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Abstract— Nuclear magnetic resonance (NMR) spectroscopy,
whose time domain data is modeled as the sum of damped
exponential signals, has become an indispensable tool in various
scenarios, such as biomedicine, biology, and chemistry. NMR
spectroscopy signals, however, are usually corrupted by Gaussian
noise in practice, raising difficulties in sequential analysis and
quantification. The low-rank Hankel property of exponential
signals plays an important role in the denoising issue, but
selecting an appropriate parameter still remains a problem.
In this work, we explore the effect of the regularization parameter
of a convex optimization denoising method based on low-rank
Hankel matrices for exponential signals corrupted by Gaussian
noise. An accurate estimate on the spectral norm of weighted
Hankel matrices is provided as a guidance to set the regu-
larization parameter. The bound can be efficiently calculated
since it only depends on the standard deviation of the noise
and a constant. Aided by the bound, one can easily obtain
an auto-setting regularization parameter to produce promising
denoised results. Our results on synthetic and realistic NMR
spectroscopy data demonstrate a superior denoising performance
of the proposed approach over typical Cadzow and the state-of-
the-art QR decomposition methods, especially in the low signal-
to-noise ratio regime.

Index Terms— Automatic parameter, Hankel matrix, nuclear
magnetic resonance (NMR) spectroscopy, signal reconstruction,
spectral denoising.
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I. INTRODUCTION

NUCLEAR magnetic resonance (NMR) spectroscopy has
grown into an essential tool for biomedical studies [1],

such as the structure determination [2], metabolic analysis [3],
and medical diagnosis [4]. However, NMR spectroscopy sig-
nals are often corrupted by noise during acquisition and/or
transmission. The noise problem turns out to be severe in
the low signal-to-noise ratio (SNR) regime [5], [6]. Therefore,
there is a strong demand for denoising signals, particularly in
the low SNR regime.

Gaussian noise is commonly encountered in NMR spec-
troscopy denoising applications [7]–[10]. One of the most
effective and widely adopted approaches to suppress Gaussian
noise is to average multiple signal acquisitions. However,
the multiple acquisitions are not always available or too costly
in real applications. For this reason, effective denoising of the
signals with a limited number of scans is favorable.

Numerous efforts have been made to denoise NMR spec-
troscopy signals. Among them, exploiting the exponential
characteristic of NMR spectroscopy signals has been grown
into a powerful tool [11]–[18]. Such low-rank properties were
also utilized in NMR spectroscopy reconstruction [9], [14],
[19]–[21], NMR spectroscopic imaging [22]–[24], and mag-
netic resonance imaging [25]–[27]. The Cadzow enhancement
approach is popular in spectra denoising with the exploitation
of the low-rank property of exponentials [11]–[13]. Com-
pared with some typical denoising methods, such as the
smoothing approach [28], wavelet thresholding [29], [30],
maximum entropy [31], and covariance matrix [32], [33],
Cadzow method is more theoretically adopted to the denoising
of all NMR spectroscopy signals. However, it is a challenging
task to choose a proper number R of exponential components
in practical applications, unless a priori information is given.
Efforts have been made to estimate R, such as the indicator
function [34] and the significance level function [35], but
the estimation of R may not be satisfactory enough to yield
good results [36]. Another denoising method called random
QR denoising method (rQRd) is based on an approximate
low-rank decomposition and accelerates the computation by
avoiding the singular value decomposition (SVD) in the
Cadzow method [7]. It is, however, also based on an estimation
of the rank R.

This low-rank Hankel property can also be exploited in
an unconstrained convex optimization method for the recon-
struction issue [14], [37]. The method, known as Low-Rank
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Fig. 1. Denoising example of LRHM with different choices of λ.
(a) Noiseless spectrum. (b) Noisy spectrum with Gaussian noise (σ = 0.02).
(c)–(e) Denoised results with λ = 3000, 7.5, and 150, respectively. Note:
Without explicit illustration, λ is in the data consistency term in this article.
The model of LRHM is written as minx∈C2N+1 ‖Rx‖∗ + (λ/2)‖y − x‖2

2.

Hankel Matrix reconstruction method (LRHM), can also be
used for denoising, and one may receive a good result. The
regularization parameter λ plays an important role in the
results. As an example, Fig. 1 shows the denoised results
with different λ. If λ is too large, the majority of the noise
remains since the effect of the nuclear norm minimization is
ignorable; if λ is too small, the spectral peaks are seriously
distorted. Unfortunately, the choice of λ is still based on users’
experience. Exploring the effect and the proper choice of λ is
still of great demand and challenging.

