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Abstract

A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup.
A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes,
it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid
outer automorphisms of a linking system at the prime 2 is elementary abelian and that it splits over the subgroup
of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to
the identity on the centric linking system for G, then it is of p’-order modulo the group of inner automorphisms,
provided G has no nontrivial normal p’-subgroups. We present two applications of this last result, one to tame fusion
systems.

1. Introduction

A saturated fusion system F is a category in which the objects are the subgroups of a fixed finite p-
group S and the morphisms are injective group homomorphisms between subgroups, which are subject
to axioms first outlined by Puig [Pui06, AKO11]. When G is a finite group with Sylow p-subgroup
S, there is a saturated fusion system F = Fs(G) in which the morphisms are the G-conjugation maps
between subgroups. One of the important properties of this category is that it keeps precisely the data
required to recover the homotopy type of the Bousfield-Kan p-completion BG?, of the classifying space
of G, as shown in the Martino-Priddy conjecture, proved by Oliver [Oli04, Oli06]. Recovery of BGf,,
or a p-complete space denoted BF when no group G is associated with F, is based on the construction
of a centric linking system £ for F, an extension category of F whose existence and uniqueness up to
rigid isomorphism was first established in general by Chermak [Che13]. From a group theoretic point
of view, centric linking systems or, more generally, the transporter systems of Oliver-Ventura [OV07]
and the localities of Chermak [Che3], provide finer approximations to p-local structure. They abstract
the transporter categories of finite groups and form structures appearing in recent new approaches to
revising the classification of finite simple groups.

We study here in more detail the comparison maps between automorphism groups of finite groups,
linking systems and fusion systems. When L is a centric linking system associated to the fusion sys-
tem F, there are groups of automorphisms Aut(£) and Aut(F) and a map fa: Aut(L) — Aut(F)
given essentially by restriction to the Sylow group S. When £ = L (G) and F = Fs(G)
for some finite group G, there is also a comparison map KG: Nawc)(S) — Aut(L), where
Nau(G)(S) consists of those automorphisms of G that leave S invariant. These induce a pair
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2 George Glauberman and Justin Lynd

of maps

Out(G) =% out(£) 25 Out(F)

on outer automorphism groups. We write Auty(L) for the group of rigid automorphisms of L, namely,
ker(fi). Similarly, Outy (L) is short for ker(u,).

It follows from the exact sequence of [AKOI11, III.5.12] and Chermak’s theorem that . is an
isomorphism if p is odd and is surjective with kernel an abelian 2-group when p = 2. Moreover, the
surjectivity of kg has been studied intensively in articles by Andersen, Oliver, and Ventura [AOV 12]
and by Broto, Mgller, and Oliver [BMO19].

Our first result extends the consequences of unique existence of centric linking systems to show that
the kernel of p . is in fact of exponent at most 2, in general, when p = 2. To make it easier to apply, we
state and prove this in the slightly more general setting of a linking locality (defined just below) and in
three equivalent ways. Set k(p) = 1if p is odd and k(p) = 2 if p = 2. In particular, a group of exponent
k(p) is the trivial group if p is odd and is elementary abelian if p = 2.

Theorem 1.1 (Linking locality version). If (£, A, S) is a linking locality at the prime p, then the group
Outy (L) of rigid outer automorphisms of L is abelian of exponent at most k(p). Moreover, the exact
sequence

1 — Autz(s)(£) — Autg(L) — Outy(L) — 1

splits.

Theorem 1.2 (Linking system version). If L is a linking system at the prime p (in the general sense
of [Hen19]), then the group Outy(L) of rigid outer automorphisms of L is abelian of exponent at most
k(p). Moreover, the exact sequence

1 — Autzs)(£) — Autg(L) — Outy(L) — 1

splits.

Theorem 1.3 (Cohomological version). Let F be a saturated fusion system over the finite p-group S,
let O(FF) be the orbit category of F-centric subgroups and let Zx: O(F°)°P — Ab denote the center
functor. Then lim' Zx is of exponent at most k(p). Moreover, the exact sequence

1 > B(O(F), Z5) > Z'(O(F°), Z5) — lim' 27 — 1

splits.

Here, a linking locality in the sense of [Hen19] (also called a proper locality in [Che15]) is a locality
(L,A,S) such that A contains all subgroups of S that are centric and radical in F = Fg(L), the
fusion system of £, and such that Cy,(p)(O,(N(P))) < Op(N(P)) for each P € A. Similarly, a
linking system is a transporter system £ associated with a saturated fusion system F such that Ob(L)
contains all F-centric radical subgroups and such that Cay, (p)(Op(Autz(P))) < Op(Aut(P)) for
each P € Ob(L). Other definitions of the term ‘linking system’ without further qualification, such as in
[AKO11, Definition II1.4.1], are special cases of this one.

An automorphism of a locality L is inner if it is induced by conjugation by an element of N, (S),
and a similar remark applies to transporter systems. In the case of a linking locality or linking system, a
rigid inner automorphism is conjugation by an element of the center of S. We have denoted the group of
rigid inner automorphisms by Autz s)(£). This helps to explain some of the terminology and notation
in Theorems 1.1 and 1.2. We explain in more detail in Section 2. Terminology used in Theorem 1.3 is
recalled in Section 3.

When p is odd and L is a centric linking system, Theorems 1.1 to 1.3 follow from either of

the alternative proofs of existence and uniqueness of centric linking systems as given in [Olil13] or
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[GL16]. The latter is based in part on the former but removes the dependence of the former on
the classification of finite simple groups (CFSG). The connection between existence and uniqueness
and the higher limits of the center functor Zx over the orbit category O(F°) of F-centric sub-
groups is described by [AKOI11, Proposition II1.5.12]. In particular, this result identifies Out(L)
with the first derived limit limé( F)Z r of the center functor. So when p is odd the theorems fol-
low from [Olil3, Theorem 3.4] or [GL16, Theorem 1.1] and an argument, provided in Section 4,
that uses Chermak’s iterative procedure for extending a given locality to a new locality on a larger
object set.

We shall prove Theorem 1.1 first in the case of a centric linking locality; that is, when A is the
collection of F-centric subgroups. The proof is applicable for all primes p, and so we obtain an
alternative, somewhat simpler proof of the triviality of Outy(L) for p odd, independent of the main
result of [GL16]. We then deduce Theorem 1.2 in the same special case, along with Theorem 1.3.
Afterward, we shall prove in Section 4 that this implies the seemingly more general statements in
Theorems 1.1 and 1.2.

Along the way, we extend to transporter systems a result of Oliver on isomorphisms of (quasicentric)
linking systems (Proposition 2.5), and we interpret Chermak’s work in the appendix of [Chel3] as
an equivalence of groupoids between localities and transporter systems (Theorem 2.11). Besides their
use in deducing Theorem 1.2 from 1.1, one motivation for these extensions is to make clear that
the results of [Olil3, GL16] give existence and uniqueness of centric linking localities up to rigid
isomorphism in the same way as the main theorem of [Chel3]. That this is not clear at first is caused
by an ambiguity in which the notion of ‘isomorphism’ of a transporter system commonly in use does
not restrict to the notion of ‘automorphism’ commonly in use but rather to what should be called
‘rigid automorphism’.

Automorphisms of a finite group that centralise a Sylow subgroup have been studied by Glauberman,
Gross, and others. The main result here can be seen as a generalisation to linking systems of [Gla68,
Theorem 10]. The current work bears the same relationship to [Gla68, Theorem 10] as the proof of
existence and uniqueness of centric linking systems outlined above does to the work of Gross [Gro82]
and to the recent work of the authors with Guralnick and Navarro [GGLN20]. Our proof of Theorem 1.1
is very different from the proof of [Gla68, Theorem 10], however, in part because not all subgroups of
S need be objects.

Recall that for a finite group G with Sylow p-subgroup S and centric linking system £ (G), there is
a comparison homomorphism kg : Out(G) — Out(LG(G)). It is induced essentially by restriction to
p-local structure modulo p’-cores at the level of centric subgroups. In the course of trying to recover
from the above theorems the corresponding results about finite groups, we were led to the following
result, which seems to be of independent interest.

Theorem 1.4. Let p be a prime and G a finite group with Sylow p-subgroup S. If O ,»(G) = 1, then the
kernel of the map kg : Out(G) — Out(L5(G)) is a p’-group.

