Tangle decompositions of alternating link
complements
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Abstract Decomposing knots and links into tangles is a useful technique for understand-
ing their properties. The notion of prime tangles was introduced by Kirby and Lickorish;
Lickorish proved that by summing prime tangles one obtains a prime link. In a similar spirit,
summing two prime alternating tangles will produce a prime alternating link if summed
correctly with respect to the alternating property. Given a prime alternating link, we seek to
understand whether it can be decomposed into two prime tangles, each of which is alternat-
ing. We refine results of Menasco and Thistlethwaite to show that if such a decomposition
exists, either it is visible in an alternating link diagram or the link is of a particular form,
which we call a pseudo-Montesinos link.

1. Overview

We review some definitions and give an outline of the paper.

Let L be a non-split prime alternating link in S3. A properly imbedded surface in
the complement of L is essential if it is incompressible, boundary incompressible, and
non-boundary parallel in S — L.

A Conway sphere for L is an essential 4-punctured sphere properly imbedded in
the complement of L with meridianal boundary components. We say that a Conway
sphere splits L into two 2-tangles (i.e., two 3-balls, each of which contains two strands
of L). A 3-ball may also additionally contain components of L disjoint from F. Since
L is prime by hypotheses, the tangles on each side are prime. A 2-tangle in which the
two strands are boundary parallel is called a rational tangle.

The notion of a prime tangle was suggested by Kirby and Lickorish in [3].
Lickorish shows in [5] that by summing prime tangles one obtains a prime link.
Similarly, summing two prime alternating tangles produces a prime alternating link
if summed correctly with respect to the alternating property. Here, we look at the
converse: given a prime alternating link diagram, can one determine whether it is a sum
of two prime alternating tangles?

Menasco proved in [6] that a Conway sphere is realized in a reduced alternat-
ing diagram as either visible (represented by a PP PP curve in standard position) or
hidden (two PSPS curves). He also proved that two PSPS curves in a prime alter-
nating diagram represent a 4-punctured sphere that is essential [7]. It is known how to
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determine whether a given PP P P curve (visible case) represents a 4-punctured sphere
that is essential: see Menasco and Thistlethwaite [9], and Thistlethwaite [10]. All these
facts together give a purely diagrammatic algorithm to determine whether the link has
a decomposition into two prime tangles, though possibly not alternating.

We revisit the case of a “hidden” Conway sphere. We prove that such a sphere
forces the presence of another visible Conway sphere right next to it, in the same
diagram, unless the link is a pseudo-Montesinos link (Proposition 3.2). Pseudo-
Montesinos links will be defined in Section 3 and are a subset of arborescent links [1].
This was not known before: rather, Thistlethwaite noted that a visible Conway sphere
is always visible in an alternating diagram (i.e., if visible in one alternating diagram,
then also visible in other alternating diagrams of the same link), and therefore a hidden
one is always hidden [10]. We also prove that a pseudo-Montesinos link has no visible
Conway spheres in any alternating diagram (Proposition 3.3 with corollaries). Our
two results together yield that a decomposition into two prime alternating tangles can
always be detected by looking at an alternating diagram (Theorem 3.1). In the final
section, we also show that for a closed braid L, detecting prime alternating tangle
decompositions takes an even easier form. Indeed, once the decomposing sphere is
essential, it must be positioned in a special way with respect to D (Proposition 4.1).

Our proofs mainly use two techniques. The first one is inherited from Menasco’s
work: we use standard position, which helps to translate topology of a surface into
combinatorics of curves and diagrams. The second component is a careful topological
analysis of certain isotopies and strong isotopies of surfaces embedded in 3-manifolds.

The visibility of a prime alternating tangle decomposition (and of the genus-2 sur-
faces that yield an essential 4-punctured sphere after meridianal compressions) aligns
with well-known results of Menasco, who noted that some of the basic topological
properties of alternating link complements can be seen directly in reduced alternating
link diagrams [6]. Among them is the property of a link being non-split (and respec-
tively. the presence of an essential genus-0 surface in the link complement) and the
property of being prime (and the presence of an essential genus-1 surface).

In Section 2, we recall results of Menasco and Thistlethwaite on surfaces in alter-
nating link complements. In Section 3, we state and prove our main theorem. In Sec-
tion 4, we closely examine tangle decompositions of alternating braids.

2. Conway spheres and standard position

In this preliminary section, we recall Menasco’s techniques and a key lemma, as well
some of the results of Thistlethwaite on rational tangles.

