi∈C j,k

yi

[
(xi−̂c j,k)

2− j

]

Lemma 3. For every t > 0 we have:

(a) P
{∣∣∣ρ(C j,k) − ρ̂(C j,k)

∣∣∣ > t
}
≤ 2 exp

(
−3nt2

6ρ(C j,k)+2t

)
;

(b) setting t = 1
2ρ(C j,k) in (a) yields P

{
|ρ(C j,k) − ρ̂(C j,k)| > 1

2ρ(C j,k)
}
≤ 2 exp

(
− 3

28nρ(C j,k)
)
;
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(c) P
{
‖c j,k − ĉ j,k‖ > t

}
≤ 2 exp

(
− 3

28nρ(C j,k)
)

+ 8 exp
(
−

3nρ(C j,k)t2

12θ2
22−2 j+4θ22− jt

)
;

(d) P{‖Σ j,k − Σ̂ j,k‖ > t} ≤ 2 exp
(
− 3

28nρ(C j,k)
)

+

(
4θ2

2
θ3

d + 8
)

exp
(

−3nρ(C j,k)t2

96θ4
22−4 j+16θ2

22−2 jt

)
.

Lemma 4. We have:

(a) P{‖Q j,k − Q̂ j,k‖ >
48
θ2

3
d224 j‖Σ j,k − Σ̂ j,k‖}

≤ 2 exp
(
− 3

28nρ(C j,k)
)

+

(
4 θ2

2
θ3

d + 10
)

exp
(
−

nρ(C j,k)
512(θ2

2/θ3)2d2+ 64
3 (θ2

2/θ3)d

)
.

(b) P{‖Q̂ j,k‖ > 2
θ3

d 22 j} ≤ 2 exp
(
− 3

28nρ(C j,k)
)

+

(
4 θ2

2
θ3

d + 10
)

exp
(
−

nρ(C j,k)
128(θ2

2/θ3)2d2+ 32
3 (θ2

2/θ3)d

)
.

(c) Suppose f is in L∞. For every t > 0, we have

P
{
‖r j,k − r̂ j,k‖ > t

}
≤ 2 exp

(
− 3

28nρ(C j,k)
)

+ 8 exp
(

−nρ(C j,k)t2

4〈θ2〉2‖ f ‖2∞2−2 j+2〈θ2〉‖ f ‖∞2− jt

)
+ 2 exp

(
−c nρ(C j,k)t2

θ2
2‖ζ‖

2
ψ2

2−2 j

)
where c is an absolute constant.

Lemma 5. Suppose f is in L∞. For every t > 0, we have

P
{
‖ f `j,k − f̂ `j,k‖∞ > t

}
≤


C0

[
exp

(
−

nρ(C j,k)
c0

)
+ exp

(
−

nρ(C j,k)t2

c0(‖ f ‖2∞+‖ f ‖∞t)

)
+ exp

(
−

nρ(C j,k)t2

c0‖ζ‖
2
ψ2

)]
for ` = 0

C1d
[
exp

(
−

nρ(C j,k)
c1d2

)
+ exp

(
−

nρ(C j,k)t2

c1d4(‖ f ‖2∞+‖ f ‖∞t)

)
+ exp

(
−

nρ(C j,k)t2

c1d2‖ζ‖2ψ2

)]
for ` = 1,

where c0,C0 are absolute constants, c′0 depends on θ2, and c1,C1 depend on θ2, θ3.

Lemma 6. Suppose f ∈ L∞. For every C j,k ∈ T and C j′,k′ ⊂ C j,k,

‖ f j,k − f j′,k′‖∞ ≤ 2M, ‖ f̂ j,k − f̂ j′,k′‖∞ ≤ 2M.