The proof of Theorem 1.4 relies on the Z;‘,-theorem, namely, the statement that an element x € S
whose only G-conjugate in S is x itself must lie in the center of G modulo O,/ (G). Thus, our proof of
Theorem 1.4 depends on the CFSG if p is odd. (This result and its corollaries in Section 5 for p odd are
the only results in the article that depend on the CFSG.)

When G is simple, the cokernel of xg has been studied extensively in [AOV12], [BMO19]
and elsewhere. In particular, it has now been shown that the fusion system of each finite sim-
ple group G is tame in the sense of [AOV12], namely, there is a possibly different finite group
G’ with Sylow subgroup S such that Fs(G) = Fs(G’) such that the map kg is split sur-
jective. Theorem 1.4 has been shown in several special cases in the context of those works
(cf. [BMO19, Lemma 5.9,Theorem 5.16]).

Theorem 1.4 is proved as Theorem 5.1 in Section 5, and we give two applications of it: We show
that the splitting condition in the definition of a tame fusion system may be removed and we give an
interesting reinterpretation of the first author’s work on the Schreier conjecture [Gla66b].
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Terminology and notation

When G is a group and g € G, we write ¢, for the left-handed conjugation homomorphism x gxg™!
and its restrictions. The image of a subgroup P under c is sometimes written in left-handed exponential
notation 8 P. We write Homg (P, Q) for the set {c, | g € G, #P < Q} of conjugation homomorphisms
between P and Q induced in G. Given a finite group G with Sylow p-subgroup S, the fusion system
Fs(G) is the category with objects the subgroups of S and with morphism sets Homr () (P, Q) :=
Homg(P,Q) = {cg | g € G, 8P < Q}. Our terminology for fusion systems follows [AKO11].
For example, F© denotes the set of F-centric subgroups, F~ denotes the set of F-radical subgroups,
F/ denotes the set of fully F-normalised subgroups and concatenation in the superscript denotes the
intersection of the relevant sets.

2. Transporter systems and localities

Throughout this section, Fis a saturated fusion system over a p-group §, and A is a nonempty collection
of subgroups of S that is closed under F-conjugacy and passing to overgroups. Fix also another triple
F’, 8 and A’ of this type.

2.1. Transporter systems

In the case where F = Fg(G) for some finite group G with Sylow p-subgroup S, the transporter
category 74 (G) of G with object set A is the category with morphisms Mor; (G)(P, Q) = Ng(P, Q) =
{g € G | 8P < Q} where composition is given by multiplication in G. There is an inclusion functor
6: Ta(S) = Ta(G), as well as a functor 7: To(G) — Fs(G), which is the inclusion on objects and
which sends g € Ng(P, Q) to ¢, € Homg (P, Q), conjugation by g. This is the standard example of a
transporter system associated with Fs(G).

Definition 2.1 ([OV07, Definition 3.1]). A transporter system associated with F is a nonempty category
T with object set A € Ob(F), together with structural functors

TaS) S TS F
that satisfy the following axioms:

(A1) A is closed under F-conjugacy, and upon passing to overgroups, ¢ is the identity on objects and
7 is the inclusion on objects.
(A2) For each P,Q € A, the kernel

E(P) :==ker(np,p: Autr(P) — Autzr(P))

acts freely on Mor7(P, Q) by right composition, and 7p ¢ is the orbit map for this action. In
particular, 7p o is surjective. Also, E(Q) acts freely on Mor( P, Q) by left composition. Here,
Aut{(P) denotes Mors(P, P).

(B) Foreach P,Q € A, 6p,o: Ns(P,Q) — Mor(P, Q) is injective, and the composite 7p o 0 dp, o
sends g € Ns(P, Q) to cg € Homx(P, Q).

(C) For each ¢ € Mor{(P, Q) and each g € P, the diagram

P —‘p> 0
5P,P(g)T T5Q.Q(”(<P)(8))
P — (0]

commutes in 7.
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(I) 6s.5(S) is a Sylow p-subgroup of Auts(S).
() Let ¢ € Isof(P,Q), P<P < Sand Q <Q < Sbesuchthat p o 6p p(P) 0 ™! < 50,0(0Q). Then
there is ¢ € Morr(P, Q) such that g 0 6 (1) =65 5(1) © ¢.

From now on, we abbreviate dp_p to dp, mp p to mp and use similar notation when considering
the application of an arbitrary functor on morphism sets. In addition, any future reference to axioms
(A1)-(II) should be interpreted as reference to the axioms given in Definition 2.1. The following lemma
collects some basic properties of morphisms in a transporter system.

Lemma 2.2. Fix a transporter system (T, 8, ) associated with F.

(a) Each morphism in T is both a monomorphism and an epimorphism in the categorical sense.
(b) (Restrictions are unique) Given objects Py < P, Qo < Q and two morphisms ¢o, ¢, making the
diagram

P LA 0
6P(],P(1)T T(SQO,Q(I)

Py ——= Qo
$0, %)

commute, one has o = ;.
(c) (Extensions are unique) Given objects Py < P, Qo < Q and two morphisms ¢, ¢’ making the
diagram

p_9¢ 0

5P0,P(1)T ngo,Q(l)

Po —=> Qo

commute, one has ¢ = ¢'.

Proof. Parts (a) and (b) are contained in [OV07, Lemma 3.2], and part (c) is proved in [Che 3, Lemma
A.5(0)]. O

A morphism of fusion systems F — JF’ means a pair (e, ®) where a: § — S’ is a group homomor-
phism and ®: F — F’ is a functor, which together satisfy a(P) = ®(P) on objects and ®(¢p)oa = @ogp
for each morphism ¢ in F. If @ is an isomorphism, then @ is determined uniquely by a. So an isomor-
phism of fusion systems may be regarded as an isomorphism of the underlying p-groups that ‘preserves
fusion’.

Definition 2.3 (Isomorphisms of transporter systems). Let (7,6, ) and (7, 6’, ') be transporter sys-
tems with object sets A and A’ for the saturated fusion systems F and F, respectively.

1. Leta: 7— T be an equivalence of categories. It is said that
o a is isotypical if a(6p(P)) = 6;([,) (a(P)) for each subgroup P € A and
o « sends inclusions to inclusions if a(6p,o(1)) = 6;(},)’“(@(1) foreach P,Q € A.

2. An isomorphism is an equivalence 7 — 7 that is isotypical and sends inclusions to inclusions. An
automorphism is an isomorphism of a transporter system onto itself.

3. An isomorphism a: 7 — 7T is said to be rigid if S = S” and a5 o 65 = Jg as homomorphisms
S — Auty(S). Here, as before, as means as_s.

4. An automorphism « of Tis inner if there is an element ¢ € Auty(S) such that « is given on objects
by P c,(P) = n(¢)(P) and on morphisms by mapping yy: P — Q to

— -1
coW) = ¢lo.c, 0 oY o (@lp.c, () s
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where, for example, ¢|g. ¢, (0) is the unique morphism from Q to ¢, (Q) in Tsuch that p 069 s(1) =
8c,(0).5(1) 0@, as given by Lemma 2.2(b). We refer to ¢, as conjugation by ¢. Write Autz s) (T") for
the group of rigid inner automorphisms of 7that are conjugation by elements of 65 (Z(S)) < Auty(S).

Denote by Aut(7) := Aut(7,d,n) the group of automorphisms of 7. Denote by T the category of
transporter systems and isomorphisms.

Remark 2.4. An isomorphism of transporter systems is in particular an invertible functor, and so one
sees that Aut(7") is indeed a group. This was shown for linking systems in [AOV 12, Lemma 1.14(a)],
and the same argument applies for an arbitrary transporter system.

We have defined isomorphism here in analogy with the definition of an automorphism of a centric
linking system [AKO11, II1.4.3] but more generally than is usually done. The usual definition of an
isomorphism of transporter systems is a functor @: 7 — 7 that commutes with the structural functors
aod = ¢’ and 1’ o = 7. See, for example, [BLOO3, p.799], [OV07, Proposition 3.11], [AKO11, p.146]
or [Chel3, Definition A.2]. Rather, Definition 2.3 specialises to the definition of an automorphism of a
linking system in [AKO11, Section I11.4.3].

The following proposition extends Proposition 4.11 of [AKO11] in two ways, but the proof follows
the same basic outline. It helps explain that an isomorphism between transporter systems is equivalent to
a triple of functors commuting with the structural functors and that the usual definition of isomorphism
of transporter systems is the same as what we are calling a rigid isomorphism.