In this article, we explore the effect of the regularization
parameter and show that a good λ can be automatically
chosen according to the spectral norm of a weighted Hankel
matrix, which is estimated by random matrix theory as a
guideline for the selection of a proper λ. One only needs to
estimate the standard deviation of the noise, which can also
be set automatically, to calculate this proper λ. Numerical
experiments on both synthetic and real NMR spectroscopy
data show that noise can be effectively removed when the
parameter is chosen according to our analysis.

The rest of the article is organized as follows. Section II
briefly reviews the signal model of NMR spectroscopy signals
and LRHM in the denoising issue. Section III is devoted to
analyzing the selection of λ and estimating the spectral norm
of weighted Hankel matrices. Section IV contains numeri-
cal results on synthetic and real NMR spectroscopy data.
Section V discusses the robustness to the estimate on the
noise standard deviation, the effect of phase, the comparison
with other methods, and the denoising on 13C solid-state NMR

spectroscopy. Finally, we conclude and discuss future works
in Section VI.

Notations used in the article are introduced below.
We denote vectors through bold lowercase letters and matrices
through bold uppercase letters. The entry in vectors and
matrices is denoted by a normal letter with a subscript which
stands for its location. For example, xn denotes the nth element
of x, and Xm,n denotes the (m, n)th entry of X. For any
vector x, ‖x‖2 represents the l2 norm. For any matrix X, ‖X‖∗
and ‖X‖2 denote the nuclear norm and the spectral norm,
respectively. The Hadamard product is denoted by ◦. We use
superscript T and H to denote the transpose and the conjugate
transpose of x and X, respectively. Most of the operators are
denoted by calligraphic letters.

II. CONNECTION TO PRIOR WORK

In the time domain, NMR spectroscopy signal, referred to
as free induction decay (FID), can be expressed as the sum of
R exponentials

x0(tn) =
R∑

r=1

ar e( j2π fr −τr )tn , n = 0, . . . , 2N (1)

where ar denotes the signal amplitude, fr is the central
frequency, and τr is the decay factor. When the number of
peaks is small enough, usually R ≤ 0.1(N + 1), the Hankel
matrix can be treated as “low-rank” [14], [18]. In this work,
we focus on the denoising of NMR spectroscopy with this
property.

In practice, observations are often contaminated by
noise and one receives y = x0 + z, where x0 =[

x0(t0) x0(t1) , . . . , x0(t2N )
]T

is a noiseless signal and z ∈
C2N+1 is a random vector whose real and imaginary parts are
independent identically distributed (i.i.d.) Gaussian with mean
0 and variance σ 2.

Exponential signals can be transformed into Hankel matri-
ces with a Vandermonde decomposition. Given x0, one forms
the square Hankel matrix

Rx0 =

⎡
⎢⎢⎢⎣

x0(t0) x0(t1) · · · x0(tN )
x0(t1) x0(t2) · · · x0(tN+1)

...
...

...
...

x0(tN ) x0(tN+1) · · · x0(t2N )

⎤
⎥⎥⎥⎦

where R: C
2N+1 → C(N+1)×(N+1) is the operator transforming

a vector to the square Hankel matrix. It is well known that
Rank (Rx0) ≤ R [38], [39].

The denoising method we explore is based on the low-rank
property of Rx0 [14], and called Convex Hankel lOw-
Rank matrix approximation for Denoising exponential sig-
nals. (CHORD), where one solves the following optimization
problem:

x̂ = arg min
x∈C2N+1

‖Rx‖∗ + λ

2
‖y − x‖2

2 (2)

where λ denotes the regularization parameter and x̂ denotes
the minimizer. The nuclear norm ‖·‖∗ is a surrogate for the
rank [40].
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Alternating direction method of multipliers (ADMM) [41]
is a typical iterative algorithm, which can be used to solve (2).
All details have been presented in the supplementary material
(Section I).

The optimization problem in (2) involves a single regular-
ization parameter λ and the denoised result crucially depends
on the choice of λ. Therefore, setting an appropriate λ is a
crucial issue in this denoising method. This article provides an
automatic estimate on the proper choice of λ and validations
by experimental results.

III. AUTOMATIC ESTIMATE OF THE

REGULARIZATION PARAMETER λ

This section provides an estimate of the proper λ through
establishing a relation between λ and the spectral norm of
weighted Hankel matrices.

As x̂ is the minimizer of (2), according to the subgradient
of the nuclear norm [40], [42]–[44], the subgradient of (2) is
derived as

λ(y − x̂) = R∗
(

ÛV̂H + Ŵ
)

(3)

where matrices Û and V̂ ∈ C(N+1)×(N+1) are from the SVD
of Rx̂ such that Rx̂ = Û�̂V̂H and Ŵ ∈ C(N+1)×(N+1) satisfy
ÛH Ŵ = 0, ŴV̂ = 0, and ‖Ŵ‖2 ≤ 1. x̂ should satisfy (3)
for a matrix Ŵ that has the aforementioned properties. R∗:
C(N+1)×(N+1) → C2N+1 is an operator transforming a matrix
into vector via summing each antidiagonal.

