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1. Introduction

1.1. Background

This paper studies the inverse problem of recovering a collection of point sources from its noisy low-

frequency Fourier coefficients. Suppose S point sources with amplitudes z = {x; }le € C% are located on
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an unknown discrete set Q = {w;}5_, in the periodic interval T = [0,1). This collection of points sources
can be represented by a discrete measure,

S
p(w) = 3 w58, (@), (L1)
j=1

where d,,; denotes the Dirac measure supported at w; and Q is the support of y, denoted supp(p). A uniform
array of M + 1 sensors collects measurements of the point sources. Suppose the k-th sensor collects the k-th
noisy Fourier coeflicient of u:

s
yg = (k) + = /6_2”’” dup(w) +ni = ije_zmk“’f +n,, k=0,1,..., M, (1.2)
T J=1

where [ is the Fourier transform of p and 7y represents some unknown noise at the k-th sensor. Our goal
is to accurately recover j, which consists of the support € and the amplitudes z € C®, from the noisy
low-frequency Fourier data y = {y, }2L, € CM+1,

The measurement vector y can be expressed as

y =Pz +1, (1.3)

where ® is the (M + 1) x S Fourier or Vandermonde matrix (with nodes e =27 on the unit circle):

1 1 .. 1
e—27riw1 e—27riw2 . 6—271'1'0.)5
D=0, M) =Dy (Q) := ) ) ) ) . (1.4)
67277.2'Mw1 67271'.1-MUJ2 ' 6727r%JVIw5

While it is convenient to re-formulate the measurement vector y in the linear system (1.3), we do not have
access to the sensing matrix ® because it depends on the unknown (2. This inverse problem is referred to
as single-snapshot spectral estimation, as only one snapshot of measurements is taken by the sensors. This
problem appears in many interesting imaging and signal processing applications, including remote sensing
[1], inverse scattering [2,3], Direction-Of-Arrival (DOA) estimation [4,5] and spectral analysis [6].

A key step is to estimate the support 2 and then the amplitudes = can be recovered as the least-squares
solution of (1.3). In the noisy case, the stability of this inverse problem crucially depends on 2. The minimum
separation of ) has been widely used to describe the stability of this inverse problem. It is defined as

A:=AQ) := IS?EI?SS |wj — wg|r, where |w|T = flnel% |w —n.
The Heisenberg uncertainty principle implies that the spatial and frequency localization of signals are
inversely proportional. When we have access to only M Fourier coefficients of u, the recovery is sensitive
to noise whenever A < 1/M. In the imaging community, 1/M is called the Rayleigh Length (RL), and it
is regarded as the resolution that a standard imaging system can resolve [7]. Super-resolution refers to the
capability of recovering point sources when A < 1/M. The super-resolution factor (SRF) is 1/(MA), which
characterizes the maximum number of points in € that is contained in 1/M.

The first recovery method was invented by Prony [8]. The classical Prony’s method [8] can recover u
exactly in the noiseless setting, but it is very sensitive to noise [9]. Numerous modifications were attempted
to improve its numerical behavior [10-12]. In the signal processing community, a class of subspace methods
has been widely used in applications, including MUlItiple SIgnal Classification (MUSIC) [5], Estimation
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of Signal Parameters via Rotational Invariance Technique (ESPRIT) [13], and the Matrix Pencil Method
(MPM) [14]. In the past ten years, super-resolution was addressed with an optimization approach, such as
the total variation minimization (TV-min) [15-19].

Existing mathematical theories on the recovery of u can be divided into three main categories: (1) The
well-separated case is when A > 1/M, and in which case, we say that Q is well-separated. There are
many polynomial-time algorithms that provably recover p with high accuracy. These methods include total
variation minimization (TV-min) [15-19], greedy algorithms [20-24], and subspace methods [14,25-28,13,5].
These works address the discretization error and basis mismatch issues [29,21,30] arising in compressed
sensing [31,32]. (2) The super-resolution regime is when A < 1/M. There are two main approaches to
achieve super-resolution. The optimization-based methods require certain assumptions, such as positivity
[33—-35]or certain sign constraints [36] of p. The classical subspace methods [5,13,14] can recover complex
measures and have super-resolution phenomenon. Meanwhile, there are many open problems regarding the
stability of subspace methods with a single snapshot of measurements. (3) Super resolution is addressed
from an information theoretic point of view in [37,38], where the point sources are located on a grid of R
with spacing 1/N and measurements are the noisy continuous Fourier transform of the points. These works
derived asymptotic lower and upper bounds for a min-max error, when the grid spacing is sufficiently small.
Recently, [39] studied the off-the-grid min-max error when the support contains a single cluster of nodes
and other nodes are well separated.

This paper addresses two important questions: (1) What is the fundamental limit of super-resolution?
To quantify the fundamental difficulty of super-resolution, we use the concept of min-max error introduced
by Donoho [37]. The min-max error is the reconstruction error incurred by the best possible algorithm
in the worst case scenario. For technical reasons, we assume that the point sources are located on a grid
with spacing 1/N when we study the min-max error. We follow the theme in [37,38] to relate the min-max
error with opmin(®(€2, M)) for the worst subset  on the grid. (2) What is the stability of subspace methods?
The focus of this paper is the MUSIC algorithm [5]. MUSIC can recover complexr measures and is well
known for its super-resolution capability [40]. However, there are many unanswered questions related to
its stability when A < 1/M. In the classical Direction-Of-Arrival setting [4] with multiple snapshots of
measurements, the Cramér-Rao bound [41-43] gives a stability of MUSIC with respect to noise, #Snapshot
and the source separation A, in the asymptotic scenario when #Snapshot — oo and A — 0. These works
can not be directly applied to the single-snapshot setting. This paper aims to establish a sensitivity analysis
for the MUSIC algorithm, which is different from the Cramér-Rao bound since the noise statistics are not
emphasized. Recently, it was shown in [26] that the perturbation of the noise-space correlation function
in the single-snapshot MUSIC is closely related with o, (®). The key question is to accurately estimate
Omin(P) for a given support Q.

1.2. Contributions

This paper has three main contributions: accurate lower bounds for o, (®) under geometric assumptions
of the support set, improvements to the min-max error of super-resolution by sparsity constraints, and a
sensitivity analysis of the noise-space correlation function in the MUSIC algorithm. We informally summarize
our main results here and postpone the formal definitions until later.

(1) We consider a geometric clumps model for Q. Assume that: (1) 2 can be written as the disjoint union of
A finite sets called clumps, where each clump is contained in an interval of length 1/M and the distance
between any two clumps is at least 5/M; (2) the minimum separation of € is at least a/M.

Theorem 2.7 shows that if A\, denotes the cardinality of the a-th clump, for any « > 0 and sufficiently
large 3 > 0, there exist constants {Cy(\s, M)}/, such that

a=1
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Omin(®) > VM ( (Ca(Aa, M) a_’\“+1)2)71/2. (1.5)

a=1

The explicit formula for C, is given in equation (2.5) and we discuss its dependence on A, and M in
Remark 2.9. The main novelty of this bound is that the exponent on a~*«*! = SRF*—! only depends
on A\, as opposed to S, which shows that o,i,(®) depends on the local geometry of 2. We provide an
upper bound for oy, (P) in Proposition 2.10 and numerical experiments in Section 2.3 to show that the
dependence on « is tight.

(2) We derive an estimate of the min-max error under sparsity constraints, which illustrates why geometric
assumptions on €2 are both natural and necessary. Suppose S and A are known and for technical reasons,
we assume that 2 lies on a fine grid with spacing 1/N. The min-max error £(M, N, S, §) for this model
is defined to be the error incurred by the best possible recovery algorithm(s) when the error is measured
with respect to the worst case measure and noise 7 satisfying |||z < 6.

Theorem 3.8 provides explicit constants A(M,S) and B(M, S) such that
N N )25 1 5

a0r.8) (2)7 s < e 5.6) < BOLS) (>

= — (1.6)

The dominant factor in both inequalities is (N/M)?5~1 = SRF?~!. Hence, without any prior geometric
assumptions on €2, no algorithm can accurately estimate every measure and noise, unless § is smaller
than SRF 251,

(3) We provide a sensitivity analysis of the noise-space correlation function in MUSIC under the clumps
model. MUSIC amounts to recovering the point sources from the S smallest local minima of a noise-space
correlation function R. Corollary 4.5 shows that when € satisfies the clumps assumption in Theorem 2.7,
then for arbitrary noise 7, in order to guarantee an e-perturbation of R in the supremum norm, the
noise-to-signal ratio that MUSIC can tolerate obeys the following scaling law,

A

Inllz /37 (Z (Ca(Aa,M/2)aA““)2> e. (.7)

Tmin a—1

Our result shows that the sensitivity of the noise-space correlation function in MUSIC is exponential in
1/SRF, and importantly, the exponent depends on A, instead of the sparsity S. This estimate is verified
by numerical experiments. A perturbation bound for deterministic noise is given in Corollary 4.5.

Let us briefly discuss the implications of our main results to super-resolution. Inequalities (1.6) show
that, super-resolution solely based on sparsity and the minimum separation is impossible unless the noise is
smaller than SRF~2%*1. The results can be greatly improved if the structure of Q2 is exploited. Inequality
(1.7), derived from (1.5), indicates that the perturbation of R is small if the noise is smaller than SRF 2"

as opposed to SRF—25+!

where A = max, A, and S = ) A,. This rigorously confirms prior numerical
evidence that MUSIC can succeed in the super-resolution regime, if A is sufficiently small. Although our

analysis only pertains to perturbations of R, this is an inherent feature of MUSIC.
1.8. Outline

The remainder of this paper is organized as follows. Since this paper encapsulates three main topics, we
present each in its own section and related work is located in the last subsection. Our estimates for opin(P)
and proof strategy are contained in Section 2 and the min-max error under sparsity constraints is studied in
Section 3. Numerical experiments are included highlighting their accuracy. Section 4 explains the MUSIC
algorithm, and includes a new sensitivity analysis of the noise-space correlation function under the clumps
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Minimum singular value as a function of ¢
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Fig. 1. Consider the sets ©;(g), Q2(e), Q3(e) defined in (2.1) each with A(e) = 0.0le. The functions € — omin (P (2, (€))) is
exponential with very different exponents. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

model. Numerical simulations are provided to validate our theoretical analysis on MUSIC. Appendices A,
B, and C contain the proofs for all the theorems, propositions, and lemmas, respectively.

