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We consider the inverse problem of recovering the locations and amplitudes of a 
collection of point sources represented as a discrete measure, given M + 1 of its 
noisy low-frequency Fourier coefficients. Super-resolution refers to a stable recovery 
when the distance Δ between the two closest point sources is less than 1/M . We 
introduce a clumps model where the point sources are closely spaced within several 
clumps. Under this assumption, we derive a non-asymptotic lower bound for the 
minimum singular value of a Vandermonde matrix whose nodes are determined by 
the point sources. Our estimate is given as a weighted �2 sum, where each term 
only depends on the configuration of each individual clump. The main novelty 
is that our lower bound obtains an exact dependence on the Super-Resolution 
Factor SRF = (MΔ)−1. As noise level increases, the sensitivity of the noise-space 
correlation function in the MUSIC algorithm degrades according to a power law in 
SRF where the exponent depends on the cardinality of the largest clump. Numerical 
experiments validate our theoretical bounds for the minimum singular value and 
the sensitivity of MUSIC. We also provide lower and upper bounds for a min-max 
error of super-resolution for the grid model, which in turn is closely related to the 
minimum singular value of Vandermonde matrices.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

This paper studies the inverse problem of recovering a collection of point sources from its noisy low-
frequency Fourier coefficients. Suppose S point sources with amplitudes x = {xj}Sj=1 ∈ CS are located on 
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an unknown discrete set Ω = {ωj}Sj=1 in the periodic interval T = [0, 1). This collection of points sources 
can be represented by a discrete measure,

μ(ω) :=
S∑

j=1
xjδωj

(ω), (1.1)

where δωj
denotes the Dirac measure supported at ωj and Ω is the support of μ, denoted supp(μ). A uniform 

array of M +1 sensors collects measurements of the point sources. Suppose the k-th sensor collects the k-th 
noisy Fourier coefficient of μ:

yk := μ̂(k) + ηk :=
∫
T

e−2πikω dμ(ω) + ηk =
S∑

j=1
xje

−2πikωj + ηk, k = 0, 1, . . . ,M, (1.2)

where μ̂ is the Fourier transform of μ and ηk represents some unknown noise at the k-th sensor. Our goal 
is to accurately recover μ, which consists of the support Ω and the amplitudes x ∈ CS , from the noisy 
low-frequency Fourier data y = {yk}Mk=0 ∈ CM+1.

The measurement vector y can be expressed as

y = Φx + η, (1.3)

where Φ is the (M + 1) × S Fourier or Vandermonde matrix (with nodes e−2πiωj on the unit circle):

Φ := Φ(Ω,M) := ΦM (Ω) :=

⎡⎢⎢⎣
1 1 . . . 1

e−2πiω1 e−2πiω2 . . . e−2πiωS

...
...

...
...

e−2πiMω1 e−2πiMω2 . . . e−2πiMωS

⎤⎥⎥⎦ . (1.4)

While it is convenient to re-formulate the measurement vector y in the linear system (1.3), we do not have 
access to the sensing matrix Φ because it depends on the unknown Ω. This inverse problem is referred to 
as single-snapshot spectral estimation, as only one snapshot of measurements is taken by the sensors. This 
problem appears in many interesting imaging and signal processing applications, including remote sensing 
[1], inverse scattering [2,3], Direction-Of-Arrival (DOA) estimation [4,5] and spectral analysis [6].

A key step is to estimate the support Ω and then the amplitudes x can be recovered as the least-squares 
solution of (1.3). In the noisy case, the stability of this inverse problem crucially depends on Ω. The minimum 
separation of Ω has been widely used to describe the stability of this inverse problem. It is defined as

Δ := Δ(Ω) := min
1≤j<k≤S

|ωj − ωk|T , where |ω|T := min
n∈Z

|ω − n|.

The Heisenberg uncertainty principle implies that the spatial and frequency localization of signals are 
inversely proportional. When we have access to only M Fourier coefficients of μ, the recovery is sensitive 
to noise whenever Δ < 1/M . In the imaging community, 1/M is called the Rayleigh Length (RL), and it 
is regarded as the resolution that a standard imaging system can resolve [7]. Super-resolution refers to the 
capability of recovering point sources when Δ < 1/M . The super-resolution factor (SRF) is 1/(MΔ), which 
characterizes the maximum number of points in Ω that is contained in 1/M .

The first recovery method was invented by Prony [8]. The classical Prony’s method [8] can recover μ
exactly in the noiseless setting, but it is very sensitive to noise [9]. Numerous modifications were attempted 
to improve its numerical behavior [10–12]. In the signal processing community, a class of subspace methods 
has been widely used in applications, including MUltiple SIgnal Classification (MUSIC) [5], Estimation 
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of Signal Parameters via Rotational Invariance Technique (ESPRIT) [13], and the Matrix Pencil Method 
(MPM) [14]. In the past ten years, super-resolution was addressed with an optimization approach, such as 
the total variation minimization (TV-min) [15–19].

Existing mathematical theories on the recovery of μ can be divided into three main categories: (1) The 
well-separated case is when Δ ≥ 1/M , and in which case, we say that Ω is well-separated. There are 
many polynomial-time algorithms that provably recover μ with high accuracy. These methods include total 
variation minimization (TV-min) [15–19], greedy algorithms [20–24], and subspace methods [14,25–28,13,5]. 
These works address the discretization error and basis mismatch issues [29,21,30] arising in compressed 
sensing [31,32]. (2) The super-resolution regime is when Δ < 1/M . There are two main approaches to 
achieve super-resolution. The optimization-based methods require certain assumptions, such as positivity 
[33–35]or certain sign constraints [36] of μ. The classical subspace methods [5,13,14] can recover complex 
measures and have super-resolution phenomenon. Meanwhile, there are many open problems regarding the 
stability of subspace methods with a single snapshot of measurements. (3) Super resolution is addressed 
from an information theoretic point of view in [37,38], where the point sources are located on a grid of R
with spacing 1/N and measurements are the noisy continuous Fourier transform of the points. These works 
derived asymptotic lower and upper bounds for a min-max error, when the grid spacing is sufficiently small. 
Recently, [39] studied the off-the-grid min-max error when the support contains a single cluster of nodes 
and other nodes are well separated.

This paper addresses two important questions: (1) What is the fundamental limit of super-resolution?
To quantify the fundamental difficulty of super-resolution, we use the concept of min-max error introduced 
by Donoho [37]. The min-max error is the reconstruction error incurred by the best possible algorithm 
in the worst case scenario. For technical reasons, we assume that the point sources are located on a grid 
with spacing 1/N when we study the min-max error. We follow the theme in [37,38] to relate the min-max 
error with σmin(Φ(Ω, M)) for the worst subset Ω on the grid. (2) What is the stability of subspace methods?
The focus of this paper is the MUSIC algorithm [5]. MUSIC can recover complex measures and is well 
known for its super-resolution capability [40]. However, there are many unanswered questions related to 
its stability when Δ < 1/M . In the classical Direction-Of-Arrival setting [4] with multiple snapshots of 
measurements, the Cramér-Rao bound [41–43] gives a stability of MUSIC with respect to noise, #Snapshot
and the source separation Δ, in the asymptotic scenario when #Snapshot → ∞ and Δ → 0. These works 
can not be directly applied to the single-snapshot setting. This paper aims to establish a sensitivity analysis 
for the MUSIC algorithm, which is different from the Cramér-Rao bound since the noise statistics are not 
emphasized. Recently, it was shown in [26] that the perturbation of the noise-space correlation function 
in the single-snapshot MUSIC is closely related with σmin(Φ). The key question is to accurately estimate 
σmin(Φ) for a given support Ω.

1.2. Contributions

This paper has three main contributions: accurate lower bounds for σmin(Φ) under geometric assumptions 
of the support set, improvements to the min-max error of super-resolution by sparsity constraints, and a 
sensitivity analysis of the noise-space correlation function in the MUSIC algorithm. We informally summarize 
our main results here and postpone the formal definitions until later.

(1) We consider a geometric clumps model for Ω. Assume that: (1) Ω can be written as the disjoint union of 
A finite sets called clumps, where each clump is contained in an interval of length 1/M and the distance 
between any two clumps is at least β/M ; (2) the minimum separation of Ω is at least α/M .
Theorem 2.7 shows that if λa denotes the cardinality of the a-th clump, for any α > 0 and sufficiently 
large β > 0, there exist constants {Ca(λa, M)}Aa=1 such that
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σmin(Φ) ≥
√
M
( A∑

a=1

(
Ca(λa,M)α−λa+1)2)−1/2

. (1.5)

The explicit formula for Ca is given in equation (2.5) and we discuss its dependence on λa and M in 
Remark 2.9. The main novelty of this bound is that the exponent on α−λa+1 = SRFλa−1 only depends 
on λa as opposed to S, which shows that σmin(Φ) depends on the local geometry of Ω. We provide an 
upper bound for σmin(Φ) in Proposition 2.10 and numerical experiments in Section 2.3 to show that the 
dependence on α is tight.

(2) We derive an estimate of the min-max error under sparsity constraints, which illustrates why geometric 
assumptions on Ω are both natural and necessary. Suppose S and Δ are known and for technical reasons, 
we assume that Ω lies on a fine grid with spacing 1/N . The min-max error E(M, N, S, δ) for this model 
is defined to be the error incurred by the best possible recovery algorithm(s) when the error is measured 
with respect to the worst case measure and noise η satisfying ‖η‖2 ≤ δ.
Theorem 3.8 provides explicit constants A(M, S) and B(M, S) such that

A(M,S)
(N
M

)2S−1
δ ≤ E(M,N, S, δ) ≤ B(M,S)

(N
M

)2S−1
δ. (1.6)

The dominant factor in both inequalities is (N/M)2S−1 = SRF2S−1. Hence, without any prior geometric 
assumptions on Ω, no algorithm can accurately estimate every measure and noise, unless δ is smaller 
than SRF−2S+1.

(3) We provide a sensitivity analysis of the noise-space correlation function in MUSIC under the clumps 
model. MUSIC amounts to recovering the point sources from the S smallest local minima of a noise-space 
correlation function R. Corollary 4.5 shows that when Ω satisfies the clumps assumption in Theorem 2.7, 
then for arbitrary noise η, in order to guarantee an ε-perturbation of R in the supremum norm, the 
noise-to-signal ratio that MUSIC can tolerate obeys the following scaling law,

‖η‖2

xmin
∝

√
M

(
A∑

a=1

(
Ca(λa,M/2)α−λa+1)2)−1

ε. (1.7)

Our result shows that the sensitivity of the noise-space correlation function in MUSIC is exponential in 
1/SRF, and importantly, the exponent depends on λa instead of the sparsity S. This estimate is verified 
by numerical experiments. A perturbation bound for deterministic noise is given in Corollary 4.5.

Let us briefly discuss the implications of our main results to super-resolution. Inequalities (1.6) show 
that, super-resolution solely based on sparsity and the minimum separation is impossible unless the noise is 
smaller than SRF−2S+1. The results can be greatly improved if the structure of Ω is exploited. Inequality 
(1.7), derived from (1.5), indicates that the perturbation of R is small if the noise is smaller than SRF−2λ+1

as opposed to SRF−2S+1 where λ = maxa λa and S =
∑

a λa. This rigorously confirms prior numerical 
evidence that MUSIC can succeed in the super-resolution regime, if λ is sufficiently small. Although our 
analysis only pertains to perturbations of R, this is an inherent feature of MUSIC.

1.3. Outline

The remainder of this paper is organized as follows. Since this paper encapsulates three main topics, we 
present each in its own section and related work is located in the last subsection. Our estimates for σmin(Φ)
and proof strategy are contained in Section 2 and the min-max error under sparsity constraints is studied in 
Section 3. Numerical experiments are included highlighting their accuracy. Section 4 explains the MUSIC 
algorithm, and includes a new sensitivity analysis of the noise-space correlation function under the clumps 
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Fig. 1. Consider the sets Ω1(ε), Ω2(ε), Ω3(ε) defined in (2.1) each with Δ(ε) = 0.01ε. The functions ε �→ σmin(ΦM (Ωj(ε))) is 
exponential with very different exponents. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

model. Numerical simulations are provided to validate our theoretical analysis on MUSIC. Appendices A, 
B, and C contain the proofs for all the theorems, propositions, and lemmas, respectively.

