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Abstract—Semiquantitative group testing (SQGT) is a pooling
method in which the test outcomes represent bounded intervals
for the number of defectives. Alternatively, it may be viewed
as an adder channel with quantized outputs. SQGT represents
a natural choice for Covid-19 group testing as it allows for
a straightforward interpretation of the cycle threshold values
produced by polymerase chain reactions (PCR). Prior work on
SQGT did not address the need for adaptive testing with a
small number of rounds as required in practice. We propose
conceptually simple methods for 2-round and nonadaptive SQGT
that significantly improve upon existing schemes by using ideas
on nonbinary measurement matrices based on expander graphs
and list-disjunct matrices.

I. INTRODUCTION

Group testing (GT) is a scheme designed to efficiently
identify a small set of subjects with a particular property
(standardly referred to as defectives) within a large population,
first introduced by Dorfman [1] and further studied in many
other works, including [2]–[4]. Group testing entails testing a
collection of carefully selected subpopulations and reporting
for each subgroup a binary answer: A positive answer is
indicative of the existence of at least one defective in the
subgroup while a negative answer implies the absence of
defectives. Given that screening protocols are extensively used
in engineering and science, group testing has found wide-
spread applications in communication theory, signal process-
ing, computer science, and computational biology [3], [5].

Many different variants of group testing have been proposed
in the literature [1], [3], [6]. These include threshold group
testing proposed by Damaschke [7] and quantitative (additive)
group testing studied by Lindstróm and Du and Hwang [6], [8],
[9]. In the latter case, the test results report the exact number of
defectives in the test subpool. In the former case, if the number
of defectives in a test is smaller than a lower threshold, the test
outcome is negative; if the number of defectives is larger than
an upper threshold, the test outcome is positive; otherwise,
the result is arbitrary (positive or negative). To bridge the
two above described paradigms, Emad and Milenkovic [10]–
[12] introduced the notion of semiquantitative group testing
(SQGT). SQGT represents a unifying framework of a number
of testing protocols, including conventional, quantitative and
gapless threshold group testing and the schemes by D’yachkov

M. Cheraghchi’s research was partially supported by the National Science
Foundation under Grant No. CCF-2006455.

and Rykov [13], [14]. In SQGT, the result of a test is a
nonbinary value that depends on the number of defectives
through a fixed set of thresholds. The SQGT model may also
be viewed as a quantitative group testing method followed
by a quantizer. The original motivation for introducing SQGT
models is genotyping; more recently, the model has been used
by Gabrys et al. [15] to describe the test outcomes of a Covid-
19 testing process known as real-time reverse-transcriptase
polymerase chain reaction (PCR).

In nonadaptive SQGT, each subject is assigned a unique
binary or nonbinary indicator word of length equal to the total
number of tests. These indicators are arranged column-wise
in a test matrix. Each coordinate in the codeword assigned
to a subject corresponds to a test, and its value reflects the
“concentration” of the sample corresponding to the given
subject in the test. Note that the concentrations are nonnegative
integers that usually correspond to the number of units of
the genetic material of an individual subject. Two families
of nonadaptive SQGT codes, SQ-disjunct and SQ-separable,
were analyzed in [11], [12]. In the same work, a number of
constructions for nonadaptive uniform and nonuniform (quan-
tized) SQGT codes were presented but no results were reported
for adaptive tests. The more recent work [15] introduced the
first combinatorial and probabilistic adaptive SQGT (ASQGT)
schemes, the former extending the work of Hwang [16] on
generalized binary group testing. The proposed combinatorial
ASQGT schemes involve what is referred to as parallel and
deep search methods that lead to a relatively large number
of testing rounds. This is an undesirable feature for practical
implementations of SQGT in Covid-19 testing.