2. Minimum singular value of Vandermonde matrices
2.1. Lower bounds under a clumps model

The quantity oy (®) is extremely sensitive to the “geometry” or configuration of € in the super-resolution
regime A < 1/M. To support this assertion, Fig. 1 provides examples of three sets

0 (¢) = £{0,0.01, 0.02, 0.03, 0.04},
Qs (e) = £{0,0.01,0.02,0.4, 0.5}, (2.1)
Qs(e) = £{0,0.01,0.3,0.4,0.5}

where 0.2 < e < 1. We fix M = 50 and S = 5. These three support sets have the same cardinality and
minimum separation, but the minimum singular values of their associated Vandermonde matrices have
different behaviors. This simple numerical experiment demonstrates that it is impossible to accurately
describe omin(®) solely in terms of A. A more sophisticated description of the “geometry” of Q is required.

We introduce a clumps model where 2 consists of well-separated subsets called clumps, where each clump
contains several points that can be closely spaced.

Assumption 2.1 (Clumps model). We say that a finite set & C T consists of A clumps with parameters
(A, M, S, B) if the following hold.

(1) Q has cardinality S and can be written as a disjoint union of A sets, ) = Ule A, where each clump
A, is a finite set contained in an open interval of length 1/M.
(2) If A > 1, the distance between two clumps, defined as

dist(An, Ap) := min wj — wklT,
ijAm,wkEAn
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satisfies min, -, dist(Ay,, An) > 6/M.
Throughout the paper, we denote the cardinality of A, by A,.

Definition 2.2 (Complezity). For any finite set Q = {wy.}7_, C T, its complezity at w; € Q2 is the quantity,

1

i=pi(Q,M) = —T -
Pj p]( ) 7TM|CL)] 7wk|T

WEEQ: 0<|wp—wj |1 <1/M

Our Theorem 2.3 below is our most general lower bound for omi, (P), which is given in terms of a weighted
£? aggregate of the complexity of  at each point. The proof of Theorem 2.3 can be found in Appendix A.1.

Theorem 2.3. Fiz positive integers A, M, S with M > 252, Suppose Q satisfies Assumption 2.1 with param-
eters (A, M, S, ). If A > 1, assume that

> 5/2(g )1/ (2Xa) ,
£ 2 max Jnax 10Ag"*(Sp;) (2.2)

For each 1 < a < A, we define the constant

By = Bo(A, M) = % (1

2 >—(/\a—1)/2(M)AQ—1 {%J _()\a_1)'

e A

Then the minimum singular value of ® = ®(Q, M) defined in (1.4) satisfies

A _
e @) = VII( 3 (B p) (2.3)

a=lw;€eA,

Remark 2.4. The constant B, is insensitive to the geometry of each clump A, because it only depends on
M and A, and it is also independent of S. The dependence of B, on M is weak because

O 1) 2

It is possible to upper bound B, by a constant that does not depend on M. Clearly B, does not dependent
on M when A, = 1, and for A\, > 2, since t/|t] <¢/(t —1) <2 for t > 1, we see that

2 _(Aa_l)/Q

B, < M(l - ) a1
19 3A2

We can think of B, as a small universal constant because the function n +— (1 — 72/(3n2))~(»=1/2 defined

on the integers n > 2 approaches a horizontal asymptote of 1 quickly as n increases. In the regime where

each )\, is of moderate size and M/, is large, B, is approximately 20\/5/19 ~ 1.4886.

Remark 2.5. Although this is not the main point of the theorem, we can also apply it to the well-separated
case. Assume that A > 10y/S/M. Then each clump A, contains a single point, B, = 20y/2/19 for each
1<a <A, and p; =1 for each w; € Q. We readily check that the conditions of Theorem 2.3 are satisfied,
and thus,

19

Omin(®) > ——=V M.
®) 2375
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This shows that o, (®) is on the order of v/M if A is about /S times larger than 1/M. This result is weaker
than the one in [28], which was derived using extremal functions that are specialized to the well-separated
case. Note that /M is approximately the largest o (®) can be because opay(®) < ||®|| = VM S, where
|l - |7 is the Frobenius norm.

Theorem 2.3 is our most general lower bound for o, (P) without a minimum separation condition. The
bound in Theorem 2.3 can be reduced to a more explicit estimate if we consider the minimum separation
of Q.

Assumption 2.6 (Clumps model with a minimum separation). We say that a finite set Q& C T satisfies a
clumps model with a minimum separation with parameters (A, M, S, 3, ) if 2 satisfies Assumption 2.1 with
parameters (4, M, S, ) and moreover, the minimum separation of {2 satisfies A > a/M with maxi<,<a(Ag—
1) <1/a.

Theorem 2.7 below is derived from Theorem 2.3 under Assumption 2.6, which is proved in Appendix A.2.

Theorem 2.7. Fix positive integers A, M, S with M > S?. Suppose § satisfies Assumption 2.6 with parame-
ters (A, M, S, 3,a). If A > 1, assume that

2051/2)5/?
> - -
8> élfng .Y (2.4)
For each 1 < a < A, let B, := Bo(Aa, M) be the constant defined in Theorem 2.3 and
Co = Cou(Aay M BA“A‘HQAG Ly
a = UglAa, = Dg \ — P . 2.5
( ) (77) (Z ,(Jfk)z) (2.5)
J=1k=1, k#j
Then the minimum singular value of ® = ®(Q, M) defined in (1.4) satisfies
A 1/2
Ornin (P (Z (Coa™?at) ) : (2.6)

a=1

Remark 2.8. The main difference between Theorems 2.3 and 2.7 is that, Theorem 2.3 is more general
and accurate, while Theorem 2.7 is more concrete since it bounds o (®) in terms of « = 1/SRF. The
conclusions in Theorem 2.3 and Theorem 2.7 are identical for the special case where each clump A, consists
of A\, points consecutively spaced by a/M. For all other configurations of Q, Theorem 2.3 provides a more
accurate lower bound. The separation condition (2.2) is always weaker than (2.4).

Remark 2.9. According to Remark 2.4, the constant B, can be thought of as a universal constant. For the
behavior of C,, we have a simple upper bound C, < Ba)\,ll/ 2 (Ao/m) 1 which is a reasonable bound for
small and moderate A,. A more refined argument (see Lemma C.2 in Appendix C.4) shows that

Co < Ba(%)Arl?”*Em (A? - 1)%“& - 277;%3“ (77(;:\ - e))%“‘“ 27)

For large \,, the right hand side scales like C B\, 12Xa for universal constants C,c>0.

The main contribution of this theorem is the exponent on SRF = (MA)~! = 1/a, which depends on A,
as opposed to the sparsity S. Let us look at a special case of 2, where each clump A, contains \ points
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Ay B/M As Aay B/M Aa
R —— R ——
—ees o000 — —ees o090 —
o/M o/M o/M o/M

Fig. 2. An example of clumps model with a minimum separation.

equally spaced by ao/M and the distance between clumps is 8/M where  is properly chosen such that (2.4)
holds. See Fig. 2 for an illustration.
In this case, Theorem 2.7 implies

. > “1/2 N7 . A1
O'mm((b((LM)) = C()‘)A M & , (28)
scaling (1/SRF)*—1

where the constant C'()\) only depends on . Here, v/M is a natural scaling factor because each column
of ®(Q, M) has Euclidean norm /M + 1. Importantly, the lower bound scales like a*~! = (1/SRF)*~!
where A is the cardinality of each clump instead of S, which matches our intuition that the conditioning of
®(0, M) should only depend on how complicated each individual clump is.

2.2. Upper bound for the minimum singular value

Our lower bounds in Theorems 2.3 and 2.7 show that, for the special support in Fig. 2, our lower bound
for omin(®) depends linearly on SRF 1, Proposition 2.10 below proves that this dependence is sharp. Its
proof can be found in Appendix B.1 and uses a method similar to one in [37].

Proposition 2.10. Fiz positive integers M, S, \ such that A\ < S < M — 1. Let w € T and a > 0 such that

1 A=
agm, where C’()\)—27TZ< i ); (2.9)

Jj=0

Assume that Q@ = {wj}le C T contains the set,

A:w+{0,%,...,¥}.

Let & = (2, M) be the (M + 1) x S Vandermonde matriz associated with Q and M. Then

2\ — 2\ /?
Omin(P) < ()\_ 1) 2vV/M + 1 (2ra) L.

Proposition 2.10 shows that if Q contains a set A, which consists of A points equally spaced by a/M for
a sufficiently small a, then o, (®) depends on a*~1. This implies that the dependence on « in the order
of a*~! in our lower bound of (2.8) is tight.
2.3. Numerical accuracy of Theorems 2.3 and 2.7

To numerically evaluate the accuracy of Theorems 2.3 and 2.7, we consider the case where (2 consists
of A clumps, each clump contains A equally spaced points separated by a/M, and the clump separation is
B/M. We fix M, vary SRF = 1/a, and select 5 to be the right hand side of inequality (2.4). As discussed
in Remark 2.8, both Theorem 2.3 and 2.7 provide the identical lower bound for o, (®) for this example of
Q, which is of the form
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(®) and ¢ as functions of SRF for A=3 clumps (®) and ¢ as functions of SRF for A=2 clumps

o_.
min

o_.
min

¢
2?_\%—*
1.50____
-o--__g4
TTTo---e =T
1r =
(.

= =0~ o

—— =2 Q\s\o el e, \
-0 A2 -0 A=2
11| —e—2a=3 -1 | —e—2x=3
-0 A3 o -0~ a3 o
L A=4 ~ 150 A=4 Teo
15 A=4 S~ A=4 o
—— \=5 —O— \=5
2r|-0- A=5 -2 |=0- A5
035 04 045 05 055 06 065 07 075 035 04 045 05 055 06 065 07 075
log,,,(SRF) log, ,(SRF)
(a) 2-clump model: A =2 (b) 3-clump model: A =3

Fig. 3. Plots of omin(®) (solid lines) and ¢ in (2.10) (dashed lines), as functions of SRF = 1/« when the other parameters A, A\, M
are fixed. For all the curves, we set M = 50000 and let  consist of A clumps, where each clump contains A points equally separated
by a/M and the clump separation is given by the right hand side of inequality (2.4). We consider the following range of parameters:
2<A<3,2<A<5,and A < SRF <6.

Omin(®) > C(/\)\/g SRF™ =: (A, M, \, SRF). (2.10)

Fig. 3 displays plots of opmin(®P) and ¢ as functions of SRF, for several values of A and A. Their slopes
are identical, which establishes that the dependence on SRF in inequality (2.10) is exact. In other words,
the experiments verify that oy, (P) should only depend on the cardinality of each clump and not on the
total number of points S under the theorems’ assumptions.

