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Abstract—The goal of group testing is to efficiently identify
a few specific items, called positives, in a large population of
items via tests. A test is an action on a subset of items that
returns positive if the subset contains at least one positive and
negative otherwise. In non-adaptive group testing, all tests are
independent, can be performed in parallel, and represented as
a measurement matrix. In this work, we consider non-adaptive
group testing with consecutive positives in which the items are
linearly ordered and the positives are consecutive in that order.

We present two algorithms for efficiently identifying consecu-
tive positives. In particular, without storing measurement matri-
ces, we can identify up to d consecutive positives with 2 log, % +2d
(4log, % + 2d, resp.) tests in O (log3 = +d) (O (log, 2 +d),
resp.) time. These results significantly improve the state-of-the-
art scheme in which it takes 5log, % + 2d + 21 tests to identify
the positives in O (2 log, 2 + d*) time with the measurement
matrices associated with the scheme stored somewhere.

I. INTRODUCTION
A. Group testing

The goal of group testing (GT) is to efficiently identify up
to d positive items in a large population of n items. Positive
items satisfy some specific properties while negative items do
not. Emerged by the seminal work of Dorfman [2] in WW2,
GT was considered as an efficient way to save time and money
in identifying syphilitic draftees among a large population of
draftees. With the ongoing Covid-19 pandemic since 2020,
GT has been found to be an efficient tool for mass testing
to identify infected persons [3], [4]. Instead of testing each
item one by one to verify whether it is positive or negative, a
group of items is pooled then tested. In the noiseless setting,
the outcome of a test on a group of items is positive if the
group has at least one positive and negative otherwise.

There are two basic approaches to designing tests. The first
is adaptive group testing in which the design of a test depends
on the designs of the previous tests. The second approach,
which is non-adaptive group testing (NAGT), is to design all
tests independently such that they can be performed simultane-
ously. Because of time saving, NAGT has been widely applied
in various fields such as biology [5] and networking [6].

NAGT can be represented by a measurement matrix in
which an entry at row ¢ and column j equals to 1 indicates that
the jth item in the input set belongs to test 7 and that item does
not belong to test ¢ otherwise. The procedure to get the matrix
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is called construction, the procedure to get the outcomes of all
tests using the matrix is called encoding, and the procedure to
get positives from the outcomes is called decoding.

A measurement matrix is random if it satisfies the precon-
ditions after the construction procedure with high probability.
Meanwhile, a measurement matrix is explicit if it can be
constructed in poly(d,n) time. However, random and explicit
matrices are not ideal in practice because they are usually to
be saved somewhere before use. A matrix being a good fit in
practice is strongly explicit in which every entry in the matrix
can be generated in poly(d,logn) time. This implies that it is
unnecessary to store the matrix.

There are two main requirements to tackle group testing:
minimize the number of tests and efficiently identify the set
of positive items. To combinatorial GT, several schemes have
been proposed to achieve either a small number of tests,
says O(d" M In*T°M p) or low decoding complexity, says
poly(d,Inn), such as [5], [7]-[15].

B. Group testing with consecutive positives

Inspired by genetic mapping and sequencing for linear
DNA [16], [17], Colbourn [18] firstly considered a specific
case of group testing called group testing with consecutive
positives in which the input items are linearly ordered and
the positives are consecutive in that order. In this setting, the
number of tests required can be reduced to O(log(dn)) and
0] (log 7 + d) for adaptive and non-adaptive designs, re-
spectively, which is much smaller than the bounds O(dlogn)
and (d?log %) in combinatorial group testing. Juan and
Chang [19] could make the number of tests fall in a very tight
interval [[log,(dn)] — 1, [logy(dn)] + 1] in adaptive design.

With non-adaptive approach, Muller and Jimbo [20] consid-
ered the case d = 2 and could construct an explicit measure-
ment matrix with [log, [ %5 ]]+2d+ 1 rows and n columns.
Unfortunately, neither Colbourn nor Muller and Jimbo showed
how to efficiently identify positives. Chang et al. [21] later
used random measurement matrices with 5log, & + 2d + 21
rows to identify all positives in O (% logy 5 + dg) time. The
focus of this work is on NAGT with consecutive positives.