Here, we describe the first known combinatorial two-
round adaptive SQGT (ASQGT) for a special selection of
(quantization) thresholds studied in [15]. The scheme uses
O
´

d log log τ
log τ log n

d

¯

tests for n subjects, d defectives and τ

SQGT thresholds. It builds upon the ideas of list-disjunct
group testing [17] and like the approach [15] uses nonbinary
test matrices obtained by careful linear combining of the rows
of a binary disjunct matrix. The described two-round ASQGT
protocol differs from the information-theoretic bound only by
about a factor log τ. We then proceed to improve existing
nonadaptive protocols by extending the construction of Porat
and Rothschild [18].



The paper is organized as follows. Sections III describes our
main result, the first known two-round ASQGT. Section IV
presents new nonadaptive SQGT schemes that significantly
improve upon previous constructions [11], [12] and imply new
upper bounds for nonadaptive SQGT.

II. TERMINOLOGY, GT BACKGROUND, AND BOUNDS

We start with some relevant terminology. All parameters are
denoted by small-case letters, while vectors and matrices are
denoted by bold-face small-case and capitalized Latin letters,
respectively. Entries of the vectors are indexed by subscripts
while matrix entries are indexed by pairs of integers within
parentheses. Unless stated otherwise, all logs are to base 2.

Assume that there are n ą 1 test subjects labeled by
elements in rns :“ t1, . . . , nu among which d ă n are
defective (i.e, infected). In conventional group testing, we
summarize the set of tests through a binary matrix Bmˆn in
which every column of the matrix uniquely characterizes an
individual and each row represents a test. The pi, jqth entry
of B, Bpi, jq, equals 1 if and only if the individual labeled j
is included in the ith test. Let tI P t0, 1um denote the binary
vector that results from m tests using B, assuming that the
set of infected individuals equals I Ă rns, with |I| ď d.
Whenever clear from the context, we omit the subscript I.
In conventional group testing tIplq “ 1 if and only if the lth

test includes at least one element from I. Let tL P t0, 1um be
defined analogously for another set L Ă rns. We say that a set
L is consistent with I if tL ď tI entrywise.

The matrix Bmˆn is termed d-disjunct if no vector tI for
|I| ď d contains in its support a column of B not indexed by I.
The disjunctness property ensures that the test results obtained
from B uniquely identify the set of defectives. A matrix B
is termed pd, `q-list-disjunct if the tests output a superset of
the defectives of size at most ` ` d; for such a matrix, the
size of any list L consistent with I is at most `` d. Clearly,
a matrix B which is d-disjunct is equivalent to one which
is pd, 0q-list-disjunct. The notion of list-disjunct matrices was
explicitly formulated (in an equivalent form) in [19] and is
also essentially equivalent to what was defined earlier in [20].

We review the following known results pertaining to the
existence of pd, `q-list-disjunct test matrices B P t0, 1umˆn

with ` “ Opdq and m “ Opd log n
d q. First, note that it is

straightforward to see that for a maximal L one has I Ď L.
Therefore, as noted in [21], the existence of a pd, `q-list-
disjunct test matrix B P t0, 1umˆn with ` “ Opdq naturally
implies a two-round testing scheme: The first round of tests is
governed by the rows of B while the second round involves
individually testing subjects in L. Randomized and explicit
constructions of list-disjunct matrices exist, particularly via
expander graphs [14], [17], [19]–[21]. The best known con-
struction which achieves an optimal number of rows and nearly
linear time recovery (in the number of rows) is given by [22].

The best lower bound on the number of tests necessary for
an adaptive ASQGT scheme was established in [15] via a
simple counting argument and the bound equals d

log τ log n
d .

In the next section, we establish the existence of a two-round

scheme that differs from this lower bound by a factor of
log log τ only. For the single-round setting, using a variation
of the argument employed by Füredi [23] in the context of
cover-free codes, one can show that the corresponding number
of tests scales as d2

plog τq3
logd n whereas the construction from

Section IV implies the existence of a scheme that requires
at most d2

log τ log n tests. This lower bound applies to not only
general nonadaptive SQGT, but in fact the particular saturation
model as well, which is the focus of this work. The derivation
of the bound is relegated to the full version of the paper.