2.4. Proof strategy by polynomial duality and interpolation

Our primary method for lower bounding oy (®P) is through a dual characterization via trigonometric
interpolation. We begin with some notation and definitions. Let P(M) be the space of all smooth functions
f on T such that for all w € T,

M ~ .
Flw) =Y flm)e*mme.

m=0
We call f a trigonometric polynomial of degree at most M.

Definition 2.11 (Polynomial interpolation set). Given Q = {wj}le C T and v € C¥%, the polynomial
interpolation set, denoted by P (€, M, v), is the set of f € P(M) such that f(w;) = v, foreach 1 < j < S.

We have the following duality between the minimum singular value of Fourier matrices and the polynomial
interpolation set, and its proof is in Appendix B.2.

Proposition 2.12 (Ezact duality). Fiz positive integers M and S such that S < M — 1. For any set Q =
{wi};_y C T, let ® = ®(Q, M) be the (M +1) x S Vandermonde matriz associated with Q and M. For any
w € C%, the set P(Q, M,w) is non-empty. If omin(®) = ||®v||2 for some unit norm vector v € C*, then

min ®) = s .
Omin(P) fepn(lz\%l),(ﬂ,u) ||fHL2(T)
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There are two main technical difficulties with using the proposition. First, in the extreme case that
S <« M, we expect P(2, M,v) to contain a rich set of functions. However, we do not know much about
this set, aside from it being convex. Moreover, this set is extremely dependent on €2 because we know that
Omin(®P) is highly sensitive to the configuration of €. Second, we have no information about v, a right
singular vector associated with oy, (P). Yet, in order to invoke the duality result, we must examine the set
P2, M, v).

It turns out that we can circumvent both of these issues, but doing so will introduce additional technical-
ities and difficulties. Proposition 2.13 below is a relaxation of the exact duality in Proposition 2.12, which
will provide us with an extra bit of flexibility. Its proof can be found in Appendix B.3.

Proposition 2.13 (Robust duality). Fiz positive integers M and S such that S < M — 1. For any set ) =
{wj}le C T, unit norm vector v € C%, and ¢ € C with |le||s < 1, if there exists f € P(M) such that
flwj) =vj+¢e; foreach1 <j <SS, then

1@vll2 > (1 = el Il z2 -

In order to use these results to derive a lower bound for omi,(®) for a given 2, for each unit norm
v € C¥, we construct a f, € P(Q, M,v) and then bound || f,||z2(r) uniformly in v. This process must be
done carefully; otherwise we would obtain a loose lower bound for oy,i, (®). This construction is technical and
our approach is inspired by uncertainty principles for trigonometric polynomials [44] and uniform dilation
problems on the torus [45,46].

2.5. Related work on the conditioning of Vandermonde matrices

The spectral properties of a Vandermonde matrix greatly depend on its nodes. Real [47-50], random [51—
53], and those located within the unit complex disk [54,55] have been studied. In this paper, we study tall and
deterministic Vandermonde matrices whose nodes are on the complex unit circle, which are generalizations
of harmonic Fourier matrices.

In the well-separated case A > 1/M, Vandermonde matrices are well-conditioned [56,57,26,28]. There
are fewer available results for the super-resolution regime A < 1/M. On one extreme, there exists a set {2
for which the conditioning of ® scales linearly in SRF®~! when all other parameters are fixed [28]. On the
other hand, Theorems 2.3 and 2.7 show that this is overly pessimistic under appropriate clumps model.

Classical work, such as [58], primarily focused on square Vandermonde matrices. One of the earliest
results for rectangular ones that also incorporates geometric information follows by combining [54, Theorem
1] and [58, Theorem 1], which yields the estimate

M 5 lw; — wi|
. > 2 g 25— WRIT )
Omin(®) 2 |/ g min 11 | 5 (2.11)
k=1, k#j

When  consists of separated clumps with parameters (A, M, S, ), this inequality yields

_g |M B \5Aa _
. S, . [7 . ~ Ao—1
Omin(P) > 2 5 érllllélA (M) A .

When M is large, this lower bound is significantly worse than the inequality in Theorem 2.7 which depends
on terms involving SRF~+*! = (MA)Aa—1,

The preceding discussion is closely related to an important difference between the complexity p; and
[T m lws — wg| ™Y, the reciprocal of the product term in (2.11). Notice that p; is local in the sense it only
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depends on the structure of  in a 1/M neighborhood of w; and it includes the 7M scaling term. We include
the 7 factor because we use the Fourier transform with the 27 convention in (1.2), but the M factor is very
important. In the super-resolution and imaging communities, it is known that SRF = (MA)~!, not A1,
is the correct quantity to describe the feasibility of super-resolution. The complexity can be viewed as a
refined notion of SRF® = (MA)~% since p; only depends on the structure of {2 near w;.

In the process of revising the first version of this manuscript, [59] independently derived lower bounds for
Omin(®) with clustered nodes. Here the differences between their [59, Corollary 3.6] and our Theorem 2.7:
(1) They assume that Q consists of clumps that are all contained in an interval of length approximately
1/52. For ours, the clumps can be spread throughout T and not have to be concentrated on a sub-interval.
(2) They require the aspect ratio M > 452, whereas we only need M > 2S52. They also require an upper
bound on M/S, which prohibits their Vandermonde matrix from being too tall. (3) Their lower bound is
of the form, oy (®) > CsvV M - SRF#‘JFI7 where Cg depends only on S and scales like S~2°. According to
(2.7), our constant C, scales like Ay 12 for a universal constant ¢ > 0, which is independent of S. (4) Our
clump separation condition (2.4) in Theorem 2.7 depends on o = SRF ™!, which means that for large SRF,
the clumps have to be significantly separated. In contrast, their clump separation condition only depends
on S but all of their clumps must remain in an interval with length approximately 1/52.

During the review period of this paper, the singular values of the same Vandermonde matrices with
nearly colliding pairs were analyzed in [60] and [61, Corollary 4.2]. The nearly colliding pairs form a special
case of the clumps model when each clump has at most two closely spaced points. In this special case, the
separation condition between the clumps is improved to be independent of A in [60,61]. A recent work [62]
refined the main strategy in the proofs of Theorems 2.3 and 2.7 to improve the constant C; and strengthen
our #2 bound to an > one. They also provided an extension to the multi-dimensional case. Another recent
paper [63] provides bounds for all singular values of Vandermonde matrices under a clumps model.

Lower bounds for the conditioning of arbitrarily sized p x ¢ cyclically contiguous sub-matrices of the
N x N discrete Fourier transform matrix was derived in [64]. This sub-matrix is equivalent to our ®(£2, p),
where Q := {k/N}{_,. A comparison between our Proposition 2.10 and the main result in [64] can be found
in the referenced paper.

3. Min-max error and worst case analysis
8.1. A grid model and the min-maz error

In order to understand the fundamental limits of super-resolution without any geometric information
about 2, in this section, we study the min-max error under a grid and sparsity assumption on 2. Our
results will illustrate that it is not only natural, but also necessary to take the geometric information of €2
into account.

N-1
n=0"

In the super-resolution literature, this is called the on-the-grid model. This assumption implicitly places a

Suppose 2 has cardinality S and is a subset of {n/N} which we refer to as the grid with spacing 1/N.
minimum separation requirement so that all point sources are separated by at least 1/N and SRF = N/M.
In comparison to the clumps model, the one considered in this section only has a sparsity constraint and
places no geometric constraints on the support set. The grid assumption is purely for technical reasons.

We will define a min-max error proposed in [37]. Fix positive integers M, N, S such that S < M < N
and let § > 0. We define a set of vectors in CM+1,

Y:=Y(M,N,S,0)

M 1/2
= {y € CM*+1 . 3 supported in Q C {n/N}NZ1 |0 = S, (Z lyr — ﬁ(k)|2) < 5}.
k=0
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Let A= A(M,N, S, ) be the set of functions ¢ that maps each y € ) to a discrete measure ¢, supported
on the grid with spacing 1/N.

Definition 3.1 (Min-maz error). The ¢? min-maz error for the on-the-grid model is

E(M,N,S,¢) = ian4 sup (Z ‘goy( ) — (Z)r)lﬂ.

PEA yeY(M,N,S,8)

We interpret § as the noise level and ) as the “signal space” formed by all possible ¢ perturbations of the
Fourier coefficients of a measure with at most S Dirac masses on the grid. We interpret a function ¢ € A
as an “algorithm” that maps a given y € ) to a measure ¢, that approximates u. By taking the infimum
over all possible algorithms (which includes those that are computationally intractable), the min-max error
is the reconstruction error incurred by the best algorithm, when measured against the worst case signal and
noise. This quantity describes the fundamental limit of super-resolution under sparsity constraints, and no
algorithm can perform better than the min-max rate.

8.2. Lower and upper bounds of the min-max error

To lower and upper bound the min-max error, we follow the approach of [38] to connect the min-max
error with omin (®(2, M)) for the worst subset Q on the grid.

Definition 3.2 (Lower restricted isometry constant). Fix positive integers M, N, S such that S < M < N.
The lower restricted isometry constant of order S is defined as

©O(M,N,S) := min Omin (P(Q, M)).
QC{n/N} Sy, 191=5

Remark 3.3. While ©(M, N, S) is related to the lower bound of the S-restricted isometry property (RIP) in
compressive sensing [65], there is a major difference. If we select M appropriately chosen rows of the N x N
Discrete Fourier Transform (DFT), then every M x S sub-matrix is well-conditioned, see [66]. However,
D0, M) uses the first M rows of the DFT matrix, so ®(2, M) may be ill-conditioned.

The following result establishes the relationship between the min-max error and the lower restricted
isometry constant. An analogue of this result for a similar super-resolution problem on R was proved in
[38]. Their proof carries over to this discrete setting with minor modifications. To keep this paper self-
contained, we prove it in Appendix B.4 and it relies on the grid assumption.

Proposition 3.4 (Min-mazx error and lower restricted isometry constant). Fiz positive integers M, N, S such
that 25 < M < N, and let 6 > 0. Then,

5 25
20(M,N,25) — S EMLN,5,9) < O(M, N, 25)

With this result at hand, our main focus is to derive an accurate lower bound for ©(M, N, S). We suspect
that the minimum in (M, N, S) occurs when all the points in Q are consecutively spaced by 1/N. If we
could prove this conjecture, then we could simply apply Theorem 2.7 for the single clump case to derive
an upper bound of ©(M, N, S). Without this conjecture, our strategy is to apply our duality techniques in
Section 2.4 for all ( ) possible choices of Q and then uniformly bound over all these possibilities. There are
exponentially many possible such 2, so we must be extremely careful with the estimate in order to obtain
an accurate lower bound for O(M, N, S). The following theorem is proved in Appendix A.3.