C. Contributions

We have reduced the number of tests and the decoding
complexity without storing measurement matrices for effi-



ciently identifying up to d consecutive positives. In particular,
without storing measurement matrices, we can identify up to d
consecutive positives with 2log, (n/d)+2d (4logy(n/d)+2d,
resp.) tests in O (log3(n/d) + d) (O (logy(n/d) + d), resp.)
time. These results significantly improve the state-of-the-art
scheme [21] in which it takes 5log,(n/d) + 2d + 21 tests to
identify the positives in O (n/d - logy(n/d) 4+ d*) time with
the measurement matrices associated with the scheme stored
somewhere. A summary of our comparison is shown in Table I.

D. General idea of improved algorithms

Although our improved algorithms reflect Colbourn’s strat-
egy [18], we refine every technical detail to attain efficient
encoding and decoding procedures. More importantly, Col-
bourn only designed measurement matrices but not decoding
procedures. Here, we have presented two improved algorithms
to identify up to d consecutive positives. Colbourn’s strategy
consists of two simultaneous phases. In the first phase, he
partitioned the n (linearly ordered) items into subpools in
which we here call them super items such that there are
up to two super positive items and if two super items are
positive, they are consecutive. Hence, the objective of this
phase is to locate the super positives among the super items.
In the second phase, with the careful design of measurement
matrices, the true positives can be identified based on the
location of the super positives. Briefly speaking, for the first
phase, Colbourn’s original strategy used Gray code while ours
uses strongly explicit matrices. For the second phase, Colbourn
used 2d — 2 tests while we used 2d tests.

Our improved algorithms are based on two inseparable
compartments: the linear order of the input items which
contain consecutive positives and strongly explicit matrices
designed based on that linear order. We first create super items
with linear order in which each super item contains exactly
d consecutive items. Naturally, a super item is positive if it
contains at least one positive item and negative otherwise. For
the first phase, from the original set of items N = [n] =
{1,2,...,n}, we generate a subset (or two subsets) of super
items with linear order and their corresponding measurement
matrix (matrices). For the second phase, we simply generate
a 2d x n measurement matrix by horizontally placing 2d x 2d
identity matrices in a series.

The decoding procedure is as follows. By using the input
set(s) of super items with their corresponding measurement
matrix (matrices), given an outcome vector(s) generated from
them, we can recover up to two super positive items, i.e.,
there are up to 2d potential positives after using super items.
Because the measurement matrix associated with the set of n
items is composed by a series of 2d x 2d identity matrices,
we finally can verify which potential positive is truly positive.

II. PRELIMINARIES

For simplicity, we assume n is divisible by d (in case n is
not divisible by d, we can add d[n/d] — n dummy negative
items into the set of items such that the total number of items
is d[n/d]). Any set C' = {ec1,...,c} used in this work is

equipped with the linear order ¢; < c¢;41 for 1 < ¢ < k, where
< is the linear order notation. There are n items indexed from
1 to n. Two sets of items are considered throughout this paper,
which are N = [n] = {1,2,...,n} and P = {2,3,...,n}.
We should keep in mind that the index of an item may be
different to its position in a set of items containing it, i.e., the
jth item in a set may be not item j. Precisely, the position of
an item in [V is identical to its index. However, the position of
an item in P is one unit smaller than to its index. For example,
let us consider two sets N = {1,2,3,4} and P = {2, 3,4} for
n = 4. The position of item 2 in set N is 2, which is identical
to the index of item 2, but its position in set P is 1.

A. Notations

We use capital calligraphic letters for matrices, bold letters
for vectors, and capital letters for sets. All matrix and vector
entries are binary. Parameters n and d are the number of items
and the maximum number of positives. Row i of matrix T
is denoted to as 7, .. The ith entry in the vector v is v(7).
Calculating an index from a vector means we convert that
vector from the binary representation to the decimal one. For
example, if the input is 011 then the index is 0 x 2° + 1 x
2! 4+ 1 x 22 = 6. Finally, log is the logarithm to base 2.

