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Abstract

Most of existing statistical theories on deep neural
networks have sample complexities cursed by the
data dimension and therefore cannot well explain
the empirical success of deep learning on high-
dimensional data. To bridge this gap, we propose
to exploit low-dimensional geometric structures
of the real world data sets. We establish theoreti-
cal guarantees of convolutional residual networks
(ConvResNet) in terms of function approxima-
tion and statistical estimation for binary classi-
fication. Specifically, given the data lying on a
d-dimensional manifold isometrically embedded
in RP, we prove that if the network architecture
is properly chosen, ConvResNets can (1) approxi-
mate Besov functions on manifolds with arbitrary
accuracy, and (2) learn a classifier by minimiz-
ing the empirical logistic risk, which gives an
excess risk in the order of n_m, where s
is a smoothness parameter. This implies that the
sample complexity depends on the intrinsic di-
mension d, instead of the data dimension D. Our
results demonstrate that ConvResNets are adap-
tive to low-dimensional structures of data sets.

1. Introduction

Deep learning has achieved significant success in various
practical applications with high-dimensional data set, such
as computer vision (Krizhevsky et al., 2012), natural lan-
guage processing (Graves et al., 2013; Young et al., 2018;
Wau et al., 2016), health care (Miotto et al., 2018; Jiang et al.,
2017) and bioinformatics (Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015).
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The success of deep learning clearly demonstrates the great
power of neural networks in representing complex data.
In the past decades, the representation power of neural
networks has been extensively studied. The most com-
monly studied architecture is the feedforward neural net-
work (FNN), as it has a simple composition form. The rep-
resentation theory of FNNs has been developed with smooth
activation functions (e.g., sigmoid) in Cybenko (1989); Bar-
ron (1993); McCaffrey & Gallant (1994); Hamers & Kohler
(2006); Kohler & Krzyzak (2005); Kohler & Mehnert (2011)
or nonsmooth activations (e.g., ReLU) in Lu et al. (2017);
Yarotsky (2017); Lee et al. (2017); Suzuki (2019). These
works show that if the network architecture is properly cho-
sen, FNNs can approximate uniformly smooth functions
(e.g., Holder or Sobolev) with arbitrary accuracy.

Filter

(a) Convolution. (b) Skip-layer connection.

Figure 1. Illustration of (a) convolution and (b) skip-layer connec-
tion.

In real-world applications, convolutional neural networks
(CNNss) are more popular than FNNs (LeCun et al., 1989;
Krizhevsky et al., 2012; Sermanet et al., 2013; He et al.,
2016; Chen et al., 2017; Long et al., 2015; Simonyan &
Zisserman, 2014; Girshick, 2015). In a CNN, each layer
consists of several filters (channels) which are convolved
with the input, as demonstrated in Figure 1(a). Due to
such complexity in the CNN architecture, there are lim-
ited works on the representation theory of CNNs (Zhou,
2020b;a; Fang et al., 2020; Petersen & Voigtlaender, 2020).
The constructed CNNs in these works become extremely
wide (in terms of the size of each layer’s output) as the
approximation error goes to 0. In most real-life applica-
tions, the network width does not exceed 2048 (Zagoruyko
& Komodakis, 2016; Zhang et al., 2020).

Convolutional residual networks (ConvResNet) is a special
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CNN architecture with skip-layer connections, as shown in
Figure 1(b). Specifically, in addition to CNNs, ConvRes-
Nets have identity connections between inconsecutive layers.
In many applications, ConvResNets outperform CNNs in
terms of generalization performance and computational ef-
ficiency, and alleviate the vanishing gradient issue. Using
this architecture, He et al. (2016) won the 1st place on the
ImageNet classification task with a 3.57% top 5 error in
2015.

Recently, Oono & Suzuki (2019) develops the only repre-
sentation and statistical estimation theory of ConvResNets.
Oono & Suzuki (2019) proves that if the network architec-
ture is properly set, ConvResNets with a fixed filter size
and a fixed number of channels can universally approxi-
mate Holder functions with arbitrary accuracy. However,
the sample complexity in Oono & Suzuki (2019) grows ex-
ponentially with respect to the data dimension and therefore
cannot well explain the empirical success of ConvResNets
for high dimensional data. In order to estimate a C'® function
in R? with accuracy ¢, the sample size required by Oono
& Suzuki (2019) scales as a_g, which is far beyond the
sample size used in practical applications. For example, the
ImageNet data set consists of 1.2 million labeled images of
size 224 x 224 x 3. According to this theory, to achieve a
0.1 error, the sample size is required to be in the order of
10%24x224x3 which greatly exceeds 1.2 million. Due to the
curse of dimensionality, there is a huge gap between theory
and practice.