Proposition 2.5. Fix transporter systems (T,6,x) and (T',6’,n’) associated to F and F' with object
sets A and A’ that contain F*" and F'“". Given an isomorphism a: T — T in the sense of Definition 2.3,
there is a unique associated isomorphism B: S — S’, a unique functor B.: Ta(S) — Ta(S’) and a
unique isomorphism cg: 1 F — F of fusion systems such that the diagram

TaS) 2 T—">F

i,e* la lcﬁ 2.6)

TS s Es P

commutes and B = (B.)s. Moreover, « is a rigid isomorphism if and only if both B. and cg are the
identity functors.

Proof. Let a: T — T be an isomorphism. Because S is the only object of 7 with the property that
Mor(P, S) # @ for each object P of 7, and the same is true for S’ with respect to 7T, it follows that
a(S) = 8. So as(6s(S)) = 64,(S’) because « is isotypical. By axiom (B) for a transporter system,
the map 65,: §" — 05, (S’) is an isomorphism, so there is a unique map  from S = Aut, (s)(S) to
S’ = Autr,, (s (S") such that

as(0s(s)) = 65 (B(s)) 2.7)

for each s € S. Then 8 = (5')5_,1 o @g o dg is an isomorphism from S to S’. Now @ sends inclusions
to inclusions and so commutes with restrictions. Hence, for each P € A, as a(6p(P)) = ¢/, P) (a(P)),
we have as(ds5(P)) = g, (a(P)), and this shows with (2.7) and injectivity of ¢” that S(P) = a(P) for
each P.

Let B.: Ta(S) — Ta/(S’) be the functor induced by . Namely, 3. sends an object P to B(P), and it

sends a morphism P 5 Q to B(P) &) B(Q). Then §’ o B, = @ o § by construction.

Next, we wish to define a functor cg: F — F’ via a mapping on objects sending P to S(P) and on

o@ofB~!
morphisms sending P LN Q to B(P) % B(Q). This is an isomorphism of fusion systems (the one
corresponding to the isomorphism S from S to §’) with inverse cg-1, if well defined. In order to show
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that the assignment is well defined, we must prove that each S0 ¢ o 87! is a morphism in . This will be
done by showing that cg(¢) = n’(a(¢)) for each ¢ € Morr(P, Q) with 7($) = ¢, thus simultaneously
showing that the right square in (2.6) commutes.

Fix such a lift ¢ of ¢, and let s € P. Consider the following diagrams:

a(p)

P—*>0 a(P) — a(Q) B(P) %> B(Q)
5P(s>l lag(w(s)), a(&p(s))l la(ég(cp(s))), 6’3(P)(B<s))i J/dg(g) B(e(s5)))
P4>Q CV(P)WCY(Q) ﬁ(P)T@).B(Q)

By axiom (C) for 7, the first diagram commutes, and the second is @ applied to the first. As shown
above, B(P) = a(P) and @ o § = §’ o B., so the third diagram is the same as the second. By axiom (C)
for 7" with a(¢) and B(s) in the roles of ¢ and g, the morphism ¢ (Q) (" (a(@))(B(s))) in place of

(B(¢(s))) also makes the third diagram commute, so we have
B (Q)

Ty (B(s)) 0 (@) = 5y ) (' ((8))(B(5))) © ()

as morphisms between B(P) and ﬁ(Q) in 7. Because each morphism in a transporter system is an
epimorphism (Lemma 2.2(a)) and 6 ﬁ( 0) is injective (axiom (B)), it follows that

Ble(s)) = n'(a(@))(B(s)), forseP.

Hence, after replacing s by 87! (s), we see that cg(p) = n’(a(P)) as claimed, and this completes the
proof of existence of the functors 8. and cg.

It remains to prove uniqueness. Observe that uniqueness of 5 would follow from that of .. Suppose
v: Ta(S) — Ta(S’) is a functor such that vy in place of B* makes the left square in (2.6) commute.
Because ¢ and 6’ are the identity on objects by axiom (A1), y agrees with B, on objects. Similarly, they
agree on morphisms, given commutativity of the diagram, because 6’ p ¢ is injective by axiom (B) for
each P,Q € A.Hence,y = B.. Next, suppose in addition that: F — F’ is another functor such that the
right square in (2.6) commutes with 7 in place of ¢g. By axiom (A1), the functors cg and n agree with «
on the objects A. For each morphism ¢ in 7 between subgroups in A, we have (7 (¢)) = cg(n(¢p)), so
by axiom (A2) on the surjectivity of 7 on morphism sets we see that i and cg agree on morphisms in F
between subgroups in A. By assumption F°" C A, the Alperin-Goldschmidt fusion theorem [BLOO3,
Proposition A.10] or [AKO11, 1.3.5] gives equality.

If « is a rigid isomorphism, then by definition § = S’. By commutativity of the left square in (2.6),
dgof =asods =05 SopB =ids as 0y is injective. It was shown above that 3. and cg are uniquely
determined by S, so B, and cg are the identity. Conversely, if B, is the identity functor, then S = S, and
by commutativity of the left square we have as o 5 = 6§ o ids = dg, so a is rigid. O

As in the setting of (quasicentric) linking systems [AOV 12, p.197], one can define a group homo-
morphism relating automorphisms of a transporter system with automorphisms of the associated fusion
system in this more general setting using Proposition 2.5. Let (7,6, ) be a transporter system with
object set A associated with the saturated fusion system F on S. Assume that 7" C A. Define

f: Aut(T) — Aut(F)

to be the map that sends @ € Aut(7") to the automorphism 6;‘ oag o ds of § = Auty; (s)(S). Thus,
f7(a@) is the automorphism f in Proposition 2.5. This is a group homomorphism (using uniqueness of
cp) that maps Autr(S) onto Autx(S) and has kernel Autg(7). It induces a homomorphism

w7 Out(T) — Out(F)
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8 George Glauberman and Justin Lynd

with kernel Outy (7). When 7= 7 (G) for some finite group G with Sylow p-subgroup S, we sometimes
write i for i and ug for ur, provided Tis understood from the context.

2.2. Localities

In his proof of the existence and uniqueness of centric linking systems, Chermak introduced localities
and showed in [Chel3, Appendix] that they are essentially equivalent to transporter systems. The
purpose of this subsection is to explain how Chermak’s results give an equivalence of categories between
transporter systems and localities, with morphisms isomorphisms, while setting up notation.

Let £ be a finite set (we shall consider only finite localities). Write W(L) for the monoid of words
(fu»---» f1) in the elements of £, where the multiplication is concatenation o. A partial group is a
set £ together with a subset D := D(£) € W(L), a multivariable product IT: D — £ defined on
words in D and an inversion map (—=)~': £ — L, subject to certain axioms that may be found in
[Chel3, Definition 2.1]. The product f;, - - - f is defined if (f,, ..., fi) € D, and in this case we set
fo f1 = O(fu, ..., f1). A partial group is a group if and only if D = W(L); that is, all products
are defined. A partial subgroup is a subset Ly of £ with domain Dy € W(Ly) N D, such that the
restriction of the product IT to Dy is the product I, for £y. The subgroups of L are the partial subgroups
Lo with W(Ly) € D(L). A homomorphism of partial groups is a function y: £ — M such that
v*(D(L)) € D(M) and I1(y*(w)) = y(II(w)) for any word w € D(L). Here, y*: W(L) —» W(M) is
the map on words determined by . Partial groups and partial group homomorphisms form a category,
so there is the usual notion of isomorphism in this category. A homomorphism y as above is an
isomorphism if and only if it is a bijective homomorphism satisfying y*(D(£)) = D(M).

There is a natural notion of conjugation in a partial group when defined. Given f € L, write D(f)
for the set of x € £ such that (f,x, f~') € D. The product fxf~' = II(f,x, f~!) is the conjugate of x
by f, sometimes written / x. A usual convention, which we adopt, is that any such expression carries
the tacit assumption that x € D(f). Likewise, for any subset X C £, the expression / X has a similar
meaning, including that X € D(f).

Definition 2.8. Let £ be a finite partial group, let S be a p-subgroup of £ and let A be a collection of
subgroups of S. The triple (L, A, S) is a locality if

(L1a) D(L) is equal to the set of those (fy,,. .., f1) € W(L) such that there is (X, ..., X,) € W(A)
with fiv1X; = X;,; foreach 0 < i < n.
(L1b) If Pe Aand f € Lwith P <D(f)and/ P < S,then Q € A foreach/ P < Q < S.
(L2) S is a maximal member of the poset of p-subgroups of L.