III. TWO-ROUND ASQGT

Let G be a bipartite graph with a vertex partition P (people)
and T (tests) such that every vertex in P has degree k (i.e.,
k neighbors) and |P | “ n, |T | “ m. We say that G is an
pα, βq-expander if every P Ď P of size at most α|P | has at
least β|P| neighbors in T . The values of the parameters n, m
are dictated by the expansion factors α, β. It is also worth
pointing out that explicit constructions of expander graphs with
parameters of interest in our derivations may not be known,
but their existence is guaranteed via probabilistic arguments.
We say that a set of vertices T P T is covered by a set P Ď P
if for every vertex t P T, there exists a vertex p P P which is
connected to t. We say that a vertex t P T is uniquely covered
(or a unique neighbor) of P if it is the neighbor of exactly one
vertex p P P. Henceforth, for a set of vertices P, let NpPq Ď T
denote the neighbors of P and let NupPq Ď T denote the set
of unique neighbors of P. Furthermore, we say that a vertex
t P T is covered h times by P if it is connected to exactly
h different vertices in P. The next results may be obtained
through a straightforward modification of existing results.

Lemma 1. [19] Suppose that G is an pα, βq-expander where
every vertex in P has k neighbors and β ą 3k

4 . Let I Ď P
be a subset of size at most |I| ď d. Then for any P Ď P such
that PX I “ H, |P| ě |I| ` 2 and |PY I| ď α|P |, we have:

ˇ

ˇ

ˇ
NupPY IqzNpIq

ˇ

ˇ

ˇ
ě k.

Thus, given the previous lemma, it follows that there exists
at least one test in NpP Y Iq that is not covered by an
element of I. Using this observation, we construct the mˆ n
binary matrix B as follows. Suppose that G is an expander as
previously described. We assume that the vertices in P and
T are lexicographically ordered so that we can refer to the ith

vertex in T as i and the jth vertex in P as j. Then, for i P T
and j P P ,

Bpi, jq “

#

1, if an edge exists between i and j in G,
0, otherwise.

(1)

Thus, as a result of the construction for B, we see that we can
uniquely associate each column of B with a vertex in P and
each row of B with a vertex in T .

The next two results follow immediately from the previous
discussion.



Corollary 2. Suppose we are given two sets I, L Ď P such that
I Ď L. If L is consistent with I under B and |L| ď α|P |, then

|L| ă 2|I| ` 2.

Lemma 3. Suppose B is as defined in (1) and the set of infected
individuals satisfies |I| ď d. Then, testing with B recovers a set
L Ď P such that |L| “ Opdq and I Ď L.

The following lemma is known [3] and follows from a
standard randomized construction:

Lemma 4. Suppose that α “ 2d`2
n and let m “ 8e2kαn, where

e is the base of the natural logarithm. Then, for k “ Oplog 1
α q

there exists an pα, βq-expander graph G with bipartition P , T
such that |P | “ n and |T | “ m, and β “ 3k

4 .

The previous result implies the following theorem.

Theorem 5. There exists a conventional two-stage GT scheme
that requires at most

O
´

8e2d log
n
d

¯

tests and can identify a set of infected individuals of size at most
d from a population of size n.

We remark that the best known explicit constructions of
bipartite expanders are still inferior to the optimal bounds
achieved by random expanders in Lemma 4. For example,
using [24] one can get Opd1`αplog nqOp1{αqq tests for any
fixed α ą 0, and [25] would achieve Opd exppplog log nq3qq
tests, similar to the derivation in [20].

We now discuss how to use the matrix B to design a
specialized two-round SQGT testing scheme for τ ą 2.

We focus on a special case of uniform SQGT with sat-
uration [15] for which we are given τ thresholds. The test
outcome vector for a set I of defectives is such that sIplq “ 0
if the lth test includes no defectives, sIplq “ 1 if the lth test
includes 1 defective, . . . , sIplq “ τ´ 2 if the lth test includes
τ´ 2 defectives and sIplq “ τ´ 1 if the number of defectives
in the lth test exceeds τ ´ 2. To simplify the notation, we
assume that τ “ p4γqγ , for some positive integer γ.