B. Problem definition

We index the population of n items from 1 to n. Let P be the
positive set, where | P| < d. The outcome of a test on a subset
of items is positive if the subset contains at least one positive,
is negative otherwise. We can model NAGT with consecutive
positives as follows. A ¢ xn binary matrix 7 = (t;;) is defined
as a measurement matrix, where n is the number of items
and t is the number of tests. Vector x = (x1,...,2,)7 is the
binary representation vector of n items, where there exists two
indexes j1 and [ such that z;, 11 = 2,420 =... =2,y =1
and z; = 0 when j € N\ {ji1 +1,...,j1 + 1} for I < d.
An entry z; = 1 indicates that item j is positive, and z; =
0 indicates otherwise. The jth item corresponds to the jth
column of the matrix. An entry ¢;; = 1 naturally means that
item j belongs to test ¢, and t;; = 0 means otherwise. The
outcome of all tests is y = (y1,...,9:)7, where y; = 1 if test
1 is positive and y; = 0 otherwise. Outcome vector y is given
byy=ToOx=[T10%,....Tex Ox|T = [y1,..., 5],
where ® is a notation for the test operation in non-adaptive
group testing, y; = T, ©x = 1 if Z;l:l x;t;; > 1, and
Yi :7;7* ®x=0 ifzyzlxjtij =0 for 7 = 1,...,t.

Our objective is to find an efficient encoding and decoding
scheme to identify up to d consecutive positives in NAGT by
minimizing ¢ and the time for recovering x from y.

III. IDENTIFICATION OF TWO CONSECUTIVE POSITIVES
A. Overview

Our objective is to identify positives in a set of items
which contains exactly two consecutive positives or up to one
positive. This will serve as a building block for the general
case in Section IV. The basic idea of our proposed scheme is
to exploit the structure of a measurement matrix and the linear



No. of Design Construction type of Number of tests Decoding time
Scheme positives approach measurement matrices t (Decoding complexity)
Colbourn [18] <d Adaptive Not available [log,(dn)] + ¢ t stages
Juan and Chang [19] <d Adaptive Not available [Tog,(dn)] —1 <t < [log,(dn)] + 1 t stages
Colbourn [18] <d Non-adaptive Explicit [Tog, [dnjﬂ +2d+1 Not available
Muller and Jimbo [20] d=2 Non-adaptive Explicit Mogy [725 [T+2d— 1 Not available
Chang et al. [21] <d Non-adaptive Random 5[logy 51+ 2d + 21 [@) (L; log, 2 + d?)
First improved algorithm (Theorem 1 . . . 2[logy &7 +2d O (log2 2 +d
Second inl:proved aglgorithm( (Theorem )2) <d Non-adaptive Strongly explicit 4?1022 %% +2d o E]oii o4+ d;

TABLE I
COMPARISON OF IMPROVED ALGORITHMS WITH PREVIOUS ONES. “NOT AVAILABLE” MEANS THAT THE CRITERION DOES NOT HOLD OR IS NOT
CONSIDERED FOR THAT SCHEME. PARAMETER c IS SOME CONSTANT.

order of n items. We create a strongly explicit measurement
matrix such that the union of any two consecutive columns
in it is different from the union of other two consecutive
columns. Based on this property and the measurement matrix
structure, we carefully develop a decoding scheme accordingly
whose decoding time is up to the square of the number of
measurements. The first encoding and decoding procedures
are described in Algorithm 1 and summarized in Lemma 1.

Lemma 1: Let n be a positive integer and N be the set of
linearly ordered items. Then there exists a strongly explicit
2[log n] x n measurement matrix such that: if NV has exactly
two positives which are consecutive and the index of the first
positive is 1 < a < n — 1, the two positives can be identified
with s = 2[logn] tests in s time if a is odd and in s? =
O(log2 n) time if a is even; and if NV has up to one positive,
the decoding complexity is s = 2[logn].

Since the decoding complexity in Lemma 1 is O(log®n)
which is larger O(logn), our next objective is to design an
encoding procedure such that its decoding complexity is just
O(logn) by exploiting properties of consecutive positives.
Lemma 1 tells us that if the index of the first positive in a
measurement matrix, which is also its position in set N, is
odd, it can be identified in time O(log n). Therefore, thanks to
the linear order of the input set, we can remove the first item in
N to create P and assure that the position of the first positive
in P is odd in case its position in N is even. In particular,
it is possible to construct two measurement matrices of size
sxn and s X (n— 1) such that item j > 2 is represented by
column j and column 7 — 1 in the first and second matrices,
respectively, where s = 2[logn]. As a result, we only need
2s tests to recover the two consecutive positives in 25 time.
This idea is summarized as follows.