Denote the vector w is the weights defined as w =[
1 2 , . . . , N + 1 , . . . , 2 1

]T ∈ R2N+1 and the symbol ◦
stands for Hadamard product.

Since λ comes from the subgradient of (2), the optimal
λ definitely satisfies (3). To obtain a specific λ value, it is
necessary to know Û, V̂, and Ŵ. However, according to the
definition of the subgradient of the nuclear norm, the matrix Ŵ
cannot be obtained directly, so we have to use the inequality
scaling and numerical experiments to obtain a proper λ.

Because λR(1/w) ◦ (x0 + z − x̂) is an approxima-
tion of ÛV̂H + Ŵ and ‖λR(1/w) ◦ (x0 + z − x̂)‖F ≤∥∥∥ÛV̂H + Ŵ

∥∥∥
F

[11]. This relationship approximately holds
in the spectral norm (see the details in the Supplement
Section II). Therefore, the proper λ is chosen as

λ ≤ 1∥∥Z + X̃
∥∥

2

≤ 1(∣∣‖Z‖2 − ∥∥X̃
∥∥

2

∣∣) (4)

where Z = (R(1/w)) ◦Rz denotes a weighted Hankel matrix
such that

Z =
(
R 1

w

)
◦ Rz =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2

2
· · · zN+1

N + 1z2

2

z3

3
· · · zN+2

N
...

... · · · ...
zN+1

N + 1

zN+2

N
· · · z2N+1

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

and X̃ denotes X̃ = (R(1/w)) ◦ R(x0 − x̂).
In order to explore the relationship among the spectral norm

of weighted Hankel matrices, the noise level, and the size of

Fig. 2. Relation between ‖Z‖2 and the standard deviation σ of the Gaussian
noise z in 100 Monte Carlo trials. The matrix Z is of size (N + 1)×(N + 1)
with (N + 1) = 64, 128, 256, and 512, respectively. The curve represents the
mean of ‖Z‖2 in 100 trials versus σ , and the standard deviation of ‖Z‖2 in
100 trials is indicated by the vertical bar.

Fig. 3. Relation between
∥∥X̃

∥∥
2 and the standard deviation σ of the Gaussian

noise z in 50 Monte Carlo trials. The matrix X̃ is of size (N +1)×(N +1) with
(N +1) = 64, 128, 256, and 512, respectively. The curve represents the mean
of

∥∥X̃
∥∥

2 in 50 trials versus σ , and the standard deviation of
∥∥X̃

∥∥
2 in 50 trials

is indicated by the vertical bar. Note: x0 are damped exponential signals with
random ar , fr , and τr . x̂ is obtained from CHORD. The parameter λ is chosen
such that the NRMSE is minimized.

the matrix, we did sufficient Monte Carlo trials on synthetic
data and Gaussian noise. Results in Figs. 2 and 3 show that
the empirical means of ‖Z‖2 and

∥∥X̃
∥∥

2 are almost independent
of N . Furthermore, these empirical means increase as the
increasing of the standard deviation σ of the noise.

In applications, it is expected that signal details can be
preserved as much as possible, thus we propose to select the
regularization parameter as

λ∗ = 1∣∣E‖Z‖2 − E
∥∥X̃

∥∥
2

∣∣ (6)

where the symbol E denotes the expectation.
In order to provide a proper choice of λ, we estimate an

upper and lower bound of E‖Z‖2. With respect to E
∥∥X̃

∥∥
2,

we provide an empirical value based on sufficient numerical
experiments on synthetic data.

A. Bounds of E‖Z‖2

Actually, for estimating bounds of the spectral norm of
Hankel matrices given by random vectors, numerical achieve-
ments have been made [45]–[48]. In this section, we focus on
estimating bounds of the spectral norm of weighted Hankel
matrices. Theorems 1 and 2 provide a lower and upper bounds
of E‖Z‖2, respectively. All details of proofs and the asymptotic
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analysis have been presented in the supplementary material
(Sections III–V).

Theorem 1: Suppose the real and imaginary parts of the
entries in z ∈ C2N+1 are i.i.d. Gaussian random variables with
mean 0 and variance σ 2. Define RN and QN such that

R2
N =

2N∑
k=0

|dk |2 and Q4
N =

2N∑
k=0

|dk |4 (7)

where

dk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

(k + 1)(k + 2)

k∑
m=0

1

m + 1
, 0 ≤ k ≤ N

2

(2N − k + 1)(k+2)

2N∑
m=k

1

m − N + 1
, N < k ≤ 2N.