We show the existence of a two-round testing scheme that
differs from the information theoretic lower bound from [15]
by only a factor of roughly log τ. As discussed earlier,
we only focus on the first round, since the second one is
straightforward. The key idea used to construct the test matrix
for the first round is to start with list-disjunct expander-based
binary test matrix and then merge the rows via specialized
linear combinations to reduce the number of tests and increase
the size of the alphabet used for the codebook.

We start by introducing two matrices Sp1q and Sp2q that will
be subsequently concatenated into the “global” SQGT matrix

S “

„

Sp1q

Sp2q



. Let B be as defined in (1) and for simplicity,

assume that γ |m. Then, for i P r1, m
γ s and j P r1, ns, we set

Sp1qpi, jq “ Bppi´ 1qγ` 1, jq ` p4γqBppi´ 1qγ` 2, jq (2)

` p4γq2Bppi´ 1qγ` 3, jq ` ¨ ¨ ¨ ` p4γqγ´1Bpiγ, jq;

Sp2qpi, jq “ Bppi´ 1qγ` 1, jq ` Bppi´ 1qγ` 2, jq (3)
` Bppi´ 1qγ` 3, jq ` ¨ ¨ ¨ ` Bpiγ, jq.

Note that both Sp1q and Sp2q are obtained linear combination
of rows of B, but the scaling factors are different. The SQGT
test matrix S has 2 m

γ rows and consequently the same number
of tests. The tests involve taking an integer number of sample
units dictated by the nonbinary entries in S. The nonbinary
(semi-quantitative) test outcome vector will be denoted by s.

Let Epaq denote the p4γq-ary expansion of the natu-
ral number a in vector form. More precisely, if a “

a0 ` a14γ ` a2 p4γq2 ` ¨ ¨ ¨ ` aγ´1 p4γqγ´1, then Epaq “
´

a0, a1, . . . , aγ´1

¯

, where ai, i P r0, 4γ ´ 1s. Our decod-

ing procedure operates as follows. Suppose that sp1q “

psp1q1 , . . . , sp1qm
γ
q represents the results of the (quantized) testing

using the matrix (2). We apply the map E to sp1q entrywise.
We then use an expander-based decoding procedure on this
vector to recover a “noisy” set of test values - the “noise” is
due to the that the matrix Sp2qpi, jq can handle only up to 4γ
defectives.

To this end, let s1 “
´

Epsp1q1 q, Epsp1q2 q, . . . , Epsp1qm
γ
q

¯

“

ps11, s12, . . . , s1mq and let t̂pbq “

´

r
s11
τ s, . . . , r

s1m
τ s

¯

“
´

t̂pbq1 , t̂pbq2 , . . . , t̂pbqm

¯

P t0, 1um. Note that t̂pbqi “ 0 if s1i ą 0 and

zero otherwise. For shorthand, we write fτÑb

´

sp1q
¯

“ t̂pbq.
We have the following claim.

Claim 6. Let t P t0, 1um denote the test output based on the
binary matrix B, let sp1q be the test output generated via Sp1q

and let t̂pbq be as defined above.Then,

dH

´

t̂pbq, t
¯

ď
dk
4

.

Proof: Let fτÑbps
p1q
i q “ ptγpi´1q`1, . . . , tγiq be the

mapping that corresponds to sp1qi . For some j P r0, γ ´ 1s,
let vertex pi ´ 1qγ` j P T be covered ě 4γ times. Such a
vertex may be in error (due to the use of the 4γ-ary expansion).
Since the set I Ď P has at most |I|k neighbors in T Ď G, it
follows from an averaging argument that
ˇ

ˇ

ˇ

!

pi, jq : vertex pi´ 1qγ` j P T is covered ě 4γ times
)
ˇ

ˇ

ˇ

ď
|I|k
4γ

.

