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Abstract

Most of existing statistical theories on deep neural
networks have sample complexities cursed by the
data dimension and therefore cannot well explain
the empirical success of deep learning on high-
dimensional data. To bridge this gap, we propose
to exploit low-dimensional geometric structures
of the real world data sets. We establish theoreti-
cal guarantees of convolutional residual networks
(ConvResNet) in terms of function approxima-
tion and statistical estimation for binary classi-
fication. Specifically, given the data lying on a
d-dimensional manifold isometrically embedded
in RD, we prove that if the network architecture
is properly chosen, ConvResNets can (1) approxi-
mate Besov functions on manifolds with arbitrary
accuracy, and (2) learn a classifier by minimiz-
ing the empirical logistic risk, which gives an
excess risk in the order of n� s

2s+2(s_d) , where s
is a smoothness parameter. This implies that the
sample complexity depends on the intrinsic di-
mension d, instead of the data dimension D. Our
results demonstrate that ConvResNets are adap-
tive to low-dimensional structures of data sets.

1. Introduction

Deep learning has achieved significant success in various
practical applications with high-dimensional data set, such
as computer vision (Krizhevsky et al., 2012), natural lan-
guage processing (Graves et al., 2013; Young et al., 2018;
Wu et al., 2016), health care (Miotto et al., 2018; Jiang et al.,
2017) and bioinformatics (Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015).
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The success of deep learning clearly demonstrates the great
power of neural networks in representing complex data.
In the past decades, the representation power of neural
networks has been extensively studied. The most com-
monly studied architecture is the feedforward neural net-
work (FNN), as it has a simple composition form. The rep-
resentation theory of FNNs has been developed with smooth
activation functions (e.g., sigmoid) in Cybenko (1989); Bar-
ron (1993); McCaffrey & Gallant (1994); Hamers & Kohler
(2006); Kohler & Krzyżak (2005); Kohler & Mehnert (2011)
or nonsmooth activations (e.g., ReLU) in Lu et al. (2017);
Yarotsky (2017); Lee et al. (2017); Suzuki (2019). These
works show that if the network architecture is properly cho-
sen, FNNs can approximate uniformly smooth functions
(e.g., Hölder or Sobolev) with arbitrary accuracy.
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(a) Convolution. (b) Skip-layer connection.

Figure 1. Illustration of (a) convolution and (b) skip-layer connec-
tion.

In real-world applications, convolutional neural networks
(CNNs) are more popular than FNNs (LeCun et al., 1989;
Krizhevsky et al., 2012; Sermanet et al., 2013; He et al.,
2016; Chen et al., 2017; Long et al., 2015; Simonyan &
Zisserman, 2014; Girshick, 2015). In a CNN, each layer
consists of several filters (channels) which are convolved
with the input, as demonstrated in Figure 1(a). Due to
such complexity in the CNN architecture, there are lim-
ited works on the representation theory of CNNs (Zhou,
2020b;a; Fang et al., 2020; Petersen & Voigtlaender, 2020).
The constructed CNNs in these works become extremely
wide (in terms of the size of each layer’s output) as the
approximation error goes to 0. In most real-life applica-
tions, the network width does not exceed 2048 (Zagoruyko
& Komodakis, 2016; Zhang et al., 2020).

Convolutional residual networks (ConvResNet) is a special
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CNN architecture with skip-layer connections, as shown in
Figure 1(b). Specifically, in addition to CNNs, ConvRes-
Nets have identity connections between inconsecutive layers.
In many applications, ConvResNets outperform CNNs in
terms of generalization performance and computational ef-
ficiency, and alleviate the vanishing gradient issue. Using
this architecture, He et al. (2016) won the 1st place on the
ImageNet classification task with a 3.57% top 5 error in
2015.

Recently, Oono & Suzuki (2019) develops the only repre-
sentation and statistical estimation theory of ConvResNets.
Oono & Suzuki (2019) proves that if the network architec-
ture is properly set, ConvResNets with a fixed filter size
and a fixed number of channels can universally approxi-
mate Hölder functions with arbitrary accuracy. However,
the sample complexity in Oono & Suzuki (2019) grows ex-
ponentially with respect to the data dimension and therefore
cannot well explain the empirical success of ConvResNets
for high dimensional data. In order to estimate a Cs function
in RD with accuracy ", the sample size required by Oono
& Suzuki (2019) scales as "�

2s+D
s , which is far beyond the

sample size used in practical applications. For example, the
ImageNet data set consists of 1.2 million labeled images of
size 224⇥ 224⇥ 3. According to this theory, to achieve a
0.1 error, the sample size is required to be in the order of
10224⇥224⇥3 which greatly exceeds 1.2 million. Due to the
curse of dimensionality, there is a huge gap between theory
and practice.

We bridge such a gap by taking low-dimensional geometric
structures of data sets into consideration. It is commonly
believed that real world data sets exhibit low-dimensional
structures due to rich local regularities, global symmetries,
or repetitive patterns (Hinton & Salakhutdinov, 2006; Osher
et al., 2017; Tenenbaum et al., 2000). For example, the
ImageNet data set contains many images of the same object
with certain transformations, such as rotation, translation,
projection and skeletonization. As a result, the degree of
freedom of the ImageNet data set is significantly smaller
than the data dimension (Gong et al., 2019).