Lemma 2: Let n be a positive integer and N =
{1,2,...,n} be the set of linearly ordered items. There
exist two strongly explicit measurement matrices with size of
2[logn] xn and 2[log n] x (n—1) such that if N has exactly
two positives which are consecutive or has up to one positive,
they can be identified with s = 4[logn] tests in s time.

B. First encoding procedure
Let S be an s x n measurement matrix associated with the

input set of items N = {1,2,...,n}:

_|b1 by

S = b; by

where s = 2[logn], b; is the [logn]-bit binary represen-
tation of integer j — 1, Bj is the complement of b;, and

_ |bi
% = {bj
the jth item of N and that the weight of every column in §
is s/2 = [logn]. Furthermore, the jth item of N, which is
also item j, is uniquely identified by b;.

Let s = (s1,...,5,)7 be a binary representation vector of
set IV in which an entry s; = 1 indicates that the jth item
in the set IV is positive and s; = 0 indicates otherwise. The
outcome vector by performing tests on the input set of items
N and its measurement matrix S isy =S ©s.

for j = 1,2,...,n. Column S; represents for

C. First decoding procedure

The decoding procedure is summarized in Algorithm 1.
Step 1 is to verify whether there are no positives in the input
set. If there exists at least one positive, we will proceed to
Step 2. Step 3 is to verify whether there is only one positive
in the input set. From Step 4, it suffices to say that the input
set has exactly two consecutive positives. Step 4 is to initialize
vector z which is presumed to be b, VV b, for some integer
1 < a <n—1 by using the outcome vector y and Step 5
is to calculate that a. Because b, is the [logn]-bit binary
representation of integer j — 1, we shift a one unit to a + 1
for simple representation in later steps. Once a is odd, Steps 6
to 7 are to recover a. However, if a is even, we have to scan
every possibility of odd numbers generated from y by altering
one bit in the first half of y. This procedure is done by Steps 9
to 12. Finally, Steps 14 to 16 are simply to verify whether the
value a obtained from Step 13 for an alteration is genuinely
the index of the first positive.

To reduce the decoding complexity in Algorithm 1, we
have to use alternative measurement matrices and decoding
procedure. The details are presented below.

D. Second encoding procedure

Let P = {2,...,n} be aset of items. Let P be an sx (n—1)
measurement matrix created by removing the last column of
S in (1). Column S; represents for the (j + 1)th item in the
set P which is uniquely identified by b.

The outcome vector is obtained by performing tests on two
distinct pairs of inputs set of items and their corresponding

. SOs y
measurement matrices as z = = lwl’ where y =

Pop



Algorithm 1 DecConsecutivePositives(y, S): Decoding pro-
cedure for up to two consecutive positives.

Algorithm 2 DecConsecutivePositives(y, S, w, P): Decod-
ing procedure for up to two consecutive positives.

Input: Outcome vector y, matrix S of size s xn defined in (1).
Output: Set of two consecutive positives.
1: if y = 0 then Return P = () end if
2: Calculate an index a with the input as the first half of y.
Set a :=a+ 1.
3. if S, =y then Return P = {a} end if
4: Initialize a 1 x s/2 vector z by setting z(1) = 0 and
z(i) =y(3i) fori =2,...,s/2.
5: Calculate an index a with the input z. Set a :=a + 1.
6: if SV Sy11 =y then
7: Return the set P = {a,a + 1}.
8
9

: else
: for i =1 to s/2 do
10: Set z = (y(1),...,y(s/2))T.
11: if y(i) = 1 then
12: Set z(i) = 0.
13: Calculate index a with the input z. Set a :=
a+1.
14: if S, VS,41 =y then
15: Return the set P = {a,a + 1}.
16: end if
17: end if
18: end for
19: end if

Ses,w = PoOp,s = (s1,...,5,)  andp = (p1,...,pn_1)"
are the binary representation vectors of items in sets N and
P, respectively. An entry s; = 1 (p; = 1, resp.) indicates that
the jth item in the set N (P, resp.) is positive, and s; = 0
(p; = 0, resp.) indicates otherwise.