2. Minimum singular value of Vandermonde matrices

2.1. Lower bounds under a clumps model

The quantity σmin(Φ) is extremely sensitive to the “geometry” or configuration of Ω in the super-resolution 
regime Δ < 1/M . To support this assertion, Fig. 1 provides examples of three sets

Ω1(ε) = ε{0, 0.01, 0.02, 0.03, 0.04},
Ω2(ε) = ε{0, 0.01, 0.02, 0.4, 0.5},
Ω3(ε) = ε{0, 0.01, 0.3, 0.4, 0.5}

(2.1)

where 0.2 ≤ ε ≤ 1. We fix M = 50 and S = 5. These three support sets have the same cardinality and 
minimum separation, but the minimum singular values of their associated Vandermonde matrices have 
different behaviors. This simple numerical experiment demonstrates that it is impossible to accurately 
describe σmin(Φ) solely in terms of Δ. A more sophisticated description of the “geometry” of Ω is required.

We introduce a clumps model where Ω consists of well-separated subsets called clumps, where each clump 
contains several points that can be closely spaced.

Assumption 2.1 (Clumps model). We say that a finite set Ω ⊆ T consists of A clumps with parameters 
(A, M, S, β) if the following hold.

(1) Ω has cardinality S and can be written as a disjoint union of A sets, Ω =
⋃A

a=1 Λa, where each clump
Λa is a finite set contained in an open interval of length 1/M .

(2) If A > 1, the distance between two clumps, defined as

dist(Λm,Λn) := min |ωj − ωk|T ,

ωj∈Λm, ωk∈Λn
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satisfies minm�=n dist(Λm, Λn) ≥ β/M .

Throughout the paper, we denote the cardinality of Λa by λa.

Definition 2.2 (Complexity). For any finite set Ω = {ωk}Sk=1 ⊆ T , its complexity at ωj ∈ Ω is the quantity,

ρj := ρj(Ω,M) :=
∏

ωk∈Ω: 0<|ωk−ωj |T<1/M

1
πM |ωj − ωk|T

.

Our Theorem 2.3 below is our most general lower bound for σmin(Φ), which is given in terms of a weighted 
�2 aggregate of the complexity of Ω at each point. The proof of Theorem 2.3 can be found in Appendix A.1.

Theorem 2.3. Fix positive integers A, M, S with M ≥ 2S2. Suppose Ω satisfies Assumption 2.1 with param-
eters (A, M, S, β). If A > 1, assume that

β ≥ max
1≤a≤A

max
ωj∈Λa

10λ5/2
a (Sρj)1/(2λa). (2.2)

For each 1 ≤ a ≤ A, we define the constant

Ba := Ba(λa,M) := 20
√

2
19

(
1 − π2

3λ2
a

)−(λa−1)/2(M
λa

)λa−1⌊M
λa

⌋−(λa−1)
.

Then the minimum singular value of Φ = Φ(Ω, M) defined in (1.4) satisfies

σmin(Φ) ≥
√
M
( A∑

a=1

∑
ωj∈Λa

(Baλ
λa−1
a ρj)2

)−1/2
. (2.3)

Remark 2.4. The constant Ba is insensitive to the geometry of each clump Λa because it only depends on 
M and λa, and it is also independent of S. The dependence of Ba on M is weak because(M

λa

)⌊M
λa

⌋−1
= 1 + o

(M
λa

)
as M

λa
→ ∞.

It is possible to upper bound Ba by a constant that does not depend on M . Clearly Ba does not dependent 
on M when λa = 1, and for λa ≥ 2, since t/�t� ≤ t/(t − 1) ≤ 2 for t > 1, we see that

Ba ≤ 20
√

2
19

(
1 − π2

3λ2
a

)−(λa−1)/2
2λa−1.

We can think of Ba as a small universal constant because the function n 
→ (1 − π2/(3n2))−(n−1)/2 defined 
on the integers n ≥ 2 approaches a horizontal asymptote of 1 quickly as n increases. In the regime where 
each λa is of moderate size and M/λa is large, Ba is approximately 20

√
2/19 ≈ 1.4886.

Remark 2.5. Although this is not the main point of the theorem, we can also apply it to the well-separated 
case. Assume that Δ ≥ 10

√
S/M . Then each clump Λa contains a single point, Ba = 20

√
2/19 for each 

1 ≤ a ≤ A, and ρj = 1 for each ωj ∈ Ω. We readily check that the conditions of Theorem 2.3 are satisfied, 
and thus,

σmin(Φ) ≥ 19√
√
M.
20 2
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This shows that σmin(Φ) is on the order of 
√
M if Δ is about 

√
S times larger than 1/M . This result is weaker 

than the one in [28], which was derived using extremal functions that are specialized to the well-separated 
case. Note that 

√
M is approximately the largest σmin(Φ) can be because σmax(Φ) ≤ ‖Φ‖F =

√
MS, where 

‖ · ‖F is the Frobenius norm.

Theorem 2.3 is our most general lower bound for σmin(Φ) without a minimum separation condition. The 
bound in Theorem 2.3 can be reduced to a more explicit estimate if we consider the minimum separation 
of Ω.

Assumption 2.6 (Clumps model with a minimum separation). We say that a finite set Ω ⊆ T satisfies a 
clumps model with a minimum separation with parameters (A, M, S, β, α) if Ω satisfies Assumption 2.1 with 
parameters (A, M, S, β) and moreover, the minimum separation of Ω satisfies Δ ≥ α/M with max1≤a≤A(λa−
1) < 1/α.

Theorem 2.7 below is derived from Theorem 2.3 under Assumption 2.6, which is proved in Appendix A.2.

Theorem 2.7. Fix positive integers A, M, S with M ≥ S2. Suppose Ω satisfies Assumption 2.6 with parame-
ters (A, M, S, β, α). If A > 1, assume that

β ≥ max
1≤a≤A

20S1/2λ
5/2
a

α1/2 . (2.4)

For each 1 ≤ a ≤ A, let Ba := Ba(λa, M) be the constant defined in Theorem 2.3 and

Ca := Ca(λa,M) := Ba

(λa

π

)λa−1( λa∑
j=1

λa∏
k=1, k �=j

1
(j − k)2

)1/2
. (2.5)

Then the minimum singular value of Φ = Φ(Ω, M) defined in (1.4) satisfies

σmin(Φ) ≥
√
M
( A∑

a=1

(
Caα

−λa+1)2)−1/2
. (2.6)

Remark 2.8. The main difference between Theorems 2.3 and 2.7 is that, Theorem 2.3 is more general 
and accurate, while Theorem 2.7 is more concrete since it bounds σmin(Φ) in terms of α = 1/SRF. The 
conclusions in Theorem 2.3 and Theorem 2.7 are identical for the special case where each clump Λa consists 
of λa points consecutively spaced by α/M . For all other configurations of Ω, Theorem 2.3 provides a more 
accurate lower bound. The separation condition (2.2) is always weaker than (2.4).

Remark 2.9. According to Remark 2.4, the constant Ba can be thought of as a universal constant. For the 
behavior of Ca, we have a simple upper bound Ca ≤ Baλ

1/2
a (λa/π)λa−1, which is a reasonable bound for 

small and moderate λa. A more refined argument (see Lemma C.2 in Appendix C.4) shows that

Ca ≤ Ba

(λa

π

)λa−1
2πe
√
λa

(λa

e
− 1
)−λa

eλa = 2π2eBa√
λa

( eλa

π(λa − e)

)λa

eλa . (2.7)

For large λa, the right hand side scales like CBaλ
−1/2
a cλa for universal constants C, c > 0.

The main contribution of this theorem is the exponent on SRF = (MΔ)−1 = 1/α, which depends on λa

as opposed to the sparsity S. Let us look at a special case of Ω, where each clump Λa contains λ points 



W. Li, W. Liao / Appl. Comput. Harmon. Anal. 51 (2021) 118–156 125
Fig. 2. An example of clumps model with a minimum separation.

equally spaced by α/M and the distance between clumps is β/M where β is properly chosen such that (2.4)
holds. See Fig. 2 for an illustration.

In this case, Theorem 2.7 implies

σmin(Φ(Ω,M)) ≥ C(λ)A−1/2
√
M︸︷︷︸

scaling

· αλ−1︸ ︷︷ ︸
(1/SRF)λ−1

, (2.8)

where the constant C(λ) only depends on λ. Here, 
√
M is a natural scaling factor because each column 

of Φ(Ω, M) has Euclidean norm 
√
M + 1. Importantly, the lower bound scales like αλ−1 = (1/SRF)λ−1

where λ is the cardinality of each clump instead of S, which matches our intuition that the conditioning of 
Φ(Ω, M) should only depend on how complicated each individual clump is.

2.2. Upper bound for the minimum singular value

Our lower bounds in Theorems 2.3 and 2.7 show that, for the special support in Fig. 2, our lower bound 
for σmin(Φ) depends linearly on SRF−λ+1. Proposition 2.10 below proves that this dependence is sharp. Its 
proof can be found in Appendix B.1 and uses a method similar to one in [37].

Proposition 2.10. Fix positive integers M, S, λ such that λ ≤ S ≤ M − 1. Let ω ∈ T and α > 0 such that

α ≤ 1
C(λ)

√
M + 1

, where C(λ) = 2π
λ−1∑
j=0

(
λ− 1
j

)
jλ

λ! . (2.9)

Assume that Ω = {ωj}Sj=1 ⊆ T contains the set,

Λ = ω +
{

0, α

M
, . . . ,

(λ− 1)α
M

}
.

Let Φ = Φ(Ω, M) be the (M + 1) × S Vandermonde matrix associated with Ω and M . Then

σmin(Φ) ≤
(

2λ− 2
λ− 1

)−1/2

2
√
M + 1 (2πα)λ−1.

Proposition 2.10 shows that if Ω contains a set Λ, which consists of λ points equally spaced by α/M for 
a sufficiently small α, then σmin(Φ) depends on αλ−1. This implies that the dependence on α in the order 
of αλ−1 in our lower bound of (2.8) is tight.

2.3. Numerical accuracy of Theorems 2.3 and 2.7

To numerically evaluate the accuracy of Theorems 2.3 and 2.7, we consider the case where Ω consists 
of A clumps, each clump contains λ equally spaced points separated by α/M , and the clump separation is 
β/M . We fix M , vary SRF = 1/α, and select β to be the right hand side of inequality (2.4). As discussed 
in Remark 2.8, both Theorem 2.3 and 2.7 provide the identical lower bound for σmin(Φ) for this example of 
Ω, which is of the form
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Fig. 3. Plots of σmin(Φ) (solid lines) and φ in (2.10) (dashed lines), as functions of SRF = 1/α when the other parameters A, λ, M
are fixed. For all the curves, we set M = 50000 and let Ω consist of A clumps, where each clump contains λ points equally separated 
by α/M and the clump separation is given by the right hand side of inequality (2.4). We consider the following range of parameters: 
2 ≤ A ≤ 3, 2 ≤ λ ≤ 5, and λ ≤ SRF ≤ 6.

σmin(Φ) ≥ C(λ)
√

M

A
SRF−λ+1 =: φ(A,M, λ,SRF). (2.10)

Fig. 3 displays plots of σmin(Φ) and φ as functions of SRF, for several values of A and λ. Their slopes 
are identical, which establishes that the dependence on SRF in inequality (2.10) is exact. In other words, 
the experiments verify that σmin(Φ) should only depend on the cardinality of each clump and not on the 
total number of points S under the theorems’ assumptions.

2.4. Proof strategy by polynomial duality and interpolation

Our primary method for lower bounding σmin(Φ) is through a dual characterization via trigonometric 
interpolation. We begin with some notation and definitions. Let P(M) be the space of all smooth functions 
f on T such that for all ω ∈ T ,

f(ω) =
M∑

m=0
f̂(m)e2πimω.

We call f a trigonometric polynomial of degree at most M .

Definition 2.11 (Polynomial interpolation set). Given Ω = {ωj}Sj=1 ⊆ T and v ∈ CS , the polynomial 
interpolation set, denoted by P(Ω, M, v), is the set of f ∈ P(M) such that f(ωj) = vj for each 1 ≤ j ≤ S.

We have the following duality between the minimum singular value of Fourier matrices and the polynomial 
interpolation set, and its proof is in Appendix B.2.