We next set up some notation when working with a locality (£, A, S). A word w = (f,, ..., f1) €
W(L) is in D(L) via Xg if #/iXy € A for each 1 < i < n; compare (Lla). For f € L, denote
by Sy the set of s € S such that /s € S. By [Chel3, Proposition 2.11], Sy € A. In particular, Sy
is a subgroup of £ that plays the role of a Sylow intersection. For an object P € A, the normaliser
Nz(P)={f € L | P = P} and centraliser Cz(P) = {f € £ | fx = x forall x € P} are subgroups
of L.

The fusion system Fs (L) of L is the fusion system on § with morphisms being those group monomor-
phisms between subgroups of S that can be written as compositions of restrictions of the conjugation
homomorphismscy: P — Q,x / x between objects P, Q € A.ltis said that £ is alocality on Fs(L).

Example 2.9 ([Che 13, Example/Lemma 2.10]). Let G be a finite group, let S be a Sylow p-subgroup of
G and let A be a collection of subgroups of S that is closed under Fs(G)-conjugacy and upon passing to
overgroups and that contains all Fg(G)-centric radical subgroups. Let £ be the subset of G consisting
of those g € G such that there exists P € A with 8P < S (so that 8P € A). Let D € W(L) denote the
collection of all words (g, ...,g1) € W(L) such that there is (Xp, ..., X,;) € W(A) with 881X, € A
for each 0 < i < n. Whenever (g, ..., g1) is aword in D, define [1(g,, ..., &1) = &n - - - &1, the product
in G. Then (L, A, S) is a locality on Fs(G), written LA (G).
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Definition 2.10 (Isomorphisms of localities). Let (£, A, S) and (£, A’, §”) be localities.

1. Anisomorphism from (£, A, S) to (£’,A’, S’) is an isomorphism of partial groups 8: £ — L’ such
that B(A) = A’ (hence, B(S) = §’). An automorphism of (£, A, S) is an isomorphism of (£, A, S)
to itself.

2. Anisomorphism g is rigid if S = S’, and g is the identity on S.

3. An automorphism « of L is inner if it is given by conjugation by an element of N (S), namely, there
is f € N (S) such that a(x) = fxf~! for all x € L. (Note that the product fxf~! is always defined
when f € Nz(S5).)

Write Aut(£L) = Aut(L, A, S) for the group of automorphisms of £, Auty(L) for the subgroup of rigid
automorphisms and Autzs)(£) for the subgroup of Auty(L) consisting of automorphisms that are
conjugation by elements in Z(S). Denote by L the category of localities with isomorphisms.

2.3. Equivalence between transporter systems and localities

In [Chel3, Appendix], Chermak goes most of the way toward proving that there is an equivalence
between the category of transporter systems with rigid isomorphisms (in the sense of Definition 2.3)
and the category of localities with rigid isomorphisms. Here, we suggest a mild extension of Chermak’s
results to an equivalence of the slightly larger categories T and L with the same objects. First, we briefly
review how to pass from a locality to a transporter system and vice versa. More details are given in
[Chel3, Appendix A].

2.3.1. From localities to transporter systems
Given a locality (£, A, S), one can make a transporter system (75 (L), §, 7) associated with Fg(£) in
the following way. Let 7 (£) have object set A, and for each P, Q € A take

Morr, (o) (P, Q) = {(f.P.Q) | fe L, TP < Q}.

Composition is given by multiplication in £. The functor ¢ is the identity on objects and sends P 5 Qto
(s, P, Q). The functor x is the inclusion on objects and sends ( f, P, Q) to the conjugation homomorphism
cr:P— 0.

2.3.2. From transporter systems to localities

Conversely, to make a locality given a transporter system (7, 8, ), consider the collection of isomor-
phisms Iso(7) in 7 and the following relation on the set Mor(7 ) of morphisms in 7: the morphism
¢: P — Q is an extension of ¢g: Py — Qy, written ¢g T ¢, if the diagram

p*‘p>Q

5P(),P(1>T TéQO,Q(I)

P07>Q0

commutes in 7. This is a partial order, and the equivalence relation on Iso(7") generated by its restriction
to Iso(7") is denoted =. It is shown in [Che13, Lemma A.8(a)] that each =-class has a unique maximal
member with respect to T. Write [¢] for the equivalence class of ¢, and set (£, A, S) = (Iso(T) /=, A, S),
where, by abuse of notation, S is identified with the set of equivalence classes {[ds(s)] | s € S} of
elements in §5(S) C Auty(S) C Iso(7). The domain D(LA (7)) for the product is the set of all
words (fu,...,f1) € W(LA(T)) such that there exist objects Pg,...,P, € A and isomorphisms
¢i: Pi_1 — P; in Tsuch that ¢; € f; for each i. The product IT: D(LA (7)) — LA (7)) is defined by
O(fys...» f1) = [@no---o@]. The inversion map —': LA (T) — La(T)is givenby [¢]™' = [¢7!]
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10 George Glauberman and Justin Lynd

for each ¢ € Iso(7"). It can be shown that these operations on £ are well defined and that £ (7) is a
locality [Chel3, Lemmas A.7,A.9,A.13].

Recall that T denotes the category of transporter systems with isomorphisms and L denotes the
category of localities with isomorphisms. We write T and L for the categories of transporter systems
and localities with rigid isomorphisms.

Theorem 2.11 (cf. Chermak [Che 13, Appendix]). The categories T and L are equivalent via a functor
that restricts to an equivalence between Ty and L.

Remark 2.12. Strictly speaking, in order for the restriction of the functor T — L (to be constructed in
the proof) to induce an equivalence between Tg and Lo, we must make two canonical identifications
of § with other incarnations of S. It is possible that a more precise statement could be made involving
a category of S-rigid localities, where an S-rigid locality is a locality £ together with an embedding
S — L of partial groups that satisfies natural conditions. But we do not pursue that, because our interest
here is mainly in Corollary 2.13.

Proof of Theorem 2.11. Define functors ®: L — T and A: T — L as follows. On objects, the functors

are as described in Subsections 2.3.1 and 2.3.2. Let y: £ — L’ be an isomorphism between the two
localities (£, A, S) and (L', A’, S’). Define a functor @(y): Ta (L) — Ta(L’) by the rule

P — y(P),
(f, P, Q) = (y(f),y(P),y(Q)).

O(y) is an invertible functor with inverse ®(y~!), it is clearly isotypical, it sends inclusions to inclusions
because y(1) = 1 and hence it is an isomorphism of transporter systems. Observe that if A = A’ (so
§ = §’) and y is a rigid isomorphism, then ©(y)(ds(s)) = (5,5, S) = d¢(s) for each s € S, s0 O(y) is
a rigid isomorphism of transporter systems. It is then clear that ® determines a functor L — T, which
restricts to send Ly — Tp.

Conversely, given an isomorphism a: 7 — T, form the associated localities (£ (7)), A, S) and
(La(T),A’,S") and define a function A(a): La(T) — La/(T') via A(a)([¢]) = [a(e)]’, where
here we write [—]  for equivalence classes in Iso(7"). Because « is invertible, it induces a bijection
A — A’ sending S — S’ and a bijection Iso(7") — Iso(7 ). Because « sends inclusions to inclusions,
it preserves T and =, and hence A(«) is a well-defined bijection. Given that « is a functor, it follows
from the definition of multiplication in £A(7) and [Chel3, Lemma A.7(b)] that A(«a) is a partial
group homomorphism. Then A(«) restricts to a homomorphism from S to S’ (if we identify these with
{[6s(s)] | s € S} and {[d%,(s")] | ' € §”} via 6 and &’, respectively), because « is isotypical. Further,
if a is rigid, then this translates directly to the condition that A(«) is a rigid isomorphism of localities.
Again, A(a!) is the inverse of A(a), and so A(a) is an isomorphism of localities. Thus, A is a functor
that restricts to send Ty — Lg.