E. Second decoding procedure

The decoding procedure is summarized in Algorithm 2.
Step 1 is to identify whether there are no positives in the
input set. If there exists at least one positive, we will proceed
to Step 2. Since there are two measurement matrices associated
with two input sets of items, we need two vectors to recover
the index(es) of the positive(s) in the two input sets from two
outcome vectors. Steps 2 and 6 are to initiate those vectors.
Since the first set of items is N, if there is only one positive
present, the condition in Step 4 holds and it returns that index.

If the input set has exactly two consecutive positives, the
algorithm will proceed to Step 4. If the index of the first
positive is odd, Step 5 is to recover it, and hence the index
of the second positive is also obtained. However, if the index
of the first positive is even, the condition in Step 5 does not
hold but the one in Step 8 does. It then returns that index.

IV. IMPROVED ALGORITHMS

As described in Section I-D, we first create super items.
For the first phase, our improved algorithms are based on
two inseparable compartments: the linear order of the input

Input: Outcome vectors y and w, matrices S and P defined
in (1) and Section III-D.
Output: Set of up to two consecutive positives.

1: if y = w = 0 then Return P = () end if

2: Initialize a 1 x s/2 vector y’ by setting y'(1) = 0 and
y'(i)=y@) fori=2,...,s/2.
Calculate index a with the input y’. Set a = a + 1.
if S, =y then Return P = {a} end if
if S, VSy,11 =y then Return P = {a,a + 1} end if
Initialize a 1 x s/2 vector w’ by setting w’(1) = 0 and
w/ (i) =w(i) fori=2,...,5/2.
Calculate index b with the input w’. Set b =b + 1.
8: if S,V Sp11 = w then Return P = {b+ 1,0+ 2} end if
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items which contain consecutive positives and strongly ex-
plicit matrices designed based on that linear order. For the
second phase, we simply generate a measurement matrix by
horizontally placing a series of 2d x 2d identity matrices. The
details of our proposed algorithms are described below.

A. Super items

We first create super items with linear order in which each
super item contains exactly d items, except for the last super
item which may contain less than d items. In particular, the
n items are distributed into n/d subsets (for simplicity, we
assume n is divisible by d) in which the jth subset contains
items indexed from (j — 1)d 4+ 1 to jd. The jth super item is
the jth subset. A super item is positive if it contains at least
one positive item and negative otherwise. There are up to two
super positive items which are consecutive because the input
items are linearly ordered, the number of positive items is up
to d, the positive items are consecutive and each super item
contains up to d items. This procedure is illustrated in Fig. 1.

1 1 d+1 2d ——
Item ¢ d (d 1)+1-n
1 d+1 n—d+1
Subset
d 2d n
Super item 1 2 n
d

Fig. 1. Creating super items. A super item is a subset of items.

B. Encoding procedure

The encoding procedure includes the first and seconds
phases as described in Section I-D. Regarding the first phase,
there are two designs for measurement matrices corresponding
to two improved algorithms.

1) First phase in the first improved algorithm: Matrix S
used here is the same as the one in Section III-B by replacing
items with super items and n with n/d.



2) First phase in the second improved algorithm: The
measurement matrices used here, namely S and P, are the
same as the one in Section III-D by replacing items with super
items and n with n/d.

3) Second phase: A 2d X n measurement matrix
H, called a verification matrix, is created as H =
[Zoa .. .Zoa I:,n_QdL%J}, where Zo; is a 2d x 2d identity
matrix and matrix Z (:,1:n—2d|44]) contains the first
n—2d| 55| columns of Zy4. There are | 54 | such Zoq matrices.

The outcome vector by using H is h = H © x, where
x = (x1,...,2,)7 is a binary representation vector of set N
in which an entry z; = 1 indicates that the jth item in the set
N is positive and z; = 0 indicates otherwise.