Proposition 2.12 (Exact duality). Fix positive integers M and S such that S ≤ M − 1. For any set Ω =
{ωj}Sj=1 ⊆ T , let Φ = Φ(Ω, M) be the (M + 1) ×S Vandermonde matrix associated with Ω and M . For any 
w ∈ CS, the set P(Ω, M, w) is non-empty. If σmin(Φ) = ‖Φv‖2 for some unit norm vector v ∈ CS, then

σmin(Φ) = max ‖f‖−1
L2(T).
f∈P(M,Ω,v)
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There are two main technical difficulties with using the proposition. First, in the extreme case that 
S � M , we expect P(Ω, M, v) to contain a rich set of functions. However, we do not know much about 
this set, aside from it being convex. Moreover, this set is extremely dependent on Ω because we know that 
σmin(Φ) is highly sensitive to the configuration of Ω. Second, we have no information about v, a right 
singular vector associated with σmin(Φ). Yet, in order to invoke the duality result, we must examine the set 
P(Ω, M, v).

It turns out that we can circumvent both of these issues, but doing so will introduce additional technical-
ities and difficulties. Proposition 2.13 below is a relaxation of the exact duality in Proposition 2.12, which 
will provide us with an extra bit of flexibility. Its proof can be found in Appendix B.3.

Proposition 2.13 (Robust duality). Fix positive integers M and S such that S ≤ M − 1. For any set Ω =
{ωj}Sj=1 ⊆ T , unit norm vector v ∈ CS, and ε ∈ CS with ‖ε‖2 < 1, if there exists f ∈ P(M) such that 
f(ωj) = vj + εj for each 1 ≤ j ≤ S, then

‖Φv‖2 ≥ (1 − ‖ε‖2)‖f‖−1
L2(T).

In order to use these results to derive a lower bound for σmin(Φ) for a given Ω, for each unit norm 
v ∈ CS , we construct a fv ∈ P(Ω, M, v) and then bound ‖fv‖L2(T) uniformly in v. This process must be 
done carefully; otherwise we would obtain a loose lower bound for σmin(Φ). This construction is technical and 
our approach is inspired by uncertainty principles for trigonometric polynomials [44] and uniform dilation 
problems on the torus [45,46].

2.5. Related work on the conditioning of Vandermonde matrices

The spectral properties of a Vandermonde matrix greatly depend on its nodes. Real [47–50], random [51–
53], and those located within the unit complex disk [54,55] have been studied. In this paper, we study tall and 
deterministic Vandermonde matrices whose nodes are on the complex unit circle, which are generalizations 
of harmonic Fourier matrices.

In the well-separated case Δ ≥ 1/M , Vandermonde matrices are well-conditioned [56,57,26,28]. There 
are fewer available results for the super-resolution regime Δ ≤ 1/M . On one extreme, there exists a set Ω
for which the conditioning of Φ scales linearly in SRFS−1 when all other parameters are fixed [28]. On the 
other hand, Theorems 2.3 and 2.7 show that this is overly pessimistic under appropriate clumps model.

Classical work, such as [58], primarily focused on square Vandermonde matrices. One of the earliest 
results for rectangular ones that also incorporates geometric information follows by combining [54, Theorem 
1] and [58, Theorem 1], which yields the estimate

σmin(Φ) ≥
√

M

S
min

1≤j≤S

S∏
k=1, k �=j

|ωj − ωk|T
2 . (2.11)

When Ω consists of separated clumps with parameters (A, M, S, β), this inequality yields

σmin(Φ) ≥ 2−S

√
M

S
min

1≤a≤A

( β

M

)S−λa

Δλa−1.

When M is large, this lower bound is significantly worse than the inequality in Theorem 2.7 which depends 
on terms involving SRF−λa+1 = (MΔ)λa−1.

The preceding discussion is closely related to an important difference between the complexity ρj and ∏
|ωj − ωk|−1, the reciprocal of the product term in (2.11). Notice that ρj is local in the sense it only 
j �=k
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depends on the structure of Ω in a 1/M neighborhood of ωj and it includes the πM scaling term. We include 
the π factor because we use the Fourier transform with the 2π convention in (1.2), but the M factor is very 
important. In the super-resolution and imaging communities, it is known that SRF = (MΔ)−1, not Δ−1, 
is the correct quantity to describe the feasibility of super-resolution. The complexity can be viewed as a 
refined notion of SRFS = (MΔ)−S since ρj only depends on the structure of Ω near ωj .

In the process of revising the first version of this manuscript, [59] independently derived lower bounds for 
σmin(Φ) with clustered nodes. Here the differences between their [59, Corollary 3.6] and our Theorem 2.7: 
(1) They assume that Ω consists of clumps that are all contained in an interval of length approximately 
1/S2. For ours, the clumps can be spread throughout T and not have to be concentrated on a sub-interval. 
(2) They require the aspect ratio M ≥ 4S3, whereas we only need M ≥ 2S2. They also require an upper 
bound on M/S, which prohibits their Vandermonde matrix from being too tall. (3) Their lower bound is 
of the form, σmin(Φ) ≥ CS

√
M · SRF−λ+1, where CS depends only on S and scales like S−2S . According to 

(2.7), our constant Ca scales like λ−1/2
a cλa for a universal constant c > 0, which is independent of S. (4) Our 

clump separation condition (2.4) in Theorem 2.7 depends on α = SRF−1, which means that for large SRF, 
the clumps have to be significantly separated. In contrast, their clump separation condition only depends 
on S but all of their clumps must remain in an interval with length approximately 1/S2.

During the review period of this paper, the singular values of the same Vandermonde matrices with 
nearly colliding pairs were analyzed in [60] and [61, Corollary 4.2]. The nearly colliding pairs form a special 
case of the clumps model when each clump has at most two closely spaced points. In this special case, the 
separation condition between the clumps is improved to be independent of Δ in [60,61]. A recent work [62]
refined the main strategy in the proofs of Theorems 2.3 and 2.7 to improve the constant Ca and strengthen 
our �2 bound to an �∞ one. They also provided an extension to the multi-dimensional case. Another recent 
paper [63] provides bounds for all singular values of Vandermonde matrices under a clumps model.

Lower bounds for the conditioning of arbitrarily sized p × q cyclically contiguous sub-matrices of the 
N ×N discrete Fourier transform matrix was derived in [64]. This sub-matrix is equivalent to our Φ(Ω, p), 
where Ω := {k/N}qk=1. A comparison between our Proposition 2.10 and the main result in [64] can be found 
in the referenced paper.

3. Min-max error and worst case analysis

3.1. A grid model and the min-max error

In order to understand the fundamental limits of super-resolution without any geometric information 
about Ω, in this section, we study the min-max error under a grid and sparsity assumption on Ω. Our 
results will illustrate that it is not only natural, but also necessary to take the geometric information of Ω
into account.

Suppose Ω has cardinality S and is a subset of {n/N}N−1
n=0 , which we refer to as the grid with spacing 1/N . 

In the super-resolution literature, this is called the on-the-grid model. This assumption implicitly places a 
minimum separation requirement so that all point sources are separated by at least 1/N and SRF = N/M . 
In comparison to the clumps model, the one considered in this section only has a sparsity constraint and 
places no geometric constraints on the support set. The grid assumption is purely for technical reasons.

We will define a min-max error proposed in [37]. Fix positive integers M, N, S such that S ≤ M ≤ N

and let δ > 0. We define a set of vectors in CM+1,

Y := Y(M,N, S, δ)

=
{
y ∈ CM+1 : ∃μ supported in Ω ⊆ {n/N}N−1

n=0 , |Ω| = S,
( M∑

k=0

|yk − μ̂(k)|2
)1/2

≤ δ
}
.
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Let A = A(M, N, S, δ) be the set of functions ϕ that maps each y ∈ Y to a discrete measure ϕy supported 
on the grid with spacing 1/N .

Definition 3.1 (Min-max error). The �2 min-max error for the on-the-grid model is

E(M,N, S, δ) := inf
ϕ∈A

sup
y∈Y(M,N,S,δ)

(N−1∑
n=0

∣∣∣ϕy

( n

N

)
− μ
( n

N

)∣∣∣2)1/2
.

We interpret δ as the noise level and Y as the “signal space” formed by all possible δ perturbations of the 
Fourier coefficients of a measure with at most S Dirac masses on the grid. We interpret a function ϕ ∈ A
as an “algorithm” that maps a given y ∈ Y to a measure ϕy that approximates μ. By taking the infimum 
over all possible algorithms (which includes those that are computationally intractable), the min-max error 
is the reconstruction error incurred by the best algorithm, when measured against the worst case signal and 
noise. This quantity describes the fundamental limit of super-resolution under sparsity constraints, and no 
algorithm can perform better than the min-max rate.

3.2. Lower and upper bounds of the min-max error

To lower and upper bound the min-max error, we follow the approach of [38] to connect the min-max 
error with σmin(Φ(Ω, M)) for the worst subset Ω on the grid.

Definition 3.2 (Lower restricted isometry constant). Fix positive integers M, N, S such that S ≤ M ≤ N . 
The lower restricted isometry constant of order S is defined as

Θ(M,N, S) := min
Ω⊆{n/N}N−1

n=0 , |Ω|=S
σmin(Φ(Ω,M)).

Remark 3.3. While Θ(M, N, S) is related to the lower bound of the S-restricted isometry property (RIP) in 
compressive sensing [65], there is a major difference. If we select M appropriately chosen rows of the N ×N

Discrete Fourier Transform (DFT), then every M × S sub-matrix is well-conditioned, see [66]. However, 
Φ(Ω, M) uses the first M rows of the DFT matrix, so Φ(Ω, M) may be ill-conditioned.

The following result establishes the relationship between the min-max error and the lower restricted 
isometry constant. An analogue of this result for a similar super-resolution problem on R was proved in 
[38]. Their proof carries over to this discrete setting with minor modifications. To keep this paper self-
contained, we prove it in Appendix B.4 and it relies on the grid assumption.

Proposition 3.4 (Min-max error and lower restricted isometry constant). Fix positive integers M, N, S such 
that 2S ≤ M ≤ N , and let δ > 0. Then,

δ

2Θ(M,N, 2S) ≤ E(M,N, S, δ) ≤ 2δ
Θ(M,N, 2S) .

With this result at hand, our main focus is to derive an accurate lower bound for Θ(M, N, S). We suspect 
that the minimum in Θ(M, N, S) occurs when all the points in Ω are consecutively spaced by 1/N . If we 
could prove this conjecture, then we could simply apply Theorem 2.7 for the single clump case to derive 
an upper bound of Θ(M, N, S). Without this conjecture, our strategy is to apply our duality techniques in 
Section 2.4 for all 

(
N
S

)
possible choices of Ω and then uniformly bound over all these possibilities. There are 

exponentially many possible such Ω, so we must be extremely careful with the estimate in order to obtain 
an accurate lower bound for Θ(M, N, S). The following theorem is proved in Appendix A.3.
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Theorem 3.5. Fix positive integers M, N, S such that S ≥ 2, M ≥ 2S, and N ≥ πMS. We define the 
constant,

C(M,S) :=
(12 − π2

24

)1/2( S∑
j=1

S∏
k �=j, k=1

1
(j − k)2

)−1/2 1√
S

(π
S

)S−1(M
S

)−(S−1)⌊M
S

⌋S−1
.

Then we have

Θ(M,N, S) ≥ C(M,S)
√
M
(M
N

)S−1
. (3.1)

Remark 3.6. As described in Remark 2.4, when M is significantly larger than S, the (M/S)−(S−1)�M/S�S−1

factor in C(M, S) can be safely ignored if M/S is sufficiently large. Alternatively, we can lower bound 
C(M, S) independent of M since t/�t� ≤ t/(t − 1) ≤ 2 for all t > 2 and so

C(M,S) ≥
(12 − π2

24

)1/2( S∑
j=1

S∏
k �=j, k=1

1
(j − k)2

)−1/2 1√
S

(π
S

)S−1
2−(S−1).

Now we concentrate on the dependence of C(M, S) on S. Since 
∏S

k �=j, k=1(j − k)−2 ≤ 1 for each 1 ≤ j ≤ S, 
we have the lower bound,

C(M,S) ≥ 1
π

(12 − π2

24

)1/2(π
S

)S(M
S

)−(S−1)⌊M
S

⌋S−1
.

For large S, a more accurate bound is (see Lemma C.2 in Appendix C.4)

C(M,S) ≥ 1
2π2e

(12 − π2

24

)1/2
e−S
(S

2 − 1
)S(π

S

)S(M
S

)−(S−1)⌊M
S

⌋S−1
.

For large S, the right hand side scales as Cc−S for universal constants C, c > 0.