Define n: idt — O o A as follows. For any transporter system 7, n7: 7 — O(A(7T)) sends each
object to itself, and it sends a morphism ¢: P — Q in 7 to the triple ([¢o], P, Q), where ¢ is
the unique morphism from P to Qg = 7(¢)(P) in T such that g, o (1) o @9 = ¢. We will show
that 7 is a natural isomorphism of functors. By [Chel3, Lemma A.15], n7is a rigid isomorphism of
transporter systems, provided that we make the identification of S with the group of equivalence classes
{([65(5)].S,S) | s € S} via the canonical isomorphism. Let now a: 7— 7 be any isomorphism of
transporter systems, and consider the naturality diagram

T—"5 O(A(T))
a lﬁ)(/\(a))

T gowe O(A(T)).
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Fix a morphism ¢: P — Q in 7. Then

O(A(@))([¢ol. P, Q) = ([a(po)]. a(P), a(Q))
and

ny(@(@) = ([a(ehl, a(P), a(Q)),

where a(¢)y is the unique morphism from a(P) to Q; = n’'(a(¢))(a(P)) such that a(p) =
30,,a(0) (1) o a(@)y. Note also that a(¢) = 6 (Q,),a(0) (1) © @(pp) as a sends inclusions to inclusions.
Thus, to show that 7 is natural, it suffices by uniqueness of restrictions (Lemma 2.2(b)) to show that
01 = a(Qy). To this end, let B be the isomorphism from S to S” associated with @ in Proposition 2.5.
By Proposition 2.5, @(P) = B(P) for each P € A, and we have

m'(a(@)(a(P)) = cg(n(0)) (B(P)) = B(n(¢)(P)) = a(x(¢)(P)),

as required. This completes the proof that 7 is a natural isomorphism.
Next, given a locality (£, A, S), define {o: £ — (Ao ®)(L) by

Le(f) = [(f.Sr. TSP

We will show that { = ({z): id. — A o © is a natural isomorphism. Let (f;,..., f1) € D(L), and
set f = II(fu, ..., f1). By Definition 2.8(L1a), there are objects Py, ..., P, € A such that P;_; < S
and fiP;_y = P; fori = 1,...,n. Then [(f;, Sk, f"Sﬁ)] = [(f;, Pi-1, P;)] by definition of the equivalence
class [~], and this implies that {7.(fu, ..., f1) = ({c(fu)s- ., {c(f1) € D(A(O(L))). By definition
of the product in A(®(L)), we have

H(g,*c(fn’---,fl)): [(H(fn""7fl)’P07Pn)]:[(f’POaPn)] = [(f’Sf7fo)]:§£(H(fﬂ"fl))’

so { is a partial group homomorphism.

There is an extension of Lemma 3.6 of [Chel3] in which S and S” (and A and A’) need not be equal
and for which Chermak’s proof remains valid. This will be used to show that {, is an isomorphism of
localities. The typical element of A(® (L)) has the form [(f,P,Q)] for f € L, P < Sy and O > TP 1t
is the image of f under {, because {-(f) = [(f,Sf, fo )] = [(f, P, Q)] by the commutative diagram

(f.Sr.Ss)
Sy ————> 7S¢

(I,P,Sf)T T(I,Q»fo)

P >
(f.P.Q) Q

in ®(L), so { is surjective.

Set S = {[(5,5,5)] | s € S} < A(O(L)), and fix s € Sand f € L. Then (f,s, f~') € D(L) via
X € A if and only if

(7% s 7%, 5701 17 X, 77 X)]) € D(A(B(L)))

by definition of the domain of the locality built out of the transporter system ®(L). Moreover, in this
case, fsf~! € S via X € A if and only if

[(Fsr L X, 77701 = 104X, 7 ) o (5,7 X, X) 0 (7, %,7 X)€"

This shows that {(Sf) = S( (

cL
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Let i € ker({z). Then [(h, Sk,"Sk)] = 1ae(c)) = [(1,S,5)]. This means that (h, Sy, "Sy) is a
restriction of (1, S, S); that is, (1,S,,S) = (h, Si,S), and hence 2 = 1. This completes the check of
the hypotheses of the extension of [Chel3, Lemma 3.6], and so . is an isomorphism by that lemma.
Moreover, { is a rigid isomorphism of localities, provided that we make the identification of S with
the group of equivalence classes {[(s, S, S)] | s € S} via the canonical isomorphism.

Finally, it remains to verify naturality of . Given another locality (£’,A’,S’) and isomorphism
v: L — L’ mapping S onto S’, we have for each f € L that

AONLe()) =1 (¥ Sy (IS

and
ey () = [ () Syirys YIS, )1

Because v is an isomorphism mapping S onto S’, y* (D (f)) =D, (y(f)), and hence y(S¢) = Sy (5.
In addition, y(fP) = ¥ )y(P) for each P € A and f € L. This establishes naturality and completes the
proof of the theorem. O

Corollary 2.13. Fix a transporter system (T, n,8) and let Lx(T) be the associated locality. Then the
map

D: Aut(T) — Aut(LA(T))

given by sending an automorphism a € Aut(T) to the map La(T) — La(T), which sends a class
[¢] to [a()], for each ¢ € 1so(T), is an isomorphism of groups. Moreover, ® maps Auty(7T ) onto
Auto(LA(T)).

Proof. This follows directly from Theorem 2.11. O

Remark 2.14. The obstruction theory for the existence and uniqueness of centric linking systems ‘up to
isomorphism’ as given by Broto, Levi, and Oliver [BLOO3, Theorem 3.1] (see also [AKO11, II1.5.11])
holds, of course, with respect to the notion of isomorphism of centric linking systems used there. By
Proposition 2.5 and Corollary 2.13, this definition coincides with the notion of ‘rigid isomorphism’ of
the associated localities. Thus, Theorem 3.4 of [Oli13] and Theorem 1.1 of [GL16] imply that any two
centric linking localities (i.e., A-linking systems with A = F° in the terminology of [Chel3, p.49])
associated to a given saturated fusion system are rigidly isomorphic in the sense of [Chel3].

2.4. Linking systems and linking localities

Theorems 1.1 and 1.2 do not hold for arbitrary localities and transporter systems, as can be seen
by considering an appropriate finite group G of the form O,/ (G) x H, with O,/ (G) supporting an
automorphism of order p? and forming a locality as in the standard Example 2.9.

Definition 2.15. A finite group N is of characteristic p if Cn(O,(N)) < O, (N). A linking locality
is a locality (£, A, S) such that Fg(£) is saturated, Fs(£)" € A and N (P) is of characteristic p for
each P € A. A linking system is a transporter system (7, &, ) associated with a saturated fusion system
F having object set A such that 7" C A and Auty(P) is of characteristic p for each P € A.

The assumption that £ is a linking locality (in Theorem 1.1) or a linking system (in Theorem 1.2) is
necessary when applying [GL16, Lemma 8.2], which says that a rigid automorphism of a finite group
of characteristic p is conjugation by an element of the center of a Sylow p-subgroup.

The definition of linking system appearing in Definition 2.15 was given by Henke [Hen19]. It is
more general than the usual definition in [AKO1 1, Definition I11.4.1], which forces each object to be F-
quasicentric. In Henke’s definition, the objects are forced merely to be a subset of the larger collection
of F-subcentric subgroups of S, namely, the subgroups P of S with the property that O, (Nr(Q)) is

F-centric for each fully F-normalised conjugate Q of P. The term ‘linking locality’ also appears first in

Downloaded from https://www.cambridge.org/core. Univ of Louisiana at Lafayette, on 26 Mar 2021 at 22:10:52, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.17



Forum of Mathemetics, Sigma 13

[Hen19] and refers to the same thing as a ‘proper locality’ in [Chel5]. By [Hen19, Proposition 1], the
equivalence between localities and transporter systems given in Theorem 2.1 1 restricts to an equivalence
between linking localities and linking systems.

Examples of linking localities include localities of finite groups of Lie type in characteristic p, where,
by the Borel-Tits theorem, one may take A to be the set of nonidentity subgroups of a Sylow subgroup.
On the other hand, every finite group G gives rise to a linking locality on the set A of Fg(G)-subcentric
subgroups of a Sylow subgroup S, the main theorem of [Hen19].

3. Rigid outer automorphisms of centric linking systems

In this section, we prove Theorems 1.1 and 1.2 in the case A = F° and prove Theorem 1.3. Throughout,
we fix a saturated fusion system JF over the finite p-group S and a linking locality (£, A, S) on F.

A version of the Alperin-Goldschmidt fusion theorem for linking localities was proved by Chermak
and is needed in the proof of Theorem 1.1. We state a special case of it in a flexible form.

Proposition 3.1. Let C be any conjugation family for F and let g € L. Then there are Q; € CN A and
elements g; € Npo(Q;) suchthat g = g, -+ - g1.