N
al
1
-
N

Outcome

Super item 1

0 1 11 1
by by, .. bn, bn P i
Measurement s=|- - a _al_|o o0 0 1 0
matrix b, b, .. bn_, bn 10 .. 00 1
d da H H H
. 5 3 7 11 10 1
Super item Pl 01 .1 L
by, b, .. b P ;
Measurement e o a _foo .0 0
matrix b, b, .. b%’ 10 .. 0 0
11 .1 1

Item 1 .. dd+1. 2d2d+1 4d4d+1.. n
1 .00 .01 . 000O0T1 . 0 0
i % 00 .00~ 00000 . : H
Measurement ¢p — [0 -~ 1 0 .. 0 0 .. 100 00 .. 1 1
matrix 0 .01 .0 3: ..01000 ..0 1
i .. 00 %~ 00 .00 %~ 00 . : H
0O .00 .10 ..00O0T1O0 . O 0.

=[a B o Ta T 1m-2a]5])]
2d

Fig. 2. Encoding procedure. Each measurement matrix is associated with a
set of items or super items.

C. Decoding procedure

The flow of the decoding procedure is illustrated in Fig. 3.
We first identify up to two consecutive super positives to get a
range of items which contains all positives. The true positives
are then identified by using the verification matrix A and the
outcome vector h.

Outcome
1

Super True positives

positive
» When a is odd and h(i) = 1, item

s items
!
(a — 1)d + i is positive

5 . . (< di
a1 E>(a—1)d+1,...,(a+l)d[:>’ When a is even, h(i) = 1,and i < d, item

ad + i is positive
P » Whenaiseven, h(i) = 1,and i > d, item
(a —2)d + i is positive

Potential
positives

Fig. 3. Decoding procedure. From the outcome vector(s) generated by super
items, we can identify up to two super positive items. Then there are up to 2d
potential consecutive positives. Every entry in the outcome vector h is then
scanned to identify its corresponding positive by using some specific rules.

The details of the decoding procedure, which merges the
first and second improved algorithms, in Algorithm 3. With
the input in the first (second, resp.) improved algorithm,
Algorithm 3 skips Step 2 ( 1, resp.). Step 3 returns an empty
set of positives because there are no super positives in the input
set of items when T' = (). Steps 4 and 5 are to get the first super
positive and initialize an empty positive set, respectively. The

usage of the first phase in the encoding procedure ends here.
We now proceed to identify the true positives. Because all
positives lie in the index range from (a—1)d+1, ..., (a+1)d,
we scan every entry in the outcome vector h in Step 6 then
its corresponding positive is identified by using the rules in
Steps 6 to 14. Step 15 simply returns the positive set.

Algorithm 3 Decoding procedure for up to d consecutive
positives.

Input in the first improved algorithm: Outcome vector y,
matrix S of size s x n defined in (1).

Input in the second improved algorithm: Outcome vectors
y and w, matrices S and P defined in (1) and Section III-D.
Output: Set of consecutive positives.

1: T = DecConsecutivePositives(y, S).

2: T = DecConsecutivePositives(y, S, w, P).
3: Return P =0 if T = 0.

4: Let o be the first item in 7T'.

5: Initialize the positive set P = ().

6: for i =1 to 2d do

7: if o is odd and h(:) = 1 then

8: P=PU{(a—1)d+i}.

9: end if

10: if a is even and h(i) = 1 then
11 ifi <dthen P=PU{ad+i}
12: else P=PU{(a—2)d+i} end if
13: end if
14: end for
15: Return P.

D. The decoding complexity

It is easy to confirm that the complexity of Steps 3 to 14 is
O(d). Therefore, the decoding complexities of the first and
second improved algorithms vary with the complexities of
Steps 2 and 1, respectively. The complexities of Steps 2 and 1
are summarized in Lemmas 1 and 2, which are O (log2 %)
and O (log %) respectively. We summarize the results of our
two improved algorithms in the two following theorems.

Theorem 1: (The first improved algorithm) Let n be a
positive integer and N = {1,2,...,n} be the set of linearly
ordered items. Then there exist strongly explicit measurement
matrices such that up to d consecutive positives can be
identified with 2[log, 27 + 2d tests in O (log® % + d) time.

Theorem 2: (The second improved algorithm) Let n be a
positive integer and N = {1,2,...,n} be the set of linearly
ordered items. There exist strongly explicit measurement ma-
trices such that up to d consecutive positives can be identified
with 4[log, %] 4 2d tests in O (log % + d) time.
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