Lemma 7. Suppose f is in L∞. For every η > 0 and any γ > 1, we have

(a) P
{
∆̂`

j,k < η & ∆`
j,k ≥ (2amax + 5)η

}
≤


C0 exp

(
−

nη2

c0 max{‖ f ‖2∞,‖ζ‖2ψ2
}

)
for ` = 0

C1d exp
(
−

nη2

c1 max{d4‖ f ‖2∞,d2‖ζ‖2ψ2
}

)
for ` = 1;

(b) P
{
∆`

j,k < η & ∆̂`
j,k ≥ (2amax + 5)η

}
≤


C0 exp

(
−

nη2

c0 max{‖ f ‖2∞,‖ζ‖2ψ2
}

)
for ` = 0

C1d exp
(
−

nη2

c1 max{d4‖ f ‖2∞,d2‖ζ‖2ψ2
}

)
for ` = 1;

C0, c0 depend on amax; c′0 depends on amax, θ2; C1, c1 depend on amax, θ2, θ3.
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A. Additional proofs

Example 1. Let f ∈ C`,α. The local estimator f `j,k minimizes ‖( f − p)1 j,k‖ over all possible polynomials
p of order less than or equal to `. Thus, in particular, we have ‖( f − f `j,k)1 j,k‖ ≤ ‖( f − p)1 j,k‖ where
p is equal to the `-order Taylor polynomial of f at some z ∈ C j,k. Hence, for x ∈ C j,k there is
ξ ∈ M ∩ Bθ22− j(z) such that

| f (x) − p(x)| ≤
∑
|λ|=`

1
λ!
|∂λ f (ξ) − ∂λ f (z)||x − z|λ ≤ | f |C`,α‖ξ − z‖α

∑
|λ|=`

1
λ!
|x − z|λ

≤
d`

`!
| f |C`,α‖ξ − z‖α‖x − z‖` ≤ θ`+α2

d`

`!
| f |C`,α2− j(`+α).

Therefore, for every j and k ∈ K j, we have

‖( f − f `j,k)1 j,k‖
2 ≤ θ2(`+α)

2 (
d`

`!
)2| f |2

C`,α
2−2 j(`+α)ρ(C j,k). �

Examples 2 and 3. For polynomial estimators of any fixed order ` = 0, 1, . . ., g`j,k − g1 j,k = 0 when
C j,k ∩ Γ = ∅, and g`j,k − g1 j,k = O(1) when C j,k ∩ Γ , ∅. At the scale j, ρ(C j,k) ≈ 2− jd and ρ(∪{C j,k :
C j,k ∩ Γ , ∅}) ≈ 2− j(d−dΓ)ρ(Γ). Therefore,

‖g`Λ j
− g‖ ≤ O(

√
2− j(d−dΓ)) = O(2− j(d−dΓ)/2),

which implies g ∈ A`
(d−dΓ)/2.

In adaptive approximations, ∆`
j,k = 0 when C j,k ∩ Γ = ∅. When C j,k ∩ Γ , ∅, ∆`

j,k = ‖g`j,k −∑
C j+1,k′⊂C j,k

g`j+1,k′‖ .
√
ρ(C j,k) . 2− jd/2. Given any fixed threshold τ > 0, in the truncated tree T (τ),

the leaf nodes intersecting with Γ satisfy 2− jd/2 & τ. In other words, around Γ the tree is truncated
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at a coarser scale than j? such that 2− j? = O(τ
2
d ). The cardinality of T (τ) is dominated by the nodes

intersecting with Γ, so

#T (τ) .
ρ(Γ)2− j?(d−dΓ)

2− j?d
= ρ(Γ)2 j?dΓ . τ−

2dΓ
d ,

which implies p = 2dΓ/d. We conclude that g ∈ B`s with s =
d(2−p)

2p = d
dΓ

(d − dΓ)/2. �

Lemma 1. By definition, we have ‖( f − f `j,k)1 j,k‖ ≤ | f |A`,∞
s

2− js
√
ρ(C j,k) as long as f ∈ A`,∞

s . By splitting
(∆`

j,k)
2 ≤ 2‖( f − f `j,k)1 j,k‖

2 + 2
∑

k′:C j+1,k′⊂C j,k
‖( f − f `j+1,k′)1 j+1,k′‖

2, we get

(∆`
j,k)

2 ≤ 4| f |2
A
`,∞
s

2−2 jsρ(C j,k).