The function space considered in Oono & Suzuki (2019)
is the Hölder space in which functions are required to be
differentiable everywhere up to certain order. In practice,
the target function may not have high order derivatives.
Function spaces with less restrictive conditions are more
desirable. In this paper, we consider the Besov space Bs

p,q
,

which is more general than the Hölder space. In particular,
the Hölder and Sobolev spaces are special cases of the Besov
space:

W s+↵,1 = H
s,↵

✓ Bs+↵

1,1 ✓ Bs+↵

p,q

for any 0 < p, q  1, s 2 N and ↵ 2 (0, 1]. For practical
applications, it has been demonstrated in image process-
ing that Besov norms can capture important features, such

as edges (Jaffard et al., 2001). Due to the generality of
the Besov space, it is shown in Suzuki & Nitanda (2019)
that kernel ridge estimators have a sub-optimal rate when
estimating Besov functions.

In this paper, we establish theoretical guarantees of Con-
vResNets for the approximation of Besov functions on a
low-dimensional manifold, and a statistical theory on bi-
nary classification. Let M be a d-dimensional compact
Riemannian manifold isometrically embedded in RD. De-
note the Besov space on M as Bs

p,q
(M) for 0 < p, q  1

and 0 < s < 1. Our function approximation theory is
established for Bs

p,q
(M). For binary classification, we are

given n i.i.d. samples {(xi, yi)}ni=1 where xi 2 M and
yi 2 {�1, 1} is the label. The label y follows the Bernoulli-
type distribution

P(y = 1|x) = ⌘(x), P(y = �1|x) = 1� ⌘(x)

for some ⌘ : M ! [0, 1]. Our results (Theorem 1 and 2)
are summarized as follows:

Theorem (informal). Assume s � d/p+ 1.

1. Given " 2 (0, 1), we construct a ConvResNet architec-

ture such that, for any f⇤
2 Bs

p,q
(M), if the weight

parameters of this ConvResNet are properly chosen, it

gives rises to f̄ satisfying

kf̄ � f⇤
kL1  ".

2. Assume ⌘ 2 Bs

p,q
(M). Let f⇤

�
be the minimizer of the

population logistic risk. If the ConvResNet architecture

is properly chosen, minimizing the empirical logistic risk

gives rise to bf�,n with the following excess risk bound

E(E�( bf�,n, f⇤
�
))  Cn� s

2s+2(s_d) log4 n,

where E�( bf�,n, f⇤
�
) denotes the excess logistic risk of

bf�,n against f⇤
�

and C is a constant independent of n.

We remark that the first part of the theorem above requires
the network size to depend on the intrinsic dimension d and
only weakly depend on D. The second part is built upon the
first part and shows a fast convergence rate of the excess risk
in terms of n where the exponent depends on d instead of
D. Our results demonstrate that ConvResNets are adaptive
to low-dimensional structures of data sets.

Related work. Approximation theories of FNNs with
the ReLU activation have been established for Sobolev
(Yarotsky, 2017), Hölder (Schmidt-Hieber, 2017) and Besov
(Suzuki, 2019) spaces. The networks in these works have
certain cardinality constraint, i.e., the number of nonzero
parameters is bounded by certain constant, which requires a
lot of efforts for training.

Approximation theories of CNNs are developed in Zhou
(2020b); Petersen & Voigtlaender (2020); Oono & Suzuki
(2019). Among these works, Zhou (2020b) shows that
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Table 1. Comparison of our approximation theory and existing theoretical results.
Network type Function class Low dim. structure Fixed width Training

Yarotsky (2017) FNN Sobolev 7 7 difficult to train
due to the

cardinality constraint

Suzuki (2019) FNN Besov 7 7
Chen et al. (2019a) FNN Hölder 3 7

Petersen & Voigtlaender (2020) CNN FNN 7 7
Zhou (2020b) CNN Sobolev 7 7 can be trained

without the
cardinality constraint

Oono & Suzuki (2019) ConvResNet Hölder 7 3
Ours ConvResNet Besov 3 3

CNNs can approximate Sobolev functions in W s,2 for
s � D/2 + 2 with an arbitrary accuracy " 2 (0, 1). The
network in Zhou (2020b) has width increasing linearly with
respect to depth and has depth growing in the order of "�2

as " decreases to 0. It is shown in Petersen & Voigtlaender
(2020); Zhou (2020a) that any approximation error achieved
by FNNs can be achieved by CNNs. Combining Zhou
(2020a) and Yarotsky (2017), we can show that CNNs can
approximate W s,1 functions in RD with arbitrary accuracy
". Such CNNs have the number of channels in the order
of "�D/s and a cardinality constraint. The only theory on
ConvResNet can be found in Oono & Suzuki (2019), where
an approximation theory for Hölder functions is proved for
ConvResNets with fixed width.

Statistical theories for binary classification by FNNs are
established with the hinge loss (Ohn & Kim, 2019; Hu et al.,
2020) and the logistic loss (Kim et al., 2018). Among these
works, Hu et al. (2020) uses a parametric model given by
a teacher-student network. The nonparametric results in
Ohn & Kim (2019); Kim et al. (2018) are cursed by the data
dimension, and therefore require a large number of samples
for high-dimensional data.