130 W. Li, W. Liao / Appl. Comput. Harmon. Anal. 51 (2021) 118-156

Theorem 3.5. Fiz positive integers M, N,S such that S > 2, M > 2S5, and N > wMS. We define the
constant,

curs = (U (3 1 o) ) s

J=1k#j, k= 1

Then we have

O(M,N,S) > C(M, S)JM(%)S*I. (3.1)

Remark 3.6. As described in Remark 2.4, when M is significantly larger than S, the (M/S)~(5=1 | M/S|5—1
factor in C'(M,S) can be safely ignored if M/S is sufficiently large. Alternatively, we can lower bound
C(M,S) independent of M since t/|t] <t/(t —1) <2 for all ¢ > 2 and so

o= (55) (5 ) (8 e

Now we concentrate on the dependence of C(M, S) on S. Since Hf#, we1(j—k)"2 <1lforeach1<j<S,
we have the lower bound,

C(M,S) > %(122;#)1/2(%)5(%)—(5—1) {%Js—{

For large S, a more accurate bound is (see Lemma C.2 in Appendix C.4)

1 /12— n72\1/2 S SraNS  MN\—(S=1) | M |5-1
M, G ) GG 5 S
COLS) 2 5275 <\ s) \s 3
For large S, the right hand side scales as C'c™ for universal constants C, ¢ > 0.

Remark 3.7. Although we do not identify which  achieves the minimum in ©(M, N, S), the theorem
suggests that the minimum is attained by translates of 2, := {n/N }f;g. Indeed, the assumption N > 7w M .S
implies that €, is contained in an open interval of length 1/M. We readily check that if p; = p; (2, M) is
the complexity of w; € €., then

(X)) =(X10;

j=1 J=1 k#j

1 1/2, N \S-1
— )2) (7TM ) '
Notice that this is precisely the quantities that appear in Theorem 3.5.
We next present the lower and upper bounds for the min-max error, which is proved in Appendix A.4.

Theorem 3.8. Fiz positive integers S, M, N and let § > 0.

(a) Assume that M > 4S8 and N > 2xM S, and let C(M, S) be the constant defined in Theorem 3.5. Then,
we have the upper bound,

26 1 (ﬁ)%*l.

E(M,N, S, ) < G135 T
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(b) Assume that M > 2S5 + 1, and N/M > 27C(2S)vM + 1, where C(2S) is the constant defined in
Proposition 2.10. Then, we have the lower bound,

§/45 -0V 1 N \25-1
M. N > 2 L .
E(M, ’5’5)—4(25—1> ,/—MH(%M)

8.8. Numerical accuracy of Theorem 3.5

Let 0(M, N, S) denote the right hand side of (3.1). Note that € is only defined for N/M > ©.S. We make
two important observations before numerically evaluating the accuracy of Theorem 3.5.

First, while we would like to compare 6 directly with O, this is not computationally feasible because we
would need to enumerate through all possible 2, for numerous values of M, N, S. Instead, we compare 6
with the quantity,

Y(M,N,S) := omin(P(Qs, M)),
where Q. := {n/N}5_}. Note that ¢ serves as a useful substitute for © because of the inequalities
6(M, N, S) < O(M, N, S) < p(M, N, S). (3.2)

Second, while both # and 1 depend on three parameters, Theorem 3.5 and Proposition 2.10 suggest
that after safely ignoring the v/M scaling factor, they should only depend on two parameters, the super-
resolution factor SRF = N/M and the sparsity S. Additionally, we can only reliably perform the experiments
for modest size of SRF® ™!, or else numerical round off errors become significant.

Fig. 4 (a) displays the values of § and ¢ as functions of SRF. Since the slope of both curves are identical,
they verify that Theorem 3.5 correctly quantifies the dependence of the min-max error on SRF. Fig. 4 (b)
displays the ratio between 1) and 6. As a consequence of inequalities (3.2), this experiment also indirectly
provides us information about the ratio of © and 6. The lines in Fig. 4 (b) are horizontal, which confirms
our theory that, if SRF > xS, then there exists a ¢(M, S) > 0 such that

O(M, N, §) = (M, S)m(%)s_l.

8.4. Related work on super-resolution limit

A min-max formulation of super-resolution for measures on the grid can be traced back to [37] and
related works [38,59]. The similarity is that all three consider continuous Fourier measurements and the
main differences are their assumptions on p. In [37], u is supported in a grid of the real line R with
constraints on the “density” of the support. In [38], p is again supported on a grid in R but has S atoms
without restrictions on its support. In [59], p is supported a grid in [0, 1], has S atoms, and its support
satisfies a clumps condition. Our setup is different from those considered in [37,38,59] in the sense that
we consider discrete Fourier measurements. Even though the min-max error in Theorem 3.8, is strikingly
similar to those found in [37,38,59], their results do not imply ours or vice versa.

Recently, the authors of [39] studied the min-max error with continuous Fourier measurements, when
the support set contains a single cluster of A nodes while the remaining S — A ones are well separated. In
our notation, this corresponds to A\; = A and A\, = 1 for all @ > 2. Under appropriate conditions on the
various parameters, [39, Theorem 2.10] shows that: (1) the min-max support error for the cluster nodes,
as a function of SRF, scales linearly in SRF2’\72; (2) the min-max amplitude error for the cluster nodes,
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0 and v as functions of SRF 1/ 0 as a function of SRF
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Fig. 4. The left figure displays 0(M, N, S) and (M, N, S) as functions of SRF = N/M, while the right figure displays their ratio.
For both experiments, we consider the range of parameters 2 < § < 5, 7S < SRF and 10 < SRF < 30, respectively.

scales linearly in SRF**~!. Their result does not imply ours or vice versa, since we consider different models.
Nonetheless, their min-max amplitude error is consistent with our Theorem 3.8 if the support set contains
a cluster of A\ closely spaced points.

Regarding the detection of the number of sources, [67] provided an information-theoretic condition for
the SRF and the noise level such that the number of sources can be correctly detected.

4. MUSIC and its super-resolution limit

In signal processing, a class of subspace methods, including MUSIC [5], is widely used due to their
superior numerical performance. It was well known that MUSIC has super-resolution phenomenon [40]. The
resolution limit of MUSIC was discovered by numerical experiments in [26], but has never been rigorously
proved. A main contribution of this paper is to prove the sensitivity of the noise-space correlation function
in MUSIC under the clumps model.

4.1. The MUSIC algorithm

MUSIC is built upon a Hankel matrix and its Vandermonde decomposition. For a fixed positive integer
L < M, we form the Hankel matrix of y:

Yo Y1 R YM_L
Y1 Y2 cee YM-L+1

H(y) == . . . c CILADNX(M—L+1)
Y. Yr+1 .- YM

Denote the noiseless measurement vector by y° = ®(Q, M)z. For simplicity, we will denote ®(2, M) by @y,
in this section. It is straightforward to verify that #(y") possesses the following Vandermonde decomposition:

H(y") = @LX Py,

where X = diag(z) € R%*S. We always assume that M +1>2S and S < L < M — S + 1 so that ®; and
® ;1 have full column rank, and #(y") has rank S.
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Algorithm 1 MUltiple SIgnal Classification (MUSIC).

Input: y € CM*! sparsity S and a integer L
1: Form Hankel matrix H(y) € CEFDXM—L+1)
2: Compute the SVD of H(y):

=[ U W diag (1, ..., 08, T 115 \% 1% - 4.1
H(y) = [ R |diag(d1,...,05,05+41,---)| i Jz, ] (4.1)
(L+1)xS (L4+1)x(L—S) (L41)x (M—L+1) (M—L+41)xS (M—L+1)x(M—L+1—S)
where 61 > G2 ... > 05 > 0541 > ... are the singular values of H(y).

3: Compute the imaging function J(w) = H¢L(w)H2/||‘7[\/*¢L(w)H2, w € [0,1).
Output: Q2 = {©; }le corresponding to the S largest local maxima of J.

Table 1
Noise-space correlation functions and imaging functions in MUSIC, where W given in (4.2) and W given in (4.1) of Algorithm 1
are the noise space of dimension L — S in the noiseless and noisy case respectively.

Noise-space correlation function Imaging function
i — W e (W)l 1 el
Noiseless case R(w) = Tl T(W) = =miay = TWor il
i B(w) = W gL (@)l Flw) = -1 — _lsr@ls
Noisy case R(w) = S5,9Ts J(w) = R(w) — WLl

In the noiseless case, let the Singular Value Decomposition (SVD) of H(y°) be:

0y _ . "
H(y")=[U W | diag(o1,02,...,05,0,...,0) | |4 75 ] (4.2)

LxS Lx(L-S) Lx(M—L+1) (M—L+4+1)xS (M—L+1)x(M—L+1-S)
where o1 > 09 > ... > og are the non-zero singular values of H(y°). The column spaces of U and W

are the same as Range(#(y°)) and Range(H(y"))*, which are called the signal space and the noise space
respectively.
For any w € [0,1) and integer L, we define the steering vector of length L + 1 at w to be

d)L(w) _ [1 e—27riw e—2ﬂ'i2w o e—27riLw}T c ]RL—i-l7

and then ®1, = [¢r(w1) ... ¢r(ws)]. The MUSIC algorithm is based on the following observation on the
Vandermonde structure of ®:if S <L < M — S+ 1, then

wE {wj}le <= ¢ (w) € Range(®1) = Range(H(y°)) = Range(U). (4.3)

We define a noise-space correlation function R(w) and an imaging function as its reciprocal (see Table 1
for definitions). The following lemma is based on (4.3).

Lemma 4.1. Suppose M + 1 > 25 and L is chosen such that S < L < M — S+ 1. Then
w e {wj}le — R(w) =0 <= J(w) = .
In the noiseless case, the source locations can be exactly identified through the zeros of the noise-space
correlation function R(w) or the peaks of the imaging function J(w), as long as the number of measurements

is at least twice the number of point sources to be recovered.
In the presence of noise, H(y°) is perturbed to H(y) such that:

H(y) = H(y") + H(n)
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whose SVD is given by (4.1) in Algorithm 1. The noise-space correlation function and the imaging function
are perturbed to R and J respectively (see Table 1 for the definitions). MUSIC in Algorithm 1 gives rise
to a recovered support Q = {@; }le corresponding to the S largest local maxima of 7.