Let pi ´ 1qγ` ` P T be a vertex in T which is covered at
least 4γ times (if no such vertex exists, we are error-free and
do not have to prove anything further). In this case we may
have fτÑb

´

sp1q
pi´1qγ``

¯

“

´

t̂pbq
pi´1qγ`1, t̂pbq

pi´1qγ`2, . . . , t̂pbqγ

¯

‰
´

tpi´1qγ`1, tpi´1qγ`2, . . . , tγ

¯

; in the worst case t̂pbq
pi´1qγ`1 ‰



tpi´1qγ`1, . . . , t̂pbqiγ ‰ tiγ. This implies that for every pi, `q

there are at most γ instances where t̂pbqv ‰ tv, which gives the
desired result.

As a result of the previous lemma, it follows that we can
recover a binary vector t̂pbq that is within Hamming distance
dk
4 of the binary test result t based on B. Thus, we have to

recover the set of infected individuals given a noisy set of test
outcomes. To correct errors, we make use of the test outcome
generated by the matrix Sp2q; this matrix renders the errors in
t “asymmetric,” which simplifies the problem. Here, the term
“asymmetric” refers to the fact to be addressed in Claim 7 that
t̂ ě t so that in t a 0 can change to a 1 but not otherwise. More
precisely, we use Sp2q to identify tests in Sp1q that contain
ą 4γ defectives. Note that if at least 4γ infected individuals
are present in some test pool i, then the entries indexed by
pi´ 1qγ` 1, pi´ 1qγ` 2, . . . , iγ of t̂pbq may be in error.

Let sp2q “ psp2q1 , . . . , sp2qm{γq P r0, τ ´ 1s
m
γ be the test

outcomes of Sp2q. Define a vector

tpbqj “

$

&

%

1, if sp2q
r

j
m s
ě 4γ,

t̂pbqj , otherwise.
(4)

Similarly as before, for s “ psp1q, sp2qq we write

f τÑbpsq “ tpbq.

The following straightforward claim follows from the pre-
vious discussion and the observations in Claim 6.

Claim 7. Let tpbq “ f τÑbpsq. Then, tpbq ě t, and

dHpt
pbq, tq ď

dk
4

.

We next generate a list L of potentially infected individuals
consistent with the outcome of the tests tpbq. The next lemma,
which uses the same ideas as Lemma 1, describes an upper
bound on the size of L.

Lemma 8. Suppose that s P r0, τ ´ 1s2
m
γ is the result of the

tests in (2) and (3) and tpbq “ f τÑbpsq. Then the size of any
list of defectives from P consistent with tpbq “ fτÑbpsq is at
most Opdq.

Proof: Recall that in our setup the graph G, which is used
to construct B and also Sp1q, is an pα, βq-expander. Hence,
every vertex in P has k neighbors and β ą 3k

4 . As before,
let I Ď P denote the set of infected individuals such that
|I| ď d. Let tI P t0, 1um be the output of the tests dictated
by B. We show that given a S Ď P such that SX I “ H and
|S| ě Opdq, SY I cannot be consistent with tpbq under B.

Let S1 “ SY I Ď P . Using the same arguments as in the
proof of Lemma 1, we can show that the number of unique
neighbors of S1 satisfies

NupS1q ě
k|S|

2
.

Let E “ tj : tpbqj ą tju. Since NpIq ď dk and |E| ď dk
4 from

Claim 7, it follows that
ˇ

ˇ

ˇ
NupS1qzpI Y Eq

ˇ

ˇ

ˇ
ě

k|S|
2
´ pdk`

dk
4
q,

which implies that if |S| ą 10d
8 , then there exists a unique

neighbor of S1 which is not in error and is also not already
covered by an element in I. This implies that NpS1q is not
consistent with tpbq.

The following theorem follows from the previous discussion
and from Claim 6 and Lemma 8.

Theorem 9. There exists a nonbinary two-stage GT scheme
that given τ “ p4γqγ thresholds and

O
´8e2d

γ
log

n
d

¯

tests that can identify a set of infected individuals of size at most
d in a population of size n.