Remark 3.7. Although we do not identify which Ω achieves the minimum in Θ(M, N, S), the theorem 
suggests that the minimum is attained by translates of Ω∗ := {n/N}S−1

n=0 . Indeed, the assumption N ≥ πMS

implies that Ω∗ is contained in an open interval of length 1/M . We readily check that if ρj = ρj(Ω∗, M) is 
the complexity of ωj ∈ Ω∗, then

( S∑
j=1

ρ2
j

)1/2
=
( S∑

j=1

∏
k �=j

1
(j − k)2

)1/2( N

πM

)S−1
.

Notice that this is precisely the quantities that appear in Theorem 3.5.

We next present the lower and upper bounds for the min-max error, which is proved in Appendix A.4.

Theorem 3.8. Fix positive integers S, M, N and let δ > 0.

(a) Assume that M ≥ 4S and N ≥ 2πMS, and let C(M, S) be the constant defined in Theorem 3.5. Then, 
we have the upper bound,

E(M,N, S, δ) ≤ 2δ 1√
(N )2S−1

.

C(M, 2S) M M
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(b) Assume that M ≥ 2S + 1, and N/M ≥ 2πC(2S)
√
M + 1, where C(2S) is the constant defined in 

Proposition 2.10. Then, we have the lower bound,

E(M,N, S, δ) ≥ δ

4

(
4S − 2
2S − 1

)1/2 1√
M + 1

( N

2πM

)2S−1
.

3.3. Numerical accuracy of Theorem 3.5

Let θ(M, N, S) denote the right hand side of (3.1). Note that θ is only defined for N/M ≥ πS. We make 
two important observations before numerically evaluating the accuracy of Theorem 3.5.

First, while we would like to compare θ directly with Θ, this is not computationally feasible because we 
would need to enumerate through all possible Ω, for numerous values of M, N, S. Instead, we compare θ
with the quantity,

ψ(M,N, S) := σmin(Φ(Ω∗,M)),

where Ω∗ := {n/N}S−1
n=0 . Note that ψ serves as a useful substitute for Θ because of the inequalities

θ(M,N, S) ≤ Θ(M,N, S) ≤ ψ(M,N, S). (3.2)

Second, while both θ and ψ depend on three parameters, Theorem 3.5 and Proposition 2.10 suggest 
that after safely ignoring the 

√
M scaling factor, they should only depend on two parameters, the super-

resolution factor SRF = N/M and the sparsity S. Additionally, we can only reliably perform the experiments 
for modest size of SRFS−1, or else numerical round off errors become significant.

Fig. 4 (a) displays the values of θ and ψ as functions of SRF. Since the slope of both curves are identical, 
they verify that Theorem 3.5 correctly quantifies the dependence of the min-max error on SRF. Fig. 4 (b) 
displays the ratio between ψ and θ. As a consequence of inequalities (3.2), this experiment also indirectly 
provides us information about the ratio of Θ and θ. The lines in Fig. 4 (b) are horizontal, which confirms 
our theory that, if SRF ≥ πS, then there exists a c(M, S) > 0 such that

Θ(M,N, S) = c(M,S)
√
M
(M
N

)S−1
.

3.4. Related work on super-resolution limit

A min-max formulation of super-resolution for measures on the grid can be traced back to [37] and 
related works [38,59]. The similarity is that all three consider continuous Fourier measurements and the 
main differences are their assumptions on μ. In [37], μ is supported in a grid of the real line R with 
constraints on the “density” of the support. In [38], μ is again supported on a grid in R but has S atoms 
without restrictions on its support. In [59], μ is supported a grid in [0, 1], has S atoms, and its support 
satisfies a clumps condition. Our setup is different from those considered in [37,38,59] in the sense that 
we consider discrete Fourier measurements. Even though the min-max error in Theorem 3.8, is strikingly 
similar to those found in [37,38,59], their results do not imply ours or vice versa.

Recently, the authors of [39] studied the min-max error with continuous Fourier measurements, when 
the support set contains a single cluster of λ nodes while the remaining S − λ ones are well separated. In 
our notation, this corresponds to λ1 = λ and λa = 1 for all a ≥ 2. Under appropriate conditions on the 
various parameters, [39, Theorem 2.10] shows that: (1) the min-max support error for the cluster nodes, 
as a function of SRF, scales linearly in SRF2λ−2; (2) the min-max amplitude error for the cluster nodes, 
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Fig. 4. The left figure displays θ(M, N, S) and ψ(M, N, S) as functions of SRF = N/M , while the right figure displays their ratio. 
For both experiments, we consider the range of parameters 2 ≤ S ≤ 5, πS ≤ SRF and 10 ≤ SRF ≤ 30, respectively.

scales linearly in SRF2λ−1. Their result does not imply ours or vice versa, since we consider different models. 
Nonetheless, their min-max amplitude error is consistent with our Theorem 3.8 if the support set contains 
a cluster of λ closely spaced points.

Regarding the detection of the number of sources, [67] provided an information-theoretic condition for 
the SRF and the noise level such that the number of sources can be correctly detected.

4. MUSIC and its super-resolution limit

In signal processing, a class of subspace methods, including MUSIC [5], is widely used due to their 
superior numerical performance. It was well known that MUSIC has super-resolution phenomenon [40]. The 
resolution limit of MUSIC was discovered by numerical experiments in [26], but has never been rigorously 
proved. A main contribution of this paper is to prove the sensitivity of the noise-space correlation function 
in MUSIC under the clumps model.

4.1. The MUSIC algorithm

MUSIC is built upon a Hankel matrix and its Vandermonde decomposition. For a fixed positive integer 
L ≤ M , we form the Hankel matrix of y:

H(y) :=

⎡⎢⎢⎣
y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
...

...
. . .

...
yL yL+1 . . . yM

⎤⎥⎥⎦ ∈ C(L+1)×(M−L+1).

Denote the noiseless measurement vector by y0 = Φ(Ω, M)x. For simplicity, we will denote Φ(Ω, M) by ΦM

in this section. It is straightforward to verify that H(y0) possesses the following Vandermonde decomposition:

H(y0) = ΦLXΦT
M−L,

where X = diag(x) ∈ RS×S . We always assume that M + 1 ≥ 2S and S ≤ L ≤ M − S + 1 so that ΦL and 
ΦM−L have full column rank, and H(y0) has rank S.
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Algorithm 1 MUltiple SIgnal Classification (MUSIC).
Input: y ∈ CM+1, sparsity S and a integer L
1: Form Hankel matrix H(y) ∈ C(L+1)×(M−L+1)

2: Compute the SVD of H(y):

H(y) = [ Û︸︷︷︸
(L+1)×S

Ŵ︸︷︷︸
(L+1)×(L−S)

] diag(σ̂1, . . . , σ̂S , σ̂S+1, . . .)︸ ︷︷ ︸
(L+1)×(M−L+1)

[ V̂1︸︷︷︸
(M−L+1)×S

V̂2︸︷︷︸
(M−L+1)×(M−L+1−S)

]∗ (4.1)

where σ̂1 ≥ σ̂2 . . . ≥ σ̂S ≥ σ̂S+1 ≥ . . . are the singular values of H(y).
3: Compute the imaging function Ĵ (ω) = ‖φL(ω)‖2/‖Ŵ ∗φL(ω)‖2, ω ∈ [0, 1).

Output: Ω̂ = {ω̂j}S
j=1 corresponding to the S largest local maxima of Ĵ .

Table 1
Noise-space correlation functions and imaging functions in MUSIC, where W given in (4.2) and Ŵ given in (4.1) of Algorithm 1
are the noise space of dimension L − S in the noiseless and noisy case respectively.

Noise-space correlation function Imaging function

Noiseless case R(ω) = ‖W ∗φL(ω)‖2
‖φL(ω)‖2

J (ω) = 1
R(ω) = ‖φL(ω)‖2

‖W ∗φL(ω)‖2

Noisy case R̂(ω) = ‖Ŵ ∗φL(ω)‖2
‖φL(ω)‖2

Ĵ (ω) = 1
R̂(ω)

= ‖φL(ω)‖2

‖Ŵ ∗φL(ω)‖2

In the noiseless case, let the Singular Value Decomposition (SVD) of H(y0) be:

H(y0) = [ U︸︷︷︸
L×S

W︸︷︷︸
L×(L−S)

] diag(σ1, σ2, . . . , σS , 0, . . . , 0)︸ ︷︷ ︸
L×(M−L+1)

[ V1︸︷︷︸
(M−L+1)×S

V2︸︷︷︸
(M−L+1)×(M−L+1−S)

]∗ (4.2)

where σ1 ≥ σ2 ≥ . . . ≥ σS are the non-zero singular values of H(y0). The column spaces of U and W
are the same as Range(H(y0)) and Range(H(y0))⊥, which are called the signal space and the noise space 
respectively.

For any ω ∈ [0, 1) and integer L, we define the steering vector of length L + 1 at ω to be

φL(ω) = [1 e−2πiω e−2πi2ω . . . e−2πiLω]T ∈ RL+1,

and then ΦL = [φL(ω1) . . . φL(ωS)]. The MUSIC algorithm is based on the following observation on the 
Vandermonde structure of ΦL: if S ≤ L ≤ M − S + 1, then

ω ∈ {ωj}Sj=1 ⇐⇒ φL(ω) ∈ Range(ΦL) = Range(H(y0)) = Range(U). (4.3)

We define a noise-space correlation function R(ω) and an imaging function as its reciprocal (see Table 1
for definitions). The following lemma is based on (4.3).

Lemma 4.1. Suppose M + 1 ≥ 2S and L is chosen such that S ≤ L ≤ M − S + 1. Then

ω ∈ {ωj}Sj=1 ⇐⇒ R(ω) = 0 ⇐⇒ J (ω) = ∞.

In the noiseless case, the source locations can be exactly identified through the zeros of the noise-space 
correlation function R(ω) or the peaks of the imaging function J (ω), as long as the number of measurements 
is at least twice the number of point sources to be recovered.

In the presence of noise, H(y0) is perturbed to H(y) such that:

H(y) = H(y0) + H(η)
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whose SVD is given by (4.1) in Algorithm 1. The noise-space correlation function and the imaging function 
are perturbed to R̂ and Ĵ respectively (see Table 1 for the definitions). MUSIC in Algorithm 1 gives rise 
to a recovered support Ω̂ = {ω̂j}Sj=1 corresponding to the S largest local maxima of Ĵ .

4.2. Sensitivity of the noise-space correlation function in MUSIC

When the noise-to-signal ratio is low, the imaging function Ĵ still peaks around the true sources, but 
MUSIC can fail when the noise-to-signal ratio increases. The stability of MUSIC depends on the perturbation 
of the noise-space correlation function from R to R̂ which is measured by ‖R̂−R‖∞ := maxω∈[0,1) |R̂(ω) −
R(ω)|. Thanks to the classical perturbation theory on singular subspaces by Wedin [68, Section 3], we have 
the following bound for ‖R̂ − R‖∞:

Proposition 4.2. Suppose M + 1 ≥ 2S and L is chosen such that S ≤ L ≤ M − S + 1. If 2‖H(η)‖2 <

xminσmin(ΦL)σmin(ΦM−L), then

‖R̂ − R‖∞ ≤ 2‖H(η)‖2

xminσmin(ΦL)σmin(ΦM−L) . (4.4)

The dependence on σmin(ΦL) and σmin(ΦM−L) in (4.4) are crucial since they are small in the super-
resolution regime. It is the best to set L = �M/2� to balance them. With Wedin’s theorem, Proposition 4.2
improves Theorem 3 in [26], which upper bound ‖R̂−R‖∞ in the order of ‖H(η)‖2/[σ2

min(ΦL)σ2
min(ΦM−L)]. 

Combining Proposition 4.2 and Theorem 2.7 gives rise to the following sensitivity bound of the noise-space 
correlation function under the clumps model:

Theorem 4.3. Fix positive integers A, M, S. Let M ≥ S2 be an even integer and L = M/2. Suppose Ω satisfies 
Assumption 2.6 with parameters (A, L, S, β, α) for some α > 0 and β with (2.4). For each 1 ≤ a ≤ A, let 
ca = Ca(λa, L). If 4‖H(η)‖2

∑A
a=1(caα−λa+1)2 < xminM , then

‖R̂ − R‖∞ ≤ 4‖H(η)‖2

xminM

A∑
a=1

(
ca α

−λa+1)2.
Remark 4.4. In this paper, the stability of MUSIC is given in terms of the L∞ perturbation of the noise-space 
correlation function. When the point sources are well separated, a source localization error |ω̂j − ωj | was 
derived in terms of ‖R̂−R‖∞ [26, Theorem 4]. In the clumps model, such a derivation is more complicated 
and we leave it as a future work.