4.2. Sensitivity of the noise-space correlation function in MUSIC

When the noise-to-signal ratio is low, the imaging function T still peaks around the true sources, but
MUSIC can fail when the noise-to-signal ratio increases. The stability of MUSIC depends on the perturbation
of the noise-space correlation function from R to R which is measured by ||R — R||oe := max,e[o,1) IR (w) —
R(w)|. Thanks to the classical perturbation theory on singular subspaces by Wedin [68, Section 3|, we have
the following bound for | R — R|se:

Proposition 4.2. Suppose M + 1 > 2S and L is chosen such that S < L < M — S+ 1. If 2|H(n)|2 <
xminamin(¢L)amin(q>M—L)7 then

2[|H(n)l|2
xmino'min(QL)Urnin((bM—L)

IR = Rlloe < (4.4)

The dependence on opin(®y) and omin(Par—r) in (4.4) are crucial since they are small in the super-
resolution regime. It is the best to set L = | M /2] to balance them. With Wedin’s theorem, Proposition 4.2
improves Theorem 3 in [26], which upper bound ||R —R||s in the order of | (n)||2/[02(®1)0 2, (Prr—1)]-
Combining Proposition 4.2 and Theorem 2.7 gives rise to the following sensitivity bound of the noise-space
correlation function under the clumps model:

Theorem 4.3. Fiz positive integers A, M, S. Let M > S? be an even integer and L = M /2. Suppose Q) satisfies
Assumption 2.6 with parameters (A, L, S, B,a) for some a > 0 and B with (2.4). For each 1 < a < A, let
o= Ca(a, L). If 4 H() |2 X0 (caa™ )2 < 2 M, then

A
5 Al[H ()l “Aat1)2
R—-—R < R
IR =Rl < )7 B2 S (oo™
Remark 4.4. In this paper, the stability of MUSIC is given in terms of the L perturbation of the noise-space
correlation function. When the point sources are well separated, a source localization error |&; — w;| was
derived in terms of |R — R||o [26, Theorem 4]. In the clumps model, such a derivation is more complicated
and we leave it as a future work.

Theorem 4.3 is stated for even M only for simplicity, and a similar result holds for odd M by setting
L = | M/2]. This theorem applies to any noise vector n. In the case of bounded noise, applying the inequality
IH®)l2 < IH®M)F < VL|n|l2 gives rise to the following corollary:

Corollary 4.5. Under the assumptions in Theorem /.3,

A

5 4\/EH77H2 —Aa+1)2
HR*R”ooSW;(CaOZ )

If 1 is independent gaussian noise, i.e., n ~ N(0,02I), the spectral norm of #(n) has been well studied
in literature [69,70]. The following lemma [27, Theorem 4] is obtained from the matrix Bernstein inequality

[71]):
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Lemma 4.6. If n ~ N(0,02I), then

t2
" 202max(L+1,M —L+1)

P {|H()]2 >t} < <M+z>exp< ) V>0,

Combining Theorem 4.3 and Lemma 4.6 gives rise to the following explicit bound on the noise-to-signal
ratio o/@mn in order to guarantee a fixed e-perturbation of R.

Corollary 4.7. Suppose n ~ N(0,0%I). Fiz e > 0 and v > 1. Under the assumptions in Theorem J.3, if

7 < - S farer?) (4.5)
Tmin  4y/v(M + 2)log(M + 2) ot = .

a=1
then |R — Rl|so < & with probability no less than 1 — (M + 2)~ (=1,

Corollary 4.7 is proved in Appendix A.5. It upper bounds the noise-to-signal ratio for which MUSIC can
guarantee an e-perturbation of R. In the special case where each A, contains A equally spaced points with
spacing «/M (see Fig. 2), (4.5) can be simplified to

A—2
o M M 1\?
/ _ 4.6
o N Tog @ “\/ log M \ SRF ’ (4.6)

which shows that the noise-to-signal ratio that MUSIC can tolerate is exponential in 1/SRF. The key
contribution of this paper is that, the exponent only depends on the cardinality of the clumps instead of

the total sparsity S. These estimates are verified by numerical experiments in Section 4.3.
4.8. Numerical simulations on the super-resolution limit of MUSIC

In our experiments, the true support €2 consists of A = 1,2, 3,4 clumps and each clump contains A equally
spaced point sources separated by A = a/M where 1/« is the SRF of Q (see Fig. 5 (a) for an example). The
clumps are separated at least by 10/M. The z;’s are complex with unit magnitudes and random phases.
Noise is gaussian: 7 ~ N(0,0%I). We set M = 100 and let A vary so that the SRF varies from 1 to 10.
We run MUSIC with the varying SRF and o for 10 trials. The support error is measured by the matching
distance between Q and

dist 5 (0, Q) := inf  sup @ — (W)l -
bijection ¥: Q—=Q 5cQ

Fig. 5 (b) displays the average logQ[distB(Q,fl)/A] over 10 trials with respect to log;, SRF (x-axis) and
log,g o (y-axis) when Q contains 2 clumps of 3 equally spaced point sources: A = 2, A\ = 3. A clear phase
transition demonstrates that MUSIC is capable of resolving closely spaced complez-valued objects as long
as o is below certain threshold.

In Fig. 6, we display the phase transition curves at which distg (€2, SA)) ~ A/2 with respect to log;, SRF
(x-axis) and log;qo (y-axis) when Q contains A = 1,2,3,4 clumps of A = 2,3,4,5 equally spaced point
sources. All phase transition curves are almost straight lines, manifesting that the noise level o that MUSIC
can tolerate satisfies

o o< SRF~1), (4.7)
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Fig. 5. (b) displays the average log, [distB(Q,ﬁ)/A] over 10 trials with respect to log,, SRF (x-axis) and log,, o (y-axis) when
A =2and X =3.

Table 2
Numerical simulations of ¢(€2) in (4.7) on the super-resolution limit of MUSIC.
A=2 A=3 A=4 A=5 Numerical ¢(£2) Theoretical g(£2)
l-clump: A =1 3.0019 5.1935 7.4176 10.4286 2.45X — 2.07 2\ — 2
2-clump: A =2 3.1287 5.2717 7.9371 10 2.33\ — 1.56 2\ —2
3-clump: A =3 3.1081 5.1826 7.299 8.5 1.83X — 0.38 2X — 2
4-clump: A =4 3.0767 5.1731 7.3252 10 2.29)\ — 1.63 2X — 2

A least squares fitting of the curves by straight lines gives rise to the exponent ¢(€2) numerically, summarized
in Table 2. It is close to our theory (4.6) of ¢(£2) = 2\ — 2.

4.4. Related work on subspace methods

Subspace methods, including MUSIC [5], ESPRIT [13] and MPM [14], were initially proposed for the
Direction-Of-Arrival (DOA) estimation [4]. In the DOA setting, the amplitude vector z is random with
respect to time, and multiple snapshots of measurements are taken. The covariance matrix of y possesses
a Vandermonde decomposition so that MUSIC, ESPRIT and MPM are applicable. The classical theories
in [72,73] primarily analyze the stability of MUSIC and ESPRIT with respect to the number of snapshots,
denoted by #Snapshot. They show that the asymptotic distribution of the squared error is on the order of
C' x noise/#Snapshot where the constant C' depends on oy (®). It is not clear from [72,73] how large the
implicit constant C' is, while our paper gives an explicit characterization of the C' under the clumps model.

The super-resolution problem considered in this paper corresponds to the single snapshot case, in which
case, the key quantity of interest is the implicit constant C. In the single-snapshot case, there have been
several works on the stability of subspace methods, which addressed the connection between op,in(®) and
the support Q. These works include MUSIC [26], ESPRIT [74] and MPM [28], but only apply to the well-
separated case. During the review period of this paper, the present authors applied Theorem 2.7 to derive
an error bound for ESPRIT in the super-resolution regime [75].

In literature, the resolution of MUSIC was addressed in [41-43]. These papers studied the frequency
estimation error in the DOA setting with multiple snapshots of measurements. The Cramér-Rao lower
bound is derived based on the statistics of random amplitudes. Thus, these results do not apply to the
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(d) 4-clump model: A =4

Fig. 6. Phase transition curves: (a-d) show the average log,[dist (€2, ﬁ)/A] over 10 trials with respect to log;, SRF (x-axis) and
log,y o (y-axis) when  contains A = 1,2,3,4 clumps of A = 2,3,4,5 equally spaced point sources. The slope is computed by a
least squares fitting by a straight line.

single-snapshot case. It was explicitly mentioned in [41, after Equation (1.2)] that, “In effect, the analysis in
[42] assumes the multi-experiment case, and hence may not apply to the single experiment case.” Our theory
shares some similarity with [42]. Equation (2) in [42] implies that, to guarantee the success of MUSIC for
the estimation of X closely spaced frequencies with separation A, the SNR needs to be at least A=2(A=1)
which has the same dependence on A as the Equation (4.6) of our paper. Here are some differences between
Equation (2) in [42] and Equation (4.6) of our paper: (1) Our Equation (4.6) implies SNR in the order of
SRF2A -1 — (MA)~2=1D which is more accurate than A~2(*~1)_ In other words, our theory takes the
advantage of a large M in applications. (2) Our theory does not rely on the randomness of x, and considers
the clumps model, which is more general than just having A closely spaced frequencies with separation A.
(3) Our results are non-asymptotic and work for finite measurements M, while the theories in [41-43] are
asymptotic and require #Snapshot — oo and A — 0.

Finally we remark that the results in the present paper are not the same as the Cramér-Rao bounds for a
single-snapshot case. In the single snapshot case, one assumes certain statistics of the random noise, and the
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Cramér-Rao bound expresses a lower bound on the variance of unbiased estimators. The noise statistics play
an important role in the Cramér-Rao bound. Our perturbation bound for MUSIC, such as Corollary 4.5, is
deterministic and can be applied for all noise vectors, independently of the noise statistics.
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Appendix A. Proof of theorems and corollaries
A.1. Proof of Theorem 2.3

We first need to introduce the following function that is of great importance in Fourier analysis. For a
positive integer P, we define the normalized Fejér kernel Fp € C*°(T) by the formula,

P
1 || ; 1 sin(m(P 4+ 1)w)\2
F = (1 _ ) 2mimw — ( ) )
P(w) P+1 m;P P+1/° (P+1)2 sin(mw)
The normalization is chosen so that Fp(0) = 1. We recall some basic facts about the Fejér kernel. Its L2(T)
norm can be calculated using Parseval’s formula, and so

P
1 , N\ 1/2 1

m=1
We can also provide a point-wise estimate. By the trigonometric inequality | sin(7mw)| > 2|w|T, we have

1

F < -
Frs e apRE

forall weT. (A.2)

If we raise the Fejér kernel to a power R, then the function (Fp(w))® has better decay, but at the cost of
increasing its frequency support. If we keep the product PR fixed, then increasing R leads to better decay
at the expense of worse localization near the origin.