Proof. Recall, by definition of a linking locality (proper locality), that 7° C A. Further, the collection
A(F) defined in [Chel6, Notation 3.3] is a subset of F7°" and coincides with the collection of F-
essential subgroups [AKO11, Definition 1.3.2]. So the assertion is a special case of [Chel6, Theorem
3.5], given that the collection of F-essential subgroups is contained in any conjugation family (cf.
[AKO11, Proposition 1.3.3(b)]). m]

Proposition 3.1 has the immediate consequence that an automorphism that is the identity on N (Q)
for each Q € CN A is the identity automorphism of £. We take the opportunity to prove below a more
general statement that generalises Lemma 5.4 of [GL16] to the setting of linking localities. We refer
to [Cral 1, Definition 7.14] for the definition of a positive characteristic p-functor W, which we call a
conjugacy functor for short. There is a mistake in the proof of [GL16, Lemma 5.4], in which W(Q)
is claimed to be well placed, given that Q is. This seems unlikely to be true. It is true that W(Q) is
conjugate to a well-placed subgroup, and we give a correct argument in the proof of Lemma 3.2.

Lemma 3.2. Let T be an automorphism of L. Fix a conjugacy functor W for F, let C be the associated
conjugation family consisting of those subgroups of S that are well placed with respect to W and set

W={QeCnA|W(Q) =0}

Assume that W(Q) € A and W(W(Q)) = W(Q) whenever Q € A. If T is the identity on N, (Q) for
each Q € W, then 7 is the identity automorphism of L.

Proof. Assume first that W is the identity functor. Then W= C N A. Let 7 € Aut(L), and assume that
7 is the identity on Ny (Q) forall Q e W=CNA.Forg € L, thereare Q; e CNA and g; € Nz(Q;)
such that g = g,, - - - g1 by Proposition 3.1. Then 7(g) = 7(gn) - - - 7(g1) = gn - - - g1 = g by assumption.
Thus, 7 is the identity automorphism.

Next, we prove the result for general W satisfying the hypotheses. By the previous case with the
identity functor in place of W, it suffices to show that 7 is the identity on N, (Q) for each Q € CN A.
Proceed by induction on the index of Q in S. Assume first that Q = S. Because S € C (it is contained in
every conjugation family), W(Q) = W(S) € C N A by assumption on W. Hence, because 7|y, (w (s)) =
idy, (w(s) and Nz(S) < N (W(S)), T is the identity on N-(Q). Fix now Q < S and assume that
7 is the identity on Nz (R) for all R € A with |R| > |Q]. Let g € L with 8Ns(W(Q)) < S and
8W(Q) well-placed by [Cral 1, Lemma 7.23]. We claim that 7 fixes g. Write g = g,, - - - g1 for subgroups
Ri € CNAandg; € Nz(R;) with R; > 8778INg(W(Q)). So [R;| > [Ns(W(Q))| = [Ns(Q)| > |Q|. The
claim now follows from the inductive hypothesis. Because W (Q) is well placed and A is closed under
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L-conjugation, we have SW(Q) € CNA. Now N, (8Q) < N (8W(Q)) by the axioms for a conjugacy
functor. Because 7 is the identity on N (8 W(Q)) by hypothesis, we see that 7 is the identity on N, (3Q).
Finally, because 7(g) = g, 7 is the identity on N, (Q), as desired. O

Proof of Theorem 1.1 in the case A = F°. Recall that k(p) = 1if p is odd, and k(p) = 2 if p = 2. Fix
T € Auty(L). For any finite p-group P, we take the abelian version of the Thompson subgroup J(P),
namely, J(P) is the subgroup generated by the abelian subgroups of P of order d(P), where d(P) is the
maximum of the orders of the abelian subgroups of P.

We proceed in several steps to complete the proof. The main part of the proof consists in showing that
if the automorphism 7 is the identity on Nz (J(S)), then 7%(P) = id . This is carried out in Steps 2 to 6.

Step 1. We first arrange that 7 restricts to the identity automorphism of N, (J(S)). The restriction 7 to
N (J(S)) is an automorphism of N, (J(S)) that is identity on § < N (J(S)). Because L is a linking
locality and J(S) € A = F°, the normaliser N, (J(S)) is of characteristic p. Thus, by [GL16, Lemma
8.2], we may fix z € Z(S) such that 7 is conjugation by z on N~ (J(S)). Then upon replacing 7 by c;' T,
where ¢, : £ — L denotes the rigid inner automorphism that is (everywhere defined) conjugation by z,
we complete the proof of Step 1.

Consider the following ordering on F*:

OQ<;jP < dQ)<d(P) or d(Q)=d(P)and|J(Q)| < |J(P)].

We claim that 7¥(P) is the identity on £. Assume the contrary and, using Lemma 3.2 with W the identity
functor, choose Q maximal under <; with the property that N (Q) is not fixed by 7(P)

Step 2. We show that O may be taken to be well placed with respect to J. Let C be the collection
of subgroups of S that are well placed with respect to the Thompson subgroup functor J. Then C
forms a conjugation family for F by [Crall, Corollary 7.26]. Let g € N (Q) not fixed by 7%(P). By
Proposition 3.1, we may write g as a product of elements g; € Nz (R;) with R; € CN A and where
Q=00=0,,0; =8Q;_1 and R; > (Q;_1,Q;) for each i. Because g is not fixed by k(P some gi
is not fixed by 7%(P). Now because Q is isomorphic to a subgroup of R;, we see that d(Q) < d(R;).
Therefore, equality holds by maximality of Q under <;. Then |J(Q)| < |J(R;)|, so again equality holds
by maximality of Q. Hence, upon replacing Q by R;, we may assume that Q € C.

Step 3. Set H = Nz(Q) and T = Ns(Q). We next show that J(Q) = J(QJ(T)). Because Q € A, H
is of characteristic p. By [GL16, Lemma 8.2], we may fix z € Z(T) such that 7 is conjugation by z
on H. Then 72 is conjugation by z> on H. Because 7¥(P) is not the identity on H, we have that z%(P)
is not centralised by H. Applying [Gla68, Theorem A], we conclude that zX(P) is not centralised by
Ny (J(T)). Now Ny (J(T)) < Ny (QJ(T)) because H = N (Q), so that 75(P) is not the identity on
N, (QJ(T)). Because QJ(T) € F° and d(Q) < d(QJ(T)), we have equality by maximality of Q under
<y.Then J(Q) < J(QJ(T)), and so

J(Q) =J(QJ(T)), (3.3)

again by maximality of Q under <;.

Step 4. Here we show J(T) = J(Q). Because d(Q) < d(T) = d(J(T)) < d(QJ(T)), we have equality
by Step 3. Thus, d(Q) = d(T) and Q < T yield that J(Q) < J(T) < J(QJ(T)), and again we have
equality by choice of Q. This completes the proof of Step 4.

Step 5. We next show that J(Q) is F-centric. Suppose on the contrary that J(Q) is not F-centric.
By Step 2, Q is well placed. By definition of well placed, J(T') is fully F-normalised. Hence, J(Q)
is fully F-normalised by Step 4. Because J(Q) is fully F-normalised and not F-centric, we have
Cs(J(Q)) £ J(Q). Note that Cs(J(Q)) £ Q because J(Q) does contain its centraliser in Q. Hence,

0Cs(J(Q)) > Q, so with R := Noc,(s(0)) (Q), we have

R > Q.
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On the other hand, Step 4 shows that

R =0Ncs1(0)(Q) =0Cr(J(Q)) =QCr (J(T)) =QZ(J(T)) =0Z(J(Q)) = Q.

a contradiction.

Step 6. Lastly, we obtain a contradiction. Among all well-placed, F-centric subgroups maximal under
< whose normaliser in £ is not centralised by 7¥(P), choose Q of minimum order. By Step 4 and the
definition of well placed, J(Q) = J(T) is well placed. By Step 5, J(Q) is centric. Note that 7%(P) is not
the identity on Ny (J(Q)) = H by choice of Q. Because d(Q) = d(J(Q)) and J(J(Q)) = J(Q), we
have that Q = J(Q) by minimality of |Q|. Therefore, by Step 4,

J(Q) =J(T) = J(Ns(Q)) = J(Ns(J(Q)))-

It now follows that Q = J(Q) = J(S) by [GL16, Lemma 8.5(b)]. Because N (J(S)) is centralised by 7
by Step 1, this is a contradiction.