We bridge such a gap by taking low-dimensional geometric
structures of data sets into consideration. It is commonly
believed that real world data sets exhibit low-dimensional
structures due to rich local regularities, global symmetries,
or repetitive patterns (Hinton & Salakhutdinov, 2006; Osher
et al., 2017; Tenenbaum et al., 2000). For example, the
ImageNet data set contains many images of the same object
with certain transformations, such as rotation, translation,
projection and skeletonization. As a result, the degree of
freedom of the ImageNet data set is significantly smaller
than the data dimension (Gong et al., 2019).

The function space considered in Oono & Suzuki (2019)
is the Holder space in which functions are required to be
differentiable everywhere up to certain order. In practice,
the target function may not have high order derivatives.
Function spaces with less restrictive conditions are more
desirable. In this paper, we consider the Besov space B, .
which is more general than the Holder space. In particular,
the Holder and Sobolev spaces are special cases of the Besov
space:

s+a,00 __ s, s+ta s+
w =H g B < Bpaq

00,00 —
forany 0 < p,q < 0o,s € Nand « € (0, 1]. For practical
applications, it has been demonstrated in image process-
ing that Besov norms can capture important features, such

as edges (Jaffard et al., 2001). Due to the generality of
the Besov space, it is shown in Suzuki & Nitanda (2019)
that kernel ridge estimators have a sub-optimal rate when
estimating Besov functions.

In this paper, we establish theoretical guarantees of Con-
vResNets for the approximation of Besov functions on a
low-dimensional manifold, and a statistical theory on bi-
nary classification. Let M be a d-dimensional compact
Riemannian manifold isometrically embedded in R”. De-
note the Besov space on M as B, (M) for 0 < p,q < o0
and 0 < s < oo. Our function approximation theory is
established for B;, ,(M). For binary classification, we are
given n i.i.d. samples {(x;,y;)}" , where x; € M and
y; € {—1, 1} is the label. The label y follows the Bernoulli-
type distribution

P(y = 1x) = n(x), P(y = —1|x) = 1 —n(x)

for some 1 : M — [0,1]. Our results (Theorem 1 and 2)
are summarized as follows:

Theorem (informal). Assume s > d/p + 1.

1. Given e € (0,1), we construct a ConvResNet architec-
ture such that, for any f* € By (M), if the weight
parameters of this ConvResNet are properly chosen, it
gives rises to f satisfying

If = o= <e.

2. Assume n € B, (M). Let f} be the minimizer of the
population logistic risk. If the ConvResNet architecture
is properly chosen, minimizing the empirical logistic risk
gives rise to fg n, with the following excess risk bound

E(&ﬁ(ﬁm,f;)) < On~ =06 loghn,

where 5¢(}:ﬁ,n, f3) denotes the excess logistic risk of

fon against f3 and C'is a constant independent of n.

We remark that the first part of the theorem above requires
the network size to depend on the intrinsic dimension d and
only weakly depend on D. The second part is built upon the
first part and shows a fast convergence rate of the excess risk
in terms of n where the exponent depends on d instead of
D. Our results demonstrate that ConvResNets are adaptive
to low-dimensional structures of data sets.

Related work. Approximation theories of FNNs with
the ReLLU activation have been established for Sobolev
(Yarotsky, 2017), Holder (Schmidt-Hieber, 2017) and Besov
(Suzuki, 2019) spaces. The networks in these works have
certain cardinality constraint, i.e., the number of nonzero
parameters is bounded by certain constant, which requires a
lot of efforts for training.

Approximation theories of CNNs are developed in Zhou
(2020b); Petersen & Voigtlaender (2020); Oono & Suzuki
(2019). Among these works, Zhou (2020b) shows that
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Table 1. Comparison of our approximation theory and existing theoretical results.