Let D be a reduced alternating diagram of the link L. Let Q be the projection
sphere, where D lies except for perturbations at crossings. We review the notion of a
surface in standard position (see [6, Section 2]).

The link L lies on a union of two spheres in S 3.8 _%_, and S2, which agree with Q
except in a bubble around each crossing. At the bubbles, Si and S2 go over the top
and bottom hemispheres, respectively. We will denote by B and B_ the parts of S3
lying above and below Q, respectively.



Tangle decompositions of alternating link complements 535

(1) A PSPS curve. (2) A modified PSPS curve.

Figure 1. A curve of F N S2 and its modification.

Let F be an essential surface properly embedded in the complement of L such
that every boundary component of F is meridianal. If F is closed, we meridianally
compress it until no further meridianal compression is possible. Then F N S i consists
of simple closed curves bounding disks of B+ N F. Following Menasco’s technique, we
encode such a curve of intersection C by a word consisting of the letters P and S. The
letter P means C intersects a strand of a link not at a crossing—i.e., F' has a meridianal
boundary component there. The letter S means C intersects a crossing—i.e., F' passes
between two strands of a crossing and is shaped as a saddle there. Figure 1(1) depicts an
example of a PSPS curve, projected on Q from F NS JZF (a fragment of a link diagram
is pictured in grey). There are multiple ways to put a surface F in standard position. If
it is done so that the total number of S’s, P’s, and the curves of F N S i is minimized,
then F is in complexity minimizing standard position.

The following observations follow from the techniques of Menasco [6]. For details,
see [2].

A segment of D from a crossing to an adjacent crossing will be called an edge.

LEMMA 2.1

Suppose F is a closed essential 4-punctured sphere in the complement S® — L of a
prime alternating non-split link L (i.e., F is a Conway sphere for L). Then F can be
placed in standard position relative to S _%_ U S2 so that

(1) F intersects Si in either a single PPPP curve or intwo PSPS curves.

(2) No curve passes through a saddle and then crosses an edge of D adjacent to
the saddle.

(3) No curve crosses an edge of D twice consecutively.

REMARK 2.2

Menasco’s techniques found application in the work of Thistlethwaite on rational tan-
gles [10], in which he describes precisely what an alternating diagram of a rational
tangle looks like, as follows:

Start with a diagram of a 2-string tangle that has no crossings. Then surround this
diagram by annuli, each annulus containing four arcs of the link diagram joining dis-
tinct boundary components of the annulus, and connected to the arcs in the neighboring
annuli or the described 2-string tangle. Each annulus contains a single crossing between
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two of the arcs. See the comments after Corollary 3.2 in [10], as well as [4, Figure 2] for
an illustration. In particular, one can determine whether an alternating tangle diagram
represents a rational tangle just by looking at the diagram.

3. Decomposition into two prime alternating tangles

A Montesinos link is a link obtained by taking a cyclic sum of a finite number of rational
2-tangles (see top of Figure 2 for an example; inside each circle insert a diagram of a
rational tangle). We will often refer to these four tangles as sub-tangles since together
they may form larger tangles that we consider. Given a Montesinos link with four
rational sub-tangles 7;,i = 1,2,3,4, we construct a pseudo-Montesinos link as fol-
lows: delete four strands, one each connecting 77 to 15, T to T3, T3 to T4, and Ty to
T;. Then, following the pattern shown in the bottom of Figure 2, replace these strands
with four strands, two between 77 and T3 and two between T, and Ty. If the resulting

|

Figure 2. (Color online) Constructing a pseudo-Montesinos link.
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diagram is reduced and alternating and each rational sub-tangle has at least one cross-
ing, we say that it is a standard diagram of an alternating pseudo-Montesinos link.
Figure 3(2) is an example of standard diagram of an alternating pseudo-Montesinos
link.

In the terminology of Thistlethwaite [10], a visible 4-punctured sphere in an alter-
nating diagram D is one that appears in the plane of the diagram (after isotopy to
standard position) represented by a PP PP curve. A hidden Conway sphere is one that
is represented by two PSPS curves. We extend this to call any 2-tangle 7" in L visible
if a PPPP curve c intersects four arcs of D such that all of 7" lies on one side of c,
and the complement of 7' (denote it by 7€) lies entirely on the other side of c.

Our main theorem is the following.