Binary classification by CNNs has been studied in Kohler
et al. (2020); Kohler & Langer (2020); Nitanda & Suzuki
(2018); Huang et al. (2018). Image binary classification is
studied in Kohler et al. (2020); Kohler & Langer (2020) in
which the probability function is assumed to be in a hierar-
chical max-pooling model class. ResNet type classifiers are
considered in Nitanda & Suzuki (2018); Huang et al. (2018)
while the generalization error is not given explicitly.

Low-dimensional structures of data sets are explored for
neural networks in Chui & Mhaskar (2018); Shaham et al.
(2018); Chen et al. (2019a;b); Schmidt-Hieber (2019);
Nakada & Imaizumi (2019); Cloninger & Klock (2020);
Chen et al. (2020); Montanelli & Yang (2020). These works
show that, if data are near a low-dimensional manifold, the
performance of FNNs depends on the intrinsic dimension
of the manifold and only weakly depends on the data di-
mension. Our work focuses on ConvResNets for practical
applications.

The networks in many aforementioned works have a car-
dinality constraint. From the computational perspective,

training such networks requires substantial efforts (Han
et al., 2016; 2015; Blalock et al., 2020). In comparison, the
ConvResNet in Oono & Suzuki (2019) and this paper does
not require any cardinality constraint. Additionally, our con-
structed network has a fixed filter size and a fixed number
of channels, which is desirable for practical applications.

As a summary, we compare our approximation theory and
existing results in Table 1.

The rest of this paper is organized as follows: In Section
2, we briefly introduce manifolds, Besov functions on man-
ifolds and convolution. Our main results are presented in
Section 3. We give a proof sketch in Section 4 and conclude
this paper in Section 5.

2. Preliminaries

Notations: We use bold lower-case letters to denote vectors,
upper-case letters to denote matrices, calligraphic letters to
denote tensors, sets and manifolds. For any x > 0, we use
dxe to denote the smallest integer that is no less than x and
use bxc to denote the largest integer that is no larger than
x. For any a, b 2 R, we denote a _ b = max(a, b). For
a function f : Rd

! R and a set ⌦ ⇢ Rd, we denote the
restriction of f to ⌦ by f |⌦. We use kfkLp to denote the
Lp norm of f . We denote the Euclidean ball centered at c
with radius ! by B!(c).

2.1. Low-dimensional manifolds

We first introduce some concepts on manifolds. We refer the
readers to Tu (2010); Lee (2006) for details. Throughout this
paper, we let M be a d-dimensional Riemannian manifold
M isometrically embedded in RD with d  D. We first
introduce charts, an atlas and the partition of unity.

Definition 1 (Chart). A chart on M is a pair (U, �) where

U ⇢ M is open and � : U ! Rd, is a homeomorphism

(i.e., bijective, � and ��1
are both continuous).

In a chart (U, �), U is called a coordinate neighborhood and
� is a coordinate system on U . A collection of charts which
covers M is called an atlas of M.

Definition 2 (Ck Atlas). A Ck
atlas for M is a collection

of charts {(U↵, �↵)}↵2A which satisfies
S

↵2A U↵ = M,
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and are pairwise Ck
compatible:

�↵ � ��1
�

: ��(U↵ \ U�) ! �↵(U↵ \ U�) and

�� � ��1
↵

: �↵(U↵ \ U�) ! ��(U↵ \ U�)

are both Ck
for any ↵, � 2 A. An atlas is called finite if it

contains finitely many charts.

Definition 3 (Smooth Manifold). A smooth manifold is a

manifold M together with a C1
atlas.

The Euclidean space, the torus and the unit sphere are ex-
amples of smooth manifolds. Cs functions on a smooth
manifold M are defined as follows:
Definition 4 (Cs functions on M). Let M be a smooth

manifold and f : M ! R be a function on M. We say f
is a Cs

function on M, if for every chart (U, �) on M, the

function f � ��1 : �(U) ! R is a Cs
function.

We next define the C1 partition of unity which is an impor-
tant tool for the study of functions on manifolds.
Definition 5 (Partition of Unity). A C1

partition of unity

on a manifold M is a collection of C1
functions {⇢↵}↵2A

with ⇢↵ : M ! [0, 1] such that for any x 2 M,

1. there is a neighbourhood of x where only a finite number

of the functions in {⇢↵}↵2A are nonzero, and

2.

X

↵2A
⇢↵(x) = 1.

An open cover of a manifold M is called locally finite if
every x 2 M has a neighbourhood which intersects with a
finite number of sets in the cover. The following proposition
shows that a C1 partition of unity for a smooth manifold
always exists (Spivak, 1970, Chapter 2, Theorem 15).
Proposition 1 (Existence of a C1 partition of unity). Let

{U↵}↵2A be a locally finite cover of a smooth manifold

M. There is a C1
partition of unity {⇢↵}1↵=1 such that

supp(⇢↵) ⇢ U↵.

Let {(U↵, �↵)}↵2A be a C1 atlas of M. Proposition 1
guarantees the existence of a partition of unity {⇢↵}↵2A
such that ⇢↵ is supported on U↵.

The reach of M introduced by Federer (Federer, 1959)
is an important quantity defined below. Let d(x,M) =
infy2M kx� yk2 be the distance from x to M.
Definition 6 (Reach (Federer, 1959; Niyogi et al., 2008)).
Define the set

G = {x 2 RD : 9 distinct p,q 2 M such that

d(x,M) = kx� pk2 = kx� qk2}.