Network type  Function class  Low dim. structure  Fixed width Training
Yarotsky (2017) FNN Sobolev X X . .
Suzuki (2019) FNN Besov X X dlfgﬁ?:;‘i;;am
Chen et al. (2019a) FNN Holder v X dinalit traint
Petersen & Voigtlaender (2020) CNN FNN X X cardinality constrain
Zhou (2020b) CNN Sobolev X X can be trained
Oono & Suzuki (2019) ConvResNet Holder X v without the
Ours ConvResNet Besov v v cardinality constraint

CNNs can approximate Sobolev functions in W*?2 for
s > D/2 + 2 with an arbitrary accuracy ¢ € (0,1). The
network in Zhou (2020b) has width increasing linearly with
respect to depth and has depth growing in the order of £ =2
as € decreases to 0. It is shown in Petersen & Voigtlaender
(2020); Zhou (2020a) that any approximation error achieved
by FNNs can be achieved by CNNs. Combining Zhou
(2020a) and Yarotsky (2017), we can show that CNNs can
approximate W * > functions in R” with arbitrary accuracy
€. Such CNNs have the number of channels in the order
of e~P/5 and a cardinality constraint. The only theory on
ConvResNet can be found in Oono & Suzuki (2019), where
an approximation theory for Holder functions is proved for
ConvResNets with fixed width.

Statistical theories for binary classification by FNNs are
established with the hinge loss (Ohn & Kim, 2019; Hu et al.,
2020) and the logistic loss (Kim et al., 2018). Among these
works, Hu et al. (2020) uses a parametric model given by
a teacher-student network. The nonparametric results in
Ohn & Kim (2019); Kim et al. (2018) are cursed by the data
dimension, and therefore require a large number of samples
for high-dimensional data.

Binary classification by CNNs has been studied in Kohler
et al. (2020); Kohler & Langer (2020); Nitanda & Suzuki
(2018); Huang et al. (2018). Image binary classification is
studied in Kohler et al. (2020); Kohler & Langer (2020) in
which the probability function is assumed to be in a hierar-
chical max-pooling model class. ResNet type classifiers are
considered in Nitanda & Suzuki (2018); Huang et al. (2018)
while the generalization error is not given explicitly.

Low-dimensional structures of data sets are explored for
neural networks in Chui & Mhaskar (2018); Shaham et al.
(2018); Chen et al. (2019a;b); Schmidt-Hieber (2019);
Nakada & Imaizumi (2019); Cloninger & Klock (2020);
Chen et al. (2020); Montanelli & Yang (2020). These works
show that, if data are near a low-dimensional manifold, the
performance of FNNs depends on the intrinsic dimension
of the manifold and only weakly depends on the data di-
mension. Our work focuses on ConvResNets for practical
applications.

The networks in many aforementioned works have a car-
dinality constraint. From the computational perspective,

training such networks requires substantial efforts (Han
et al., 2016; 2015; Blalock et al., 2020). In comparison, the
ConvResNet in Oono & Suzuki (2019) and this paper does
not require any cardinality constraint. Additionally, our con-
structed network has a fixed filter size and a fixed number
of channels, which is desirable for practical applications.

As a summary, we compare our approximation theory and
existing results in Table 1.

The rest of this paper is organized as follows: In Section
2, we briefly introduce manifolds, Besov functions on man-
ifolds and convolution. Our main results are presented in
Section 3. We give a proof sketch in Section 4 and conclude
this paper in Section 5.

2. Preliminaries

Notations: We use bold lower-case letters to denote vectors,
upper-case letters to denote matrices, calligraphic letters to
denote tensors, sets and manifolds. For any z > 0, we use
[2] to denote the smallest integer that is no less than z and
use | x| to denote the largest integer that is no larger than
x. For any a,b € R, we denote a V b = max(a,b). For
a function f : R — R and a set Q C R?, we denote the
restriction of f to Q by f|o. We use || f||» to denote the
LP norm of f. We denote the Euclidean ball centered at ¢
with radius w by B,,(c).

2.1. Low-dimensional manifolds

We first introduce some concepts on manifolds. We refer the
readers to Tu (2010); Lee (2006) for details. Throughout this
paper, we let M be a d-dimensional Riemannian manifold
M isometrically embedded in R? with d < D. We first
introduce charts, an atlas and the partition of unity.

Definition 1 (Chart). A chart on M is a pair (U, ¢) where
U C Misopenand ¢ : U — R?, is a homeomorphism
(i.e., bijective, ¢ and ¢~ are both continuous).

In a chart (U, ¢), U is called a coordinate neighborhood and
¢ is a coordinate system on U. A collection of charts which
covers M is called an atlas of M.

Definition 2 (C* Atlas). A C* atlas for M is a collection
of charts {(Ua, ¢a) }aca which satisfies | ), 4 Ua = M,
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and are pairwise C* compatible:
$a 0 @5 0p(Ua NUs) = ¢o(Ua NUs)  and

$5 005"+ 6a(UaNUs) = ¢(Ua NUp)
are both C* for any o, 8 € A. An atlas is called finite if it
contains finitely many charts.

Definition 3 (Smooth Manifold). A smooth manifold is a
manifold M together with a C* atlas.