In the selection of adaptive partitions, every C j,k with ∆`
j,k ≥ τ must satisfy ρ(C j,k) ≥ 22 js(τ/| f |

A
`,∞
s

)2.
With extra assumptions ρ(C j,k) ≤ θ02− jd (true when the measure ρ is doubling), we have

∆`
j,k ≥ τ =⇒ 2− j ≥

 τ

| f |
A
`,∞
s

 2
2s+d

. (3)

Therefore, every cell in Λ(τ) will be at a coarser scale than j? with j? satisfying (3). Using (A3) we
thus get

τp#T (τ) ≤ τpamin#Λ j? ≤ θ
−1
1 τpamin2 j?d ≤

amin| f |
2d

2s+d

A
`,∞
s

θ1

which yields the result. �

Lemma 2. For any partition Λ ⊂ T , denote by Λl the l-th generation partition such that Λ0 = Λ and
Λl+1 consists of the children of Λl. We first prove that liml→∞ f `

Λl = f in L2(M). Suppose f ∈ L∞.
Notice that ‖ f `

Λl − f ‖ ≤ ‖ f 0
Λl − f ‖. As a result of the Lebesgue differentiation theorem, f 0

Λl → f almost
everywhere. Since f is bounded, f 0

Λl is uniformly bounded, hence f 0
Λl → f in L2(M) by the dominated

convergence theorem. In the case where f ∈ A`
t , taking the uniform partition Λ j(l) at the coarsest scale

of Λl, denoted by j(l), we have ‖ f − f `
Λl‖ ≤ ‖ f − f `

Λ j(l)
‖ . 2− j(l)t, and therefore f `

Λl → f in L2(M).
Now, setting Λ = Λ(τ) and S := T (τ) \ Λ, by Definitions 3 and 4 we get

‖ f `Λ − f ‖2 =

∥∥∥∥∥∥∥
L−1∑
l=0

(
f `
Λl − f `

Λl+1

)
+ f `

ΛL − f

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
∞∑

l=0

( f `
Λl − f `

Λl+1)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
∑

C j,k∈T\S

W`
j,k

∥∥∥∥∥∥∥∥
2

≤ B0

∑
C j,k∈T\S

‖W`
j,k‖

2

= B0

∞∑
l=0

∑
∆`j,k∈[2

−(l+1)τ,2−lτ)

∆2
j,k ≤ B0

∞∑
l=0

2−2lτ2#T (2−(l+1)τ)

= B02pτ2−p
∞∑

l=0

2−(2−p)l| f |p
B`s
≤ B02p| f |p

B`s
τ2−p

∞∑
l=0

2−(2−p)l,

which yields the first inequality in Lemma 2. The second inequality follows by observing that 2 − p =
2s
d p and | f |p

B`s
τ2−p = | f |2

B`s
(| f |−p

B`s
τp)

2s
d ≤ | f |2

B`s
# [T (τ)]−

2s
d by Definition 3. �
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Lemma 3. See [34]. �

Lemma 4. (a). Thanks to [23, Theorem 3.2] and assumption (A5), we have

‖Q j,k − Q̂ j,k‖ = ‖[Σ j,k]
†

d − [̂Σ j,k]
†

d‖ ≤ 3 ‖Σ j,k−Σ̂ j,k‖

(λ j,k
d −λ

j,k
d+1−‖Σ j,k−Σ̂ j,k‖)2

≤ 3 ‖Σ j,k−Σ̂ j,k‖(
θ3
2d 2−2 j−‖Σ j,k−Σ̂ j,k‖

)2 .

Hence, the bound follows applying Lemma 3(d) with t = θ3
4d 2−2 j.