The closure of G is called the medial axis of M. The reach

of M is defined as

⌧ = inf
x2M

inf
y2G

kx� yk2.

We illustrate large and small reach in Figure 2.

  

Figure 2. Illustration of manifolds with large and small reach.

2.2. Besov functions on a smooth manifold

We next define Besov function spaces on M, which gener-
alizes more elementary function spaces such as the Sobolev
and Hölder spaces. To define Besov functions, we first
introduce the modulus of smoothness.
Definition 7 (Modulus of Smoothness (DeVore & Lorentz,
1993; Suzuki, 2019)). Let ⌦ ⇢ RD

. For a function f :
RD

! R be in Lp(⌦) for p > 0, the r-th modulus of

smoothness of f is defined by

wr,p(f, t) = sup
khk2t

k�r

h(f)kLp , where

�r

h(f)(x) =(P
r

j=0

�
r

j

�
(�1)r�jf(x+ jh) if x 2 ⌦,x+ rh 2 ⌦,

0 otherwise.

Definition 8 (Besov Space Bs

p,q
(⌦)). For 0 < p, q 

1, s > 0, r = bsc+ 1, define the seminorm | · |Bs
p,q

as

|f |Bs
p,q(⌦) :=

8
><

>:

✓Z 1

0
(t�swr,p(f, t))

q
dt

t

◆ 1
q

if q < 1,

sup
t>0 t

�swr,p(f, t) if q = 1.

The norm of the Besov space Bs

p,q
(⌦) is defined as

kfkBs
p,q(⌦) := kfkLp(⌦) + |f |Bs

p,q(⌦). The Besov space

is Bs

p,q
(⌦) = {f 2 Lp(⌦)|kfkBs

p,q
< 1}.

We next define Bs

p,q
functions on M (Geller & Pesenson,

2011; Triebel, 1983; 1992).
Definition 9 (Bs

p,q
Functions on M). Let M be a compact

smooth manifold of dimension d. Let {(Ui, �i)}
CM
i=1 be a

finite atlas on M and {⇢i}
CM
i=1 be a partition of unity on

M such that supp(⇢i) ⇢ Ui. A function f : M ! R is in

Bs

p,q
(M) if

kfkBs
p,q(M) :=

CMX

i=1

k(f⇢i) � �
�1
i

kBs
p,q(Rd) < 1. (1)

Since ⇢i is supported on Ui, the function (f⇢i) � ��1
i

is
supported on �(Ui). We can extend (f⇢i)��

�1
i

from �(Ui)
to Rd by setting the function to be 0 on Rd

\ �(Ui). The
extended function lies in the Besov space Bs

p,q
(Rd) (Triebel,

1992, Chapter 7).

2.3. Convolution and residual block

In this paper, we consider one-sided stride-one convolution
in our network. Let W = {Wj,k,l} 2 RC

0⇥K⇥C be a filter



Besov Function Approximation and Binary Classification on Manifolds by ConvResNets

where C 0 is the output channel size, K is the filter size and
C is the input channel size. For z 2 RD⇥C , the convolution
of W with z gives y 2 RD⇥C

0
such that

y = W ⇤ z, yi,j =
KX

k=1

CX

l=1

Wj,k,lzi+k�1,l, (2)

where 1  i  D, 1  j  C 0 and we set zi+k�1,l = 0 for
i+ k � 1 > D, as demonstrated in Figure 3(a).

The building blocks of ConvResNets are residual blocks.
For an input x, each residual block computes

x+ F (x)
where F is a subnetwork consisting of convolutional lay-
ers (see more details in Section 3.1). A residual block is
demonstrated in Figure 3(b).

(a) Convolution.

 

(b) A residual block.
Figure 3. (a) Demonstration of W ⇤ z, where the input is z 2
RD⇥C , and the output is W⇤z 2 RD⇥C0

. Here W = {Wj,k,l} 2
RC0⇥K⇥C is a filter where C0 is the output channel size, K is the
filter size and C is the input channel size. Wj,:,: is a D⇥C matrix
for the j-th output channel. (b) Demonstration of a residual block.

3. Theory

In this section, we first introduce the ConvResNet architec-
ture, and then present our main results.

3.1. Convolutional residual neural network

We study the ConvResNet with the rectified linear unit
(ReLU) activation function: ReLU(z) = max(z, 0). The
ConvResNet we consider consists of a padding layer and
several residual blocks followed by a fully connected feed-
forward layer.

We first define the padding layer. Given an input A 2

RD⇥C1 , the network first applies a padding operator P :
RD⇥C1 ! RD⇥C2 for some integer C2 � C1 such that

Z = P (A) =
⇥
A 0 · · · 0

⇤
2 RD⇥C2 .

Then the matrix Z is passed through M residual blocks.

In the m-th block, let Wm = {W
(1)
m , ...,W(Lm)

m } and
Bm = {B(1)

m , ..., B(Lm)
m } be a collection of filters and bi-

ases. The m-th residual block maps a matrix from RD⇥C

to RD⇥C by
ConvWm,Bm + id,

where id is the identity operator and
ConvWm,Bm(Z) = ReLU

⇣
W

(Lm)
m

⇤ · · ·

· · · ⇤ ReLU
⇣
W

(1)
m

⇤ Z +B(1)
m

⌘
· · ·+B(Lm)

m

⌘
, (3)

with ReLU applied entrywise. Denote

Q(x) = (ConvWM ,BM + id) � · · ·

� (ConvW1,B1 + id) � P (x). (4)

For networks only consisting of residual blocks, we define
the network class as

C
Conv(M,L, J,K, ) =

�
Q|Q(x) is in the form of (4) with M residual blocks.