Theorem 4.3 is stated for even M only for simplicity, and a similar result holds for odd M by setting 
L = �M/2�. This theorem applies to any noise vector η. In the case of bounded noise, applying the inequality 
‖H(η)‖2 ≤ ‖H(η)‖F ≤

√
L‖η‖2 gives rise to the following corollary:

Corollary 4.5. Under the assumptions in Theorem 4.3,

‖R̂ − R‖∞ ≤ 4
√
L‖η‖2

xminM

A∑
a=1

(
ca α

−λa+1)2.
If η is independent gaussian noise, i.e., η ∼ N (0, σ2I), the spectral norm of H(η) has been well studied 

in literature [69,70]. The following lemma [27, Theorem 4] is obtained from the matrix Bernstein inequality 
[71]:
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Lemma 4.6. If η ∼ N (0, σ2I), then

P {‖H(η)‖2 ≥ t} ≤ (M + 2) exp
(
− t2

2σ2 max(L + 1,M − L + 1)

)
,∀t > 0.

Combining Theorem 4.3 and Lemma 4.6 gives rise to the following explicit bound on the noise-to-signal 
ratio σ/xmin in order to guarantee a fixed ε-perturbation of R.

Corollary 4.7. Suppose η ∼ N (0, σ2I). Fix ε > 0 and ν > 1. Under the assumptions in Theorem 4.3, if

σ

xmin
<

M

4
√
ν(M + 2) log(M + 2)

(
A∑

a=1

(
caα

−λa+1)2)−1

ε, (4.5)

then ‖R̂ − R‖∞ ≤ ε with probability no less than 1 − (M + 2)−(ν−1).

Corollary 4.7 is proved in Appendix A.5. It upper bounds the noise-to-signal ratio for which MUSIC can 
guarantee an ε-perturbation of R. In the special case where each Λa contains λ equally spaced points with 
spacing α/M (see Fig. 2), (4.5) can be simplified to

σ

xmin
∝ ε

√
M

logMα2λ−2 = ε

√
M

logM

(
1

SRF

)2λ−2

, (4.6)

which shows that the noise-to-signal ratio that MUSIC can tolerate is exponential in 1/SRF. The key 
contribution of this paper is that, the exponent only depends on the cardinality of the clumps instead of 
the total sparsity S. These estimates are verified by numerical experiments in Section 4.3.

4.3. Numerical simulations on the super-resolution limit of MUSIC

In our experiments, the true support Ω consists of A = 1, 2, 3, 4 clumps and each clump contains λ equally 
spaced point sources separated by Δ = α/M where 1/α is the SRF of Ω (see Fig. 5 (a) for an example). The 
clumps are separated at least by 10/M . The xi’s are complex with unit magnitudes and random phases. 
Noise is gaussian: η ∼ N (0, σ2I). We set M = 100 and let Δ vary so that the SRF varies from 1 to 10. 
We run MUSIC with the varying SRF and σ for 10 trials. The support error is measured by the matching 
distance between Ω and Ω̂:

distB(Ω, Ω̂) := inf
bijection ψ: Ω→Ω̂

sup
ω̂∈Ω̂

|ω̂ − ψ(ω)|T .

Fig. 5 (b) displays the average log2[distB(Ω, Ω̂)/Δ] over 10 trials with respect to log10 SRF (x-axis) and 
log10 σ (y-axis) when Ω contains 2 clumps of 3 equally spaced point sources: A = 2, λ = 3. A clear phase 
transition demonstrates that MUSIC is capable of resolving closely spaced complex-valued objects as long 
as σ is below certain threshold.

In Fig. 6, we display the phase transition curves at which distB(Ω, Ω̂) ≈ Δ/2 with respect to log10 SRF
(x-axis) and log10 σ (y-axis) when Ω contains A = 1, 2, 3, 4 clumps of λ = 2, 3, 4, 5 equally spaced point 
sources. All phase transition curves are almost straight lines, manifesting that the noise level σ that MUSIC 
can tolerate satisfies

σ ∝ SRF−q(Ω). (4.7)
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Fig. 5. (b) displays the average log2[distB(Ω, Ω̂)/Δ] over 10 trials with respect to log10 SRF (x-axis) and log10 σ (y-axis) when 
A = 2 and λ = 3.

Table 2
Numerical simulations of q(Ω) in (4.7) on the super-resolution limit of MUSIC.

λ = 2 λ = 3 λ = 4 λ = 5 Numerical q(Ω) Theoretical q(Ω)
1-clump: A = 1 3.0019 5.1935 7.4176 10.4286 2.45λ − 2.07 2λ − 2
2-clump: A = 2 3.1287 5.2717 7.9371 10 2.33λ − 1.56 2λ − 2
3-clump: A = 3 3.1081 5.1826 7.299 8.5 1.83λ − 0.38 2λ − 2
4-clump: A = 4 3.0767 5.1731 7.3252 10 2.29λ − 1.63 2λ − 2

A least squares fitting of the curves by straight lines gives rise to the exponent q(Ω) numerically, summarized 
in Table 2. It is close to our theory (4.6) of q(Ω) = 2λ − 2.

4.4. Related work on subspace methods

Subspace methods, including MUSIC [5], ESPRIT [13] and MPM [14], were initially proposed for the 
Direction-Of-Arrival (DOA) estimation [4]. In the DOA setting, the amplitude vector x is random with 
respect to time, and multiple snapshots of measurements are taken. The covariance matrix of y possesses 
a Vandermonde decomposition so that MUSIC, ESPRIT and MPM are applicable. The classical theories 
in [72,73] primarily analyze the stability of MUSIC and ESPRIT with respect to the number of snapshots, 
denoted by #Snapshot. They show that the asymptotic distribution of the squared error is on the order of 
C × noise/#Snapshot where the constant C depends on σmin(Φ). It is not clear from [72,73] how large the 
implicit constant C is, while our paper gives an explicit characterization of the C under the clumps model.

The super-resolution problem considered in this paper corresponds to the single snapshot case, in which 
case, the key quantity of interest is the implicit constant C. In the single-snapshot case, there have been 
several works on the stability of subspace methods, which addressed the connection between σmin(Φ) and 
the support Ω. These works include MUSIC [26], ESPRIT [74] and MPM [28], but only apply to the well-
separated case. During the review period of this paper, the present authors applied Theorem 2.7 to derive 
an error bound for ESPRIT in the super-resolution regime [75].

In literature, the resolution of MUSIC was addressed in [41–43]. These papers studied the frequency 
estimation error in the DOA setting with multiple snapshots of measurements. The Cramér-Rao lower 
bound is derived based on the statistics of random amplitudes. Thus, these results do not apply to the 
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Fig. 6. Phase transition curves: (a-d) show the average log2[distB(Ω, Ω̂)/Δ] over 10 trials with respect to log10 SRF (x-axis) and 
log10 σ (y-axis) when Ω contains A = 1, 2, 3, 4 clumps of λ = 2, 3, 4, 5 equally spaced point sources. The slope is computed by a 
least squares fitting by a straight line.

single-snapshot case. It was explicitly mentioned in [41, after Equation (1.2)] that, “In effect, the analysis in 
[42] assumes the multi-experiment case, and hence may not apply to the single experiment case.” Our theory 
shares some similarity with [42]. Equation (2) in [42] implies that, to guarantee the success of MUSIC for 
the estimation of λ closely spaced frequencies with separation Δ, the SNR needs to be at least Δ−2(λ−1), 
which has the same dependence on Δ as the Equation (4.6) of our paper. Here are some differences between 
Equation (2) in [42] and Equation (4.6) of our paper: (1) Our Equation (4.6) implies SNR in the order of 
SRF2(λ−1) = (MΔ)−2(λ−1), which is more accurate than Δ−2(λ−1). In other words, our theory takes the 
advantage of a large M in applications. (2) Our theory does not rely on the randomness of x, and considers 
the clumps model, which is more general than just having λ closely spaced frequencies with separation Δ. 
(3) Our results are non-asymptotic and work for finite measurements M , while the theories in [41–43] are 
asymptotic and require #Snapshot → ∞ and Δ → 0.

Finally we remark that the results in the present paper are not the same as the Cramér-Rao bounds for a 
single-snapshot case. In the single snapshot case, one assumes certain statistics of the random noise, and the 
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Cramér-Rao bound expresses a lower bound on the variance of unbiased estimators. The noise statistics play 
an important role in the Cramér-Rao bound. Our perturbation bound for MUSIC, such as Corollary 4.5, is 
deterministic and can be applied for all noise vectors, independently of the noise statistics.
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Appendix A. Proof of theorems and corollaries

A.1. Proof of Theorem 2.3

We first need to introduce the following function that is of great importance in Fourier analysis. For a 
positive integer P , we define the normalized Fejér kernel FP ∈ C∞(T ) by the formula,

FP (ω) := 1
P + 1

P∑
m=−P

(
1 − |m|

P + 1

)
e2πimω = 1

(P + 1)2
( sin(π(P + 1)ω)

sin(πω)

)2
.

The normalization is chosen so that FP (0) = 1. We recall some basic facts about the Fejér kernel. Its L2(T )
norm can be calculated using Parseval’s formula, and so

‖FP ‖L2(T) = 1
(P + 1)2

(
(P + 1)2 + 2

P∑
m=1

m2
)1/2

≤ 1
(P + 1)1/2

. (A.1)

We can also provide a point-wise estimate. By the trigonometric inequality | sin(πω)| ≥ 2|ω|T , we have

|FP (ω)| ≤ 1
22(P + 1)2|ω|2T

, for all ω ∈ T . (A.2)

If we raise the Fejér kernel to a power R, then the function (FP (ω))R has better decay, but at the cost of 
increasing its frequency support. If we keep the product PR fixed, then increasing R leads to better decay 
at the expense of worse localization near the origin.

The proof of Theorem 2.3 relies on the quantitative properties of a set of polynomials {Ij}Sj=1, with Ij
depending on Ω and M , which we shall explicitly construct. The construction seems complicated, but the 
idea is very simple. For each ωj ∈ Ω, we construct Ij ∈ P(M) such that it decays rapidly away from ωj and

Ij(ωk) = δj,k, for all ωk ∈ Λa.

The key is to carefully construct each Ij so that it has small norm; otherwise, the resulting lower bound for 
σmin(Φ) would be loose and have limited applicability. The construction of these polynomials is technical 
and it can be found in Appendix C.
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Lemma A.1. Suppose the assumptions of Theorem 2.3 hold and define the constant

B̃a := B̃a(λa,M) :=
(
1 − π2

3λ2
a

)−(λa−1)/2(M
λa

)λa−1⌊M
λa

⌋−(λa−1)
.

For each 1 ≤ a ≤ A and each ωj ∈ Λa, there exists a Ij ∈ P(M) satisfying the following properties.

(a) Ij(ωk) = δj,k for all ωk ∈ Λa.
(b) |Ij(ωk)| ≤ 1/(20S) for all ωk /∈ Λa.
(c) ‖Ij‖L2(T) ≤ (2/M)1/2B̃aλ

λa−1
a ρj.

Proof of Theorem 2.3. Let {Ij}Sj=1 be the polynomials constructed in Lemma A.1. Let v ∈ CS be a unit 
norm vector such that

σmin(Φ) = ‖Φv‖2.

We define the trigonometric polynomial I ∈ P(M) by the formula,

I(ω) := I(ω, v) :=
S∑

j=1
vjIj(ω).

For each index 1 ≤ k ≤ S, we define the quantity

εk := I(ωk) − vk.

Since Ij(ωj) = 1, we have

εk =
∑
j �=k

vjIj(ωk).

Fix a ωk ∈ Ω. Then ωk ∈ Λa for some 1 ≤ a ≤ A. By Cauchy Schwartz, the assumption that v is unit norm, 
the property that Ij(ωk) = δj,k for all ωk ∈ Λa, and the upper bound on |I(ωk)| given in Lemma A.1, we 
deduce

|εk| ≤
(∑

j �=k

|Ij(ωk)|2
)1/2

=
( ∑

ωj /∈Λa

|Ij(ωk)|2
)1/2

≤ 1
20

√
S
.

This holds for each 1 ≤ k ≤ S, so we have

‖ε‖2 ≤
√
S‖ε‖∞ ≤ 1

20 .