Then there exists a constant C such that the matrix Z defined
in (4) satisfies

E‖Z‖2 ≥ σ
C(N + 1)

2N + 1

√
R2

N

(
1 + log

R4
N

Q4
N

)
. (8)

Theorem 2: Suppose the real and imaginary parts of the
entries in z ∈ C2N+1 are i.i.d. Gaussian random variables with
mean 0 and variance σ 2. Then

E‖Z‖2 ≤ σ
√

2Cw log(2N + 2) (9)

where Cw = max(
∑N

k=0 w−2
k ,

∑N+1
k=1 w−2

k , . . . ,
∑2N

k=N w−2
k )

with the vector w defined in (5).
The above two theorems provide the following upper and

lower bounds of E‖Z‖2:

σ
C(N + 1)

2N + 1

√
R2

N

(
1 + log

RN
4

Q4
N

)

≤ E‖Z‖2 ≤ σ
√

2Cw log(2N + 2). (10)

The upper bound scales as σ(log N )1/2, while the lower
bound depends on RN and QN . When N is large enough,
the upper bound and the lower bound only differ by a factor
of (log N )1/2.

Choosing the lower bound of E‖Z‖2 tends to obtain a
relatively large λ, which is beneficial to preserve more signal
details. Therefore, we suggest to choose E‖Z‖2 as

E‖Z‖2 = C(N + 1)

(2N + 1)

√
R2

N

(
1 + log

R4
N

Q4
N

)
σ. (11)

We next find the empirical constant C through repetitive
experiments on synthetic data. According to Theorem 1, C > 0
is a constant, which is independent of the signal length and
the standard deviation σ .

The slope values of lines in Fig. 2 are estimated
by the least-square method. According to the conclusion
in (9), C values are obtained via dividing slopes by
(N + 1)/(2N + 1)(R2

N (1 + log(R4
N /Q4

N )))1/2. Finally, after
averaging four C values, we suggest that C = 2.9 for
denoising. Results in Fig. 4 confirm that the conclusion in
Theorem 1 is well capable of estimating E‖Z‖2.

Fig. 4. E‖Z‖2 and the lower bound with the suggested C under different
matrix sizes. The matrix Z is of size (N +1)×(N +1) with (N +1) = 64 (a),
128 (b), 256 (c), and 512 (d), respectively. The vertical axis denotes the value
of ‖Z‖2 and the horizontal axis denotes the standard deviation of Gaussian
noise. The black curves stand for the empirical mean of ‖Z‖2 in Fig. 2.
Red lines denote the lower bounds with C = 2.9. The error bars denote the
standard deviation of ‖Z‖2 values in 100 Monte Carlo trials.

B. Empirical E
∥∥X̃

∥∥
2

This section is devoted to an empirical estimate of E
∥∥X̃

∥∥
2.

We perform experiments with different N , σ , λ, signals, and
noises in order to determine a proper empirical estimate value.

Before evaluating the denoising performance, we first intro-
duce two objective criteria, normalized root-mean-square error
(NRMSE) [49] and mean absolute error (MAE) [50]

NRMSE = ‖x̂ − x0‖2

‖x0‖2
(12)

where x̂ and x0 are the denoised signal and the noiseless signal,
respectively.

MAE = ‖fs − f0‖1

2N + 1
(13)

where fs ∈ R(2N+1)×1 and f0 ∈ R(2N+1)×1 denote the real part
of the noisy spectrum and the noiseless spectrum, respectively.

We generate a synthetic dataset, including 90 random damp-
ing complex exponential signals with 2N + 1 = 255, 511,
and 1023, respectively, and repeat 100 Monte Carlo trials to
incorporate the randomness of Gaussian noise. Each signal
in the dataset has 3R + 1 parameters, including R, ar , fr ,
and τr , where r = 1, 2, . . . , R. The number of exponential
components is R = 4+Mr , where Mr denotes a pseudorandom
scalar integer of range [1, 9]. The amplitude ar is uniformly
sampled from (0, 10). Each frequency fr is uniformly sampled
from (0, 1). The damping factor is τr = 5 + 60mr , where mr

is uniformly sampled from (0, 1).
Then, we use a series of λ to denoise signals in the dataset

above, find the optimal solution x̂ corresponded to the lowest
error, NRMSE, and calculate ‖X̃‖2. Nine signals with different
data lengths are randomly selected and the corresponding ‖X̃‖2

are presented in Fig. 5.
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Fig. 5. Relation between ‖X̃‖2 given by random synthetic signals and noise levels. (a)–(c) Average spectral norm of X̃ which is of size (N + 1) × (N + 1)
with (N + 1) = 128 (a), 256 (b), 512 (c), respectively. The vertical error bars represent the standard deviation of ‖X̃‖2 values in 100 Monte Carlo trials.
Note: For each subplot, the green, blue, and red lines denote ‖X̃‖2 given by different random signals.

