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Abstract: We consider the regression problem of estimating functions on R” but supported on
a d-dimensional manifold M c RP with d < D. Drawing ideas from multi-resolution analysis
and nonlinear approximation, we construct low-dimensional coordinates on M at multiple scales,
and perform multiscale regression by local polynomial fitting. We propose a data-driven wavelet
thresholding scheme that automatically adapts to the unknown regularity of the function, allowing
for efficient estimation of functions exhibiting nonuniform regularity at different locations and scales.
We analyze the generalization error of our method by proving finite sample bounds in high probability
on rich classes of priors. Our estimator attains optimal learning rates (up to logarithmic factors) as
if the function was defined on a known Euclidean domain of dimension d, instead of an unknown
manifold embedded in R”. The implemented algorithm has quasilinear complexity in the sample size,
with constants linear in D and exponential in d. Our work therefore establishes a new framework for
regression on low-dimensional sets embedded in high dimensions, with fast implementation and strong
theoretical guarantees.
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1. Introduction

High-dimensional data challenge classical statistical models and require new understanding of
tradeoffs in accuracy and efficiency. The seemingly quantitative fact of the increase of dimension has
qualitative consequences in both methodology and implementation, demanding new ways to break
what has been called the curse of dimensionality. On the other hand, the presence of inherent
nonuniform structure in the data calls into question linear dimension reduction techniques, and
motivates a search for intrinsic learning models. In this paper we explore the idea of learning and
exploiting the intrinsic geometry and regularity of the data in the context of regression analysis. Our
goal is to build low-dimensional representations of high dimensional functions, while ensuring good
generalization properties and fast implementation. In view of the complexity of the data, we allow
interesting features to change from scale to scale and from location to location. Hence, we will
develop multiscale methods, extending classical ideas of multi-resolution analysis beyond regular
domains and to the random sample regime.

In regression, the problem is to estimate a function from a finite set of random samples. The
minimax mean squared error (MSE) for estimating functions in the Holder space C*([0,1]7), s > 0,
is O(n=2/@stD)y where n is the number of samples. The exponential dependence of the minimax
rate on D manifests the curse of dimensionality in statistical learning, as n = O(s~?*P)/*) points are
generally needed to achieve accuracy €. This rate is optimal (in the minimax sense), unless further
structural assumptions are made [28,32]. If the samples concentrate near a d-dimensional set with
d < D, and the function belongs to a nonuniform smoothness space 8°, with § > s, we may hope
to find estimators converging in O(n=25/?5+9)_ In this quantified sense, we may break the curse of
dimensionality by adapting to the intrinsic dimension and regularity of the problem.

A possible approach to this problem is based on first performing dimension reduction, and then
regression in the reduced space. Linear dimension reduction methods include principal component
analysis (PCA) [24,25,39], for data concentrating on a single subspace, or subspace clustering [8,9, 18,
36,47], for a union of subspaces. Going beyond linear models, we encounter isomap [43], locally linear
embedding [40], local tangent space alignment [49], Laplacian eigenmaps [2], Hessian eigenmap [15]
and diffusion map [12]. Besides the classical Principal Component Regression [26], in [33] diffusion
map is used for nonparametric regression expanding the unknown function over the eigenfunctions
of a kernel-based operator. It is proved that, when data lie on a d-dimensional manifold, the MSE
converges in O(n~"/?@”). This rate depends only on the intrinsic dimension, but does not match the
minimax rate in the Euclidean space. If infinitely many unlabeled points are sampled, so that the
eigenfunctions are exactly computed, the MSE can achieve optimal rates for Sobolev functions with
smoothness parameter at least 1. Similar results hold for regression with the Laplacian eigenmaps [50].

Some regression methods have been shown to automatically adapt to the intrinsic dimension and
perform as well as if the intrinsic domain was known. Results in this direction have been established
for local linear regression [4], k-nearest neighbors [29], and kernel regression [31], where optimal
rates depending on the intrinsic dimension were proved for functions in C?, C!, and C* with s < 1,
respectively. Kernel methods such as kernel ridge regression are also known to adapt to the intrinsic
dimension [41, 48], while suitable variants of regression trees have been proved to attain intrinsic
yet suboptimal learning rates [30]. On the other hand, dyadic partitioning estimates with piecewise

polynomial regression can cover the whole scale of spaces C*, s > 0 [21], and be combined with
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wavelet thresholding techniques to optimally adapt to broader classes of nonuniform regularity [S5, 6].
However, such estimators are cursed by the ambient dimension D, due to the exponential cardinality
of a dyadic partition of the D-dimensional hypercube.

This paper aims at generalizing dyadic partitioning estimates [5, 6] to predict functions supported
on low-dimensional sets, with optimal performance guarantees and low computational cost. We tie
together ideas in classical statistical learning [20, 21, 45], multi-resolution analysis [12, 13, 38], and
nonlinear approximation [11,16,17]. Our main tool is geometric multi-resolution analysis (GMRA) [1,
34,35,37], which is a multiscale geometric approximation scheme for point clouds in high dimensions
concentrating near low-dimensional sets. Using GMRA we learn low-dimensional local coordinates
at multiple scales, on which we perform a multiscale regression estimate by fitting local polynomials.
Inspired by wavelet thresholding techniques [5,6,11], we then compute differences between estimators
at adjacent scales, and retain the locations where such differences are large enough. This empirically
reveals where higher resolution is required to attain a good approximation, generating a data-driven
partition which adapts to the local regularity of the function.

Our approach has several distinctive features:

(1) itis multiscale, and is therefore well-suited for data sets containing variable structural information
at different scales;

(i1) it is adaptive, allowing the function to have localized singularities or variable regularity;

(iii) it is entirely data-driven, that is, it does not require a priori knowledge about the regularity of the
function, and rather learns it automatically from the data;

(iv) itis provable, with strong theoretical guarantees of optimal performance on large classes of priors;

(v) it is efficient, having straightforward implementation, minor parameter tuning, and low
computational cost.

We will prove that, for functions supported on a d-dimensional manifold and belonging to a rich
model class characterized by a smoothness parameter S, the MSE of our estimator converges at rate
O((log n/n)*/25+d) " This model class contains classical Holder continuous functions, but further
accounts for potential nonuniform regularity. Our results show that, up to a logarithmic factor, we
attain the same optimal learning rate as if the function was defined on a known Euclidean domain of
dimension d, instead of an unknown manifold embedded in R”. In particular, the rate of convergence
depends on the intrinsic dimension d and not on the ambient dimension D. In terms of computations,
all the constructions above can be realized by algorithms of complexity O(nlogn), with constants
linear in the ambient dimension D and exponential in the intrinsic dimension d.

The remainder of this paper is organized as follows. We conclude this section by defining some
general notation and formalizing the problem setup. In Section 2 we review geometric
multi-resolution analysis. In Section 3 we introduce our multiscale regression method, establish the
performance guarantees, and discuss the computational complexity of our algorithms. The proofs of
our results are collected in Section 4, with some technical details postponed to Appendix A.