Each block has filter size bounded by K, number of
channels bounded by J, max

m

Lm  L,

max
m,l

kW
(l)
m

k1 _ kB(l)
m
k1  .

 
. (5)

where k·k1 denotes `1 norm of a vector, and for a tensor
W , kWk1 = maxj,k,l |Wj,k,l|.

Based on the network Q in (4), a ConvResNet has an addi-
tional fully connected layer and can be expressed as

f(x) = WQ(x) + b (6)

where W and b are the weight matrix and the bias in the
fully connected layer. The class of ConvResNets is defined
as

C(M,L, J,K, 1, 2, R) =
�
f |f(x) = WQ(x) + b with Q 2 C

Conv(M,L, J,K, 1),

kWk1 _ |b|  2, kfkL1  R
 
. (7)

Sometimes we do not have restriction on the output, we
omit the parameter R and denote the network class by
C(M,L, J,K, 1, 2).

3.2. Approximation theory

Our approximation theory is based on the following assump-
tions of M and the object function f⇤ : M ! R.

Assumption 1. M is a d-dimensional compact smooth Rie-

mannian manifold isometrically embedded in RD
. There is

a constant B such that for any x 2 M, kxk1  B.

Assumption 2. The reach of M is ⌧ > 0.

Assumption 3. Let 0 < p, q  1, d/p + 1  s < 1.

Assume f⇤
2 Bs

p,q
(M) and kf⇤

kBs
p,q(M)  c0 for a con-

stant c0 > 0. Additionally, we assume kf⇤
kL1  R for a

constant R > 0.

Assumption 3 implies that f⇤ is Lipschitz continuous
(Triebel, 1983, Section 2.7.1 Remark 2 and Section 3.3.1).

Our first result is the following universal approximation
error of ConvResNets for Besov functions on M.

Theorem 1. Assume Assumption 1-3. For any " 2 (0, 1)
and positive integer K 2 [2, D], there is a ConvRes-

Net architecture C(M,L, J,K, 1, 2) such that, for any
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Input
FC

Output 

Cardinal B-spline approximation

id id
Residual block

Pad

Residual block

Chart determination

Figure 4. The ConvResNet in Theorem 1 contains a padding layer,
M residual blocks, and a fully connected (FC) layer.

f⇤
2 Bs

p,q
(M), if the weight parameters of this ConvRes-

Net are properly chosen, the network yields a function

f̄ 2 C(M,L, J,K, 1, 2) satisfying

kf̄ � f⇤
kL1  ". (8)

Such a network architecture has

M = O
⇣
"�d/s

⌘
, L = O(log(1/") +D + logD),

J = O(D), 1 = O(1), log 2 = O(log2(1/")). (9)

The constant hidden in O(·) depend on d, s,
2d

sp�d
, p, q,c0, ⌧

and the surface area of M.

The architecture of the ConvResNet in Theorem 1 is illus-
trated in Figure 4. It has the following properties:

• The network has a fixed filter size and a fixed number of
channels.

• There is no cardinality constraint.
• The network size depends on the intrinsic dimension d,

and only weakly depends on D.

Theorem 1 can be compared with Suzuki (2019) on the
approximation theory for Besov functions in RD by FNNs
as follows: (1) To universally approximate Besov func-
tions in RD with " error, the FNN constructed in Suzuki
(2019) requires O (log(1/")) depth, O

�
"�D/s

�
width and

O
�
"�D/s log(1/")

�
nonzero parameters. By exploiting the

manifold model, our network size depends on the intrinsic
dimension d and weakly depends on D. (2) The ConvRes-
Net in Theorem 1 does not require any cardinality constraint,
while such a constraint is needed in Suzuki (2019).

3.3. Statistical theory

We next consider binary classification on M. For any x 2

M, denote its label by y 2 {�1, 1}. The label y follows
the following Bernoulli-type distribution

P(y = 1|x) = ⌘(x), P(y = �1|x) = 1� ⌘(x) (10)
for some ⌘ : M ! [0, 1].

We assume the following data model:
Assumption 4. We are given i.i.d. sample {(xi, yi)}ni=1,

where xi 2 M, and the yi’s are sampled according to (10).

In binary classification, a classifier f predicts the label of x
as sign(f(x)). To learn the optimal classifier, we consider

the logistic loss �(z) = log(1+exp(�z)). The logistic risk
E�(f) of a classifier f is defined as

E�(f) = E(�(yf(x))). (11)
The minimizer of E�(f) is denoted by f⇤

�
, which satisfies

f⇤
�
(x) = log

⌘(x)

1� ⌘(x)
. (12)

For any classifier f , we define its logistic excess risk as
E�(f, f

⇤
�
) = E�(f)� E�(f

⇤
�
). (13)

In this paper, we consider ConvResNets with the following
architecture:
C
(n) =

�
f |f = ḡ2 � h̄ � ḡ1 � ⌘̄ where

⌘̄ 2 C
Conv (M1, L1, J1,K, 1) , ḡ1 2 C

Conv (1, 4, 8, 1, 2) ,

h̄ 2 C
Conv (M2, L2, J2, 1, 1) , ḡ2 2 C (1, 3, 8, 1, 3, 1, R)

 

(14)
where M1,M2, L, J,K, 1, 2, 3 are some parameters to
be determined.