Fig. 6. Reconstruction error, NRMSE, for synthetic data [Fig. 1(a)] under
different noise levels. CHORDEsti and CHORDPrior denote denoised results of
CHORD with estimated standard deviation and the known standard deviation,
respectively. Cadzow and rQRd present the optimal (minimal NRMSE)
denoised results, respectively. The height of columns shows the average of
the NRMSEs over 100 trials. The vertical bar comes from the randomness of
noise.

Results in Fig. 5 indicate that the standard deviation of
noise is the main factor that determines E‖X̃‖2. Moreover, this
empirical mean of ‖X̃‖2 seems to be linear to the standard
deviation of the noise. Additionally, the spectral parameters
and the distribution they satisfy also slightly affects E‖X̃‖2

(see the details in the supplementary material Section IX).
We estimate the slope on MATLAB platform (2017b) and
suggest E‖X̃‖2 = 1.94σ for denoising.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of CHORD
with the suggested λ on the synthetic data and a realistic
NMR spectroscopy dataset. No preprocessing, including the
phase correction and apodization, was applied to the synthetic
data. For the data acquired from real NMR spectrometer,
we merely truncated the FID signal and only used the first
1000 points. For visualization, real-part spectra are presented
and imaginary-part spectra are discarded, but all the processing
are on complex data. In addition, for avoiding the bias,
the proposed method has also been tested on random simulated
data, whose detailed results are presented in the supplementary
material (Section X).

The typical method, Cadzow [7], [13], and the state-of-
the-art method, rQRd [7], are compared with our proposed
method. For Cadzow, its key parameter is the rank of this
Hankel matrix. For rQRd, its primary parameter is the num-
ber of the matrix Q’s column, denoted as rankQ, in QR

Fig. 7. Average NRMSE of denoised results of the synthetic data [in Fig. 1(a)]
with different estimated ranks over 50 Mont Carlo trials. (a)–(c) Average
NRMSE of denoised results with σ = 0.02, 0.04, and 0.06, respectively. The
black dash lines stand for the exact rank of the synthetic data (rank = 5).
Note: For rQRd, the estimated rank stands for rankQ .

decomposition. For the rest of the manuscript, without explicit
illustration, the main parameters in Cadzow and rQRd are
chosen to be the ones yielding the lowest reconstruction error,
NRMSE.

A. Denoising of Synthetic Complex Data

We generated a synthetic exponential complex data with five
peaks [presented in Fig. 1(a)]. In the following, the synthetic
data indicates the signal in Fig. 1(a). The denoising perfor-
mance of the three methods is tested through recovering the
signal from complex Gaussian noise with different standard
deviation (σ = 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06,
respectively). 100 Monte Carlo trials are done to avoid the
randomness of noise.

In practice, we do not know in advance the standard
deviation of the noise that corrupts the signal of interest. Here,
we truncate the signal from the end of noisy FID to estimate
the standard deviation of the noise to mimic the real cases.
The truncated length is verified by Kolmogorov–Smirnov (KS)
test [51]. Also, we compare the denoising performance of
CHORD given the known standard deviation and the estimated
standard deviation. For clarity, we name the CHORD using the
known standard deviation CHORDPrior and the CHORD using
estimated standard deviation CHORDEsti, respectively.

Fig. 6 shows the denoising performance under different
noise levels. Under relatively weak noise (σ ≤ 0.02), Cadzow
achieves the lowest NRMSE compared to other approaches.
Under relatively high noise (σ ≥ 0.05), however, the NRMSE
of Cadzow increases faster than that of rQRd and, particu-
larly, CHORD, implying Cadzow is not robust to relatively
high noise levels. The proposed method produces the lowest
NRMSE when the noise is higher than 0.03 and produces
smallest variances. Furthermore, the results of CHORDEsti

are very close to that of CHORDPrior, showing the feasibility
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Fig. 8. Denoised results by typical methods. (a) and (b) Synthetic signals without and with noise (σ = 0.04), respectively. (c) and (d) Denoised spectra and
errors of CHORD with the suggested parameter. (e) and (f), (i) and (j), and (m) and (n) Denoised spectra and errors of Cadzow with three different estimated
ranks (optimal in terms of NRMSE, small, and large). (g) and (h), (k) and (l), and (o) and (p) Denoised results of rQRd with three different estimated ranks
(optimal in terms of NRMSE, small, and large). The brown long dash lines denote the MAEs of the denoised spectra.

of CHORD. In the following, without explicit illustration,
the mentioned CHORD is CHORDEsti.

We evaluate the effect of parameter selection of the tested
approaches in Fig. 7. For Cadzow, when the noise is weak
[Fig. 7(a)], an accurate estimate leads to a good result. But as
the noise gets stronger, the optimal estimated rank (in terms of
NRMSE) may be not equivalent to the actual rank [Fig. 7(c)],
meaning that if the noise level is strong enough, an accurate
estimated rank will not significantly improve denoised results.
Compared with Cadzow, rQRd owns a more flexible parameter
setting, but the average NRMSE of its denoised results is
always higher than that of CHORD under large noise.