Notation. [ < g and f > g mean that there exists a positive constant C, independent on any variable
upon which f and g depend, such that f < Cg and f > Cg, respectively. f =< g means that both
f < gand f > g hold. The cardinality of a set A is denoted by #A. For x € RP?, ||x|| denotes the
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Euclidean norm and B,(x) denotes the Euclidean ball of radius r centered at x. Given a subspace
V c RP, we denote its dimension by dim(V) and the orthogonal projection onto V by Proj,. Let
f,g : M — R be two functions, and let p be a probability measure supported on M. We define
the inner product of f and g with respect to p as (f,g) := f S (0g(x)dp. The L? norm of f with
respect to p is ||f]| := (fM |f(x)|2dp)%. Given n i.i.d. samples {x;}7_, of p, the empirical L? norm
of fis ||fll, := %Z?:l |f(x)|*>. The L* norm of f is ||fll := supess|f]. We denote probability
and expectation by P and E, respectively. For a fixed M > 0, T, is the truncation operator defined
by Ty (x) := min(|x|, M)sign(x). We denote by 1, the indicator function of an indexed set Cj, (i.e.,
1;.(x) = 1if x € Cjy, and O otherwise).

Setup. We consider the problem of estimating a function f : M — R given n samples {(x;, y)}!_ |,
where

e M is an unknown Riemannian manifold of dimension d isometrically embedded in RP, with
d < D;

e p is an unknown probability measure supported on M;
e {x;}7_, are independently drawn from p;

oy = flx)+ &

e f is bounded, with || f]|.c < M;

e {{;}!, are i.i.d. sub-Gaussian random variables with sub-Gaussian norm ||Zjll,, < o2, independent
of the x;’s.

We wish to construct an estimator fof Jf minimizing the mean squared error
MSE = B7 - 7iF = [ 1/ - Fofdp.
M

2. Geometric multi-resolution analysis

Geometric multi-resolution analysis (GMRA) is an efficient tool to build low-dimensional
representations of data concentrating on or near a low-dimensional set embedded in high dimensions.
To keep the presentation self-contained, we summarize here the main ideas, and refer the reader
to [1,34,37] for further details. Given a probability measure p supported on a d-dimensional manifold
M c RP, GMRA performs the following steps:

(1). Construct a multiscale tree decomposition 7~ of M into nested cells 7 := {C i hex;,jez, Where j
represents the scale and k the location. Here K is a location index set.

(2). Compute a local principal component analysis on each C ;. Let ¢, be the mean of x on Cj, and
Vi« the d-dimensional principal subspace of Cj. Define 1= c¢;x + Projy, (x — cjp).

An ideal multiscale tree decomposition should satisfy assumptions (A1)-+(AS) below for all integers
j > jmin:

Mathematics in Engineering Volume 4, Issue 4, 1-25.



5

(A1) Forevery k € K;and k' € K.y, either Cj,1p € Cj or p(Cji1 00 NCjx) = 0. The children of Cj; are
the cells Cj,j p such that Cjiy p € Cji. We assume that 1 < apin < #HCji1p 1 Ciiipe € Cixd < Amax
for all k € K; and j > jmin. Also, for every Cjy, there exists a unique k* € Kj_; such that
Cix € Cj_1. We call Cj_y the parent of C ;.

(A2) p (M \ Ukex, Cj,k) =0, ie, A; = {Cjihex; is a partition of M, up to negligible sets.
(A3) There exists §; > 0 such that #A ; < 274/6),.

(A4) There exists 8, > 0 such that, if x is drawn from p conditioned on Cjy, then [|x — cjl| < 0,277
almost surely.

(AS) Let ﬂ{’k > /lé’k > ... 2 /l{;k be the eigenvalues of the covariance matrix X;; of p|c,,, defined in
Table 1. Then:

(1) there exists 65 > 0 such that, for every J = jmin and k € K, /li;k > 6;27%/d,

(i1) there exists 64 € (0, 1) such that Ak g S 04/12’]‘.

These are natural properties for multiscale partitions generalizing dyadic partitions to nonEuclidean
domains [10]. (A1) establishes that the cells constitute a tree structure. (A2) says that the cells at scale
j form a partition. (A3) guarantees that there are at most 2/¢/6; cells at scale j. (A4) ensures that the
diameter of all cells at scale j is bounded by 27/, up to a uniform constant. (A5)(i) assumes that the best
rank d approximation to the covariance of a cell is close to the covariance matrix of a d-dimensional
Euclidean ball, while (AS5)(i1) assumes that the cell has significantly larger variance in d directions than
in all the remaining ones.

Since all cells at scale j have similar diameter, A; is called a uniform partition. A master tree 7
is a tree satisfying the properties above. A proper subtree 7 of 7 is a collection of nodes of 7~ with
the propertles the root node is in 7 ; if a node is in 7, then its parent is also in 7. Any finite proper
subtree 7 is associated with a unlque partition A = A(7") consisting of its outer leaves, by which we
mean those nodes that are not in 7, but whose parent is.

In practice, the master tree 7 is not given. We will construct one by an application of the cover tree
algorithm [3] (see [34, Algorithm 3]). In order to make the samples for tree construction and function
estimation independent from each other, we split the data in half and use one subset to construct
the tree and the other one for local PCA and regression. From now on we index the training data as
{(x;, y,)}l > and split them in {(x;, y,)} = {(xi, y)Y, U{(x, y,-)}izfn .- Running Algorithm [34, Algorithm
3] on {x,}l X 1> We construct a family of cells {6 AR jmin<j<jmn. WhiCh satisfies (A1)+(A4) with high
probability if p is doubling*; furthermore, if M is a C*, s € (1, o), d-dimensional closed Riemannian
manifold isometrically embedded in RP, and p is the volume measure on M, then (A5) is satisfied as
well:

Proposition 1 (Proposition 14 in [34]). Assume p is a doubling probability measure on M with
doubling constant C,. Then, the C;’s constructed from [34, Algorithm 3] satisfy:

(al) (A1) with an. = C%(24)d and Ay, = 1;

*p is doubling if there exists C; > 1 such that Cl"r” < p(M N B.(x)) < Cr for any x € M and r > 0; C, is called the doubling
constant of p. See also [10, 14].
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(a2) let M= Ujg}*min Ukex, Ej,k; for any v > 0,

P{p(M \ /T/(\) > M} <2n7

3n

(a3) (A3) with 6, = C;'47¢;
(ad) (A4) with 6, = 3.

If additionally M is a C°,s € (1,00), d-dimensional closed Riemannian manifold isometrically
embedded in RP, and p is the volume measure on M, then

(a5) (AYS) is satisfied when j is sufficiently large.