(b). Observe that ‖Q̂ j,k‖ ≤ ‖[̂Σ j,k]
†

d‖ = (̂λ j,k
d )−1. Moreover, λ̂ j,k

d ≥ λ
j,k
d −|λ

j,k
d − λ̂

j,k
d | ≥

θ3
d 2−2 j−‖Σ j,k−Σ̂ j,k‖

by assumption (A5). Thus, using Lemma 3(d) with t = θ3
2d 2−2 j yields the result.

(c). We condition on the event that n̂ j,k ≥
1
2 Ên j,k = 1

2nρ(C j,k), whose complement occurs with
probability lower than 2 exp

(
− 3

28nρ(C j,k)
)

by Lemma 3(b). The quantity ‖r j,k − r̂ j,k‖ is bounded by
A + B + C + D with

A :=

∥∥∥∥∥∥∥ 1
n̂ j,k

n∑
i=1

(
f (xi)

[
xi − c j,k

2− j

]
−

1
ρ(C j,k)

∫
C j,k

f (x)
[
x − c j,k

2− j

]
dρ

)
1 j,k(xi)

∥∥∥∥∥∥∥
B :=

∥∥∥∥∥∥∥ 1
n̂ j,k

n∑
i=1

f (xi)
[
c j,k − ĉ j,k

0

]
1 j,k(xi)

∥∥∥∥∥∥∥
C :=

∥∥∥∥∥∥∥ 1
n̂ j,k

n∑
i=1

ζi

[
xi − c j,k

2− j

]
1 j,k(xi)

∥∥∥∥∥∥∥
D :=

∥∥∥∥∥∥∥ 1
n̂ j,k

n∑
i=1

ζi

[
c j,k − ĉ j,k

0

]
1 j,k(xi)

∥∥∥∥∥∥∥ .
Each term of the sum in A has expectation 0 and bound 2〈θ2〉‖ f ‖∞2− j. Thus, applying the Bernstein
inequality [44, Corollary 7.3.2] we obtain

P{A > t} ≤ 8 exp
(
−c nρ(C j,k)t2

〈θ2〉2‖ f ‖2∞2−2 j+〈θ2〉‖ f ‖∞2− jt

)
.

B is bounded by ‖ f ‖∞‖c j,k − ĉ j,k‖ so that, using 3(c) with t replaced by t/‖ f ‖∞, we get

P{B > t} ≤ 2 exp
(
− 3

28nρ(C j,k)
)

+ 8 exp
(
−c nρ(C j,k)t2

θ2
2‖ f ‖

2
∞2−2 j+θ2‖ f ‖∞2− jt

)
.

To estimate C we appeal to [7, Theorem 3.1, Remark 4.2]. For X ∈ Rn, take G(X) := ‖MX‖ with
M :=

[ x1−c j,k

2− j . . .
xn−c j,k

2− j

]
. Then |∂iG(X)| ≤ ‖xi − c j,k‖ ≤ θ22− j. Now let X = (ζ11 j,k(x1), . . . , ζn1 j,k(xn))T , so

that C = G(X)/̂n j,k. Since the ζi’s are independent, [7, Remark 4.2] applies, and it yields P {G(X) > t} ≤
2 exp

(
− t2

2σ2

)
, where σ2 =

∑n
i=1 ‖∂iG‖2∞‖ζi‖

2
ψ2

1 j,k(xi) ≤ n̂ j,kθ
2
22−2 j‖ζ‖2ψ2

, and thus

P {C > t} ≤ 2 exp
(
−

nρ(C j,k)t2

2θ2
2‖ζ‖

2
ψ2

2−2 j

)
.