The Euclidean space, the torus and the unit sphere are ex-
amples of smooth manifolds. C* functions on a smooth
manifold M are defined as follows:

Definition 4 (C*® functions on M). Let M be a smooth
manifold and f : M — R be a function on M. We say f
is a C*® function on M, if for every chart (U, ¢) on M, the
function f o ¢~ : ¢(U) — Ris a C* function.

We next define the C'*° partition of unity which is an impor-
tant tool for the study of functions on manifolds.
Definition 5 (Partition of Unity). A C'°° partition of unity
on a manifold M is a collection of C™ functions {pa }ac A
with po : M — [0, 1] such that for any x € M,

1. there is a neighbourhood of x where only a finite number
of the functions in {ps } ac.A are nonzero, and

2. Z pa(x) =1

acA

An open cover of a manifold M is called locally finite if
every x € M has a neighbourhood which intersects with a
finite number of sets in the cover. The following proposition
shows that a C°° partition of unity for a smooth manifold
always exists (Spivak, 1970, Chapter 2, Theorem 15).

Proposition 1 (Existence of a C'*° partition of unity). Let
{Ua }aea be a locally finite cover of a smooth manifold
M. There is a C* partition of unity {p,}52_, such that
supp(pa) C Us.

Let {(Ua, ¢a)}aca be a C* atlas of M. Proposition 1
guarantees the existence of a partition of unity {pa faca
such that p,, is supported on Ul,.

The reach of M introduced by Federer (Federer, 1959)
is an important quantity defined below. Let d(x, M) =
infye am ||x — y||2 be the distance from x to M.

Definition 6 (Reach (Federer, 1959; Niyogi et al., 2008)).
Define the set

G = {x € RP : I distinct p,q € M such that
d(x, M) =[x —pll2 =[x — g2}

The closure of G is called the medial axis of M. The reach
of M is defined as

= inf inf ||x — yla.
7= inf ylrelGllX yl2

We illustrate large and small reach in Figure 2.

1 ] ,\I
Y

Slow Change: Large T Rapid Change: Small 7

Figure 2. Illustration of manifolds with large and small reach.

2.2. Besov functions on a smooth manifold

We next define Besov function spaces on M, which gener-
alizes more elementary function spaces such as the Sobolev
and Holder spaces. To define Besov functions, we first
introduce the modulus of smoothness.

Definition 7 (Modulus of Smoothness (DeVore & Lorentz,
1993; Suzuki, 2019)). Let Q C RP. For a function f :
RP — R be in LP(QY) for p > 0, the r-th modulus of
smoothness of f is defined by

wrp(fit) = Sup AR lzr, where
t

[h|2<
AL () (x) =
> =0 (;)(_1)7'_jf(x +jh) fxeQ,x+rhe,
0 otherwise.

Definition 8 (Besov Space B, (). For 0 < p,q <
00,8 > 0,7 = |s] + 1, define the seminorm | - |B§ , as

o A\
I L § R B L
SUP;sot *wyp(f, 1) if g = oo.
The norm of the Besov space B (S2) is defined as
1flBs @ = Iflle) + |flBs (@) The Besov space
is By ,() ={f € L*(Q)|fl5;,, < oo}

|f

We next define B, , functions on M (Geller & Pesenson,
2011; Triebel, 1983; 1992).

Definition 9 (B, , Functions on M). Let M be a compact
smooth manifold of dimension d. Let {(U;, ¢;)}S be a
finite atlas on M and {p;}S*4 be a partition of unity on
M such that supp(p;) C U;. A function f : M — Risin
By (M) if

Cm
s o) = > (fpi) 0 67 M lps ey < o0. (1)

i=1

11

Since p; is supported on Uj;, the function (fp;) o ¢; *

;1S
supported on ¢(U;). We can extend (fp;) o ¢; ' from ¢(U;)
to R? by setting the function to be 0 on R? \ ¢(U;). The
extended function lies in the Besov space By ,(R?) (Triebel,

1992, Chapter 7).

2.3. Convolution and residual block

In this paper, we consider one-sided stride-one convolution
in our network. Let W = {W, 1., } € R *K*C be a filter
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where C’ is the output channel size, K is the filter size and
C is the input channel size. For z € RP*C the convolution
of W with z gives y € RP*¢" such that

K C
y=Wxz, ;= Z ij,k,lZiJrkfl,la )

k=1 1=1
where 1 < i< D,1 <j <(C’andwe set z;+;,_1,; = 0 for
i+ k—1> D, as demonstrated in Figure 3(a).