Since there are finite training points, the constructed master tree has a finite number of nodes. We
first build a tree whose leaves contain a single point, and then prune it to the largest subtree whose
leaves contain at least d training points. This pruned tree associated with the é\‘j,k’s is called the data
master tree, and denoted by 7,. The E ik 'S cover 7\/7, which represents the part of M that has been
explored by the data. Even though assumption (A2) is not exactly satisfied, we claim that (a2) is
sufficient for our performance guarantees, for example in the case where ||f]lo < M. Indeed, simply
estimating f on M\ M by 0, for any v > 0 we have

28 M2y 1 56M2y1
P{f IfIPdp > ﬂ} <2n™ and Ef IfIPdp < 2= 228,
M\X’f 3n M\//\_/(\ 3nltr

I/n\view of these bounds, the rate of convergence on M \ //\/(\ 1s faster than the ones we will obtain on
M. We will therefore assume (A2), thanks to (a2). Also, it may happen that conditions (A3)-+(AS) are
satisfied at the coarsest scales with very poor constants 6. Nonetheless, it will be clear that in all that
follows we may discard a few coarse scales, and only work at scales that are fine enough and for which
(A3)+(AS) truly capture in a quantitative way the local geometry of M. Since regression is performed
on an independent subset of data, we can assume, by conditioning, that the a,k’s are given and satisfy
the required assumptions. To keep the notation simple, from now on we will use C;; instead of @,k,
and M in place of M, with a slight abuse of notation.

Besides cover tree, there are other methods that can be applied in practice to obtain multiscale
partitions, such as METIS [27], used in [1], iterated PCA [42], and iterated k-means. These methods
can be computationally more efficient than cover tree, but lead to partitions where the properties
(A1)+(AS) are not guaranteed to hold.

After constructing the multiscale tree 7, GMRA computes a collection of affine projectors {P; :
RP? — RP},,; . The main objects of GMRA in their population and sample version are summarized
in Table 1. Given a suitable partition A C 7, M can be approximated by the piecewise linear set
{Pia(Cix)lciren-

Mathematics in Engineering Volume 4, Issue 4, 1-25.



Table 1. Objects of GMRA. V;; and Vj,k are the eigenspaces associated with the largest d
eigenvalues of X;; and X, respectively.

oracles empirical counterparts
o(Cjx) p(Cix) = E’TA, Ny = 0 x € Ciyl
Cjk = p(%ﬂ) fcjk xdp Cjg = @% 2 X
A Xi€Cjk
Zj,k = p(clj’k) fc,-,k(x - Cj,k)(x - Cj,k)po Ej,k = ”# x_eZc_k(x,- —a,k)(xi _’C\j,k)T
i€C;,

— g 1 ; 2 V., — o = ; = |12
Vg 1= argmin 7 fcjk llx = ¢jx = Projy(x — c;0ll*dp Vi := argmin o 2 lx="cjx — Proj,(x —=c;pll
dim V=d - dim V=d xi€Cjk

(%) 1= i + Projy, (x = cjs) Pir(X) = Ty + Projy,  (x — )

3. Multiscale polynomial regression

Given a multiscale tree decomposition {Cj;};«x and training samples {(x;, y;)}?_,, we construct a

family {]’C;k} & of local estimates of f in two stages: first we compute local coordinates on C;; using
GMRA outlined above, and then we estimate fic, by fitting a polynomial of order ¢ on such

coordinates. A global estimator f;{ is finally obtained by summing the local estimates over a suitable
partition A. Our regression method is specified in Algorithm 1. The explicit constructions of the
constant (£ = 0) and linear (£ = 1) local estimators are detailed in Table 2.

In order to analyze the performance of our method, we introduce the oracle estimator f. based on
the distribution p, defined by

. d T
ik Cjx = RY, Tp(x) = Vi (x = ¢jp),

pi‘,k = arg minf ly—po ﬂj,k(x)|2d,0,
pePt Cik

ffk = TM[pik o 7

fl= ) il

Cj,kEA

and split the MSE into a bias and a variance term:

Ellf - P <210f - fUP +2ElfL - FUP. (1)
bias variance

The bias term is a deterministic approximation error, and will be handled by assuming suitable
regularity models for p and f (see Definitions 1 and 3). The variance term quantifies the stochastic
error arising from finite-sample estimation, and will be bounded using concentration inequalities (see
Proposition 2). The role of A, encoded in its size #A, is crucial to balance (1). We will discuss two
possible choices: uniform partitions in Section 3.1, and adaptive at multiple scales in Section 3.2.
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Algorithm 1 GMRA regression

Input: training data {x;, y,}l I
type (uniform or adaptive).
Output: multiscale tree decomposition 7, partition A, piecewise £-order polynomial estimator ]/‘1?;
1: construct a multiscale tree 7, by [34 Algorithm 3] on {x,}l T
2: compute centers ¢ and subspaces Vj,k by empirical GMRA on {x;}?_,;

3: define coordinates 7 on Cj:
Ti:Cip — RY Ti(x) = VI (x =Cip);
Jk s gk ’ JRAA) =V jk JikJs

4: compute local estimators fgf\ik by solving the following least squares problems over the space P’ of
polynomials of degree < ¢:

Py = afgef;}m a Z Vi = P o TP Ljn(x), Gy = Py © Wi
P
5: truncate g’ by M:
ko TM[gik];

6: construct a uniform (see Section 3.1) or adaptive (see Section 3.2) partition A;
7: define the global estimator f; by summing the local estimators over the partition A:

J’Cz = Z -?j?:klj,k'

Cj,kEA

intrinsic dimension d, bound M, polynomial order ¢, approximation

Table 2. Constant and linear local estimators. The truncation in [Af”‘]d regularizes the least
squares problem, which is ill-posed due to the small eigenvalues {/l{’k}lll AT

oracles empirical counterparts

piecewise constant (£ = 0)

g?’k(X) = Yik = l’(Cl‘_/,/() v[C-k )’dp g(}’k(X) = 37\j,k :— = ZC: Yi
Js X;i€Cjk
£ = Tyl ()] £ = Tyl ()]
piecewise linear (¢ = 1)

gL () = [0 277184 2L = )" 27718

— [ 0 1 7jk(x) 2o |kt o |1 7ik(xi)
’Bj’k'_[ Od 22-/']p(Cj.k)j; y[ 277 ]dp ’Bf’k'_[ od 221]n]k Zy’[ k* ]

ik x€C ik

(A, = diag(al’, ..., 25 [A#], = diag(A, ..., 275
fL(0) = Tylgl ()] FL(0) = Tylg ()]
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3.1. Uniform partitions

A first natural choice for A is a uniform partition A := {Cji}lrex;» J = Jmin- At scale j, f is estimated

by ]";f/_ = Dkek; ’zkl k- The bias [|f — f/fjll decays at a rate depending on the regularity of f, which can
be quantified as follows:

Definition 1 (model class AY). A function f : M — R is in the class A for some s > 0 with respect
to the measure p if

If = 13,1
|flae :==sup sup ————— < oo,
T i 27V

where 7 ranges over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)+(AS).

We capture the case where the bias is roughly the same on every cell with the following definition:

Definition 2 (model class A~™). A function f : M — R is in the class AL for some s > 0 with
respect to the measure p if

ICF = Ll
|flaes 1= sup sup sup ————= <

T Jzjmn kek; 2775 A[p(Cx)
where 7 ranges over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)+(AS).