Fig. 8 presents the representative denoised results of the
synthetic signal corrupted by strong noise. Typical denoised
spectra of Cadzow and rQRd with three different parameters
selection are presented. Cadzow tends to remove small peaks if
using a much smaller estimated rank [see Fig. 8(i)]. And if the
estimated rank is close to or larger than the real rank, Cadzow
spectra introduce spectral distortions and distinct artifacts [see
Fig. 8(e) and (m)]. For rQRd, a small rankQ leads to a
smooth spectrum but with missed or weakened low-intensity
peaks [see Fig. 8(k)], while larger parameters introduce strong
noise [see Fig. 8(g) and (o)]. For the CHORD, it provides a
relatively reasonable denoised result using the suggested λ and
the estimated noise level.

B. Denoising of NMR Spectroscopy Data
NMR spectroscopy, as a noninvasive technology, has been

widely utilized in the study of chemistry, biology, and medi-
cine, such as the diagnosis of diseases [22]. One of the reasons
that limit the widespread of this technology is its relatively
low SNR. Therefore, CHORD is evaluated on the denoising
of a real NMR spectroscopy data. We acquired the signal
with high SNR as the reference and added the Gaussian noise
retrospectively.

In applications, the unit of chemical shift is usually
expressed in part per million (ppm) instead of the hertz,
avoiding the ambiguity when spectrometers are at different
magnet strengths. The definition of chemical shift is given
by

chemical shift(ppm) = ftest − fref

fspec
× 106 (14)

where ftest denotes the resonance frequency of the sample,
fref the absolute resonance frequency of a standard compound
measured in the same magnetic field, and fspec the frequency
of the magnetic field strength of spectrometers.

The real data is a 1-D 1H NMR spectrum that was acquired
at 298 K on a Varian 500 MHz (11.7 T) magnetic reso-
nance system (Agilent Technologies, Santa Clara, CA, USA)
equipped with a 5-mm indirect detection probe. A 8.3 μs
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Fig. 9. Denoised results of realistic metabolite spectrum with σ = 0.035 (a), 0.020 (b), and 0.005 (c), respectively. The green lines denote the reference
spectrum with high SNR. The black lines indicate noisy spectra. The blue, orange, and red lines are denoised results of Cadzow, rQRd, and CHORD,
respectively. Note: The results of Cadzow and rQRd that enable the lowest NRMSE are presented here. The brown long dash lines denote the MAEs of the
denoised spectra.

single-pulse sequence was used, and 64 scans were acquired.
The total acquisition time took 286.7 s. The concentration of
creatine, choline, magnesium citrate, and calcium citrate are
0.03, 0.03, 0.06, and 0.06 g/mL, respectively.

The denoised results of the metabolic spectrum are pre-
sented in Fig. 9, which supports the conclusion made on
the synthetic data. Under a relatively strong noise level
(σ = 0.035), Cadzow smooths the spectrum, which, on the
one side, offers a nice denoised results, on the other side,
however, leads to the missing of some peaks (such as the
peaks at 6.8 ppm). rQRd provides a spectrum with obvious
noise [orange lines in Fig. 9(c)] and weakens low-intensity
peaks (such as the peaks at 6.8 ppm). CHORD is capable
of effectively removing noise and keeping more details of
peaks [see Fig. 9(c)]. For the high SNR scenario, all the three
methods produce nice and comparable denoised results [see
Fig. 9(a)].

Experiments on synthetic complex exponential and realistic
NMR spectroscopy data demonstrate that CHORD with the
auto-setting parameter achieves more robust and accurate
results compared with Cadzow and rQRd methods.

V. DISCUSSIONS

A. Estimate of Noise

We estimate the noise level by calculating the standard
deviation of signals truncated from the end of noisy FIDs
on MATLAB platform (2017b). To ensure that the truncated
signals satisfy the Gaussian distribution, KS test is introduced
into the noise estimate. Details of the p-value test and the
flowchart have been shown in the Supplement (Section VI).

The p-values of different truncated lengths under vari-
ous noise levels are tested on the simulated data (Fig. 10).
100 Monte Carlo trials have been done to avoid the random-
ness of noise.

The results in Fig. 10 illustrate that the reduction of
p-values is caused by the truncation of FID. In the areas
without noise, such as the last 200 points in Fig. 10(a),
the average of p-values approximates 0.8. As the truncated
length increases, a part of the signal is treated as noise, result-
ing in the apparent descent of p-values. Additionally, a low
noise level is beneficial to distinguish the noise and the ground
truth, which is reflected in the earlier decrease of p-values.
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Fig. 10. p-values with different truncated lengths under various noise levels.
(a) Synthetic FID signal in Fig. 8(a). (b)–(d) p-values of (a) under noise with
σ = 0.01, 0.03, and 0.05, respectively.