The building blocks of ConvResNets are residual blocks.
For an input x, each residual block computes

x + F(x)
where F' is a subnetwork consisting of convolutional lay-
ers (see more details in Section 3.1). A residual block is
demonstrated in Figure 3(b).

j-th column S
A —
D Wz } D F (Ix)
;f'c,—’ ‘x+i7'(x)‘

(b) A residual block.
Figure 3. (a) Demonstration of W * z, where the input is z €

RP*C and the output is Wz € RP*" Here W = {W; 1.} €
RC’XKXC

(a) Convolution.

is a filter where C” is the output channel size, K is the
filter size and C is the input channel size. W; . . is a D x C' matrix
for the j-th output channel. (b) Demonstration of a residual block.

3. Theory

In this section, we first introduce the ConvResNet architec-
ture, and then present our main results.

3.1. Convolutional residual neural network

We study the ConvResNet with the rectified linear unit
(ReLU) activation function: ReLU(z) = max(z,0). The
ConvResNet we consider consists of a padding layer and
several residual blocks followed by a fully connected feed-
forward layer.

We first define the padding layer. Given an input A €

RP*C1 | the network first applies a padding operator P :

RP*C1 5 RPXC: for some integer Cp > C such that
Z=PA)=[A 0 0] € RP*C,

Then the matrix Z is passed through M residual blocks.

In the m-th block, let W,, = {W, ..., W)Y and
By = {Bﬁ), - By(,f’")} be a collection of filters and bi-

ases. The m-th residual block maps a matrix from R?>*¢

to RP*C by .
Convyy,, 5, +id,

where id is the identity operator and

Convy,, 5, (Z) = ReLU (Wf,fm> oo

m

-+ % ReLU (wgp *Z+B£P) ~-~+B£fm))7 @)

with ReLU applied entrywise. Denote
Q(x) = (Convyy,, B, +id)o---
o (Convy, B, +id) o P(x). 4)

For networks only consisting of residual blocks, we define
the network class as

Co"™(M, L, J, K, k) =
{Q|Q(x) is in the form of (4) with M residual blocks.

Each block has filter size bounded by K, number of
channels bounded by J, max L,, < L,

max [W0l|e V Bl < .}, )
where ||-|| , denotes £>° norm of a vector, and for a tensor
W, W”oo = max; k.1 |Wj,k,l|-

Based on the network () in (4), a ConvResNet has an addi-
tional fully connected layer and can be expressed as

f(x)=WQ(x)+b (6)

where W and b are the weight matrix and the bias in the
fully connected layer. The class of ConvResNets is defined
as

C(M3L7 JvKa 517521R) =
{f1f(x) = WQ(x) + bwith Q € C°°™(M, L, J, K, k1),
[Wlloo V |b] < Ko, || fllL < R}. (7)

Sometimes we do not have restriction on the output, we
omit the parameter IR and denote the network class by
C(Ma La Ja K, K1, ’{2)'

3.2. Approximation theory

Our approximation theory is based on the following assump-
tions of M and the object function f* : M — R.

Assumption 1. M is a d-dimensional compact smooth Rie-
mannian manifold isometrically embedded in RP. There is
a constant B such that for any x € M, ||x||s < B.

Assumption 2. The reach of M is 7 > 0.
Assumption 3. Let 0 < p,qg < 0o, d/p+1 < s < 0.
Assume f* € By (M) and || f*||ps (m) < co for a con-

stant ¢o > 0. Additionally, we assume || f*||L~ < R fora
constant R > 0.

Assumption 3 implies that f* is Lipschitz continuous
(Triebel, 1983, Section 2.7.1 Remark 2 and Section 3.3.1).

Our first result is the following universal approximation
error of ConvResNets for Besov functions on M.

Theorem 1. Assume Assumption 1-3. For any € € (0,1)
and positive integer K € [2,D), there is a ConvRes-
Net architecture C(M, L, J, K, k1, k2) such that, for any
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Residual block

put Residual block o Output
| id id \ ‘ L
x P I = ) f EP f(x)
_— Taod; Iaodg, \
Chart|determination
’f 1,1 °%i F cpv © PO

Cardinal B-spline approximation

Figure 4. The ConvResNet in Theorem 1 contains a padding layer,
M residual blocks, and a fully connected (FC) layer.

[* € By (M), if the weight parameters of this ConvRes-
Net are properly chosen, the network yields a function
feC(M,L,J K, ki, ke) satisfying

If = frllz= <e. (®)
Such a network architecture has
M=0 <€_d/s) , L =0(log(1/e) + D + log D),
J=0(D), k1 = O(1), log ko = O(log*(1/¢)).  (9)

The constant hidden in O(-) depend on d, s, %, P, q,Co, T
and the surface area of M.