[S0]

Clearly A:™ AL, These classes contain uniformly regular functions on manifolds, such as Holder
functions.

Example 1. Let M be a closed smooth d-dimensional Riemannian manifold isometrically embedded
in R?, and let p be the volume measure on M. Consider a function f : M — R and a smooth chart
(U, $) on M. The function f : ¢(U) — R defined by f(v) = f o ¢~ !(v) is called the coordinate
representation of f. Let 4 = (4y,...,4,) be a multi-index with || := 4; + ... + Ay = €. The {-order
A-derivative of f is defined as
I f(x) =0 (foe™).

Holder functions C* on M with £ € N and « € (0, 1] are defined as follows: f € C’® if the £-order
derivatives of f exist, and

. 0" f(x) = 0 f(2)|
|flgte = max le:ltg Jo < o0
d(x, z) being the geodesic distance between x and z. We will always assume to work at sufficiently fine
scales at which d(x,z) < ||z — x|lgp. Note that C*! is the space of ¢-times continuously differentiable
functions on M with Lipschitz £-order derivatives. We have C*® C ﬂgf; with |f] A < Hgmdfl Sflota /€.
The proof is in Appendix A.

b

Example 2. Let M be a smooth closed Riemannian manifold isometrically embedded in R?, and let p
be the volume measure on M. Let Q € M such that I" := 9Q is a smooth and closed dr-dimensional
submanifold with finite reach’. Let g = alg + bl for some a, b € R, where 15 denotes the indicator

"The reach of M is an important global characteristic of M. Let D(M) := {y € RP? : A x € Ms.t. [lx — yll = infepllz = ylI}s
M, :={y € RP s inf,cp||x — y|| < r}. Then reach(M) := sup{r > 0 : M, C D(M)}. See also [19].
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¢

(d—di)/2 for every £ = 0,1,2,...; however, g ¢ AL for any s > 0. The

function of a set S. Then g € A
proof is in Appendix A.

When we take uniform partitions A = A; in (1), the squared bias satisfies
If = £, < 1527

whenever f € A’, which decreases as j increases. On the other hand, Proposition 2 shows that the

variance at the scale j satisfies
j2"

2
Ellfy, - /x| < 0(7),

which increases as j increases. Choosing the optimal scale j* in the bias-variance tradeoff, we obtain
the following rate of convergence for uniform estimators:

Theorem 1. Suppose ||fllc < M and f € A for € € {0, 1} and s > 0. Let j* be chosen such that

logn)z-fl*d

277" = ,u(
n

for u > 0. Then there exist positive constants ¢ = c(6,,d,u) and C := C(0y,d,u) for € = 0, or
c:=c(6,,6,,0s,d,u) and C := C(0y,0,,05,d,u) for £ = 1, such that:

(a) for every v > O there is ¢, > 0 such that

, log n\ > .,
P{uf—f’gﬁn>(|f|ﬂgu°+cv>( 2 ) }SCn ,

n
where ¢, .= ¢,(v,0,,d, M, o, s,u) for { =0, and ¢, := ¢,(v,0,,0,,05,d, M, o, s, ) for £ = 1;

- 25
0 Blf = F}IP < (gt + e max(2, o) (222) 7.

Theorem 1 is proved in Section 4. Note that the rate depends on the intrinsic dimension d instead of
the ambient dimension D. Moreover, the rate is optimal (up to logarithmic factors) at least in the case
of C%* functions on M, as discussed in Example 1.

3.2. Adaptive partitions

Theorem 1 is not fully satisfactory for two reasons: (i) the choice of the optimal scale requires
knowledge of the regularity of the unknown function; (ii) no uniform scale can be optimal if the
regularity of the function varies at different locations and scales. We thus propose an adaptive estimator
which learns near-optimal partitions from data, without knowing the possibly nonuniform regularity of
the function. Adaptive partitions may be selected by a criterion that determines whether or not a cell
should be picked or not. The quantities involved in this selection are summarized in Table 3, along
with their empirical versions.
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Table 3. Local approximation difference between scales.

oracles empirical counterparts

Wf,k = (fzij _fziﬂl)lj,k Wfk = (f,{/. _fjim) ik

= ||WS = IIWkaIn

Al

Aik plays the role of the magnitude of a wavelet coeflicient in typical wavelet thresholding
constructions, and reduces to it in the case of Haar wavelets on Euclidean domains by dyadic
partitioning. It measures the local difference in approximation between two consecutive scales: a
large Aik suggests a significant reduction of error if we refine C;; to its children. Intuitively, we
should truncate the master tree to the subtree including the nodes where this quantity is large.
However, if too few samples exist in a node, then the empirical counterpart Zf . can not be trusted. We
thus proceed as follows. We set a threshold 7, decreasing in n, and let 7, (T,;) be the smallest proper
subtree of 7, containing all C;;’s for which Af > 1,. Crucially, 7, may be chosen independently of
the regularity of f (see Theorem 2). We ﬁnally define our adaptive partition A «(Tn) as the partition
associated with the outer leaves of 7, 2(7,,). The procedure is summarized in Algorithm 2.

Algorithm 2 Adaptive partition

Input: training data {(x;, y)}",,

{J";fk} k> threshold parameter «.

multiscale tree decomposition 7, local {-order polynomial estimates

Output: adaptive partition X,,(Tn).
1: compute the approximation difference Af. . onevery node Cj; € 7,;

2: set the threshold 7, := k+/(logn)/n;

3. select the smallest proper subtree ;I:,,(T,,) of 77, containing all C;’s with Z§ P

define the adaptive partition Kn(r,,) associated with the outer leaves of ‘7”,,(7',1).

e

To provide performance guarantees for our adaptive estimator, we need to define a proper model
class based on oracles. Given any master tree 7 satisfying assumptions (A1)+(AS) and a threshold
T > 0, we let 7 () be the smallest subtree of 7~ consisting of all the cells C;;’s with Ai.’k > 7. The
partition made of the outer leaves of 7 (1) is denoted by A(7).

Definition 3 (model class Bﬁ). A function f : M — Risin the class Bﬁ for some s > 0 with respect to
the measure p if

2d
fl = sup upTHT (1) <o, p= 5

where 7 varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
assumptions (A1)+(AS).

In general, the truncated tree 7 (7) grows as the threshold T decreases. For elements in B!, we
have control on the growth rate, namely #7 (7,) < 7 7. In the classical case of dyadic partitions of
the Euclidean space with uniform measure, B is well understood as a nonlinear approximation space
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containing a scale of Besov spaces [11]. The class Bﬁ is indeed rich, and contains in particular ﬂi"”,
while additionally capturing functions of nonuniform regularity.

5|l oo
&)

Lemma 1. A ¢ B If f € AL, then f € B and |flg < (dwin/61)

The proof is given in Appendix A.
Example 3. Let g be the function in Example 2. Then g € Bf}( d-dpy/apy Torevery £ =0,1,2,.... Notice

that g € Af,_, | », 50 g has a larger regularity parameter s in the 8; model than in the A{ model.