The proof of Theorem 2.3 relies on the quantitative properties of a set of polynomials {I; }3-9:1, with I;
depending on Q and M, which we shall explicitly construct. The construction seems complicated, but the
idea is very simple. For each w; € €, we construct I; € P(M) such that it decays rapidly away from w; and

Iij(wg) = 0j5, forall wyeA,.

The key is to carefully construct each I; so that it has small norm; otherwise, the resulting lower bound for
Omin(P) would be loose and have limited applicability. The construction of these polynomials is technical
and it can be found in Appendix C.
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Lemma A.1. Suppose the assumptions of Theorem 2.3 hold and define the constant

Ea = Ea(Aa,M) — (1 . %)(MU/Z(%)A,,,l {%J 7()\0.71).

For each 1 < a < A and each wj € A, there exists a I; € P(M) satisfying the following properties.

(a) Ij(wk) =9, for all wy, € Aq.
(b) | (wr)| < 1/(208) for all wy ¢ A,.
(©) [jllz2ery < (2/M)Y2BuA)p;

Proof of Theorem 2.3. Let {I; }3—9:1 be the polynomials constructed in Lemma A.1. Let v € C° be a unit
norm vector such that

Tmin(®) = [|v]2.

We define the trigonometric polynomial I € P(M) by the formula,

I(w) :=I(w,v) := Zva

For each index 1 < k < S, we define the quantity

E = I(wk) — Vg
Since I;(w;) = 1, we have
L = Z’Uj[j(wk).
J#k

Fix a wg € Q. Then wy € A, for some 1 < a < A. By Cauchy Schwartz, the assumption that v is unit norm,
the property that I;(wy) = 0, for all wy € Ag, and the upper bound on |I(wy)| given in Lemma A.1, we
deduce

el < (S ) = (3 iner) s v

Jj#k wiENa

This holds for each 1 < k < S, so we have

lell < VS]lelloe < 20-

The conditions of robust duality, Proposition 2.13, are satisfied, so we have
19 —1
Tin(®) = [@0ll2 = 2210k,

To complete the proof, we need to upper bound ||I(-,v)||z2¢T) uniformly in v. We use Cauchy-Schwartz,
that v has unit norm, and the norm bound for I; given in Lemma A.1 to obtain the upper bound,

1/2

el < (S I00m) " < (2) (@)
j=1 j=1
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where Ea was defined in the referenced lemma. Combining the previous two inequalities shows that

1/2 1/2

s s
Omin(P) > 20\/_ (j; (B2X\)ap ) (;B Neps) ) ’

where by definition, B, = B,(20v/2)/19. O
A.2. Proof of Theorem 2.7

Proof. Fix an index 1 < a < A and w; € A,. Recalling the definition of p; and using that A > a/M, we
see that

1 1\ a1
Pi= H M |wg — w;|T = (E) '
wi €A \{w;} ’

This implies that

10752 (Sp,)V/ @A) 10A3/251/2
M = Mal/?

This in turn, shows that the separation condition (2.4) implies (2.2). Hence, the assumptions of Theorem 2.3
are satisfied, and we have

Umin(q)) > \/M(i Z )\)\ 71 2)_1/2'

a=lw;eA,

We can write the right hand side in terms of a. Observe that if A, = {@; };‘;1 contains A, points that are
equispaced by a/M and p; is the complexity of &;, then

~2
D]
wj €EAq L:)]‘ G/N\a
Thus we have the inequality,

Aa Aa a2
ST )
w%a Pi ; 7H TO

Combining the above inequalities completes the proof. O
A.3. Proof of Theorem 3.5

The crux of the proof is to construct, for each Q C {n/N} -} with |Q| = S, a family of polynomials
{H,(-,)}5_, with small L*(T) norms that satisfy an appropriate interpolation property. The construction
is technical because it must be done carefully in order to obtain an accurate bound for the lower restricted

isometry constant. The proof of the following lemma can be found in Appendix C.

Lemma A.2. Suppose the assumptions of Theorem 3.5 hold and let C(M,S) be the constant defined in the
theorem. For each Q C {n/N}\Z} and of cardinality S, there exist a family of polynomials { H;(-, Q) 3-9:1 -
P(M) such that
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Hj(wg, ) =0, forall wj,wy € Q.
Moreover, we have the upper bound,
(S em) < con s (V)
pe R VAT AN TV

Proof of Theorem 3.5. By definition of the lower restricted isometry constant, there exists a set £ of cardi-
nality S and supported on the grid with spacing 1/N such that

O(M, N, 5) = omin(®(Q, M)).

Let {H;(§) 39:1 be the family of polynomials given in Lemma A.2. Let u = u(2) € C° be a unit norm
vector such that

Omin(P(Q, M) = ||2(Q, M)ull2.

We define the polynomial,

H(w) := H(w,u,) Zu]

Using the interpolation property of {Hj;(-, ) le guaranteed by Lemma A.2, we see that H € P(Q, M, u).
By exact duality, Proposition 2.12, we have

_ -1 ) -1
Omin(P(Q2, M)) = fEP(gl,%;fu(Q)) ||f||L2(T) > || H( aQ)”Lz(T)-

Using Cauchy-Schwartz and that u is a unit norm vector, we have

S

1/2
1H ey < (S IHBecry) -

j=1

Combining the previous inequalities and using the upper bound given in Lemma A.2 completes the proof
of the theorem. 0O

A.4. Proof of Theorem 3.8

Proof. The upper bound for the min-max error is a direct consequence of Proposition 3.4 and Theorem 3.5.
To obtain a lower bound for the min-max error, we first apply Proposition 2.10 to the case that €2 consists
of 25 consecutive points spaced by 1/N. We ready check that the size assumptions on M and N imply that
the conditions of Proposition 2.10 are satisfied, and thus,

45 — 2\ 12 2m M\ 251
< _— .
@(M,N,2S)_2(2S_1> M+1( - )

Combining this with Proposition 3.4 establishes a lower bound for the min-max error. 0O
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A.5. Proof of Corollary 4.7

Proof. According to Theorem 4.3, a sufficient condition for |R — Rl < € is

A

—1
IRz < Mawin (Y (caa™41)?2) /4. (A.3)
a=1
Lemma 4.6 implies that (A.3) holds with probability no less than 1 — (M + 2)~®*=1) as long as t =
—1 +2
M:Emin<z;4=1 cga’z()“fl)) g/4 and (M + 2)e” **i+2) < (M + 2)'77, which is guaranteed by (4.5). O
Appendix B. Proof of propositions

B.1. Proof of Proposition 2.10

Proof. The argument relies on the variational form for the minimum singular value,

[Pull

i (®) = '
(Tmln( ) w€eCS ,uz#0 ||UH2

To obtain an upper bound, it suffices to consider a specific u, and our choice is inspired by Donoho [37].
Without loss of generality, we assume that w = 0. We re-index the set Q = {w; }]5:1 so that

(U —Da

i for 1<j<A

U.}j =
We consider the vector u € C* defined by the formula

uj = (=17 (A -

. 1) for 1<j5<),
j—

and u; = 0 otherwise. Note that

21 — 2\ '/
= (327)

By the variational form for the minimum singular value, we have

du 2\ — 2\ /?
@) < L2 (2273 o (B.1)

To estimate || Pul|2, we identify u with the discrete measure

A
M= Z uj5(j71)a/M~
j=1

We also define a modulated Dirichlet kernel Dy, € C°°(T) by the formula, Dy (w) := Z%:o e2mime \We

readily check that

M M 1/2
[@ule = > [(@u)nl* = (D 7)) " = s Daglleer). (B.2)
m=0 m=0
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We see that all w € T,

(1% Dar)(w) = i(—l)j (A - 1) Dy (w _ %) (B.3)

The right hand side is the (A — 1)-th order backwards finite difference of Dys. It is well-known that for each
w € T, we have

(1o Dar) (w) = (%)A*lpgy%) + Ry (), (B.4)

where D ~ denotes the (A —1)-th derivative of Dy; and the remainder term Ry_; in magnitude is point-
wise O((a/M )) as a — 0. In order to exactly determine how small we require o to be, we calculate the
remainder term explicitly. By a Taylor expansion of Dy, for each w € T and 0 < j < A — 1, there exists
w; € (w— jo/M,w) such that

Dt o) = 3= o (5) SR o (57) S

Using this formula in equations (B.2) and (B.3), we see that

it =20 (1) PR () Sy

We are ready to bound equation (B.4) in the L?*(T) norm. By the Bernstein inequality for trigonometric
polynomials, we have

DG lz2ery < @eM)> Y Darllpzery = VM + 1 (2r M)

By the same argument, we have

>

-1

[Ba-1llz2(T) < Z
=0

A= A o)
(7D Gr) 1o e

<.

IN

C(N)a(2m )/\ 1||DM||L°°(T)
C(Na(2ra) (M +1).

IN

Using these upper bounds together with (B.4), we have

i Dadllpo(ry < VM 1 (2ma)*? (1 + O\ VM 1 1).

This inequality and the assumed upper bound for « (2.9), we see that

12 Darll2ry < 2VM +1 (2ma)* !

Combining this inequality with (B.1) and (B.2) completes the proof. O
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B.2. Proof of Proposition 2.12

Proof. We first prove that P(£2, M, w) is non-empty for any w € C¥ and S < M — 1. For each 1 < k < S,
we consider the Lagrange polynomials,
e2miw _ o2miw;

e27riwk. _ e27riwj :

Lk(w) =
J#k

We have L (w;) = 0, by definition, and after expanding L;, as a summation, we see that L € P(S—1) C
P(M). This implies Z,le wi Lk € P(,S — 1,w), which proves the first part of the proposition.