The architecture of the ConvResNet in Theorem 1 is illus-
trated in Figure 4. It has the following properties:

e The network has a fixed filter size and a fixed number of
channels.

e There is no cardinality constraint.

o The network size depends on the intrinsic dimension d,
and only weakly depends on D.

Theorem 1 can be compared with Suzuki (2019) on the
approximation theory for Besov functions in R” by FNNs
as follows: (1) To universally approximate Besov func-
tions in R? with ¢ error, the FNN constructed in Suzuki
(2019) requires O (log(1/¢)) depth, O (¢~P/¢) width and
O (P /5 1og(1/ £)) nonzero parameters. By exploiting the
manifold model, our network size depends on the intrinsic
dimension d and weakly depends on D. (2) The ConvRes-
Net in Theorem 1 does not require any cardinality constraint,
while such a constraint is needed in Suzuki (2019).

3.3. Statistical theory

We next consider binary classification on M. For any x €
M, denote its label by y € {—1,1}. The label y follows
the following Bernoulli-type distribution

Py = 1x) = n(x), Ply = —1|x) = 1 —n(x)
for some 7 : M — [0, 1].

(10)

We assume the following data model:
Assumption 4. We are given i.i.d. sample {(x;,vi)}" 1,
where x; € M, and the y;’s are sampled according to (10).

In binary classification, a classifier f predicts the label of x
as sign(f(x)). To learn the optimal classifier, we consider

the logistic loss ¢(z) = log(1+exp(—=z)). The logistic risk
E4(f) of a classifier f is defined as

Es(f) = E(o(yf(x)))- (11)
The minimizer of £, (f) is denoted by f7, which satisfies

f5(x) = log li(:;()x)

For any classifier f, we define its logistic excess risk as
Es(f, 15) = Eo(f) = E4(15)- (13)

In this paper, we consider ConvResNets with the following
architecture:

cm = {f|f:ggoi_zogloﬁwhere

ne clonv (Ml,Ll,Jl,K, /ﬁ) ,01 € clonv (1,4,87 1,,‘@2),

i_l € CCOHV (M27L27J25 lvlil) 7§2 € C(15378717K’37 1aR) }
(14)

where My, Ms, L, J, K, k1, ko, kK3 are some parameters to
be determined.

12)

The empirical classifier is learned by minimizing the empir-
ical logistic risk:

J?¢,n = argmin 1 Z o(yi f(xi))-
i=1

fecm M iT

5)

We establish an upper bound on the excess risk of ﬁ,n

Theorem 2. Assume Assumption 1, 2 and 4. Assume 0 <
p,q<00,0<s<00,5>d/pt+landn € B, (M) with
|\77||3qu < ¢q for some constant cq. For any 2 < K < D,
we set

M1:O<n%>, MgzO(ﬂHﬁ%ﬁVd)),

Ly = O(log(1/e) + D +1log D), Ly = O(log(1/e)),

J1=0(D), J; =0(1), k1 = 0(1),

log ke = O(log® n), k3 = O(logn), R = O(logn)
for C(™). Then

E(Es(fon: 13)) < On” 70 log'n (16)

for some constant C. Here C' is linear in Dlog D and
additionally depends on d, s, S;—fd,p, q,co, T and the sur-

face area of M. The constant hidden in O(-) depends on
d, s, %ﬁd,p, q, co, T and the surface area of M.

Theorem 2 shows that a properly designed ConvResNet
gives rise to an empirical classifier, of which the excess risk
converges at a fast rate with an exponent depending on the
intrinsic dimension d, instead of D.

Theorem 2 is proved in Appendix A. Each building block
of C(") is constructed for the following purpose:

e g1 o7 is designed to approximate a truncated 1 on M,
which is realized by Theorem 1.
® g5 o his designed to approximate a truncated univariate

function log +=.




Besov Function Approximation and Binary Classification on Manifolds by ConvResNets

C; 3
—

Figure 5. An atlas given by covering M using Euclidean balls.

4. Proof of Theorem 1

We provide a proof sketch of Theorem 1 in this section.
More technical details are deferred to Appendix C.