We will also need a quasi-orthogonality condition ensuring that the functions Wf . representing the
approximation difference between two scales are almost orthogonal across scales.

Definition 4. We say that f satisfies quasi-orthogonality of order ¢ with respect to the measure p if
there exists a constant By > 0 such that, for any proper subtree S of any tree 7 satisfying assumptions

(A1)=(AS), 2
| >0 wel <80 > il
Cix€T\S Cix€T\S

The following lemma shows that f € B!, along with quasi-orthogonality, implies a certain
approximation rate of f by f/f(T) as 7 — 0. The proof is given in Appendix A.

Lemma 2. If f € BN (L™ U AY) for some s,t > 0, and f satisfies quasi-orthogonality of order €, then

2
25+ d’

_ _2s
If = ol < Bsalflg 777 < Boalflp #A@)77,  p

With Bs’d = B()Zp ZfZO 2_5(2_1)).

The main result of this paper is the following performance analysis of adaptive estimators, which is
proved in Section 4.

Theorem 2. Let € € {0,1} and M > 0. Suppose ||f|| < M and f satisfies quasi-orthogonality of order
{. Set 1, := k+/logn/n. Then:

(a) For every v > 0 there exists k, := K,(Amax, 62,63, d, M, o, v) > 0 such that, whenever f € Bf for
some s > 0 and k > «,, there are r,C > 0 such that

logn b
P{”‘f - f’%in(Tn)” > r( 5 ) } S Cn_v ’

(b) There exists ko := Ko(Amax, 02, 03,d, M, o) such that, whenever f € Bg for some s > 0 and k > ko,
there is C > 0 such that

2s
_(logn\?+
E|f - 72 Wsc(f) .

An(Tn)

Here r depends on 6, 6, amax, d, M, s, |flg:, 0, Bo, v, k; C depends on 03, 05, Gmax, Gmin, d, 5, | flge, k5
C depends on 6, 6, amax, Amin, d, M, s, |f15t, Bo, k.
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Theorem 2 is more satisfactory than Theorem 1 for two reasons: (i) the same rate is achieved for
a richer model class; (ii) the estimator does not require a priori knowledge of the regularity of the
function, since the choice of « is independent of s.

For a given accuracy &, in order to achieve MSE < &2, the number of samples we need is n, 2
(1 /s)¥ log(1/€). When s is unknown, we can determine s as follows: we fix a small nj, and run
Algorithm 2 with 2ng,4nq, ...,2/ng,... samples. For each sample size, we evenly split data into a
training set to build the adaptive estimator, and a test set to evaluate the MSE. According to Theorem 2,
the MSE scales as (log n/n)=4. Therefore, the slope in the log-log plot of the MSE versus n gives an

approximation of —2s/(2s + d). This could be formalized by a suitable adaptation of Lepski’s method.

3.3. Computational complexity
The computational cost of Algorithms 1 and 2 may be split as follows:

Tree construction. Cover tree itself is an online algorithm where a single-point insertion or removal
takes cost at most O(logn). The total computational cost of the cover tree algorithm is C¢Dnlogn,
where C > 0 is a constant [3].

Local PCA. At every scale j, we perform local PCA on the training data restricted to the Cj; for every
k € K; using the random PCA algorithm [22]. Recall that 7;; denotes the number of training points
in Cj,. The cost of local PCA at scale j is in the order of .« Ddn; = Ddn, and there are at most
clog n scales where ¢ > 0 is a constant, which gives a total cost of cDdn log n.

Multiscale regression. Given 7 training points on C;, computing the low-dimensional coordinates
7 x(x;) for all x; € Cj; costs Ddn, and solving the linear least squares problem (2), where the matrix
is of size ;. x d", costs at most 7;,d*. Hence, constructing the ¢-order polynomials at scale j takes
Ykex; Ddnjy + d*nji = (Dd + d*)n, and there are at most ¢ logn scales, which sums up to ¢(Dd +
d*)nlogn.

Adaptive approximation. We need to compute the coefficients /A\j,k for every C;i, which costs 2(Dd +
dYnjy on Cjy, and 2¢(Dd + d*)nlog n for the whole tree.

In summary, the total cost of constructing GMRA adaptive estimators of order ¢ is
C'Dnlogn + (4Dd + d* + d)cnlogn.

The cost scales linearly with the number of samples n up to a logarithmic factor, and linearly with the
ambient dimension D.

4. Proofs

We analyze the error of our estimator by a bias-variance decomposition as in (1). We present the
variance estimate in Section 4.1, the proofs for uniform approximations in Section 4.2, and for adaptive
approximations in Section 4.3.

4.1. Variance estimate

The following proposition bounds the variance of 0-order (piecewise constant) and 1st-order
(piecewise linear) estimators over an arbitrary partition A.
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Proposition 2. Suppose ||fl|l < M and let € € {0, 1}. For any partition A, let fﬁ and ]/‘;f be the optimal
approximation and the empirical estimators of order € on A, respectively. Then, for every n > 0,

Co#A exp S — fort=0
( )

P ¢ 7l co max(M?2,02#A
(@) {”f A= } {Cld#Aexp( 2 fort=1,

c max(d“M2 dzo.z)#/\)

. 2 2
y = co max(M*<,o rz#Alog(Cg#A) for € — O
(b) E”f/\ - fA” < ¢ max(d* M2 d> a2 #A log(Cd#A)

n

for€ =1,
for some absolute constants cy, Cy and some c, C depending on 6,, 6.

Proof. Since f{ and Zf are bounded by M, we define A™ := {Cjr € A : p(Cjy) < %}, and observe
that

D I = FOLulP < .

CikeA”
We then restrict our attention to A* := A \ A~ and apply Lemma 5 with ¢ = W. This leads to
(a), while (b) follows from (a) by integrating over n > 0. O

4.2. Proof of Theorem 1

1

Notice that #A; < 2/¢/6, by (A3). By choosing j* such that 277" = (m%)m for some u > 0, we
have

10 n 23+d
If - fA*||<|f|ﬂf2]S<|f|ﬂh“ ( 5 ) .

Moreover, by Proposition 2,

0yuded d
% CO __d_ _(L'Omax(Mz,(rz)_25+‘l) g _ 0
P logn\>* g (logn)™>+in (&=0) _
P{”f/\i* _fAj*” = Cv( < 02 . < Y
J n Cld (log n) 25+dn (clmax(d4M2d2 2)_25+d) (5 — 1)

Ol
ol max(d* M2 d202) 25+d

Oudc2

comax(ML,o2) 2s+d >vforf=1. O

provided that > vy for £ =0and

4.3. Proof of Theorem 2

We begin by defining several objects of interest:

e 7,: the data master tree whose leaves contain at least d points of training data. It can be viewed
as the part of a multiscale tree that our training data have explored. Notice that

amm n n
BT < <
Z mmd ao —1d = Mg

e 7: a complete multiscale tree containing 7,,. 7 can be viewed as the union 7, and some empty
cells, mostly at fine scales with high probability, that our data have not explored.
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e 7 (7): the smallest subtree of 7~ which contains {C;; € T : Aik > T}
e 7,(0):=T()NT,.