The empirical classifier is learned by minimizing the empir-
ical logistic risk:

bf�,n = argmin
f2C(n)

1

n

nX

i=1

�(yif(xi)). (15)

We establish an upper bound on the excess risk of bf�,n:
Theorem 2. Assume Assumption 1, 2 and 4. Assume 0 <
p, q  1, 0 < s < 1, s � d/p+1 and ⌘ 2 Bs

p,q
(M) with

k⌘kBs
p,q

 c0 for some constant c0. For any 2  K  D,

we set

M1 = O
⇣
n

2d
s+2(s_d)

⌘
, M2 = O

⇣
n

2s
s+2(s_d)

⌘
,

L1 = O(log(1/") +D + logD), L2 = O(log(1/")),

J1 = O(D), J2 = O(1), 1 = O(1),

log 2 = O(log2 n), 3 = O(log n), R = O(log n)

for C
(n)

. Then

E(E�( bf�,n, f⇤
�
))  Cn� s

2s+2(s_d) log4 n (16)
for some constant C. Here C is linear in D logD and

additionally depends on d, s, 2d
sp�d

, p, q, c0, ⌧ and the sur-

face area of M. The constant hidden in O(·) depends on

d, s, 2d
sp�d

, p, q, c0, ⌧ and the surface area of M.

Theorem 2 shows that a properly designed ConvResNet
gives rise to an empirical classifier, of which the excess risk
converges at a fast rate with an exponent depending on the
intrinsic dimension d, instead of D.

Theorem 2 is proved in Appendix A. Each building block
of C(n) is constructed for the following purpose:

• ḡ1 � ⌘̄ is designed to approximate a truncated ⌘ on M,
which is realized by Theorem 1.

• ḡ2 � h̄ is designed to approximate a truncated univariate
function log z

1�z
.
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Figure 5. An atlas given by covering M using Euclidean balls.

4. Proof of Theorem 1

We provide a proof sketch of Theorem 1 in this section.
More technical details are deferred to Appendix C.

We prove Theorem 1 in the following four steps:

1. Decompose f⇤ =
P

i
fi as a sum of locally supported

functions according to the manifold structure.
2. Locally approximate each fi using cardinal B-splines.
3. Implement the cardinal B-splines using CNNs.
4. Implement the sum of all CNNs by a ConvResNet for

approximating f⇤.

Step 1: Decomposition of f⇤
.

• Construct an atlas on M. Since the manifold M is
compact, we can cover M by a finite collection of open
balls B!(ci) for i = 1, . . . , CM, where ci is the center
of the ball and ! is the radius to be chosen later. Ac-
cordingly, the manifold is partitioned as M =

S
i
Ui with

Ui = B!(ci)
T

M. We choose ! < ⌧/2 such that Ui is
diffeomorphic to an open subset of Rd (Niyogi et al., 2008,
Lemma 5.4). The total number of partitions is then bounded
by CM 

l
SA(M)

!d Td

m
, where SA(M) is the surface area

of M and Td is the average number of Ui’s that contain a
given point on M (Conway et al., 1987, Chapter 2 Equation
(1)).

On each partition, we define a projection-based transforma-
tion �i as

�i(x) = aiV
>
i
(x� ci) + bi,

where the scaling factor ai 2 R and the shifting vector
bi 2 Rd ensure �i(Ui) ⇢ [0, 1]d, and the column vectors
of Vi 2 RD⇥d form an orthonormal basis of the tangent
space Tci(M). The atlas on M is the collection (Ui, �i)
for i = 1, . . . ,M. See Figure 5 for a graphical illustration
of the atlas.

• Decompose f⇤
according to the atlas. We decompose

f⇤ as

f⇤ =
CMX

i=1

fi with fi = f⇢i, (17)

where {⇢i}
CM
i=1 is a C1 partition of unity with supp(�i) ⇢

Ui. The existence of such a {⇢i}CM
i=1 is guaranteed by Propo-

sition 1. As a result, each fi is supported on a subset of Ui,
and therefore, we can rewrite (17) as

f⇤ =
CMX

i=1

(fi � �
�1
i

) � �i ⇥ 1Ui with fi = f⇢i, (18)

where 1Ui is the indicator function of Ui. Since �i is a
bijection between Ui and �i(Ui), fi � ��1

i
is supported on

�i(Ui) ⇢ [0, 1]d. We extend fi � �
�1
i

on [0, 1]d\�i(Ui) by
0. The extended function is in Bs

p,q
([0, 1]d) (see Lemma 4

in Appendix C.1). This allows us to use cardinal B-splines
to locally approximate each fi � �

�1
i

as detailed in Step 2.

Step 2: Local cardinal B-spline approximation. We ap-
proximate fi � �

�1
i

using cardinal B-splines efi as

fi � �
�1
i

⇡ efi ⌘
NX

j=1

efi,j with efi,j = ↵(i)
k,jM

d

k,j,m, (19)

where ↵(i)
k,j 2 R is a coefficient and Md

k,j,m : [0, 1]d ! R
denotes a cardinal B-spline with indecies k,m 2 N+, j 2
Rd. Here k is a scaling factor, j is a shifting vector, m is the
degree of the B-spline and d is the dimension (see a formal
definition in Appendix C.2).