Step 7. We prove the splitting condition. Because Steps 1 to 6 show that Outy(L) = 1 if p is odd,
splitting is trivial in that case. So take p = 2. Let E be the subgroup of Auty(L) consisting of those
automorphisms that restrict to the identity on N (J(S)). Step 1 shows that E maps surjectively onto
Outo (L) via the quotient map Auty(L) — Outy(L), and Steps 1 to 6 show that E is a vector space over
F,. There is therefore a subgroup Ej that is a complement to Cau, s, (c) (N2 (J(S))) in E and that maps
isomorphically onto Outy(L). This proves the assertion. m}

Proof of Theorem 1.2 when L is a centric linking system. This follows directly from Theorem 1.1 in the
centric linking locality case, given Theorem 2.11. O

Remark 3.4. The method of proof of Theorems 1.1 and 1.2 in case A = F© shows the slightly stronger
conclusion: If 7 is an automorphism of a centric linking locality (centric linking system) that is the
identity on N (J(S)) (Autz(J(S)), then 75(P) = id .

‘We next want to prove Theorem 1.3, but first recall certain definitions from [AKO11, Section II1.5].
Let O(FF) be the category with objects the F-centric subgroups and with morphism sets

Moro (7<) (P, Q) = Inn(Q)\ Homz(P, Q),
the set of orbits of Inn(Q) in its left action by composition. The center functor

is the functor that sends a subgroup P to its center Z(P) and sends a morphism [¢]: P — QO to

Mz
the composite Z(Q) — Z(¢(P)) RN Z(P) induced by the restriction of ¢': ¢(P) — P to

Z(¢(P)).
We refer to Subsection IIL.5.1 of [AKOI11] for a description of the bar resolution for functor co-
homology and write d for the coboundary map. Recall that a 0-cochain for Zx sends an object P of

O(F°) to an element in Z(P). A 1-cochain sends a morphism P ﬂ Q in the orbit category to an
element in Z(P). A 1-cochain for Zx is said to be inclusion-normalised if it sends the class of each
inclusion Lg to 1 € Z(P). Write Z! (O(F%), Zx) for the group of inclusion-normalised 1-cocycles and
write B! (O(F°), Z5) € Z'(O(F°), Z5) for the group of inclusion-normalised 1-coboundaries.

By the proof of [AKO11, II.5.12], there is a group homomorphism

o N
A: Z(O(F), Zx) — Aut(L)
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given by sending a 1-cocycle ¢ to the automorphism of £ that is the identity on objects and that sends a
morphism ¢: P — Qin Lto ¢ o 6p(t([¢])). Next, consider the group homomorphisms

cnst: Z(S) — CY°(O(F°), Zx) and  conj: Z(S) — Auty(L),

where cnst sends an element z € Z(S) to the constant 0-cochain u, with value z on each centric
subgroup, and conj sends an element z to the conjugation automorphism c s ;) € Auty(L).

Lemma 3.5. There is an isomorphism of short exact sequences

1 —— BY(O(F°), Z5) —= Z'(O(F°), Z5) —lim' 2 — 1
dun—»u(S)Z(]-')l ,ii /ll (3.6)

| —— 7(8)/2(F) —

Auty(L£) —— Outg(L£) — 1.

Proof. This is essentially contained in the proof of [AKO11, Proposition III.5.12]. There the groups
Aut(£) and Out(L) are denoted Aut{yp(ﬁ) and Outyp(L). The commutative diagram displayed on

[AKO11, p.186] is shown to have exact rows and columns. Thus, A: ZI(O(F),Z]:) — Aut(L)
is injective with image ker(i) = Auto(L). In addition, A induces an injective homomorphism
A: lim' 27 — Out(L) with image ker(u) = Outy(£L), and so A and A are isomorphisms after restricting
to these codomains. Thus, the commutativity of this diagram also gives that the right square in (3.6)
commutes.

Second, from the proof of [AKO11, IT1.5.12], the composite docnst has image B! (O(F°), ZF), where,
for each z € Z(S), the image du; of u, under the coboundary map is inclusion normalised, and A(du) is

conjugation by §5(z) on L. The composite BYO(F), Z5) — ZYO(F°), Z5) 4 Auty (L) is injective.
Thus, the kernel of the composite d o cnst is the same as the kernel of conj. But ker(conj) = Z(F) by
[AOV12, Lemma 1.14]. Therefore, the inverse du +— u(S)Z(F) of the isomorphism Z(S)/Z(F) —
BY(O(F°), Z#) induced by d o cnst makes the left square in (3.6) commute. O

Proof of Theorem 1.3. By Theorem 1.2 in the case A = F*, the sequence 1 — Autz(s) (L) —
Autg(L£) — Outg(L) — 1 is split exact. Because Autz(s)(L) is the image of the conjugation map
Z(S)/Z(F) — Auty(L), it follows from Lemma 3.5 that the sequence 1 — EI(O(F),Z}-) -
ZI(O(F),Z;) — lim'Zr — 1 is also split exact and that lim' Zr = Outo(L) is elementary
abelian. O

4. Extending to larger object sets

In this section, we observe via Chermak descent [Che 13, Theorem 5.15] that the group of rigid automor-
phisms does not change when a centric linking locality is expanded to a larger object set. Recall from
[Hen19] that a subgroup P of S is said to be F-subcentric if for each fully /-normalised F-conjugate O
of P the subgroup O, (N£(Q)) is F-centric. The set of F-subcentric subgroups is denoted F*.

Proposition 4.1. Let L be a linking locality with object set A* and fusion system JF over a p-group S.
Let A C A" be a subset that contains F°" and is closed under F-conjugacy and passing to overgroups.
Assume that L* |y = L. Then restriction induces an isomorphism Autg(L*) — Autg(L) that restricts to
an isomorphism Auty s) (L") — Autzs)(L).

Proof. This follows from Corollary 5.16 of [Chel3], applied in the same way as in [Hen19, Theorem
7.2]. The proof is by induction on |[A* — A|. If A* = A, then £L* = £ and there is nothing to prove. Let
T € A* — A be maximal under inclusion. We claim that Hypothesis 5.3 of [Che13] holds. Because A
and A* are F-invariant and closed under passing to overgroups, we can replace T by an F-conjugate if

necessary and assume that T is fully F-normalised. By induction, we may also assume that A* = AUT7".
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LetT =0 p(N£(T)). Then T < T, and we claim that the inclusion is proper. Assume otherwise. As
an object of a linking locality, T is F-subcentric by [Hen19, Proposition 1(b)]. So by [Hen19, Proposition
3.18], it follows that T € F°".Butthen T € A, which contradicts the choice of T. Thus, T < T , SO TeA
by choice of T.

Let M = N.(T), and set

Ar ={Np(T) |T<PeA}={PeA|T <P<Ng(T)}

where the second equality comes from maximality of T in A* — A. By Lemma 7.1 of [Hen19], M is a
finite group that is a model for N z(T'). In particular, T is normal in M and Ng(T) is a Sylow p-subgroup
of M. So, indeed, taking the identity £ — L as a rigid automorphism, Hypothesis 5.3 of [Che 3] holds.
Recall the locality LA, (M) from Example 2.9, and note that L5, (M) = M in the current situation,
because each normal p-subgroup of the fusion system of M is normal in M [Hen9, Theorem 2.1(b)].
By Corollary 5.16 of [Che13], there is a unique rigid isomorphism £*(idps) — L* that restricts to the
identity on £, where the former is constructed in [Che13, Theorem 5.14] and defined after the proof of
[Chel3, Theorem 5.14]. Identify £*(idy;) and £* via this isomorphism. The identity automorphism is
then the unique rigid automorphism of £* that is the identity on £. This shows that the restriction map
Autg(L*) — Auty(L) is injective.