The conditions of robust duality, Proposition 2.13, are satisfied, so we have

σmin(Φ) = ‖Φv‖2 ≥ 19
20‖I(·, v)‖

−1
L2(T).

To complete the proof, we need to upper bound ‖I(·, v)‖L2(T) uniformly in v. We use Cauchy-Schwartz, 
that v has unit norm, and the norm bound for Ij given in Lemma A.1 to obtain the upper bound,

‖I(·, v)‖L2(T) ≤
( S∑

‖Ij‖2
L2(T)

)1/2
≤
( 2
M

)1/2( S∑
(B̃aλ

λa
a ρj)2

)1/2
,

j=1 j=1
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where B̃a was defined in the referenced lemma. Combining the previous two inequalities shows that

σmin(Φ) ≥ 19
20

√
2
√
M
( S∑

j=1
(B̃2

aλ
λa
a ρj)2

)−1/2
=

√
M
( S∑

j=1
(Baλ

λa
a ρj)2

)−1/2
,

where by definition, Ba = B̃a(20
√

2)/19. �
A.2. Proof of Theorem 2.7

Proof. Fix an index 1 ≤ a ≤ A and ωj ∈ Λa. Recalling the definition of ρj and using that Δ ≥ α/M , we 
see that

ρj =
∏

ωk∈Λa\{ωj}

1
πM |ωk − ωj |T

≤
( 1
πα

)λa−1
.

This implies that

10λ5/2
a (Sρj)1/(2λa)

M
≤ 10λ5/2

a S1/2

Mα1/2 .

This in turn, shows that the separation condition (2.4) implies (2.2). Hence, the assumptions of Theorem 2.3
are satisfied, and we have

σmin(Φ) ≥
√
M
( A∑

a=1

∑
ωj∈Λa

(Baλ
λa−1
a ρj)2

)−1/2
.

We can write the right hand side in terms of α. Observe that if Λ̃a = {ω̃j}λa
j=1 contains λa points that are 

equispaced by α/M and ρ̃j is the complexity of ω̃j , then∑
ωj∈Λa

ρ2
j ≤

∑
ω̃j∈Λ̃a

ρ̃2
j .

Thus we have the inequality,

∑
ωj∈Λa

ρ2
j ≤

λa∑
j=1

( λa∏
k=1, k �=j

1
(j − k)2

)( 1
πα

)2λa−2
.

Combining the above inequalities completes the proof. �
A.3. Proof of Theorem 3.5

The crux of the proof is to construct, for each Ω ⊆ {n/N}N−1
n=0 with |Ω| = S, a family of polynomials 

{Hj(·, Ω)}Sj=1 with small L2(T ) norms that satisfy an appropriate interpolation property. The construction 
is technical because it must be done carefully in order to obtain an accurate bound for the lower restricted 
isometry constant. The proof of the following lemma can be found in Appendix C.

Lemma A.2. Suppose the assumptions of Theorem 3.5 hold and let C(M, S) be the constant defined in the 
theorem. For each Ω ⊆ {n/N}N−1

n=0 and of cardinality S, there exist a family of polynomials {Hj(·, Ω)}Sj=1 ⊆
P(M) such that
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Hj(ωk,Ω) = δj,k for all ωj , ωk ∈ Ω.

Moreover, we have the upper bound,

( S∑
j=1

‖Hj(·,Ω)‖2
L2(T)

)1/2
≤ C(M,S)−1 1√

M

(N
M

)S−1
.

Proof of Theorem 3.5. By definition of the lower restricted isometry constant, there exists a set Ω of cardi-
nality S and supported on the grid with spacing 1/N such that

Θ(M,N, S) = σmin(Φ(Ω,M)).

Let {Hj(Ω)}Sj=1 be the family of polynomials given in Lemma A.2. Let u = u(Ω) ∈ CS be a unit norm 
vector such that

σmin(Φ(Ω,M)) = ‖Φ(Ω,M)u‖2.

We define the polynomial,

H(ω) := H(ω, u,Ω) :=
S∑

j=1
ujHj(ω,Ω).

Using the interpolation property of {Hj(·, Ω)}Sj=1 guaranteed by Lemma A.2, we see that H ∈ P(Ω, M, u). 
By exact duality, Proposition 2.12, we have

σmin(Φ(Ω,M)) = max
f∈P(Ω,M,u(Ω))

‖f‖−1
L2(T) ≥ ‖H(·,Ω)‖−1

L2(T).

Using Cauchy-Schwartz and that u is a unit norm vector, we have

‖H‖L2(T) ≤
( S∑

j=1
‖Hj‖2

L2(T)

)1/2
.

Combining the previous inequalities and using the upper bound given in Lemma A.2 completes the proof 
of the theorem. �
A.4. Proof of Theorem 3.8

Proof. The upper bound for the min-max error is a direct consequence of Proposition 3.4 and Theorem 3.5. 
To obtain a lower bound for the min-max error, we first apply Proposition 2.10 to the case that Ω consists 
of 2S consecutive points spaced by 1/N . We ready check that the size assumptions on M and N imply that 
the conditions of Proposition 2.10 are satisfied, and thus,

Θ(M,N, 2S) ≤ 2
(

4S − 2
2S − 1

)−1/2√
M + 1

(2πM
N

)2S−1
.

Combining this with Proposition 3.4 establishes a lower bound for the min-max error. �
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A.5. Proof of Corollary 4.7

Proof. According to Theorem 4.3, a sufficient condition for ‖R̂ − R‖∞ ≤ ε is

‖H(η)‖2 ≤ Mxmin

( A∑
a=1

(caα−λa+1)2
)−1

ε/4. (A.3)

Lemma 4.6 implies that (A.3) holds with probability no less than 1 − (M + 2)−(ν−1) as long as t =
Mxmin

(∑A
a=1 c

2
aα

−2(λa−1)
)−1

ε/4 and (M + 2)e−
t2

σ2(M+2) < (M + 2)1−ν , which is guaranteed by (4.5). �
Appendix B. Proof of propositions

B.1. Proof of Proposition 2.10

Proof. The argument relies on the variational form for the minimum singular value,

σmin(Φ) = min
u∈CS ,u �=0

‖Φu‖2

‖u‖2
.

To obtain an upper bound, it suffices to consider a specific u, and our choice is inspired by Donoho [37]. 
Without loss of generality, we assume that ω = 0. We re-index the set Ω = {ωj}Sj=1 so that

ωj = (j − 1)α
M

for 1 ≤ j ≤ λ.

We consider the vector u ∈ CS defined by the formula

uj := (−1)j−1
(
λ− 1
j − 1

)
for 1 ≤ j ≤ λ,

and uj = 0 otherwise. Note that

‖u‖2 =
(

2λ− 2
λ− 1

)1/2

.

By the variational form for the minimum singular value, we have

σmin(Φ) ≤ ‖Φu‖2

‖u‖2
=
(

2λ− 2
λ− 1

)−1/2

‖Φu‖2. (B.1)

To estimate ‖Φu‖2, we identify u with the discrete measure

μ :=
λ∑

j=1
ujδ(j−1)α/M .

We also define a modulated Dirichlet kernel DM ∈ C∞(T ) by the formula, DM (ω) :=
∑M

m=0 e
2πimω. We 

readily check that

‖Φu‖2 =
M∑

|(Φu)m|2 =
( M∑

|μ̂(m)|2
)1/2

= ‖μ ∗DM‖L2(T). (B.2)

m=0 m=0



W. Li, W. Liao / Appl. Comput. Harmon. Anal. 51 (2021) 118–156 143
We see that all ω ∈ T ,

(μ ∗DM )(ω) =
λ−1∑
j=0

(−1)j
(
λ− 1
j

)
DM

(
ω − jα

M

)
. (B.3)

The right hand side is the (λ − 1)-th order backwards finite difference of DM . It is well-known that for each 
ω ∈ T , we have

(μ ∗DM )(ω) =
( α

M

)λ−1
D

(λ−1)
M (ω) + Rλ−1(ω), (B.4)

where D(λ−1)
M denotes the (λ − 1)-th derivative of DM and the remainder term Rλ−1 in magnitude is point-

wise O((α/M)λ) as α → 0. In order to exactly determine how small we require α to be, we calculate the 
remainder term explicitly. By a Taylor expansion of DM , for each ω ∈ T and 0 ≤ j ≤ λ − 1, there exists 
ωj ∈ (ω − jα/M, ω) such that

DM (ω − jα) =
λ−1∑
k=0

D
(k)
M (ω)

( α

M

)k (−1)kjk

k! + D
(λ)
M (ωj)

( α

M

)λ (−1)λjλ

λ! .

Using this formula in equations (B.2) and (B.3), we see that

Rλ−1(ω) =
λ−1∑
j=0

(−1)j+λ

(
λ− 1
j

)
D

(λ)
M (ωj)

( α

M

)λ jλ
λ! .

We are ready to bound equation (B.4) in the L2(T ) norm. By the Bernstein inequality for trigonometric 
polynomials, we have

‖D(λ−1)
M ‖L2(T) ≤ (2πM)λ−1‖DM‖L2(T) =

√
M + 1 (2πM)λ−1.

By the same argument, we have

‖Rλ−1‖L2(T) ≤
λ−1∑
j=0

(
λ− 1
j

)( α

M

)λ jλ
λ! ‖D

(λ)
M ‖L∞(T)

≤ C(λ)α(2πα)λ−1‖DM‖L∞(T)

≤ C(λ)α(2πα)λ−1(M + 1).

Using these upper bounds together with (B.4), we have

‖μ ∗DM‖L2(T) ≤
√
M + 1 (2πα)λ−1

(
1 + C(λ)α

√
M + 1

)
.

This inequality and the assumed upper bound for α (2.9), we see that

‖μ ∗DM‖L2(T) ≤ 2
√
M + 1 (2πα)λ−1.

Combining this inequality with (B.1) and (B.2) completes the proof. �
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B.2. Proof of Proposition 2.12

Proof. We first prove that P(Ω, M, w) is non-empty for any w ∈ CS and S ≤ M − 1. For each 1 ≤ k ≤ S, 
we consider the Lagrange polynomials,

Lk(ω) :=
∏
j �=k

e2πiω − e2πiωj

e2πiωk − e2πiωj
.

We have Lk(ωj) = δj,k by definition, and after expanding Lk as a summation, we see that Lk ∈ P(S− 1) ⊆
P(M). This implies 

∑S
k=1 wkLk ∈ P(Ω, S − 1, w), which proves the first part of the proposition.

Let v be any unit norm vector such that ‖Φv‖2 = σmin(Φ). The set of all trigonometric polynomials 
f ∈ P(M) can be written in the form

f(ω) =
M−1∑
m=0

f̂(m)e2πimω.

Then f ∈ P(M, Ω, v) if and only if f ∈ P(M) and it Fourier coefficients satisfy the under-determined system 
of equations,

vj =
M−1∑
m=0

f̂(m)e2πimωj for 1 ≤ j ≤ S.

Since P(Ω, M, v) is non-empty, pick any f ∈ P(Ω, M, v). Since ‖f‖L2(T) = ‖f̂‖�2(Z), the functions f ∈ P(M)
that satisfy this system of equations and have minimal L2(T ) norm are the ones with Fourier coefficients 
given by the Moore-Penrose pseudo-inverse solution to the above system of equations. Namely,

min
f∈P(M,Ω,v)

‖f‖L2(T) = min
Φ∗u=v

‖u‖2 = ‖(Φ∗)†v‖2 = 1
σmin(Φ) .

Rearranging this inequality completes the proof of the proposition. �
B.3. Proof of Proposition 2.13

Proof. Define the measure μ =
∑S

j=1 vjδωj
, and note that μ̂(m) = (Φv)m. We have

∣∣∣ ∫
T

f dμ
∣∣∣ = ∣∣∣ S∑

j=1
f(ωj)vj

∣∣∣ = ∣∣∣‖v‖2
2 +

S∑
j=1

vjεj

∣∣∣ ≥ ‖v‖2
2 − ‖v‖2‖ε‖2 = 1 − ‖ε‖2.

On the other hand, using that f ∈ P(M), Cauchy-Schwartz, and Parseval,

∣∣∣ ∫
T

f dμ
∣∣∣ = ∣∣∣M−1∑

m=1
f̂(m)μ̂(m)

∣∣∣ ≤ ‖f̂‖�2(Z)‖Φv‖2 = ‖f‖L2(T)‖Φv‖2.