Since s � d/p + 1 (by Assumption 3), setting r =
+1,m = dse + 1 in Lemma 5 (see Appendix C.3) and
applying Lemma 4 gives

��� efi � fi � �
�1
i

���
L1

 Cc0N
�s/d (20)

for some constant C depending on s, p, q and d.

Combining (18) and (19), we approximate f⇤ by

ef⇤
⌘

CMX

i=1

efi � �i ⇥ 1Ui =
CMX

i=1

NX

j=1

efi,j � �i ⇥ 1Ui . (21)

Such an approximation has error

k ef⇤
� f⇤

kL1  CCMc0N
�s/d.

Step 3: Implement local approximations in Step 2 by

CNNs. In Step 2, (21) gives a natural approximation of
f⇤. In the sequel, we aim to implement all ingredients
of efi,j � �i ⇥ 1Ui using CNNs. In particular, we show
that CNNs can implement the cardinal B-spline efi,j , the
linear projection �i, the indicator function 1Ui , and the
multiplication operation.

• Implement 1Ui by CNNs. Recall our construction of
Ui in Step 1. For any x 2 M, we have 1Ui(x) = 1 if
d2
i
(x) = kx� cik

2
2  !2; otherwise 1Ui(x) = 0.

To implement 1Ui , we rewrite it as the composition of a uni-
variate indicator function 1[0,!2] and the distance function
d2
i
:

1Ui(x) = 1[0,!2] � d
2
i
(x) for x 2 M. (22)

We show that CNNs can efficiently implement both 1[0,!2]

and d2
i
. Specifically, given ✓ 2 (0, 1) and � � 8DB2✓,

there exist CNNs that yield functions e1� and ed2
i

satisfying

ked2
i
� d2

i
kL1  4B2D✓ (23)
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and

e1� � ed2
i
(x) =

8
><

>:

1, if x 2 Ui, d2i (x)  !2
��,

0, if x /2 Ui,

between 0 and 1, otherwise.
(24)

We also characterize the network sizes for realizing e1� and
ed2
i
: The network for e1� has O(log(!2/�)) layers, 2 chan-

nels and all weight parameters bounded by max(2, |!2
�

4B2D✓|); the network for ed2
i

has O(log(1/✓) + D) lay-
ers, 6D channels and all weight parameters bounded by
4B2. More technical details are provided in Lemma 9 in
Appendix C.6.

• Implement efi,j � �i by CNNs. Since �i is a linear pro-
jection, it can be realized by a single-layer perceptron. By
Lemma 8 (see Appendix C.5), this single-layer perceptron
can be realized by a CNN, denoted by �CNN

i
.

For efi,j , Proposition 3 (see Appendix C.8) shows that for
any � 2 (0, 1) and 2  K  d, there exists a CNN efCNN

i,j
2

F
CNN(L, J,K, , ) with

L = O

✓
log

1

�

◆
, J = O(1),  = O

⇣
��(log 2)( 2d

sp�d+
c1
d )
⌘

such that when setting N = C1��d/s, we have
���

NX

j=1

efCNN
i,j

� fi � �
�1
i

���
L1(�i(Ui))

 �, (25)

where C1 is a constant depending on s, p, q and d. The
constant hidden in O(·) depends on d, s, 2d

sp�d
, p, q, c0. The

CNN class FCNN is defined in Appendix B.

• Implement the multiplication ⇥ by a CNN. According
to Lemma 7 (see Appendix C.4) and Lemma 8, for any ⌘ 2

(0, 1), the multiplication operation ⇥ can be approximated
by a CNN e⇥ with L1 error ⌘:

ka⇥ b� e⇥(a, b)kL1  ⌘. (26)

Such a CNN has O (log 1/⌘) layers, 6 channels. All param-
eters are bounded by max(2c20, 1).

Step 4: Implement ef⇤
by a ConvResNet. We assemble

all CNN approximations in Step 3 together and show that
the whole approximation can be realized by a ConvResNet.

• Assemble all ingredients together. Assembling all CNN
approximations together gives an approximation of efi,j �
�i ⇥ 1Ui as

f̊i,j ⌘ e⇥
⇣
efCNN
i,j

� �CNN
i

, e1� � ed2
i

⌘
. (27)

After substituting (27) into (21), we approximate the target
function f⇤ by

f̊ ⌘

CMX

i=1

NX

j=1

f̊i,j . (28)

The approximation error of f̊ is analyzed in Lemma 12 (see
Appendix C.9). According to Lemma 12, the approximation
error can be bounded as follows:

kf̊ � f⇤
kL1 

CMX

i=1

(Ai,1 +Ai,2 +Ai,3) with

Ai,1 =
NX

j=1

���e⇥( efCNN
i,j

� �CNN
i

, e1� � ed2
i
)�

( efCNN
i,j

� �CNN
i

)⇥ (e1� � ed2
i
)
���
L1

 N⌘,

Ai,2 =
���
⇣ NX

j=1

⇣
efCNN
i,j

� �CNN
i

⌘⌘
⇥ (e1� � ed2

i
)�

fi ⇥ (e1� � ed2
i
)
���
L1

 �,

Ai,3 = kfi ⇥ (e1� � ed2
i
)� fi ⇥ 1UikL1 

c(⇡ + 1)

!(1� !/⌧)
�,

where �, ⌘,� and ✓ are defined in (25), (26), (24) and (23),
respectively. For any " 2 (0, 1), with properly chosen
�, ⌘,� and ✓ as in (53) in Lemma 12, one has

kf̊ � f⇤
kL1  ". (29)

With these choices, the network size of each CNN is quanti-
fied in Appendix C.10.