To see surjectivity of restriction, take an arbitrary rigid isomorphism S of L. Again by [Chel3,
Corollary 5.16], there is a rigid isomorphism g*: L*(8|a) — L* that restricts to 8 on L. Taking now
L*(Bar) in the role of LT, we see that there is also a rigid isomorphism id*: £ = £*(idy) — L7 (Bm)
that is the identity on £. The composition 8+ o id* € Auty(L") restricts to 8 on £, and this shows that
the restriction map is surjective. O

Proof of Theorems 1.1 and 1.2. Let (L, A, S) be an arbitrary linking locality. Now A C F° by Proposi-
tion 1(b) of [Hen19], so by Theorem 7.2 of [Hen19] there is a linking locality (£*, F*, S) that restricts
to £ on A. Because F© C F*, two applications of Proposition 4.1 give an isomorphism of short ex-
act sequences between 1 — Autz(s)(£) — Auty(L) — Outg(L) — 1 and I — Autz(s) (L) —
Autg(L*|7) — Outy(L*|#) — 1. Theorem 1.1 now follows from the proof in the case A = F°. Then
Theorem 1.2 follows from Theorem 1.1 and Theorem 2.11. o

Remark 4.2. Given the results of this section, the stronger statement mentioned in Remark 3.4 applies
verbatim to arbitrary linking localities (linking systems) with object set A containing J(5).

5. Comparing automorphisms of groups and linking systems

One may wonder whether it is possible to recover from Theorem 1.2 the analogous theorems about
groups, namely, [Gla68, Theorem 10] for p = 2 and [GGLN20, Theorem 3.3] for p odd. This is possible,
but the only way we know how to do it goes through an argument similar to existing arguments for
establishing the group case anyway, so our way seems to have little additional value. However, in the
process of trying to construct a proof, we obtained Theorem 5.1, which appears to be new and of
independent interest. It depends for its proof on the Zj,-theorem [Gla66a], [GLS98, Proposition 7.8.2
and Remark 7.8.3] that in a finite group with no normal p’-subgroups, any element that is weakly closed
in a Sylow p-subgroup is central.

First we need to set up some notation. Let p be a prime and let G be a finite group with Sylow p-
subgroup S. We write £ = £(G) and F = Fg(G) for the centric linking system and fusion system of
G. Thus, £ has objects the F-centric subgroups or, equivalently, the p-centric subgroups of G; that is,
the subgroups P of S with Cg(P) = Z(P) x O ,»(Cg (P)). Morphisms are given by

Mor, (P, Q) = NG(P,Q)/0,,(Cs(P)),

where Ng(P,Q) = {g € G | 8P < Q} is the transporter set, where composition is induced by
multiplication in G and where O,/ (Cg(P)) acts on Ng (P, Q) from the right. The structural functor ¢

is the inclusion map, and 7 sends a coset gO ,» (Cg (P)) to conjugation by g.
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By Sylow’s theorem, each outer automorphism of G is represented by an automorphism « €
Nauw(c)(S). Such an automorphism induces an isomorphism from O,/ (Cg(P)) to O, (Cg(a(P)))
and a bijection Ng(P,Q) — Ng(a(P),a(Q)) for each pair of centric subgroups P and Q. It is then
straightforward to check that @ induces an automorphism of £ by restriction in this way. Let

RG: Nauw(c)(S) — Aut(L)

denote the resulting group homomorphism. This map sends Autg () onto {c, | ¥ € Aut.(S)}, and so
there is an induced homomorphism

kG: Out(G) — Out(L).

The composition fig © kG : Nauw(c) (S) — Aut(Fs(G)) is just restriction to S. Here fi¢ is defined just
after Proposition 2.5.

Theorem 5.1. Fix a prime p, a finite group G and a Sylow p-subgroup S of G. Let L be the centric
linking system for G. If O ,,(G) = 1, then ker(kg) is a p’-group.

The proof uses the Z,-theorem only in the semidirect product of G by a p-power automorphism. So
if p = 2 or the composition factors of G are known, then this does not depend on the CFSG.

Proof. Assume O,/(G) = 1. Fix a € Nay(c)(S) with [a] € ker(kg) and recall that fig o kg sends a to
als. Because K maps N () (S) onto Inn(L) = {cy | ¥ € Aut,(S)}, we may adjust a by an element
of Niun(g) (S) and take a € Cau) (S). Then by choice of a, kg (a) € Inn(L) Nker(fg) = Autz(s)(L).
Choose z € Z(S) such that kg(a) = c;. Replacing a by ac_,-1, we may take a € ker(&g). Finally,
replacing a by a p’-power, we may take a of p-power order.

We will show that, if [a] # 1 in Out(G), then a normalises but does not centralise H/O ,»(H) for
some p-local subgroup H = Ng(Q) with Q p-centric in G; that is, with Q € Fs(G)¢. Thus, kg (a)
does not centralise Autz(Q), and hence &G (a) # 1, contrary to our choice of a.

So assume [a] # 1. Let G = G(a) be the semidirect product, and set S= S{a). Then Sis Sylow in
G and (a) < Z(S) In addition, S = § x {a) and Z(S) = Z(S) X (a). Note that if a is weakly closed in
S with respect to G, then by the Z7,-theorem we have a € Z(G) because O, (G) =0,/(G) =1, so that
a =1, contrary to assumption.

So a is not weakly closed in S with respect to G By the Alperin-Goldschmidt fusion theorem in G,
there isa ]-'A(G) centric radical subgroup Q < Sand h € Ng (Q) such that a € Z(S) Z(Q) and

a+hae Z(Q). By [LO02, Proposition A.11(c)],
Q= Q N G is Fs(G)-centric radical. 5.2)

Write 7 = ha* for some integer k and some & € G. Because a* € Q and Q = Q N G, we

have h € NG(Q) < Ng(Q). In addition, a # hq = g, So [a,h] € S. Note that a normalises
Ng(Q), so a normalises O,/ (NG (Q)). If a centralises & modulo O,/ (Ng(Q)), then we would have

[a,h] € O (NG(Q)) N S = 1, a contradiction. Hence, a does not centralise Ng(Q)/0, (NG (Q)).
Together with (5.2), this completes the proof of the proposition. O

A saturated fusion system F over S is said to be tame if F = Fs(G) for some finite group G with
Sylow p-subgroup S such that the map «¢ is split surjective. Theorem 5.1 can be combined with the
following lemma of Broto, Mgller, and Oliver to show that the splitting condition in the definition
of tame is unnecessary. The version we give of this lemma is a little different from the corresponding
statement in [BMO19, Lemma 1.5(b)]: Two occurrences of O ,» (Z(G)) appearing there (in the statement
and proof) have been replaced by O, (G). This change helps to make clearer the step in the proof of
[BMO19, Lemma 1.5(b)] that reduces to the case in which Z(G) is a p-group. The proof of the lemma

is otherwise the same.
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Lemma 5.3. Let G be a finite group, p a prime and S a Sylow p-subgroup of G. Assume that kG is
surjective and ker(kg) is a p’-group. Then there is G > G /O (G) such that k5 is split surjective and
such that .7:5(6) = Fs(G). In particular, Fs(G) is tame, and it is tamely realised by G.

Proposition 5.4. Let F be a saturated fusion system over the p-group S. If F = Fs(G) for some
Jfinite group G such that the map k¢ is surjective, then F is tame. Moreover, there is an extension
G > G/0,(G) of G/Op (G) that tamely realises F.

Proof. Fix such a G, let G = G/O(G) and identify S also with its image in G. Write F = Fs(G),
F= }"_S(G), L= E_E(G) and £ = L§(G). The canonical homomorphism G — G induces isomorphisms
L — Land F — F. Asin the proof of [AOV 12, Lemma 2.19], there is a resulting commutative diagram

Out(G) — Out(G)

ml im

Out(£) —— Out(L)

Because kg is surjective, kg is also surjective, so we may replace G by G and take O p(G) = 1. The
result now follows from Theorem 5.1 and Lemma 5.3. m]

In [Gla66b], the first author showed, for a core-free group G with Sylow 2-subgroup S, that the
group Cau(g)(S) has abelian 2-subgroups and a normal 2-complement. The following proposition
gives further information and a reinterpretation of that situation.

Proposition 5.5. Let G be a finite group with Sylow p-subgroup S, let L be the centric linking system
for G and set A = Cpu(G)(S)/Crn(c) (S). If O/ (G) = 1, then A = O (A) < B where B=1if p is
odd and where B is an elementary abelian 2-group if p = 2. The normal p-complement O, (A) is the
subgroup of Naw () (S)/Nmn(c) (S) consisting of those classes that have a representative that restricts
to the identity on L. In particular, kg is injective upon restriction to any Sylow p-subgroup of Out(G).

Proof. The group A is the kernel of the composite ug o kg, which is induced by restriction to S. By
Theorem 1.2, the kernel of ug is either 1 or an elementary 2-group in the cases p odd or p = 2,
respectively. So ker(kg) = O, (A) by Theorem 5.1. The last statement follows immediately. O
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