Proof: We prove the result by describing a simple method
for recovering a set L of size Opdq which contains the set of
defectives I. First, we generate the vector tpbq “ f τÑbpsq from
our non-binary test outcomes. We initialize L “ H. Then, for
every p P P , if LYP is consistent with tpbq, we update L “
LY tpu. Otherwise, we do not change L. At the end of this
process we have I Ď L. Furthermore, according to Lemma 8,
|L| ď Opdq. The result now follows from Theorem 5.

IV. NONADAPTIVE SQGT

We describe next constructive nonadaptive testing schemes,
which in the asymptotic regime require at most Op d2

γ log nq
tests, with τ “ p4γqγ. Our approach builds upon the construc-
tion by Porat and Rothschild (PR construction) [18], which
makes use of non-binary error-correcting codes. Our key result
is described in Lemma 13.

Let C P F
m{q
q be a q-ary linear error-correcting code, where

q is an odd prime, of minimum distance δ m
q , q “ Opdq, and

dimension logqpnq. The PR construction works by uniquely
associating each individual in the population of size n with
a codeword in C. Under this setup, the test matrix BpPRq “

pbpc,xq,jqcPr1, m
q s,xPr0,q´1s,jPr1,ns is defined as

bpc,xq,j “

#

1, if xpjqc “ x,
0, otherwise,

where xpjq is the j-th codeword of C. In words, the test indexed
by pc, vq contains the codewords (individuals) from C whose
c-th coordinate equals x.

Our approach for designing a nonadaptive testing scheme
is similar to that for the adaptive setting. Each test can be
generated by taking a linear combination of γ rows of BpPRq.
The total number of tests equals 2 m

q r
q
γ s “ Opm

γ q, and once

again the tests are represented by S “
„

Sp1q

Sp2q



, where Sp2q “



´

sp2q
pc,rq,j

¯

cPm
q ,rPr0,r q

γ s´1s,jPr1,ns
, is defined as follows:

sp2q
pc,rq,j “

#

1, if xpjqc “ rpr´ 1qγ, mintrγ´ 1, q´ 1us,
0, otherwise.

In words, the test in Sp2q indexed by pc, rq contains the
codewords (individuals) from C whose c-th coordinate has a
value between pr ´ 1qγ and the minimum of rγ ´ 1, q ´ 1.
Note that the reason for using the minimum in the previous
range of values is a consequence of the fact that we assumed
q to be an odd prime. The tests in Sp1q are defined similarly:
Suppose that xpjqc “ pr´ 1qγ` v1 where v1 P r0, γ´ 1s. Then,

sp1q
pc,rq,j “ p4γqv

1

.

For shorthand, we refer to the codewords in the pc, rq-th test
in Sp1q as Tpc,rq Ď C.

Claim 10. Suppose that the number of infected individuals in
the test indexed by pc, rq is at most 4γ´ 1 so that

ˇ

ˇ

ˇ
Tpc,rq X I

ˇ

ˇ

ˇ
ď 4γ´ 1.

Then, given the output of the test Tpc,rq we can uniquely
determine

ˇ

ˇ

ˇ

 

x P I : xc “ x
(

ˇ

ˇ

ˇ
,

for x P rpr´ 1qγ, rγ´ 1s.

Let 1n denote the all-ones vector of length n. We assume
that our code C is such that 1n P C. Henceforth, let

I “
!

y` i ¨ 1n : y P I
)

(5)

for all i P t´γ` 1, . . . ,´1, 0, 1, . . . , γ´ 1u.

Claim 11. Let x P CzI be such that x P Tpc,rq. Suppose that for
an integer ` we have

ˇ

ˇ

ˇ

 

z P I : xc “ zc
(

ˇ

ˇ

ˇ
ď `.

Then,
ˇ

ˇ

ˇ
Tpc,rq X I

ˇ

ˇ

ˇ
ď `.

Proof: This follows since if x P Tpc,rq, then xc “ rpγ´
1q ` v1 for some v1 P r0, γ´ 1s. If z P Tpc,rq X I, then zc “

rpγ´ 1q ` v2 for some v2 P r0, γ´ 1s. Since v1, v2 P r0, γ´
1s, it follows that zc ` pv1 ´ v2q “ rpγ´ 1q ` v1 “ xc where
pv1 ´ v2q P t´γ ` 1, . . . ,´1, 0, 1, . . . , γ ´ 1u. This in turn
implies that zc ` pv1 ´ v2q is the value of component c of a
vector from the set I.