° ‘7’,1(1'): the smallest subtree of 7, which contains {Cjx € 7, : ka > 7).

A(7): the adaptive partition associated with 7 (7).

A, (7): the adaptive partition associated with 7,(7).

Kn(T)S the adaptive partition associated with r}':,1(7).

Suppose 7 and 7! are two subtrees of 7. If A° and A' are two adaptive partitions associated
with 770 and 7! respectively, we denote by A’ v A! and A° A A! the partitions associated to the
trees 7°U 7' and 7° N 7! respectively.

e Let b = 2a,,,x + 5 where a,,,x 1S the maximal number of children that a node has in 7.

Inspired by the analysis of wavelet thresholding procedures [35, 6], we split the error into four terms,

4
||f—fK(T)||S€1+€2+€3+€4,

where

= — i3 = ,{ — ,é
er:=|f fKnm)vAn(brn)” € ”fAn(van(brn) An<r,1)AAn<rn/b)”

et o T @
es =1 An(T)AA(Ta /D) f Kn(rn)AAn(rn/m” e = |If AT AT, /D) S, Xn(m”'

The goal of the splitting above is to handle the bias and variance separately, as well as to deal with
the fact the partition built from those C;; such that A? . = T, does not coincide with the partition

which would be chosen by an oracle based on those C;; such that Aik > 7,. This is accounted by the

terms e, and e, which correspond to those C;; such that ka is significantly larger or smaller than Aik
respectively, and which will be proved to be small in probability. The e; and e; terms correspond to
the bias and variance of oracle estimators based on partitions obtained by thresholding the unknown
oracle change in approximation A, .

Since Kn(rn) V A, (bt,) is a finer partition than A, (bt,), we have

4 £ £ A .
e <|If - fAn(an)” <|f - fA(an)” + ”fA(an) - fA,,(hr,,)” =ren t+ep.

The e}, term is treated by a deterministic estimate based on the model class Bﬁ: by Lemma 2 we have
- 25
e%l < Bs,dlflgé(bk)z p(log n/n)z+,

The term e}, accounts for the error on the cells that have not been explored by our training data, which
is small:

Pler > 0} <P{A Cj € T (1) \ Tu(bT0)}

{3Cj € T(bry) : Al 2 b, and p(C ) < d/n)

9 5
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< ). PB{AL > br, and BCy) < d/n).

Cix€T (bty)

According to (4), we have (Aik)2 < 4|f112,0(C;x). Then every C;; with Aik > br, satisfies p(Cjy) 2

Ill’;T’lf(log n/n). Hence, provided that n satisfies ”b;—llkzz logn > 2d, we have
¢ vel —~ 1 b*k* logn
P{A}, = bt, and p(Cjp) < d/n} < P{1p(Cjx) = p(Cjp)l > Ep(C ) and p(Cjp) 2 7 n
36242 «
< 2n I

where the last inequality follows from Lemma 3(b). Therefore, by Definition 3 we obtain

3622 3622 _( 3b%

Pleiy > 0} S #T (br,)n VR < |f [ (DT) " n e < |f [ (DK) "1 28IA%, ) < | fl, () "n

2,2 .
as long as 238’ﬂ fTP — 1 > v. To estimate Ee%z, we observe that, thanks to Lemma 6,
2 _ ¢ ¢ 2 2
eh= > > = Flyel? s M2,
Cik€M(bT)\A(bTy) Cpr pr€A(bTY)
Cj’,k’ CCj’k

2s

Hence, by choosing v = 1 > 525

we get
Bel, < IIfIZPlers > OF < ILFIRIF1L, (b) " Qog n/m) 2.

The term e; is the variance term which can be estimated by Proposition 2 with A = K,,(Tn) A
A, (1,/b). We plug in n = r(log n/n)s. Bounding #A by #A,(7,/b) < #A, < n/d (as our data master
tree has at d points in each leaf) outside the exponential, and by #A,,(7,/b) < #A(t,/b) < |f K’B‘f (1,/b)*
inside the exponential, we get the following estimates for es: 3

2

l—— 17k
cob? \f@ ¢ max{M2.02)

] v C { =0
P{€3 > r( ogn) } < o 2P ( )

n l_clbl’\ﬂf’[ max{d M2 202}
Cin By €=1),

where CO = CO(02a 93’ Amax, d, S, |f|B§’ K) and Cl = Cl (92’ 03a Amax d, s, |f|B§» K)- We obtain
P{e; > r(logn/n)=} < Cn™ as long as r is chosen large enough to make the exponent smaller than
-V

To estimate Eeg, we apply again Propositions 2 and with #A < |f |{734(b /)P (logn/ n)‘ﬁ, obtaining

Ee3 < C(log nin)sa .

Next we estimate e, and e4. Since '7',,(7',,) N T, (t,/b) C '7',,(7',,) U ﬂ(brnland T.(bt,) C T,(1,/b),
we have e, > 0 if and only if there is a C;; € 7, such that either C;; is in 7,(7,,) but not in 7,(7,/b),
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or Cy is in 7,,(b7,) but not in T.,(t,)). This means that either ka > 1, but Aik < T,/b, or Aik > bt, but

Aik < 1,. As a consequence,

Pley>0l< > P{AY 27, and Af, <7,/b}+ Y P(AL, > br,and A, <7},
Cj’kGTn Cj,kETn

and analogously _
Ples >0} < > P{AY > 7, and A}, <7,/b}.

Cix€Tn
We can now apply Lemma 7: we use (b) with n = 7,,/b, and (a) with n = 7,,. We obtain that

2

1_7
mins d cob? max{M2,02} f — O
Pley > 0} + Ple; > 0} < | C(émin : “=0)

C(02, 93a amin’d)nl_m (f = 1)

We have P{e, > 0} + P{e4 > 0} < Cn™ provided that « is chosen such that the exponents are smaller
than —v.
We are left to deal with the expectations. As for e,, Lemma 6 implies e, < M, which gives rise to,

_ 2s
forv=1> T

Ee? < M*Ple, > 0} < CM*(log n/n)7a .

The same bound holds for e4, which concludes the proof of Theorem 1. m]

4.4. Basic concentration inequalities

This section contains the main concentration inequalities of the empirical quantities on their oracles.
For piecewise linear estimators, some quantities used in Lemma 5 are decomposed in Table 4. All
proofs are collected in Appendix A.

Table 4. Decomposition of piecewise linear estimators into quantities used in Lemma 5.

oracles empirical counterparts
fi,k(-x) = TM ([(x — Cj,k)T 2_1] Qj,krj,k) ‘fj,k(-x) = TM ([(X _/C\j,k)T 2—]] Qj’k’r\j’k)
= o =~ [E. o
o[t B[
] ] = 4t _ —~. -1 =
[Zj,k]ji = j,k[ALk];le’kT [Zfsk]ji = j’k[Aj,k]d (Vj,k)T
— _1 (x—cjp) — 1 (x—e)
Cj’k )C[ECj’k

Lemma 3. For every t > 0 we have:

@ B{p(Ci) ~ACs0)| > 1) < 2exp (5 )

(b) setting t = 1p(C ;) in (a) yields P {|p(Cj,k) - p(Cjl > %P(Cj,k)} < 2exp (_%”P(Cj,k));
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- 3 3np(C )1 .
(C) P{”Cj’k - cj,k” > t} < 2exp (—ﬁnp(Cj,k)) + 86Xp (—m),

= 463 =3np(C )P
(@ PUS - Siall> 1) < 2exp (= 5m0(Ci0)) + (2 + 8) exp (smiisir ).