• Realize f̊ by a ConvResNet. Lemma 17 (see Ap-
pendix C.15) shows that for every f̊i,j , there exists
f̄CNN
i,j

2 F
CNN(L, J,K, 1, 2) with L = O(log 1/"+D+

logD), J = O(D), 1 = O(1), log 2 = O
�
log2 1/"

�

such that f̄CNN
i,j

(x) = f̊i,j(x) for any x 2 M. As a result,
the function f̊ in (28) can be expressed as a sum of CNNs:

f̊ = f̄CNN
⌘

CMX

i=1

NX

j=1

f̄CNN
i,j

, (30)

where N is chosen of O
�
"�d/s

�
(see Proposition 3 and

Lemma 12). Lemma 18 (see Appendix C.16) shows that
f̄CNN can be realized by f̄ 2 C(M,L, J, 1, 2) with

M = O
⇣
"�d/s

⌘
, L = O(log(1/") +D + logD),

J = O(D), 1 = O(1), log 2 = O
�
log2(1/")

�
.

5. Conclusion

Our results show that ConvResNets are adaptive to low-
dimensional geometric structures of data sets. Specifically,
we establish a universal approximation theory of ConvRes-
Nets for Besov functions on a d-dimensional manifold M.
Our network size depends on the intrinsic dimension d and
only weakly depends on D. We also establish a statistical
theory of ConvResNets for binary classification when the
given data are located on M. The classifier is learned by
minimizing the empirical logistic loss. We prove that if the



Besov Function Approximation and Binary Classification on Manifolds by ConvResNets

ConvResNet architecture is properly chosen, the excess risk
of the learned classifier decays at a fast rate depending on
the intrinsic dimension of the manifold.

Our ConvResNet has many practical properties: it has a
fixed filter size and a fixed number of channels. Moreover,
it does not require any cardinality constraint, which is bene-
ficial to training.

Our analysis can be extended to multinomial logistic regres-
sion for multi-class classification. In this case, the network
will output a vector where each component represents the
likelihood of an input belonging to certain class. By assum-
ing that each likelihood function is in the Besov space, we
can apply our analysis to approximate each function by a
ConvResNet.
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Dũng, D. Optimal adaptive sampling recovery. Advances in

Computational Mathematics, 34(1):1–41, 2011.

Fang, Z., Feng, H., Huang, S., and Zhou, D.-X. Theory of
deep convolutional neural networks II: Spherical analysis.
Neural Networks, 131:154–162, 2020.

Federer, H. Curvature measures. Transactions of the Ameri-

can Mathematical Society, 93(3):418–491, 1959.

Geer, S. A. and van de Geer, S. Empirical Processes in

M-estimation, volume 6. Cambridge University press,
2000.

Geller, D. and Pesenson, I. Z. Band-limited localized parse-
val frames and Besov spaces on compact homogeneous
manifolds. Journal of Geometric Analysis, 21(2):334–
371, 2011.

Girshick, R. Fast R-CNN. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 1440–
1448, 2015.

Gong, S., Boddeti, V. N., and Jain, A. K. On the intrinsic
dimensionality of image representations. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 3987–3996, 2019.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE

International Conference on Acoustics, Speech and Sig-

nal Processing, pp. 6645–6649. IEEE, 2013.

Hamers, M. and Kohler, M. Nonasymptotic bounds on the
L2 error of neural network regression estimates. Annals

of the Institute of Statistical Mathematics, 58(1):131–151,
2006.



Besov Function Approximation and Binary Classification on Manifolds by ConvResNets

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
arXiv preprint arXiv:1506.02626, 2015.

Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S.,
Elsen, E., Vajda, P., Paluri, M., Tran, J., et al. Dsd: Dense-
sparse-dense training for deep neural networks. arXiv

preprint arXiv:1607.04381, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. Science, 313
(5786):504–507, 2006.

Hu, T., Shang, Z., and Cheng, G. Sharp rate of convergence
for deep neural network classifiers under the teacher-
student setting. arXiv preprint arXiv:2001.06892, 2020.

Huang, F., Ash, J., Langford, J., and Schapire, R. Learning
deep resnet blocks sequentially using boosting theory.
In International Conference on Machine Learning, pp.
2058–2067, 2018.

Jaffard, S., Meyer, Y., and Ryan, R. D. Wavelets: tools for

science and technology. SIAM, 2001.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang,
Y., Dong, Q., Shen, H., and Wang, Y. Artificial intelli-
gence in healthcare: past, present and future. Stroke and

vascular neurology, 2(4):230–243, 2017.

Kim, Y., Ohn, I., and Kim, D. Fast convergence rates of
deep neural networks for classification. arXiv preprint

arXiv:1812.03599, 2018.
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Classics. Birkhäuser Basel, 1983.

Triebel, H. Theory of function spaces II. Monographs in
Mathematics. Birkhäuser Basel, 1992.
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