Fig. 11. Relation between
∥∥X̃

∥∥
2 given by random synthetic signals with

zero-order phases and noise levels. (a)–(c) Average spectral norm of X̃ which
is of size (N + 1)× (N + 1) with (N + 1) = 128, 256, and 512, respectively.
The vertical error bars come from 100 Monte Carlo trials. Note: For each
subplot, the green, blue, and red lines denote

∥∥X̃
∥∥

2 given by random signals
with different spectral parameters.

Furthermore, p-values fluctuate at 0.8 for truncated signals
without FID. Therefore, we selected 0.8 as the threshold
value.

B. Effect of Phase on E
∥∥X̃

∥∥
2

Since the effect of phase can be alleviated by the correction
in the preprocessing, in the above, we temporarily omitted the
phase during the estimate of E

∥∥X̃
∥∥

2 to simplify the problem.
This section is devoted to discuss the empirical value of
E
∥∥X̃

∥∥
2 under two common situations where the signal x0

contains the zero-order and relative phase.
Both the zero-order phase θ and the relative phase θr are

uniformly random and sampled from (0, 1). These phases are
added for the experiments as

(Zero-order phase)

x0(tn) = e j2πθ
R∑

r=1

are( j2π fr −τr )tn , n = 0, . . . , 2N (15)

and

(Relative phase)

x0(tn) =
R∑

r=1

are j2πθr e( j2π fr −τr )tn , n = 0, . . . , 2N. (16)

According to results of the Monte Carlo simulations
(Figs. 11 and 12), it is observed that E

∥∥X̃
∥∥

2 tends to be

Fig. 12. Relation between
∥∥X̃

∥∥
2 given by random synthetic signals with the

relative phase. (a)–(c) Average spectral norm of X̃ which is of size (N + 1)×
(N + 1) with (N+1) = 128, 256, and 512, respectively. The vertical error bars
come from 100 Monte Carlo trials. Note: For each subplot, the green, blue,
and red lines denote

∥∥X̃
∥∥

2 given by random signals with different spectral
parameters.

Fig. 13. Comparison of 512-point denoised spectra with the zero-order
phase under the new and the suggested E

∥∥X̃
∥∥

2 values. (a) and (b) Synthetic
signals without and with noise (σ = 0.02). (c) and (e) Denoised spectra
of CHORD with the new value (1.84σ ) and the suggested value (1.94σ ),
respectively. (d) and (f) Denoising errors of spectra that correspond to (c) and
(e), respectively. The brown long dash lines denote the MAEs of the denoised
spectra.

Fig. 14. Comparison of 512-point denoised spectra with the relative phase
under the new and the suggested E

∥∥X̃
∥∥

2 values. (a) and (b) Synthetic signals
without and with noise (σ = 0.03). (c) and (e) Denoised spectra of CHORD
with the new value (1.87σ ) and the suggested value (1.94σ ), respectively.
(d) and (f) Denoising errors of spectra that correspond to (c) and (e),
respectively. The brown long dash lines denote the MAEs of the denoised
spectra.

proportional to the noise level. Utilizing the same technique in
Section III-B, the empirical relation between E

∥∥X̃
∥∥

2 and the
standard deviation of the noise can be acquired. Compared
with the suggested value, the zero-order and relative phase
slightly reduce E

∥∥X̃
∥∥

2. But this change causes little impact
on the denoised spectra (Figs. 13 and 14).

The slopes of lines corresponding to all synthetic data
with the zero-order phase were estimated by the least-square
method, and the averaged slope is 1.84. Compared with the
suggested value (1.94), the relative error is 5%. For synthetic
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Fig. 15. Denoising of realistic metabolite spectrum by CS and CHORD.
(a) Reference spectrum with high SNR. (b) Noisy spectrum (σ = 0.035).
(c) and (e) Denoised results by CS and CHORD, respectively. (d) and
(f) Denoising error of two methods, respectively. The brown long dash lines
denote the MAEs of the denoised spectra.

Fig. 16. Flowchart of CHORD-DP. (a) Flowchart of the whole algorithm.
(b) Details of the orange box in (a).

data with the relative phase, the same technique is utilized to
estimate the slope, and the average slope is 1.87. Compared
with the suggested value, the relative error is 4%. In the

Fig. 17. Denoised results of the realistic metabolite spectrum. (a) Refer-
ence spectrum with high SNR. (b) Noisy spectrum (σ = 0.035). (c) and
(e) Denoised results by CHORD with parameter estimated by DP and the
suggested parameter. (d) and (f) Denoising error of two methods. The brown
long dash lines denote the MAEs of the denoised spectra.

supplementary material (Section VII), signals with 256 and
1024 data points are shown to complement the discussion.