Lemma 4. We have:
@) P~ Qjell > 2V = Tl

3 , % _ np(C4)
< 2exp (~&np(Ci)) + (493d + 10) exp( s /w).

—. . 62 np(Cjj)
(b) PUIGHI > 2d 2%} < 2exp (- &np(C0) + (4éd ¥ 10) exp (— e /W) .

(c) Suppose f isin L. For every t > 0, we have

— 3 —np(C ;)i np(C i)
Bl =Tl > 1} < 2exp(=5mp(Cp)) + 8exp (4<ez>2|f||§oz-2f+]2<ez>||f||m2-f’f) +2exp (_Cf)%lmil“’ )

where ¢ is an absolute constant.

Lemma S. Suppose f is in L. For every t > 0, we have
Cﬁﬁpvygwaq%__@ﬁﬁ_)+“pkw@wﬁ] forf=0

co co(lf 1%+l flleot) Coll(lli2

_ np(Cjg) _ np(C )t _ np(C )t _
Cld[eXP( ad )+eXp( cld4<||f||§o+||f||mr>) +eXp( eI, fort=1,

where ¢y, Cy are absolute constants, cj depends on 0,, and c,, Cy depend on 6, 6.

¢ _ fl
P~ Fldllo > 1} <

Lemma 6. Suppose f € L. For every C;x € T and Cjp C Cjy,

1fie = frwllo < 2M, 1fik = firallo < 2M.

Lemma 7. Suppose f isin L™. For every n > 0 and any y > 1, we have

2
X Co eXP(—#) fort =0
(@) P{AY, <7 & A, > Qane + 5} < ol
' ’ Cidexp(- = ) for € =1;
1O\ e max I ;
2
-~ Co exp(—#) fort=0
(b) P{Nf <N &AL, > Qapy + 5),7} < ol
’ ’ Cidexp (- ——" fort=1:
14 XD\~ S ax @ I, ’

Co, co depend on ay,y; ¢, depends on anay, 65, Cy, ¢ depend on apy, 02, 63.
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A. Additional proofs

Example 1. Let f € C"®. The local estimator ffk minimizes ||(f — p)1;.ll over all possible polynomials
p of order less than or equal to €. Thus, in particular, we have ||(f — fj‘:k)l ikl < NG = p)1jll where
p is equal to the {-order Taylor polynomial of f at some z € C;;. Hence, for x € Cj; there is
& € M N By,,-i(z) such that

1 1
1f(x) = p(o)| < ;ﬂ 10 @ = 9 F @l = ' < |flewallé = 2 ;g STt

d€ a 4 (+a d€ —j(t+a)
< Tl lerallg = 2l lbx = 2 < 5% 2 flowa 21
Therefore, for every j and k € K, we have

o, d e
I = £l < 65 P11 27 p(C). o

Examples 2 and 3. For polynomial estimators of any fixed order £ = 0,1, ..., gik —gl;x = 0 when
CiyyNT =, and gik — gl = O(1) when C;; N T # @. At the scale j, p(Cjx) ~ 27/ and p(U{C  :
Cyx NT # @}) ~ 27/ p(T). Therefore,

gk, - gll < O(V2-H-) = 0472,

. . . g
which implies g € A, ;) ».

In adaptive approximations, A, = 0 when Cjx NT' = @. When C;x NT # @, Al = |ig}, -
210 C g§. el S Ve(Ci) s 27742, Givgn any fixed threshold 7 > 0, in the truncated tree 7 (),
the leaf nodes intersecting with I' satisfy 2779/ > . In other words, around I the tree is truncated
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at a coarser scale than j* such that 277" = O(T%). The cardinality of 7 (7) is dominated by the nodes

intersecting with I, so
p(I“)Z‘j* (d—dr)

% _2d7r
#T (1) S = = pD2" <77
which implies p = 2dr/d. We conclude that g € B! with s = “52 = 4(d — dp)/2. O

Lemma 1. By definition, we have ||(f—ffk)1j’k|| < Iflﬂg,oo2_js \VpP(Cjx) aslongas f € ﬂﬁ"x’. By splitting
(A7 < 20(f = FOLP +2 S e I = f4y )L jsrel P, we get

(A)* < AT 272(C ).

In the selection of adaptive partitions, every Cj; with A°, > 7 must satisfy p(Cjx) 2 2%(7/|f] =),
With extra assumptions p(C ;) < 6,27/ (true when the measure p is doubling), we have

SN
AN,y >21t=2"> . 3)
s [l
Therefore, every cell in A(7) will be at a coarser scale than j* with j* satisfying (3). Using (A3) we
thus get
2d

o Ts+d
minl 157
6,

which yields the result. O

T’HT (1) < TP amin#tA j« < 91_17” amin2’ ¢ <

Lemma 2. For any partition A C 7, denote by A’ the [-th generation partition such that A° = A and
A" consists of the children of A’. We first prove that lim,., ff, = f in L*(M). Suppose f € L.
Notice that || fﬁ, = fll <l ff, — fll. As a result of the Lebesgue differentiation theorem, ffz — f almost
everywhere. Since f is bounded, fj(\), is uniformly bounded, hence ffl — f in L*(M) by the dominated
convergence theorem. In the case where f € A’, taking the uniform partition A ;) at the coarsest scale
of A, denoted by j(l), we have ||f — f{ |l < |If - f/fj(l)ll < 277", and therefore f{, — fin L*(M).

Now, setting A = A(t) and S := 7 (1) \ A, by Definitions 3 and 4 we get

2 2

L-1 o
s = £1P = (> (Fo = fom) + £ = £ = |1D = £
=0 =0

2

<By Yy Wi

Cj,kG'T\S

=By A%, < By ) 27MTHT (27

1=0 A e[2-t+hr27In) =0

Il
=

(o) (o)

2- -@2-p)l 2- -2-p)l
= B2'r " Y 2PN fIL < B2l 2 Y 27,

1=0 1=0
which yields the first inequality in Lemma 2. The second inequality follows by observing that2 — p =

— 2s _2s o,
%p and Iflngz"’ = |f|é£(|f|BI£Tp)7 < |f|é£#[T(T)] ¢ by Definition 3. O
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Lemma 3. See [34]. |

Lemma 4. (a). Thanks to [23, Theorem 3.2] and assumption (AS5), we have

Y e 15— 4l IS =2 il
10k = Qjll = =1} — [Zxllll < 3 i <3 i

gk ik i e 2.
(/l /ld+1_”21k Z]k”) (%Z‘ZI—IIEj,k—Zj,kII)

Hence, the bound follows applying Lemma 3(d) with ¢ = 2—22‘21' .