THEOREM 3.1

Suppose L is a prime alternating non-split link, D is a reduced alternating diagram for
L, and there is an essential Conway sphere embedded in S3 — L. Then a prime tangle
decomposition of L is visible in D if and only if D is not a standard diagram of an
alternating pseudo-Montesinos link. Further, if D is a standard diagram of an alter-
nating pseudo-Montesinos link, then no prime tangle decomposition for L is visible in
any reduced alternating diagram for L.

The rest of the section is devoted to the proof of Theorem 3.1 via a sequence of propo-
sitions.

PROPOSITION 3.2

Suppose L is a prime alternating non-split link, D is a reduced alternating diagram for
L, and there is an essential Conway sphere embedded in S® — L. Then either a prime
tangle decomposition of L is visible in D, or D is a standard diagram of an alternating
pseudo-Montesinos link.

Proof

Let Z be an embedded 4-punctured sphere splitting D into two prime 2-tangles R and
Q. Choose one of the two spheres S2 and S er, say S2, and consider its intersections
with Z. By Lemma |, we can place Z in standard position so that either Z intersects
Si in a single PP PP curve or in exactly two PSPS curves.

If Z intersects Si in a single PP P P, then the tangle decomposition is visible in
the diagram and we are done.

Assume Z intersects S _%_ in two PSPS curves. The two curves naturally divide
the diagram into four 2-string sub-tangles (see Figure 3(1)) along simple closed curves
that intersect the link in four points. One of these sub-tangles is labeled T in the figure,
with the simple closed curve ¢ (depicted by the dotted line) on its boundary. Note that
all four sub-tangles are visible; by standard position and Lemma 2.1(2), note that each
sub-tangle contains at least one crossing.

There are two possibilities:

1. Each of these sub-tangles is a rational tangle.
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_____

ey ()

Figure 3. Two PSPS curvesin a link diagram.

2. At least one of the sub-tangles is prime.

We examine each sub-tangle. By Remark 2.2, we can determine whether each of
the sub-tangles is rational just by looking at the link diagram. If possibility 1 holds,
then D is a standard diagram of an alternating pseudo-Montesinos link and we are
done. Otherwise at least one of the sub-tangles is prime.

Assume at least one of the sub-tangles 7 is prime, as in Figure 3(1). We will show
that the complementary tangle 7°¢ is also prime. This proves that the curve ¢ (which
isa PPPP curve) that we see on the diagram D describes a decomposition of L into
two prime tangles.

Capping the curve ¢ with disks on both sides of the projection sphere forms a 4-
punctured 2-sphere W. We call W the 2-sphere associated to c. W splits the knot into
the two 2-tangles, T and 7°¢. Since W and Z can be assumed disjoint, one of the two
tangles defined by Z therefore also lies completely inside 7. Assume the tangle Q
lies completely inside T7°¢.

We claim that 7¢ cannot be a rational tangle. Assume to the contrary that 7°¢
is rational. Then the two arcs in T¢ are parallel through disks E£; and E, to the 4-
punctured sphere W. We consider how these disks intersect the 4-punctured sphere Z.
There are two cases: Z intersects both arcs of the tangle 7 (in two points each), or Z
intersects one arc of 7¢ (in four points) and is disjoint from the other.

In either case, we use the fact that Z is incompressible in the complement of the
knot to remove simple closed curves of intersection between £ U E; and Z. An outer-
most (in £ U E5) arc of intersection with Z can then be doubled to yield a compressing
disk for Z in the complement of the link. Since Z is incompressible in the link com-
plement, this is a contradiction. Hence, 7°¢ is not rational.

A similar argument shows 7°¢ cannot contain any essential twice-punctured sphere,
so T¢ is a prime tangle, as required. U

Note that every standard diagram of an alternating pseudo-Montesinos link gives rise
to two PSPS curves, as in Figure 3(1). By [7, Theorem 2], the resulting sphere is
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essential—i.e., every standard diagram of an alternating pseudo-Montesinos link has a
hidden Conway sphere. We now consider the possibility of a visible Conway sphere.

Suppose D is a standard diagram of an alternating pseudo-Montesinos link L. Let
c bea PPPP curve in D, and let W be the 4-punctured 2-sphere associated to c.
A strong isotopy of WrelD is an isotopy of W that induces a planar isotopy of c. We
say that ¢ is a flyping curve for D if there exists another PP PP curve b disjoint from
¢ and the annulus between ¢ and b contains a single crossing of the diagram. Then
there is a flype of the diagram, which changes which strands have the single crossing
between ¢ and b, and which turns the tangle inside ¢ upside down. We call this flyping
the diagram along c; this preserves the alternating property (see [8, Figure 1] for more
details; our “flyping curve” is the boundary of the tangle S4). Notice that if the disk
bounded by c¢ that is also contained in b contains zero or one crossing, flyping along ¢
leaves the diagram unchanged. The following results use the labeling from Figure 2; in
particular, Q; is the closed punctured curve bounding the tangle 7; in D.