C. Comparison with Other Representative Methods

This section, respectively, provides the comparison between
the proposed method and two representative methods, a sparse
regularization-based method, compressed sensing (CS) [52],
and adaptive regularization parameters selection method with
discrepancy principle (DP) [53]. We verify these methods on
the denoising of the synthetic and the experimental NMR
spectra. The synthetic denoised spectra and NRMSE are shown
in the supplementary material (Section VIII).

1) Comparison with CS: The CS assumes the sparsity of
NMR spectroscopy in the frequency domain. For the denoised
spectra, CHORD better removes noise and retains peak details
(such as the peak at 6.8 ppm in Fig. 15) than CS.

2) Comparison with DP-Based Method: The DP tries to
find an optimal regularization parameter so that the norm of
denoising error is equal to that of the noise [53]. DP has been
used in Tikhonov regularization [53], total variation (TV) [54],
and low-rank reconstruction [55].

We implemented a DP-based method (see Fig. 16) to select
a λ∗ to satisfy ∥∥x̂

(
λ∗) − y

∥∥
2 = Cσ (17)

where σ stands for the standard deviation of real/imaginary
part of noise. C is a constant.

Spectra in Fig. 17 shows that both the proposed method
and DP can remove the noise well, while the former obtains
slightly lower NRMSE than the latter (see the supplementary
material). However, the convergence of DP has not been
proved in LRHM, which is worthy of further investigation
in the future.

D. Denoising on 13C Solid-State NMR Spectroscopy

To evaluate the denoising performance under a more real-
istic scenario, we tested the performance of the proposed
method (Fig. 18) on experimental 13C solid-state NMR spectra
which were acquired with varying levels of average. Solid-
state NMR spectroscopy has grown into a versatile tool to
analyze materials in the solid state but is limited by a relatively
low SNR due to its poor sensitivity [36].
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Fig. 18. Denoising of a 13C solid-state NMR spectra. (a) and (b) Reference spectrum (200 scans) and the observation (32 scans), respectively.
(c) and (d) Denoised spectra and the error of CHORD with the suggested parameter. (e) and (f), (i) and (j), and (m) and (n) Denoised spectra and their errors
of Cadzow with three different estimated ranks (optimal in terms of NRMSE, small, and large). (g) and (h), (k) and (l), and (o) and (p) Denoised results
of rQRd with three different estimated ranks (optimal in terms of NRMSE, small, and large). The brown long dash lines denote the MAEs of the denoised
spectra.

The experimental 13C solid-state NMR data is a decoupled
static chemical shift anisotropy (CSA) spectrum with the
sample of glycine and was acquired on a Bruker 600 MHz
spectrometer (14.1 T) equipped with an AVANCE-III console.
A commercial Bruker HX double-resonance magic angle spin-
ning (MAS) probe with a 4-mm outer diameter rotor was used
in the static for the experiments.

Compared with the reference spectrum (average
of 200 scans), CHORD with the automatic parameter
effectively removes noise and preserves the details of the
spectrum [red lines in Fig. 18(c) and (d)], saving more than
80% of acquisition time. For Cadzow, its optimal denoised
result (in terms of NRMSE) over-smooths the spectrum and
generates some fake peaks [black arrows in Fig. 18(e)].
Reducing the estimate of the rank suppresses the fake peak,
but causes a more serious loss of signal details. A large
rank keeps more details but leads to more fake peaks. For
rQRd, its optimal result remains too much residue, a smaller
estimate of rank results in a smoother spectrum with the loss
of signal details.

VI. CONCLUSIONS

Based on CHORD, a denoising method based on low-rank
Hankel property of complex exponential signals, we attempt to
figure out the bound of the regularization parameter, determine
the empirical optimal constant, and estimate the standard
derivation of the noise so that the users are able to apply
CHORD with an auto-setting parameter. Experiments on syn-
thetic complex exponential and realistic NMR spectroscopy
data demonstrate that CHORD with the auto-setting parameter
achieves more robust and accurate results compared with
Cadzow and rQRd methods.

In this article, we did not discuss the effect of x0 at great
length and had not provided a theoretical estimate of E

∥∥X̃
∥∥

2.
For the future work, it is worthwhile to explore an accurate
estimate of E

∥∥X̃
∥∥

2. Moreover, we are also interested in
exploring the probability distribution of the spectral norm and
extending the 1-D model in (2) to higher-dimensional signals
since their acquisition costs relatively more time in applica-
tions. In addition, nonexponential signals, such as Gaussian
signals, are very common in applications [36]. Denoising
Gaussian signals would be very different. How to denoise this
type of signals is important and worth to explore it in the
future.
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