We are left with D. This term is smaller than ‖c j,k − ĉ j,k‖

∣∣∣∣ 1
n̂ j,k

∑n
i=1 ζi1 j,k(xi)

∣∣∣∣, where, by Lemma 3(c),

‖c j,k − ĉ j,k‖ ≤ θ22− j with probability higher than 1 − 10 exp
(
− 3

28nρ(C j,k)
)
. Hence, by the standard

sub-Gaussian tail inequality [46, Proposition 5.10] we have

P{D > t} ≤ 10 exp
(
− 3

28nρ(C j,k)
)

+ e exp
(
−c nρ(C j,k)t2

θ2
2‖ζ‖

2
ψ2

2−2 j

)
.

This completes the proof. �
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Lemma 5. If ` = 0, then ‖ f̂ `j,k − f̂ `j,k‖∞ = |y j,k − ŷ j,k|, which is less than∣∣∣∣∣∣∣ 1
n̂ j,k

n∑
i=1

(
f (xi) −

1
ρ(C j,k)

∫
C j,k

f (x)dρ(x)
)

1 j,k(xi)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
n̂ j,k

n∑
i=1

ζi1 j,k(xi)

∣∣∣∣∣∣∣ .
Each addend in the first term has expectation 0 and bound 2‖ f ‖∞, and therefore we can apply the
standard Bernstein inequality [44, Theorem 1.6.1]. As for the second term, we use the standard sub-
Gaussian tail inequality [46, Proposition 5.10]. This yields the bounds for ` = 0.

For ` = 1, we have

| f j,k(x) − f̂ j,k(x)| ≤ |[(x − c j,k)T 2− j]T Q j,kr j,k − [(x − ĉ j,k)T 2− j]T Q̂ j,k̂r j,k|

≤ |
[
(c j,k − ĉ j,k)T 0

]
Q j,kr j,k| + |

[
(x − ĉ j,k)T 2− j

]
(Q j,kr j,k − Q̂ j,k̂r j,k)|

≤ ‖c j,k − ĉ j,k‖ ‖Q j,k‖ ‖r j,k‖ + ‖
[
(x − ĉ j,k)T 2− j

]
‖ ‖Q j,kr j,k − Q̂ j,k̂r j,k‖

≤ ‖c j,k − ĉ j,k‖ ‖Q j,k‖ ‖r j,k‖ + ‖
[
(x − ĉ j,k)T 2− j

]
‖

(
‖Q j,k − Q̂ j,k‖ ‖r j,k‖ + ‖Q̂ j,k‖‖r j,k − r̂ j,k‖

)
.

θ2
2
θ3

(
d‖ f ‖∞2 j‖c j,k − ĉ j,k‖ + d2M22 j‖Σ j,k − Σ̂ j,k‖ + d2 j‖r j,k − r̂ j,k‖

)
,

where the last inequality holds with high probability thanks to Lemma 4(a)(b). Thus, applying Lemma
3(c)(d) and Lemma 4(c) with t replaced by t

θdM2 j , t
θd2 M22 j and t

θd2 j , we obtain the desired result. �

Lemma 6. Follows simply by truncation. �

Lemma 7. We start with (a). Defining ∆̄`
j,k := ‖W`

j,k‖n we have

P
{
∆̂`

j,k < η and ∆`
j,k ≥ (2amax + 5)η

}
≤ P

{
∆̂`

j,k < η and ∆̄`
j,k ≥ (amax + 2)η

}
+ P

{
∆̄`

j,k < (amax + 2)η and ∆`
j,k ≥ (2amax + 5)η

}
≤ P

{
|∆̄`

j,k − ∆̂`
j,k| ≥ (1 + amax)η

}
+ P

{
|∆`

j,k − 2∆̄`
j,k| ≥ η

}
.