We prove Theorem 1 in the following four steps:

1. Decompose f* = ). f; as a sum of locally supported
functions according to the manifold structure.

2. Locally approximate each f; using cardinal B-splines.

3. Implement the cardinal B-splines using CNNs.

4. Implement the sum of all CNNs by a ConvResNet for
approximating f*.

Step 1: Decomposition of f*.

e Construct an atlas on M. Since the manifold M is
compact, we can cover M by a finite collection of open
balls B, (c;) for i = 1,...,Cx, where c; is the center
of the ball and w is the radius to be chosen later. Ac-
cordingly, the manifold is partitioned as M = J, U; with
U; = B,(c;) (M. We choose w < 7/2 such that U; is
diffeomorphic to an open subset of R? (Niyogi et al., 2008,
Lemma 5.4). The total number of partitions is then bounded

by Cpy < [SAL%M)TJ , where SA (M) is the surface area
of M and T} is the average number of U;’s that contain a

given point on M (Conway et al., 1987, Chapter 2 Equation
().

On each partition, we define a projection-based transforma-
tion ¢; as

¢i(x) = a;V;" (x — ¢;) + by,
where the scaling factor a; € R and the shifting vector
b; € R ensure ¢;(U;) C [0,1]%, and the column vectors
of V; € RP*? form an orthonormal basis of the tangent
space Tc,(M). The atlas on M is the collection (U;, ¢;)
fori=1,..., M. See Figure 5 for a graphical illustration
of the atlas.

e Decompose f* according to the atlas. We decompose

f*as
Cm
f* :Zfi with  fi = fp;,

=1

a7

where {p; }$ is a C° partition of unity with supp(¢;) C
U;. The existence of such a { pz}ZC:"f is guaranteed by Propo-
sition 1. As a result, each f; is supported on a subset of Uj,
and therefore, we can rewrite (17) as
Cm
[r= Z(fi o¢; ) og x Iy, with f; = fp;, (18)

i=1

where 1y, is the indicator function of U;. Since ¢; is a
bijection between U; and ¢;(U;), f; o ¢; ! is supported on
¢i(Us) C [0,1]% We extend f; o ¢; " on [0, 1]\¢;(U;) by
0. The extended function is in B; ([0, 1]%) (see Lemma 4
in Appendix C.1). This allows us to use cardinal B-splines
to locally approximate each f; o gbi_l as detailed in Step 2.

Step 2: Local cardinal B-spline approximation. We ap-
proximate f; o ¢; ! using cardinal B-splines f; as

N
fiooi' = fi= Zfi,j with f; ; = Oé;%Mlg,j,ma 19)
=1

where afj_} € Riis a coefficient and M, - [0,1]7 — R
denotes a cardinal B-spline with indecies k,m € NT,j €
R<. Here k is a scaling factor, j is a shifting vector, m is the
degree of the B-spline and d is the dimension (see a formal

definition in Appendix C.2).

Since s > d/p + 1 (by Assumption 3), setting r =
+oo,m = [s] + 1 in Lemma 5 (see Appendix C.3) and
applying Lemma 4 gives

|Fi=fioort| < can—t o
for some constant C' depending on s, p, g and d.
Combining (18) and (19), we approximate f* by
. Om Cm N
Fr=) fiogixly, =Y Y fijo x1y,. 1)
i=1 i=1 j=1

Such an approximation has error

1F* = fllp= < CCppeoN /4.

Step 3: Implement local approximations in Step 2 by
CNNs. In Step 2, (21) gives a natural approximation of
f*. In the sequel, we aim to implement all ingredients
of ﬁj o ¢; X 1y, using CNNs. In particular, we show
that CNNs can implement the cardinal B-spline ﬁ 7. the
linear projection ¢;, the indicator function 1y, and the
multiplication operation.

e Implement 1;;, by CNNs. Recall our construction of
U; in Step 1. For any x € M, we have 1y,(x) = 1if
d?(x) = ||x — c1||§ < w?; otherwise 1y, (x) = 0.

To implement 1, we rewrite it as the composition of a uni-

variate indicator function 1o 2] and the distance function
dz:
Ly, (x) =12 0di(x) for xe M. (22)

We show that CNNs can efficiently implement both 1o 2
and d?. Specifically, given § € (0,1) and A > 8DB?,
there exist CNNGs that yield functions 1 o and d? satisfying

Id} — d?| L~ < 4B2Do (23)
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and
1, ifx € U, d?(x) <w? — A,

1y Y

0, ifx ¢ U, 24)
between 0 and 1, otherwise.