(b). Observe that [| 0]l < [T, 151l = (U4~ Moreover, 1 > A% — |22 27K > L2 ||, -X 4|
by assumption (AS). Thus, using Lemma 3(d) with ¢ = %2‘” yields the result.

(c). We condition on the event that 7, > %Eﬁj,k = %np(C k), whose complement occurs with

probability lower than 2 exp (—zignp(C j,k)) by Lemma 3(b). The quantity [|r;x — 7.l is bounded by
A+ B+ C + D with

1 —C
e Ry g P
B = A—Z £ ,)[ C”‘] 15(x;)

jk i=1
1 —-c

C:=|— {,[ _ ]k] 1;(x)
l’le
1 -C

D= ||— Q[ lk] 1(x)|| -
n]k i=1

Each term of the sum in A has expectation 0 and bound 2(#,)||f||277. Thus, applying the Bernstein
inequality [44, Corollary 7.3.2] we obtain

np(Ca)r”
P{A > 1} <8 eXp( oI B2 2+ 2 ”)

B is bounded by || fllellc;x — Cjxll so that, using 3(c) with ¢ replaced by #/|| f|l-., we get

3 np(C )P
P{B >t} <2exp (—ﬁnp(Cj,k)) + 8 exp (_c6%||f||§<,2‘21'4j92||f||w2‘ft)'

To estimate C we appeal to [7, Theorem 3.1, Remark 4.2]. For X € R", take G(X) := ||[MX]| with
Moo= ["09 75| Then 10,60 < llx = cjull < 62277 Now let X = (511jx(x1), . &ulja(x))T 50

that C = G(X) /1. Since the {;’s are independent, [7, Remark 4.2] applies, and it ylelds P{G(X) >t} <
2exp (35 ). where 02 = XL I0,GIZIGIZ, 1ia(x) < 7346227212113, and thus

np(C}, )2
P{C > t} < 26Xp(—29§T52_2/)
Mo

We are left with D. This , where, by Lemma 3(c),

@% et il ja(x;
llej = Tjull < 62277 with probability higher than 1 — 10exp (~7p(Cjx)). Hence, by the standard
sub-Gaussian tail inequality [46, Proposition 5.10] we have

n i 2
P(D > 1} < 10exp (~Znp(Ca) + eexp (—Cezﬁéfﬁi’*";tz_,-)-
2115 yy

This completes the proof. O
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Lemma 5. Tf € = 0, then [|f7, = 7|l = [y — ¥ul, which is less than

n

1
Z(f(xl) e f jkf(x)dp(x’) 1) +

jkll

Z il _]k(-xl

Each addend in the first term has expectation 0 and bound 2||f||., and therefore we can apply the
standard Bernstein inequality [44, Theorem 1.6.1]. As for the second term, we use the standard sub-
Gaussian tail inequality [46, Proposition 5.10]. This yields the bounds for £ = 0.

For ¢ = 1, we have

| fix(x) = ]/C;k(x)l < —c; )" 271" Quurin — [(x = Cip)” 2_j]T§j,k7},k|
<| [(Cj,k - 0] Qjurjxl +1 [(X -’ 2_j] (Qjuri — Qi)
< lleju =Sl 1l Irgell + 11| =€) 27| N1Qjurix = Qi
< lleju =Sl 1l el + 11 e =20™ 27| 1 (1Qjac = Qadl lriadl + 1 alllrjac = Fisel)
< (A2 lex —Tiell + MBI i = Zyall + A2y~ Tl

where the last inequality holds with high probability thanks to Lemma 4(a)(b). Thus, applying Lemma

3(c)(d) and Lemma 4(c) with ¢ replaced by m, o 1{422/ and 7= dz, , we obtain the desired result. O
Lemma 6. Follows simply by truncation. O
Lemma 7. We start with (a). Defining N = IIW[kII,, we have

P{A€ < n and A€ > (Zamax + 5)77}
P{Aik <7 and A]k = (amax + 2)'7} + P{Agk < (amax + 2)77 and Afk - (2amax * 5)]7}
P“AZ - Afkl 2 (1 + amax)n} + P{lA[ - 2A(k| 2 77}

The first quantity can be bounded by

¢ N3 £ € £ s 4
IAG, = AL < IW = Whlly < U= P+ > e = Flaelh

Ciriw Cik

= Pl JAC0 + > ffp = Faaplle AChori0),

Cir1w Cik

so that

P{IAY = A%l 2 (1 + ame )

<Pl - Pl A Cio 2+ D Bl = sl BCr10) 2 1)

CjH*k’CCj,k

We now condition on the event that [o(C;x) — p(Cjp)l < %p(C %), which entails p(C ;) < %p(C )
and apply Lemma 5 with ¢ < 7/ +/p(C jk). The probability of the complementary event is bounded by
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Lemma 3(b). To get rid of the remaining p(C;,)’s inside the exponentials, we lower bound p(C;;) as
follows. We have

(A% < 4lfI%e(Cip). 4)

Thus, Af.,k > (2a + 5)n implies p(C ) > (22’”;5”)2" Therefore, we obtain that

}’D’]z _
Cooxp (i) (=0
Crdexp (=) (€= D)

c1 max{d*|| /5.4 IIf7, )

P{IA%, = A% > (1 + e} <

where Cy, ¢y depend on a, and Cy, ¢; depend on ayx, 62, 63.
Next we estimate P{Aj’.’k - ZAik > 17} by [21, Theorem 11.2]. Notice that for all x € M, IWﬁk(x)l <
Iflleo. If x ¢ Cji, then W;x(x) = 0, otherwise there is k&’ such that x € Cj,1x C Cjx. In such a case,
IWi(X)| = |fix(x) = fir1e(x)], and the claim follows from Lemma 6. Thus, [21, Theorem 11.2] gives

us
P{A% = 2% > n} s exp (-

cllf ||2 )’
where ¢ is an absolute constant.
Let us turn to (b). We first observe that

ALy < M AJB(C,0). (5)

To see this, note again that V’I\/j,k(x) # 0 only when x € Cj. p C Cji for some k', in which case
[Wik(X)] = |fjx(x) = fir10(x)| and we can apply Lemma 6. Now note that b = 2a,,« + 5. We have

— - bZ 2
P{Aik <7 and Aﬁ,k > bn} < P{Aik <n, A‘) > by and p(C;y) > i }

2011113,
b2n2 . b2n2}
+P C:)) < —— and o(C;,) > ——
{p( ) < g ndPCw 2 s

2 2

||f||2

The first probability can be estimated similarly to how we did for (a). Thanks to Lemma 3(a), the
second probability is bounded by

+ P{p(cjk) < — given A’ > bn}.

b2n2 b2n2 D2
{P(C/k) <ATE and [p(Cjx) = p(Cji)l > A7 } < exp -7k )

for an absolute constant c. Finally, the third probability is zero thanks to (5). O
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