The first quantity can be bounded by

|∆̄`
j,k − ∆̂`

j,k| ≤ ‖W
`
j,k − Ŵ`

j,k‖n ≤ ‖ f
`
j,k − f̂ `j,k‖n +

∑
C j+1,k′⊂C j,k

‖ f `j+1,k′ − f̂ `j+1,k′‖n

≤ ‖ f `j,k − f̂ `j,k‖∞
√
ρ̂(C j,k) +

∑
C j+1,k′⊂C j,k

‖ f `j+1,k′ − f̂ `j+1,k′‖∞

√
ρ̂(C j+1,k′),

so that

P
{
|∆̄`

j,k − ∆̂`
j,k| ≥ (1 + amax)η

}
≤ P

{
‖ f `j,k − f̂ `j,k‖∞

√
ρ̂(C j,k) ≥ η

}
+

∑
C j+1,k′⊂C j,k

P
{
‖ f `j+1,k′ − f̂ `j+1,k′‖∞

√
ρ̂(C j+1,k′) ≥ η

}
.

We now condition on the event that |ρ(C j,k) − ρ̂(C j,k)| ≤ 1
2ρ(C j,k), which entails ρ̂(C j,k) ≤ 3

2ρ(C j,k),
and apply Lemma 5 with t . η/

√
ρ(C jk). The probability of the complementary event is bounded by
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Lemma 3(b). To get rid of the remaining ρ(C j,k)’s inside the exponentials, we lower bound ρ(C j,k) as
follows. We have

(∆`
j,k)

2 ≤ 4‖ f ‖2∞ρ(C j,k). (4)

Thus, ∆`
j,k ≥ (2a + 5)η implies ρ(C j,k) ≥

(2a+5)2η2

4‖ f ‖2∞
. Therefore, we obtain that

P{|∆̄`
j,k − ∆̂`

j,k| ≥ (1 + amax)η} ≤


C0 exp

(
−

nη2

c0 max{‖ f ‖2∞,‖ζ‖2ψ2
}

)
(` = 0)

C1d exp
(
−

nη2

c1 max{d4‖ f ‖2∞,d2‖ζ‖2ψ2
}

)
(` = 1),

where C0, c0 depend on a, and C1, c1 depend on amax, θ2, θ3.
Next we estimate P

{
∆`

j,k − 2∆̄`
j,k ≥ η

}
by [21, Theorem 11.2]. Notice that for all x ∈ M, |W`

j,k(x)| .
‖ f ‖∞. If x < C j,k, then W j,k(x) = 0, otherwise there is k′ such that x ∈ C j+1,k′ ⊂ C j,k. In such a case,
|W j,k(x)| = | f j,k(x) − f j+1,k′(x)|, and the claim follows from Lemma 6. Thus, [21, Theorem 11.2] gives
us

P
{
∆`

j,k − 2∆̄`
j,k ≥ η

}
. exp

(
−

nη2

c‖ f ‖2∞

)
,

where c is an absolute constant.
Let us turn to (b). We first observe that

∆̂`
j,k . M

√
ρ̂(C j,k). (5)

To see this, note again that Ŵ j,k(x) , 0 only when x ∈ C j+1,k′ ⊂ C j,k for some k′, in which case
|Ŵ j,k(x)| = | f̂ j,k(x) − f̂ j+1,k′(x)| and we can apply Lemma 6. Now note that b = 2amax + 5. We have

P
{
∆`

j,k < η and ∆̂`
j,k ≥ bη

}
≤ P

{
∆`

j,k < η, ∆̂`
j,k ≥ bη and ρ(C j,k) ≥

b2η2

2‖ f ‖2∞

}
+ P

{
ρ(C j,k) <

b2η2

2‖ f ‖2∞
and ρ̂(C j,k) ≥

b2η2

‖ f ‖2∞

}
+ P

{
ρ̂(C j,k) <

b2η2

‖ f ‖2∞
given ∆̂`

j,k ≥ bη
}
.

The first probability can be estimated similarly to how we did for (a). Thanks to Lemma 3(a), the
second probability is bounded by

P

{
ρ(C j,k) <

b2η2

2‖ f ‖2∞
and |̂ρ(C j,k) − ρ(C j,k)| >

b2η2

2‖ f ‖2∞

}
. exp

(
−

b2nη2

c‖ f ‖2∞

)
for an absolute constant c. Finally, the third probability is zero thanks to (5). �
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