Taodi(x) =

We also characterize the network sizes for realizing 1A and
Jf: The network for 1 o has O(log(w?/A)) layers, 2 chan-
nels and all weight parameters bounded by max(2, lw? —
4B2DA)|); the network for d2 has O(log(1/6) + D) lay-
ers, 6D channels and all weight parameters bounded by
4B?. More technical details are provided in Lemma 9 in
Appendix C.6.

e Implement ﬁj o ¢; by CNNs. Since ¢; is a linear pro-
jection, it can be realized by a single-layer perceptron. By
Lemma 8 (see Appendix C.5), this single-layer perceptron
can be realized by a CNN, denoted by ¢SNN.

For ﬁyj, Proposition 3 (see Appendix C.8) shows that for
any § € (0,1) and 2 < K < d, there exists a CNN fCNN
FONN(L J, K, K, k) with

LO(log(15> ,J=0(1),k

such that when setting N = Cy 5~4/5 we have

HZ FONN _ ;1H <5 (25)
Lo (¢4 (Us))

where C is a constant depending on s, p,q and d. The
constant hidden in O(+) depends on d, s, S;—fd, P, q,co. The

CNN class FCNN is defined in Appendix B.

-0 (5_(1ogz)(%+%))

e Implement the multiplication x by a CNN. According
to Lemma 7 (see Appendix C.4) and Lemma 8, for any n €
(0,1), the multiplication operation X can be approximated
by a CNN x with L error #:

lla x b—x(a,b)||p~ <n. (26)
Such a CNN has O (log 1/7) layers, 6 channels. All param-
eters are bounded by max(2¢3, 1).

Step 4: Implement f* by a ConvResNet. We assemble
all CNN approximations in Step 3 together and show that
the whole approximation can be realized by a ConvResNet.

e Assemble all ingredients together. Assembling all CNN
approximations together gives an approximation of f; ; o
¢i x 1y, as

fui= % (JONe o™ 1sod). @D
After substituting (27) into (21), we approximate the target
function f* by
Cm N

=33 fis (28)

i=1 j=1

The approximation error of f is analyzed in Lemma 12 (see
Appendix C.9). According to Lemma 12, the approximation
error can be bounded as follows:
o CM
1=l <D (Ain+ Aia+ Ai3)  with

i=1

CNN o ¢CNN ]1 o d2)

Z(?JNN $CNNY 5 (a Odz)HLw < Ny,
N
Aig = FoNN 0 pINN) ) x (T 0 d7)—
(35 e ) <
fix(@aod)| <4,
T S e(m+1)
Ai,S—”sz(]ledzz) fz L> S w(l—W/T)A7

where d,7, A and 0 are defined in (25), (26), (24) and (23),
respectively. For any ¢ € (0,1), with properly chosen
0,71, A and 0 as in (53) in Lemma 12, one has

1= o <e. (29)

With these choices, the network size of each CNN is quanti-
fied in Appendix C.10.

e Realize f by a ConvResNet. Lemma 17 (see Ap-

pendix C.15) shows that for every f,j there exists

JENN € FONN(L, J, K, k1, kig) with L = O(log 1 /e+D+

logD),J = O(D),k1 = O(1),logke = O(log2 1/¢)

such that fONN(x) = fi.(x) for any x € M. As a result,

the function f in (28) can be expressed as a sum of CNNs:
Cm N

fCNN — Z Z CNN (30)

=1 j=1

where N is chosen of O (~%/#) (see Proposition 3 and
Lemma 12). Lemma 18 (see Appendix C.16) shows that
FENN can be realized by f € C(M, L, J, k1, k2) with

M=0 (s_d/s) ,L =0O(log(1/e) + D +log D),
J=0(D),k1 =0(1),logka = O (logQ(l/a)) .

5. Conclusion

Our results show that ConvResNets are adaptive to low-
dimensional geometric structures of data sets. Specifically,
we establish a universal approximation theory of ConvRes-
Nets for Besov functions on a d-dimensional manifold M.
Our network size depends on the intrinsic dimension d and
only weakly depends on D). We also establish a statistical
theory of ConvResNets for binary classification when the
given data are located on M. The classifier is learned by
minimizing the empirical logistic loss. We prove that if the
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ConvResNet architecture is properly chosen, the excess risk
of the learned classifier decays at a fast rate depending on
the intrinsic dimension of the manifold.

Our ConvResNet has many practical properties: it has a
fixed filter size and a fixed number of channels. Moreover,
it does not require any cardinality constraint, which is bene-
ficial to training.

Our analysis can be extended to multinomial logistic regres-
sion for multi-class classification. In this case, the network
will output a vector where each component represents the
likelihood of an input belonging to certain class. By assum-
ing that each likelihood function is in the Besov space, we
can apply our analysis to approximate each function by a
ConvResNet.
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