Let v be any unit norm vector such that ||Pv|ls = omin(®). The set of all trigonometric polynomials
f € P(M) can be written in the form

Ju

f@)= Y Fmpermime,

=0

Then f € P(M,Q,v) if and only if f € P(M) and it Fourier coefficients satisfy the under-determined system
of equations,

M-1
v; = Z f(m)ezmmwﬂ' for 1<j5<68.
m=0

Since P(§2, M, v) is non-empty, pick any f € P(Q, M, v). Since || f||z2(T) = ||f|\gz(z), the functions f € P(M)
that satisfy this system of equations and have minimal L?(T) norm are the ones with Fourier coefficients
given by the Moore-Penrose pseudo-inverse solution to the above system of equations. Namely,

1

. _ . — @* T = —\
min )||fHL2(T) @r*rEEUHUHQ [[(@*)T0]l2 T (@)

fEP(M, Qv
Rearranging this inequality completes the proof of the proposition. O

B.3. Proof of Proposition 2.13

Proof. Define the measure u = Zle v, and note that zi(m) = (®v),,. We have

S S
|7 ] = | ST | = |10l + 3 w555] 2 0l = Iollaliete = 1~ el
T j=1 j=1

On the other hand, using that f € P(M), Cauchy-Schwartz, and Parseval,
M-1__ R
| [7au| =] X Fomatm)| < 1Fle@ll@vls = 17w o]
T

m=1

Combining the previous two inequalities completes the proof. O
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B.4. Proof of Proposition 3./

For this proof, we make the following changes to the notation. We can identify every discrete measure
1 whose support is contained in the grid with spacing 1/N and counsists of S points with a S-sparse vector
x € CN. Under this identification, the Fourier transform of x is identical to the discrete Fourier transform
of x. Let Cfgv be the set of S-sparse vectors in CVV, and F be the first M + 1 rows of the N x N discrete
Fourier transform matrix. With this notation at hand, the min-max error is

E(M,N,S,6) = inf sup ¢, —z|2.
PEA y(am)eY

Proof. We prove the upper bound first. Let ¢ be the function that maps each y € ) to the sparsest vector
¢, € CN such that [|[Fe, — yll2 < §. If there is not a unique choice of vector ¢,, just choose any one of
them arbitrarily. Note that ¢, exists because = also satisfies the constraint that | Fz — y|l2 < J, and the
choice of ¢, does not explicitly depend on x and 7. Note that ||Z]jo < ||¢yllo < S by definition of ¢. Then
we have

E(M,N,S,6) < sup |y — 2.
y(z,n)€Y

For any z € C% and 5 with |||z < d, we have ¢, —x € CJ§ and

[Fpy —2)l2 _ [Foy —ylla + 1 Fz —ylla 26

O(M, N,2S) < < < :
loy — 2ll2 ley — zl2 Iy — |2

Combining the previous two inequalities and rearranging completes the proof of the upper bound for the
min-max error.

We focus our attention on the lower bound for the min-max error. By definition of the smallest singular
value, there exists v € C2% of unit norm such that

O(M. N, 28) = || Fu]l.
Pick any vectors vy, vs € (Cév such that

d

o(M,N25) " T T

Suppose we are given the data
y = Fuvy = Fog + F(vg — vg).

Let ) := F(v; — vy) € CM*1 The previous three equations imply

d

[nll2 = | F(v1 —v2)]2 = W'

|]:UH2 S 0.

This proves that y is both the noiseless first M Fourier coefficients of v, as well as the noisy first M Fourier
coefficients of vy with noise F(v; —vy) with noise n. Thus, we have y € Y with y = y(v1,0) and y = y(ve, 7).
Consequently, we have

> ] — Urll.
5(M,N,S,5)_$ggg%§||f(y) k|
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Using that v has unit norm, for any ¢ € A, we have

é
v — e < |y — ~wglls <2 — vg .
oM. N, 25) lor = vall2 < llpy —vill2 + [lpy — vall2 < 2 max oy — vgl2

This holds for all f € A, so combining the previous two inequalities completes the proof of the lower bound
for the min-max error. 0O

Appendix C. Proof of lemmas
C.1. Proof of Lemma A.1

Proof. Fix a w; € , and so w; € A, for some 1 < a < A. We explicitly construct each I;, and it is more
convenient to break the construction into two cases.
The simpler case is when A, = 1. Note that B, = p; = 1. Then we simply set

Ii(w) := XM= By (w — wy),

where we recall that Fys is the Fejér kernel. We trivially have I;(wy) = 9, for all wy, € A, and I; € P(M).
Using the point-wise bound for the Fejér kernel (A.2) and the cluster separation condition (2.2), we have

1 1
< .
(M +1)?|wr, — wj|3 — 4008

5 (wi)l < 5
Using the L? norm bound for the Fejér kernel (A.1), we see that
1
I; < —.
H J”L?(T) = M1l
This completes the proof of the lemma when A\, = 1.

From here onwards, we assume that A > 2. To define I;, we must construct two axillary functions G;
and H;. We define the Lagrange-like polynomial,

e27rint _ eQWinwk M

G = I Srgo—mme vhee Q= |1
kaAa\{UJj}

Note that (); is positive because M /Aa = M/S > 1. This function is well-defined because its denominator is
always non-zero: this follows from the observation that the inequalities, Q; < M/2 and |w; — wi|T < 1/M,

imply
|Qjw; — Qjwr|T = Qjlw; — wilT.
By construction, the function G; satisfies the important property that
Gj(wg) =0k, forall wyeA,. (C1)

We upper bound G; in the sup-norm. We begin with the estimate

2
”Gj”LOO(T) < H |1 _ e27rin(wj—wk)| '
wr€Aa\{w;}
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Recall the trigonometric inequality,

w2t?
2 — 2 cos(2t) > (27Tt)2(1 - T) for t € [~1/2,1/2],

which follows from a Taylor expansion of cosine. Using this inequality, we deduce the bound,

1 72Q%|w, —wkﬁr -1/2
1Gsllzoem) < H TQ;|w; — wk| (1 B ’ ?3 ) '
k€A \wg} T TR
Since Q; = [ M/Aq] and |w; — wi|T < 1/M, we have
w2\ —(Na—1)/2 1 ~
Grlimm < (1~ 22) L gy,
H JHL (T) = 3)\2 H WQ_]|WJ —Wkl’]l‘ a p] (02)

wr€Aa\{w;}

We next define the function H; by the formula,
- M
Hj(w) = (62”“37'(“’7“’1')ij (w —wj))k"', where Pj:= {WJ

Recall that Fp, denotes the Fejér kernel and note that P; is positive because M/(2A2) > M /(257%) > 1. We
need both a decay and norm bound for H;. To obtain a norm bound, we use Hélder’s inequality, that the
Fejér kernel is point-wise upper bounded by 1, the norm bound for the Fejér kernel (A.1), and the inequality
P;+1> M/(2)2), to obtain,

1 2)\2\1/2
Aa—1 a
[Hjllz2(ry < [1Fp; 175 1) 1 FPy [l 2(m) < o < ( i ) : (C.3)

To obtain a decay bound for H;, we use the point-wise bound for the Fejér kernel (A.2) to deduce,

2Xa 2 22,
H(w) < ( : )7 < ()™ foran weT
2(Pj 4+ 1)|w — wjlr Mlw — wjlr

We would like to specialize this to the case that w = w; for w; ¢ A,. We need to make the following
observations first. Observe that 1 < |t]/t < 2 for any ¢ > 1. Using this inequality and that A, > 2, we see
that

/(2a) < 1.

2 ) _1/4“/(4’\“)2(/\&71)
32

a

(20B,)/(Xa) < 901/ (2X) (1 _

This inequality and the cluster separation condition (2.2) imply

10X (SA3 ' py)/PA)  A2(20B, SN py) !t/ (Xe)
M - M

lwe, — wj|T > for all wy ¢ A,.

Combining this with the previous upper bound on H; shows that

1
‘HJ(W]C” S m for all W ¢ Aa. (C4)
a’\a 9

We define the function I; by the formula
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It follows immediately from the property (C.1) that
Iij(wg) =05, forall wyeA,.

The negative frequencies of I; are zero, while its largest non-negative frequency is bounded above by
M M
2P0 + (o = DQ; < 1+ (o = D(T) <M,

which proves that I; € P(M). We use Hélder’s inequality, the sup-norm bound for G; (C.2), and the norm
bound for H; (C.3) to see that

~ B 2\1/2
1Gleeer) < 1Gs el llzaery < BaXy i () -

Finally, we use the sup-norm bound for G; (C.2) and the bound for |H;(wg)| (C.4) to see that

1
[ (wi)| < NG5l poe (my [ Hj(wr)| < 205 forall wy ¢ A, O

C.2. Proof of Lemma A.2

Proof. Fix integers M, N, S satisfying the assumptions of Lemma A.2. Fix a support set (2, contained in
the grid with spacing 1/N and of cardinality S. We do a two-scale analysis. For each w; € 2, we define the
discrete sets and integers,

1
Fj I:Fj(Q):{LUkGQS |Ldk—£dj|'][‘ <M} and Vi o= ‘Fj|,

S
T, = T;(Q) = {wk € Q: |wp —wjlT < W} and 7 := [T;].

To construct H;(-,), we need to define two axillary functions, similar to the construction done in
Lemma A.1. We define the integers

[M/S] if wp € Tj \ {wi},

=05 1(0Q) =
Qs = Qi) {u/(amwmu if wp € 2\ T;.

We readily verify that we have the inequalities 1 < @, < M/S and

|Qj,kw]' — Qijwkhr = Qj7k|wj — wk|']r for all Wi, Wk € Q. (05)
This observation implies that the Lagrange-like polynomial,
627‘{'1‘@]“)90.) _ 6277in,ka

G] ((JJ) = G] ((.U, Q) = H QQWiQ-j’kwj _ eZﬂ'in)kwk ’
wr€Q\{w;}

has non-zero denominators, and is thus well-defined. By construction, we have the interpolation identity,
Gj(wg) =05 forall wj,wi € Q.

We bound G in the sup-norm. We begin with the inequality,
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2
||G]HLOC(T) S H |1_€27rin7k(wj7wk)"
wr €\ {w;}

Recall that we have the partition,
Q\{wj} = (T \{w; ) U(T\T5) U QN T)).
Then we break (C.6) into three products according to this partition, and estimate each term at a time.

(a) We first consider the product over wy € I'; \ {w;}. If T'; \ {w;} = 0, there is nothing to do. Hence,
assume that v; > 2. By a Taylor expansion for cosine, we obtain the inequality,

2 — 2cos(2nt) > (27t)? (1 - ?) for t € [~1/2,1/2].