Combining the previous two inequalities completes the proof. �
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B.4. Proof of Proposition 3.4

For this proof, we make the following changes to the notation. We can identify every discrete measure 
μ whose support is contained in the grid with spacing 1/N and consists of S points with a S-sparse vector 
x ∈ CN . Under this identification, the Fourier transform of μ is identical to the discrete Fourier transform 
of x. Let CN

S be the set of S-sparse vectors in CN , and F be the first M + 1 rows of the N × N discrete 
Fourier transform matrix. With this notation at hand, the min-max error is

E(M,N, S, δ) = inf
ϕ∈A

sup
y(x,η)∈Y

‖ϕy − x‖2.

Proof. We prove the upper bound first. Let ϕ be the function that maps each y ∈ Y to the sparsest vector 
ϕy ∈ CN such that ‖Fϕy − y‖2 ≤ δ. If there is not a unique choice of vector ϕy, just choose any one of 
them arbitrarily. Note that ϕy exists because x also satisfies the constraint that ‖Fx − y‖2 ≤ δ, and the 
choice of ϕy does not explicitly depend on x and η. Note that ‖x̃‖0 ≤ ‖ϕy‖0 ≤ S by definition of ϕ. Then 
we have

E(M,N, S, δ) ≤ sup
y(x,η)∈Y

‖ϕy − x‖2.

For any x ∈ CN
S and η with ‖η‖2 ≤ δ, we have ϕy − x ∈ CN

2S and

Θ(M,N, 2S) ≤ ‖F(ϕy − x)‖2

‖ϕy − x‖2
≤ ‖Fϕy − y‖2 + ‖Fx− y‖2

‖ϕy − x‖2
≤ 2δ

‖ϕy − x‖2
.

Combining the previous two inequalities and rearranging completes the proof of the upper bound for the 
min-max error.

We focus our attention on the lower bound for the min-max error. By definition of the smallest singular 
value, there exists v ∈ CN

2S of unit norm such that

Θ(M,N, 2S) = ‖Fv‖2.

Pick any vectors v1, v2 ∈ CN
S such that

δ

Θ(M,N, 2S) v = v1 − v2.

Suppose we are given the data

y = Fv1 = Fv2 + F(v1 − v2).

Let η := F(v1 − v2) ∈ CM+1. The previous three equations imply

‖η‖2 = ‖F(v1 − v2)‖2 = δ

Θ(M,N, 2S)‖Fv‖2 ≤ δ.

This proves that y is both the noiseless first M Fourier coefficients of v1 as well as the noisy first M Fourier 
coefficients of v2 with noise F(v1−v2) with noise η. Thus, we have y ∈ Y with y = y(v1, 0) and y = y(v2, η). 
Consequently, we have

E(M,N, S, δ) ≥ inf max ‖f(y) − vk‖.

ϕ∈A k=1,2
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Using that v has unit norm, for any ϕ ∈ A, we have

δ

Θ(M,N, 2S) = ‖v1 − v2‖2 ≤ ‖ϕy − v1‖2 + ‖ϕy − v2‖2 ≤ 2 max
k=1,2

‖ϕy − vk‖2.

This holds for all f ∈ A, so combining the previous two inequalities completes the proof of the lower bound 
for the min-max error. �
Appendix C. Proof of lemmas

C.1. Proof of Lemma A.1

Proof. Fix a ωj ∈ Ω, and so ωj ∈ Λa for some 1 ≤ a ≤ A. We explicitly construct each Ij , and it is more 
convenient to break the construction into two cases.

The simpler case is when λa = 1. Note that Ba = ρj = 1. Then we simply set

Ij(ω) := e2πiM(ω−ωj)FM (ω − ωj),

where we recall that FM is the Fejér kernel. We trivially have Ij(ωk) = δj,k for all ωk ∈ Λa and Ij ∈ P(M). 
Using the point-wise bound for the Fejér kernel (A.2) and the cluster separation condition (2.2), we have

|Ij(ωk)| ≤
1

4(M + 1)2|ωk − ωj |2T
≤ 1

400S .

Using the L2 norm bound for the Fejér kernel (A.1), we see that

‖Ij‖L2(T) ≤
1√

M + 1
.

This completes the proof of the lemma when λa = 1.
From here onwards, we assume that λ ≥ 2. To define Ij , we must construct two axillary functions Gj

and Hj . We define the Lagrange-like polynomial,

Gj(ω) :=
∏

ωk∈Λa\{ωj}

e2πiQjt − e2πiQjωk

e2πiQjωj − e2πiQjωk
, where Qj :=

⌊M
λa

⌋
.

Note that Qj is positive because M/λa ≥ M/S ≥ 1. This function is well-defined because its denominator is 
always non-zero: this follows from the observation that the inequalities, Qj ≤ M/2 and |ωj − ωk|T < 1/M , 
imply

|Qjωj −Qjωk|T = Qj |ωj − ωk|T .

By construction, the function Gj satisfies the important property that

Gj(ωk) = δj,k, for all ωk ∈ Λa. (C.1)

We upper bound Gj in the sup-norm. We begin with the estimate

‖Gj‖L∞(T) ≤
∏ 2

|1 − e2πiQj(ωj−ωk)| .

ωk∈Λa\{ωj}
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Recall the trigonometric inequality,

2 − 2 cos(2πt) ≥ (2πt)2
(
1 − π2t2

3

)
for t ∈ [−1/2, 1/2],

which follows from a Taylor expansion of cosine. Using this inequality, we deduce the bound,

‖Gj‖L∞(T) ≤
∏

ωk∈Λa\{ωj}

1
πQj |ωj − ωk|T

(
1 −

π2Q2
j |ωj − ωk|2T

3

)−1/2
.

Since Qj = �M/λa� and |ωj − ωk|T < 1/M , we have

‖Gj‖L∞(T) ≤
(
1 − π2

3λ2
a

)−(λa−1)/2 ∏
ωk∈Λa\{ωj}

1
πQj |ωj − ωk|T

= B̃aλ
λa−1
a ρj . (C.2)

We next define the function Hj by the formula,

Hj(ω) :=
(
e2πiPj(ω−ωj)FPj

(ω − ωj)
)λa

, where Pj :=
⌊ M

2λ2
a

⌋
.

Recall that FPj
denotes the Fejér kernel and note that Pj is positive because M/(2λ2

a) ≥ M/(2S2) ≥ 1. We 
need both a decay and norm bound for Hj. To obtain a norm bound, we use Hölder’s inequality, that the 
Fejér kernel is point-wise upper bounded by 1, the norm bound for the Fejér kernel (A.1), and the inequality 
Pj + 1 ≥ M/(2λ2

a), to obtain,

‖Hj‖L2(T) ≤ ‖FPj
‖λa−1
L∞(T)‖FPj

‖L2(T) ≤
1√

Pj + 1
≤
(2λ2

a

M

)1/2
. (C.3)

To obtain a decay bound for Hj, we use the point-wise bound for the Fejér kernel (A.2) to deduce,

|Hj(ω)| ≤
( 1

2(Pj + 1)|ω − ωj |T

)2λa

≤
( λ2

a

M |ω − ωj |T

)2λa

, for all ω ∈ T .

We would like to specialize this to the case that ω = ωj for ωj /∈ Λa. We need to make the following 
observations first. Observe that 1 ≤ �t�/t ≤ 2 for any t ≥ 1. Using this inequality and that λa ≥ 2, we see 
that

(20B̃a)1/(2λa) ≤ 201/(2λa)
(
1 − π2

3λ2
a

)−1/4+1/(4λa)
2(λa−1)/(2λa) ≤ 10.

This inequality and the cluster separation condition (2.2) imply

|ωk − ωj |T ≥ 10λ2
a(Sλλa−1

a ρj)1/(2λa)

M
≥ λ2

a(20B̃aSλ
λa−1
a ρj)1/(2λa)

M
for all ωk /∈ Λa.

Combining this with the previous upper bound on Hj shows that

|Hj(ωk)| ≤
1

20SB̃aλ
λa−1
a ρj

for all ωk /∈ Λa. (C.4)

We define the function Ij by the formula

Ij(ω) := Gj(ω)Hj(ω).
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It follows immediately from the property (C.1) that

Ij(ωk) = δj,k for all ωk ∈ Λa.

The negative frequencies of Ij are zero, while its largest non-negative frequency is bounded above by

2Pjλa + (λa − 1)Qj ≤
M

λa
+ (λa − 1)

(M
λa

)
≤ M,

which proves that Ij ∈ P(M). We use Hölder’s inequality, the sup-norm bound for Gj (C.2), and the norm 
bound for Hj (C.3) to see that

‖Ij‖L2(T) ≤ ‖Gj‖L∞(T)‖Hj‖L2(T) ≤ B̃aλ
λa−1
a ρj

( 2
M

)1/2
.

Finally, we use the sup-norm bound for Gj (C.2) and the bound for |Hj(ωk)| (C.4) to see that

|Ij(ωk)| ≤ ‖Gj‖L∞(T)|Hj(ωk)| ≤
1

20S for all ωk /∈ Λa. �
C.2. Proof of Lemma A.2

Proof. Fix integers M, N, S satisfying the assumptions of Lemma A.2. Fix a support set Ω, contained in 
the grid with spacing 1/N and of cardinality S. We do a two-scale analysis. For each ωj ∈ Ω, we define the 
discrete sets and integers,

Γj := Γj(Ω) =
{
ωk ∈ Ω: |ωk − ωj |T <

1
M

}
and γj := |Γj |,

Tj := Tj(Ω) =
{
ωk ∈ Ω: |ωk − ωj |T <

S

2M

}
and τj := |Tj |.

To construct Hj(·, Ω), we need to define two axillary functions, similar to the construction done in 
Lemma A.1. We define the integers

Qj,k := Qj,k(Ω) :=
{
�M/S� if ωk ∈ Tj \ {ωj},
�1/(2|ωj − ωk|T )� if ωk ∈ Ω \ Tj .

We readily verify that we have the inequalities 1 ≤ Qj,k ≤ M/S and

|Qj,kωj −Qj,kωk|T = Qj,k|ωj − ωk|T for all ωj , ωk ∈ Ω. (C.5)

This observation implies that the Lagrange-like polynomial,

Gj(ω) := Gj(ω,Ω) :=
∏

ωk∈Ω\{ωj}

e2πiQj,kω − e2πiQj,kωk

e2πiQj,kωj − e2πiQj,kωk
,

has non-zero denominators, and is thus well-defined. By construction, we have the interpolation identity,

Gj(ωk) = δj,k for all ωj , ωk ∈ Ω.

We bound Gj in the sup-norm. We begin with the inequality,
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‖Gj‖L∞(T) ≤
∏

ωk∈Ω\{ωj}

2
|1 − e2πiQj,k(ωj−ωk)| . (C.6)

Recall that we have the partition,

Ω \ {ωj} = (Γj \ {ωj}) ∪ (Tj \ Γj) ∪ (Ω \ Tj).

Then we break (C.6) into three products according to this partition, and estimate each term at a time.

(a) We first consider the product over ωk ∈ Γj \ {ωj}. If Γj \ {ωj} = ∅, there is nothing to do. Hence, 
assume that γj ≥ 2. By a Taylor expansion for cosine, we obtain the inequality,

2 − 2 cos(2πt) ≥ (2πt)2
(
1 − π2t2

3

)
for t ∈ [−1/2, 1/2].

Using this lower bound, the observation that Qj,k = �M/S� ≤ M/S ≤ M/γj when ωk ∈ Γj \ {ωj}, and 
the assumption that |ωj − ωk| < 1/M for all ωk ∈ Γj , we obtain

∏
ωk∈Γj\{ωj}

2
|1 − e2πiQj,k(ωj−ωk)|

≤
∏

ωk∈Γj\{ωj}

(
1 −

π2Q2
j,k|ωj − ωk|2T

3

)−1/2 ∏
ωk∈Γj\{ωj}

1
πQj,k|ωj − ωk|T

≤
(
1 − π2

3γ2
j

)−(γj−1)/2⌊M
S

⌋−(γj−1) ∏
ωk∈Γj\{ωj}

1
π|ωj − ωk|T

≤
( 12

12 − π2

)1/2⌊M
S

⌋−(γj−1) ∏
ωk∈Γj\{ωj}

1
π|ωj − ωk|T

.

For the last inequality, we made the observation that (1 − π2/(3t2))−(t−1)/2 is a decreasing function of 
t on the domain t ≥ 2.