We also need the following result.

Claim 12. Suppose that x P CzI is such that x P Tpc,rq. If there
exists an index c P rns satisfying

ˇ

ˇ

ˇ

 

z P I : xc “ zc
(

ˇ

ˇ

ˇ
ď 4γ´ 1, (6)

and
ˇ

ˇ

ˇ

 

z P I : xc “ zc
(

ˇ

ˇ

ˇ
“ 0, (7)

then given the output of the tests dictated by Sp1q,Sp2q we can
determine that x R I.

Proof: From Claim 11 and if (6) holds, we have that
ˇ

ˇ

ˇ

 

IXTpc,rq
(

ˇ

ˇ

ˇ
ď 4γ´1. Then from Claim 10, since the number

of infected individuals in Tpc,rq is at most 4γ ´ 1, we have
ˇ

ˇ

ˇ

 

z P I : zc “ xc
(

ˇ

ˇ

ˇ
“ 0 using the test outputs of Tpc,rq.

Lemma 13. If C has minimum distance δ ą 1´ 1
2d , the tests S

uniquely determine the set I of defectives.

Proof: According to Claim 12, we need to show that (6)
and (7) hold for any x P CzI. We start by showing that (7)
holds. In particular, we show a stronger claim that there exists
a set Cp1q Ď m

q of size at least m
2q ` 1 where for any c P Cp1q,

we have

xc ‰ yc, (8)

where y “ py1, . . . , y m
q
q P I. Note that this implies that the

number of coordinates of x which agree in value with an
element of I is at most m{q

2 ´ 1. Since any two elements in C
can agree in at most p1´ δqm

q coordinates and δ ą 1´ 1
2d , it

follows that
ˇ

ˇ

ˇ

 

c : xc “ yc, y P I
(

ˇ

ˇ

ˇ
ď dp1´ δq

m
q
ă

m
2q

.

Next, we show that for at least one coordinate in Cp1q, (6)
holds as well. First, note that

ˇ

ˇ

ˇ

!

`

y, c
˘

P I ˆ
m
q

: xc “ yc

)
ˇ

ˇ

ˇ
ď 2γdp1´ δq

m
q
ă γ

m
q

,

so that for a randomly chosen coordinate c P m
q ,

E
”
ˇ

ˇ

ˇ

 

y P I : xc “ ycu
ˇ

ˇ

ˇ

ı

ă γ.

Invoking Markov’s inequality we get

Pr
´

ˇ

ˇ

 

y P I : xc “ ycu
ˇ

ˇ ě 4γ
¯

ă
1
4

.

Therefore, it follows that there exists a set of coordinates
Cp2q Ď m

q of size at least m
2q such that for any c P Cp2q

ˇ

ˇ

ˇ

!

y P I : xc “ yc

)
ˇ

ˇ

ˇ
ă 4γ.

Since |Cp2q| ě m
2q and Cp1q ě m

2q ` 1, it follows that |Cp1q X

Cp2q| ě 1. Letting c˚ P Cp1q X Cp2q we have
ˇ

ˇ

ˇ

 

y P I : xc˚ “

yc˚
(

ˇ

ˇ

ˇ
ď 4γ´ 1 and

ˇ

ˇ

ˇ

 

y P I : xc˚ “ yc˚
(

ˇ

ˇ

ˇ
“ 0. By Claim 12,

we conclude that x R I.
Open Problems. Despite only a small gap remaining

between the lower bound and the actual constructions for
the saturation model, many other problems remain open and
include:
‚ Extending the nonadaptive and two-round constructions

for general quantization thresholds under the SQGT
model;

‚ Deriving bounds and test strategies for consecutive de-
fective models [26], [27], as these capture the order of
arrivals into testing queues;

‚ Addressing generalized binomial SQGT algorithms [28].
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