Using this lower bound, the observation that Q;, = |M/S] < M/S < M/v; when wy, € T'; \ {w;}, and
the assumption that |w; — wy| < 1/M for all wy € I';, we obtain

2

11 i (o)
el ey 1€ |
< H - 7T2Q%k|wj — wkﬁr )—1/2 R
N 3 . _
wi €l \{w;} wr € \{w; } 7TQJJC|WJ Wk"]{‘

2\ —(—-1/2 —(v;—1)
e e I R | Qe
T|w; — we|T

372 S
i wr €T\ {w;}
12 M ~(u-1)
I G B (=
- oneT\fuy) T T WHIT

For the last inequality, we made the observation that (1 — 2/(3t2))~(*=1)/2 is a decreasing function of

t on the domain ¢t > 2.
(b) We consider the product over wy € 7; \ I';, and note that Q;; = |[M/S] for this case. Recall the

trigonometric inequality

|e*™ — 1| > 4ft|y, forall teR. (C.7)

We this trigonometric inequality and (C.5) to see that

11 - < 1 oot
|1 — e2miQynlws—wr)| = 2Qj k|lw; — wi|T

wr€TH\T'; wr€TH\T;

—Ti Ti—j
SET RO g
wk-G'Tj\Fj |w‘7 7Wk|’]r

(c) For the product over wy, € Q\ 7;, note that Q; |w; — wi|T > 1/4. Using this and the trigonometric
inequality (C.7) again, we see that

2
' - < 95T
wkg\ﬁ |1 — e2miQjk(wj—wk)| wkel;I\T 2Q;, k\wj —wilT ~
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Combining the above three inequities with inequality (C.6) and simplifying, we obtain an upper bound

12 2 M —m+1 s 1\v—1 1
|Gl (T) < (—2> {—J (—) 2572t [ ——. (C.8)
12 — 7 S ™ e €T () lw; — we|T

Let P = |M/(25)] and note that P > 1 because M > 2S. Let Fp be the Fejér kernel, and by the L?(T)
bound for the Fejér kernel and the observation that P +1 > M/(25), we have

[FPllz2(T) < (ﬁ)w < (%)1/2. (C.9)

Finally, we define H; by the formula,
Hj(w) == Hj(w,Q) := 2™ P (0w — w)) G (w).
We still have the interpolation property that
Hj(wg) =9, forall wj,w, € Q.

By construction, the negative frequencies of H; are zero while its largest positive frequency is bounded
above by

M M M(S -1
P Py

This proves that H; € P(M).
It remains to upper bound Zle | H;|%. (1)~ By Holder’s inequality and the inequalities,

(S 1) < (e 16 len) ™ < (52) 7 (5) B0,
j=1 j=1

where the constant F(Q) is defined as
S M —27']'—&-2 1 ’7]'—1 St 1
j=1 wr€T\{w;} 7 *lT

To complete the proof of the lemma, we need to obtain the appropriate bound on E(£2) uniformly in .
This is handled separately in Lemma C.1, which is stated below and proved in Appendix C.3. O

Lemma C.1. Suppose the assumptions of Lemma A.2 hold and let E(Q2) be the quantity defined in (C.10).
Then

20) < {%JQSHN” 2( )25 225:

Jj=1 k#]
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C.3. Proof of Lemma C.1

Before we prove the lemma, we motivate the argument that we are about to use. We view E(Q2) as a
function defined on all ( ) possible sets € supported on the grid with spacing 1/N and of cardinality S.
To upper bound E() uniformly in €2, one method is to determine which  attain(s) the maximum. The
maximizer is clearly not unique, since E(2) is invariant under cyclic shifts of by 1/N. However, we shall
argue that the maximizer is attained by shifts of Q, = {n/N}3Z!. Note that

B(Q,) = {%J’QSHN% 2( )25 Qigj (C.11)

j=1

Thus, the lemma is complete once we prove that F(Q2) < E(£.). While it seems intuitive that E(Q) <
E(9,) for all , it is not straightforward to prove. When €2 is contained in a small interval, the product over
7; in the definition of E(€2) given in (C.10) is large, but that is offset by the remaining terms, which are
small. The major difficulty is that E(f2) is highly dependent on the configuration of . If we perturb just
one of the w; € €2 and keep the rest fixed, it is possible for all S terms in the summation in the definition
of E(Q) to change. This makes continuity and perturbation arguments difficult to carry out. To deal with
this difficultly, we proceed with the following extension argument.

Proof. We extend E to a function of D = S(S — 1) variables in the following way. We write w € R” to
denote the D variables {w; k}1<jr<s jzk- We do not impose that {w; i} 2 are unique, that w;, = wg j,
or that they lie on some grid. They are just D independent real variables for now. We define the sets and
integers,

S
Aj(w) = {ka wj i < QM} and a;(w) = |4;(w)|,
1
Bj(w) = {wjn: i < 77} and b;(w) = [B;(w)].
We define the function F': R” — R by the formula,
s
_ M | =2a;(w)+2 /1 \bi(w)—1 S—2a;(w)+b;(w) 1
-2 |5 (=) 4 II = (€12

j=1 wi k€A, (w) Ik

We restrict F to the domain [1/N,1/2]P N H, where

k=1 J#k
and the constant ¢(S) is defined as
2142+ + 5532 if S is odd,
c(S) = s S e
2(14+2+- +— + 3 if Sis even.

We argue that F is an extension of E. Note that any 2 can be mapped to a w(Q2) € RP via the relationship
(w(Q));k = |w; —wg|T for all j # k. Under this mapping, we have a;(w) = 7; and b;(w) = ~;, which shows
that
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Moreover, w(€2) is clearly contained in [1/N,1/2]P. For each 1 < k < S, we have

Z<w(9>)jxk = Z lwj — wilT > CTS)

J#k J#k

This inequality implies that w() is contained in the set [1/N,1/2]P N H. Thus, F is indeed an extension
of E, and for all 2, we have

EQ)=F(w(Q)) < sup F(w). (C.13)
we[l/N,1/2]PNH

We remark that there is a clear advantage of working with F' instead of E. If one coordinate of w is
perturbed while the rest of the D — 1 coordinates of w remain fixed, then only one of the S terms in the
summation in (C.12) is perturbed.

Observe that [1/N,1/2]” N H is compact because it is the intersection of a closed cube with S closed
half-spaces. Clearly F' is continuous on the domain [1/N,1/2]” N H, so the supremum of F is attained at
some point in this set. We first simplify matters and prove that

max F(w) = max F(w), (C.14)
we[1/N,1/2]PNH we[1/N,1/M|PNH
which is done via the following two reductions.
(a) Our first claim is that
max F(w) = max F(w).
we[l/N,1/2]PNH we[l/N,S/(2M)]PNH

Suppose for the purpose of yielding a contradiction, the maximum of F' is not attained at any point in
[1/N,S/(2M)]P N H. This is equivalent to the claim that, for any maximizer w of F, there exist indices
(m,n) such that a,,(w) < S —1 and wy, , > S/(2M). We define the vector v € [1/N,1/2]” N H by the
relationship

- { S/N if (j, k) = (m,n),

wj  otherwise.

Since v and w agree except at one coordinate, we readily calculate that
F(w) = F(v)

_ {%J_2am(w>+2(%>bm(w>—14sfzam(w>+bm<w>( 11 2#) (1 - L"?J_Q%)-

w
wj rE€EA;(w) m,k

The assumption that N > 7MS and S > 2 imply

1 N7 - (M)2
47721’7271,71 T 4282 =\ 2

\V;
| =
B

This proves that F(w) < F(v), which is a contradiction.



W. Li, W. Liao / Appl. Comput. Harmon. Anal. 51 (2021) 118-156 153

(b) Our second claim is that

max F(w) = max F(w).
we[l/N,S/(2M)|PnH w€E[l/N,1/M]PNH

Suppose for the purpose of yielding a contradiction, the maximum of F' is not attained at any point in
[1/N,1/M]PNH. This is equivalent to the claim that, for any maximizer w € [1/N, S/(2M)]|P NH, there
exist indices (m, n) such that b, (w) < S—1and wy, , > 1/M. We define the vector v € [1/N,1/M|PNH
by the relationship,

by = { S/N if (j, k) = (m,n)

wj  otherwise.

Since v and w agree except at one coordinate, we see that

M | =2542 0 1 \bm(w)=1 o0 1 4
Fw-ro =gl () 0 I ) )

2
™ w
kEAm(w)\{n} m, m,n m,n

The assumption that N > 7M.S implies

4 4N?

> 4M? >
w22, -

= 292 < :
w28 Wy

,n

This shows that F(w) < F(v), which is a contradiction.

Thus, we have established (C.14), and combining this fact with (C.13) yields,

=
2
I
o
=
)
AN

< max F(w). (C.15)
we[l/N,1/M]PNH

When w € [1/N,1/M]P N H, the function F reduces to

F(w)z{%JiQSH(%)S%Z %

j=lkeB;(w) Ik

Since F' is a smooth function of w, a straightforward calculation shows that each partial derivative of F,
with respect to the canonical basis of R”, is strictly negative on [1/N,1/M]P N H. Thus, the maximum of
F is attained on the boundary of [1/N,1/M]?” N H. In fact, H is the intersection of S half-spaces and the
boundary of the k-th half-space is the hyperplane

Hy, = {w e RP: ij,k = Lj\?)}
J#k

Since each partial derivative of F is strictly negative on [1/N,1/M]P N H, we see that the maximum of F
must be attained on one of these hyperplanes. We observe that w(2) lies on a Hj, if and only if Q consists
of S consecutive indices. This proves that for all €2, we have

This combined with the formula for E(f2,) given in (C.11) completes the proof of the lemma. O
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C.4. Upper bounds for discrete quantities

Lemma C.2. For any integer n > 2, we have

Proof. Notice that

n D2 if nis even
min [ k> (2 )i
1g]§nk:1’ ok (T)'(T)' if n is odd.

By further using the well-known inequality, k! > /27 kFt2e=* for any integer k > 1,

ﬁ , 2m(2 — 1)~ 3(2)3+3e "+ if nis even

1<j< = n—1\n,—n+1 e
SIS LY kg 2m("5=)"e if n is odd.

Hence, for any n > 2, we have

n
n n
i i — k| > —— n,
i H 4|] k|_27re<2 1) e
k=1, k#j
Thus,
n n n
(Z H 4(j—k)2) <27re<z<§—1) e ) :271'6\/5(5—1) e O
j=1k=1, k#j j=1
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