(b) We consider the product over ωk ∈ Tj \ Γj , and note that Qj,k = �M/S� for this case. Recall the 
trigonometric inequality

|e2πit − 1| ≥ 4|t|T , for all t ∈ R. (C.7)

We this trigonometric inequality and (C.5) to see that

∏
ωk∈Tj\Γj

2
|1 − e2πiQj,k(ωj−ωk)| ≤

∏
ωk∈Tj\Γj

1
2Qj,k|ωj − ωk|T

≤
⌊M
S

⌋−τj+γj
(1

2

)τj−γj ∏
ωk∈Tj\Γj

1
|ωj − ωk|T

.

(c) For the product over ωk ∈ Ω \ Tj , note that Qj,k|ωj − ωk|T ≥ 1/4. Using this and the trigonometric 
inequality (C.7) again, we see that

∏ 2
|1 − e2πiQj,k(ωj−ωk)| ≤

∏ 1
2Qj,k|ωj − ωk|T

≤ 2S−τj .

ωk∈Ω\Tj ωk∈Ω\Tj
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Combining the above three inequities with inequality (C.6) and simplifying, we obtain an upper bound

‖Gj‖L∞(T) ≤
( 12

12 − π2

)1/2⌊M
S

⌋−τj+1( 1
π

)γj−1
2S−2τj+γj

∏
ωk∈Tj\{ωj}

1
|ωj − ωk|T

. (C.8)

Let P = �M/(2S)� and note that P ≥ 1 because M ≥ 2S. Let FP be the Fejér kernel, and by the L2(T )
bound for the Fejér kernel and the observation that P + 1 ≥ M/(2S), we have

‖FP ‖L2(T) ≤
( 1
P + 1

)1/2
≤
(2S
M

)1/2
. (C.9)

Finally, we define Hj by the formula,

Hj(ω) := Hj(ω,Ω) := e2πiP (ω−ωj)FP (ω − ωj)Gj(ω).

We still have the interpolation property that

Hj(ωk) = δj,k for all ωj , ωk ∈ Ω.

By construction, the negative frequencies of Hj are zero while its largest positive frequency is bounded 
above by

2P +
∑
k �=j

Qj,k ≤ M

S
+
∑
k �=j

M

S
= M

S
+ M(S − 1)

S
≤ M.

This proves that Hj ∈ P(M).
It remains to upper bound 

∑S
j=1 ‖Hj‖2

L2(T). By Hölder’s inequality and the inequalities,

( S∑
j=1

‖Hj‖2
L2(T)

)1/2
≤
( S∑

j=1
‖FP ‖2

L2(T)‖Gj‖2
L∞(T)

)1/2
≤
( 24

12 − π2

)1/2( S

M

)1/2
E(Ω)1/2,

where the constant E(Ω) is defined as

E(Ω) :=
S∑

j=1

⌊M
S

⌋−2τj+2( 1
π2

)γj−1
4S−2τj+γj

∏
ωk∈Tj\{ωj}

1
|ωj − ωk|2T

. (C.10)

To complete the proof of the lemma, we need to obtain the appropriate bound on E(Ω) uniformly in Ω. 
This is handled separately in Lemma C.1, which is stated below and proved in Appendix C.3. �
Lemma C.1. Suppose the assumptions of Lemma A.2 hold and let E(Ω) be the quantity defined in (C.10). 
Then

E(Ω) ≤
⌊M
S

⌋−2S+2
N2S−2

( 1
π

)2S−2 S∑∏ 1
(j − k)2 .
j=1 k �=j
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C.3. Proof of Lemma C.1

Before we prove the lemma, we motivate the argument that we are about to use. We view E(Ω) as a 
function defined on all 

(
N
S

)
possible sets Ω supported on the grid with spacing 1/N and of cardinality S. 

To upper bound E(Ω) uniformly in Ω, one method is to determine which Ω attain(s) the maximum. The 
maximizer is clearly not unique, since E(Ω) is invariant under cyclic shifts of Ω by 1/N . However, we shall 
argue that the maximizer is attained by shifts of Ω∗ = {n/N}S−1

n=0 . Note that

E(Ω∗) =
⌊M
S

⌋−2S+2
N2S−2

( 1
π

)2S−2 S∑
j=1

∏
k �=j

1
(j − k)2 . (C.11)

Thus, the lemma is complete once we prove that E(Ω) ≤ E(Ω∗). While it seems intuitive that E(Ω) ≤
E(Ω∗) for all Ω, it is not straightforward to prove. When Ω is contained in a small interval, the product over 
Tj in the definition of E(Ω) given in (C.10) is large, but that is offset by the remaining terms, which are 
small. The major difficulty is that E(Ω) is highly dependent on the configuration of Ω. If we perturb just 
one of the ωj ∈ Ω and keep the rest fixed, it is possible for all S terms in the summation in the definition 
of E(Ω) to change. This makes continuity and perturbation arguments difficult to carry out. To deal with 
this difficultly, we proceed with the following extension argument.

Proof. We extend E to a function of D = S(S − 1) variables in the following way. We write w ∈ RD to 
denote the D variables {wj,k}1≤j,k≤S,j �=k. We do not impose that {wj,k}j �=k are unique, that wj,k = wk,j , 
or that they lie on some grid. They are just D independent real variables for now. We define the sets and 
integers,

Aj(w) :=
{
wj,k : wj,k <

S

2M

}
and aj(w) := |Aj(w)|,

Bj(w) :=
{
wj,k : wj,k <

1
M

}
and bj(w) := |Bj(w)|.

We define the function F : RD → R by the formula,

F (w) :=
S∑

j=1

⌊M
S

⌋−2aj(w)+2( 1
π2

)bj(w)−1
4S−2aj(w)+bj(w)

∏
wj,k∈Aj(w)

1
w2

j,k

. (C.12)

We restrict F to the domain [1/N, 1/2]D ∩H, where

H :=
S⋂

k=1

{
w ∈ RD :

∑
j �=k

wj,k ≥ c(S)
N

}
,

and the constant c(S) is defined as

c(S) :=

⎧⎨⎩2
(
1 + 2 + · · · + S−1

2

)
if S is odd,

2
(
1 + 2 + · · · + S−2

2

)
+ S

2 if S is even.

We argue that F is an extension of E. Note that any Ω can be mapped to a w(Ω) ∈ RD via the relationship 
(w(Ω))j,k = |ωj −ωk|T for all j �= k. Under this mapping, we have aj(w) = τj and bj(w) = γj , which shows 
that
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F (w(Ω)) = E(Ω).

Moreover, w(Ω) is clearly contained in [1/N, 1/2]D. For each 1 ≤ k ≤ S, we have

∑
j �=k

(w(Ω))j,k =
∑
j �=k

|ωj − ωk|T ≥ c(S)
N

.

This inequality implies that w(Ω) is contained in the set [1/N, 1/2]D ∩H. Thus, F is indeed an extension 
of E, and for all Ω, we have

E(Ω) = F (w(Ω)) ≤ sup
w∈[1/N,1/2]D∩H

F (w). (C.13)

We remark that there is a clear advantage of working with F instead of E. If one coordinate of w is 
perturbed while the rest of the D − 1 coordinates of w remain fixed, then only one of the S terms in the 
summation in (C.12) is perturbed.

Observe that [1/N, 1/2]D ∩ H is compact because it is the intersection of a closed cube with S closed 
half-spaces. Clearly F is continuous on the domain [1/N, 1/2]D ∩H, so the supremum of F is attained at 
some point in this set. We first simplify matters and prove that

max
w∈[1/N,1/2]D∩H

F (w) = max
w∈[1/N,1/M ]D∩H

F (w), (C.14)

which is done via the following two reductions.

(a) Our first claim is that

max
w∈[1/N,1/2]D∩H

F (w) = max
w∈[1/N,S/(2M)]D∩H

F (w).

Suppose for the purpose of yielding a contradiction, the maximum of F is not attained at any point in 
[1/N, S/(2M)]D ∩H. This is equivalent to the claim that, for any maximizer w of F , there exist indices 
(m, n) such that am(w) ≤ S − 1 and wm,n > S/(2M). We define the vector v ∈ [1/N, 1/2]D ∩H by the 
relationship

vj,k :=
{

S/N if (j, k) = (m,n),
wj,k otherwise.

Since v and w agree except at one coordinate, we readily calculate that

F (w) − F (v)

=
⌊M
S

⌋−2am(w)+2( 1
π2

)bm(w)−1
4S−2am(w)+bm(w)

( ∏
wj,k∈Aj(w)

1
w2

m,k

)(
1 −
⌊M
S

⌋−2 1
4π2v2

m,n

)
.

The assumption that N ≥ πMS and S ≥ 2 imply

1
4π2v2

m,n

= N2

4π2S2 ≥
(M

2

)2
≥
⌊M
S

⌋2
.

This proves that F (w) ≤ F (v), which is a contradiction.
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(b) Our second claim is that

max
w∈[1/N,S/(2M)]D∩H

F (w) = max
w∈[1/N,1/M ]D∩H

F (w).

Suppose for the purpose of yielding a contradiction, the maximum of F is not attained at any point in 
[1/N, 1/M ]D∩H. This is equivalent to the claim that, for any maximizer w ∈ [1/N, S/(2M)]D∩H, there 
exist indices (m, n) such that bm(w) ≤ S−1 and wm,n ≥ 1/M . We define the vector v ∈ [1/N, 1/M ]D∩H
by the relationship,

vj,k =
{

S/N if (j, k) = (m,n)
wj,k otherwise.

Since v and w agree except at one coordinate, we see that

F (w) − F (v) =
⌊M
S

⌋−2S+2( 1
π2

)bm(w)−1
4−S+bm(w)

( ∏
k∈Am(w)\{n}

1
w2

m,k

)( 1
w2

m,n

− 4
π2v2

m,n

)
.

The assumption that N ≥ πMS implies

4
π2v2

m,n

= 4N2

π2S2 ≥ 4M2 ≥ 1
w2

m,n

.

This shows that F (w) ≤ F (v), which is a contradiction.

Thus, we have established (C.14), and combining this fact with (C.13) yields,

E(Ω) = F (w(Ω)) ≤ max
w∈[1/N,1/M ]D∩H

F (w). (C.15)

When w ∈ [1/N, 1/M ]D ∩H, the function F reduces to

F (w) =
⌊M
S

⌋−2S+2( 1
π2

)S−1 S∑
j=1

∏
k∈Bj(w)

1
w2

j,k

.

Since F is a smooth function of w, a straightforward calculation shows that each partial derivative of F , 
with respect to the canonical basis of RD, is strictly negative on [1/N, 1/M ]D ∩H. Thus, the maximum of 
F is attained on the boundary of [1/N, 1/M ]D ∩H. In fact, H is the intersection of S half-spaces and the 
boundary of the k-th half-space is the hyperplane

Hk :=
{
w ∈ RD :

∑
j �=k

wj,k = c(S)
N

}
.

Since each partial derivative of F is strictly negative on [1/N, 1/M ]D ∩H, we see that the maximum of F
must be attained on one of these hyperplanes. We observe that w(Ω) lies on a Hk if and only if Ω consists 
of S consecutive indices. This proves that for all Ω, we have

E(Ω) = F (w(Ω)) ≤ F (w(Ω∗)) = E(Ω∗).

This combined with the formula for E(Ω∗) given in (C.11) completes the proof of the lemma. �
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C.4. Upper bounds for discrete quantities

Lemma C.2. For any integer n ≥ 2, we have

( n∑
j=1

n∏
k=1, k �=j

1
(j − k)2

)1/2
≤ 2πe

√
n
(n

2 − 1
)−n

en.

Proof. Notice that

min
1≤j≤n

n∏
k=1, k �=j

|j − k| ≥
{

(n2 − 1)!(n2 )! if n is even
(n−1

2 )!(n−1
2 )! if n is odd.

By further using the well-known inequality, k! ≥
√

2π kk+ 1
2 e−k for any integer k ≥ 1,

min
1≤j≤n

n∏
k=1, k �=j

|j − k| ≥
{

2π(n2 − 1)n
2 − 1

2 (n2 )n
2 + 1

2 e−n+1 if n is even
2π(n−1

2 )ne−n+1 if n is odd.

Hence, for any n ≥ 2, we have

min
1≤j≤n

n∏
k=1, k �=j

|j − k| ≥ 2πe
(n

2 − 1
)n

e−n.

Thus,

( n∑
j=1

n∏
k=1, k �=j

1
(j − k)2

)1/2
≤ 2πe

( n∑
j=1

(n
2 − 1

)−2n
e2n
)1/2

= 2πe
√
n
(n

2 − 1
)−n

en. �
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