PROPOSITION 3.3

Suppose D is a standard diagram of an alternating pseudo-Montesinos link L. Let ¢
bea PPPP curvein D, and let W be the 4-punctured 2-sphere associated to c. Then
there is a strong isotopy of WrelD such that ¢ is isotoped to a PPPP curve ¢’ which
is either parallel to Q; for some i or which lies completely inside T; for some i, or
¢’ bounds a disk which is disjoint from all the T;’s and which contains zero or one
crossing. In the last case, note that flyping along ¢’ does not change the diagram.

Assuming this proposition, we can prove the following.

COROLLARY 3.4

Suppose D is a standard diagram of an alternating pseudo-Montesinos link L. Let ¢
bea PPPP curvein D, and let W be the 4-punctured 2-sphere associated to c. Then
W is not a Conway sphere for L. If ¢ is a flyping curve for D, flyping along c yields
another standard alternating pseudo-Montesinos diagram for L.

Proof

By Proposition 3.3, there is strong isotopy of Wrel D such that c is isotoped toa PP PP
curve ¢’ which is parallel to Q; for some i, or which lies completely inside 7; for some
i, or bounds a disk containing a single crossing completely exterior to UT7;. In all cases,
¢ bounds a rational tangle. If ¢ is a flyping curve for D, flyping along c preserves the
rationality of 7;, hence preserving the standard alternating pseudo-Montesinos diagram
structure of D. ]

COROLLARY 3.5

Suppose D is a standard diagram of an alternating pseudo-Montesinos link L. Then
no reduced alternating diagram for L contains a PPPP curve ¢ corresponding to a
Conway sphere.
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Proof
Since any two reduced alternating diagrams are related by a sequence of flypes [8],
Corollary 3.5 follows from Corollary 3.4. g

Theorem 3.1 follows immediately from Propositions 3.2 and Corollary 3.5.
The remainder of this section is devoted to the proof of Proposition 3.3.

Proof
Minimize the number of points of intersection ¢ N|_J Q; up to strong isotopy of WrelD.
Casel:cNJQ; =0.

e Subcase a: ¢ C T; for some i; then we are done.
e Subcaseb: c NYT; = 0.

Proof for Subcase b:

Up to relabeling, one of the following must hold:

i. ¢ does not separate the 7;’s.

ii. ¢ separates Ty from T3, T3, Ty.

iii. ¢ separates the 7;’s in pairs.

1. Then c either contains a single crossing or it bounds a 2-stranded tangle with no
crossings. In both cases, flyping over ¢ leaves D unchanged.

ii. Then c is parallel to Q; and we are done.

iii. In both cases (¢ separates T} and T, from the rest, or 77 and 73 from the rest),
examination of Figure 2 shows ¢ must intersect D in at least six points, a contradiction.

Case2: c N | J Q; # 0. Assume c intersects Q.

The points of intersection between ¢ and Q1 divide ¢ into subarcs B, B2, ..., Bam
with ,32 j C T;.

Since we have minimized the number of points of intersection in ¢ N | J Q; up to
strong isotopy of W, B; N D # @ for each i. Therefore, there are at most four such
subarcs of c.

If B; C Ty intersects D in only a single point for some j, we can (strongly)
isotopfB; out of T;, contradicting minimality. Therefore, there are at most two such
subarcs of ¢, B and B, with 8, C T}, and each subarc intersects D in exactly two
points.

The endpoints of B, must separate the intersection points of D with Q; into two
pairs. We now apply the above arguments to 1, which shares these two endpoints
with B5. It is useful to refer back to Figure 2, where the endpoints of 5 (and B;) are
marked on Q1, as either the pair of black points or the pair of blue points (shown in
color online). We note that 8; cannot intersect any other 7; because any subarc of ¢
contained in a 7; must intersect D in at least two points, and the sections of 8; disjoint
from all 7;’s would also have to intersect D at least once, a contradiction. Hence, 1
must be a subarc disjoint from 7, U T3 U Ty, with both endpoints on @1, intersecting
L in exactly two points. By inspection, we see that 8 can be strongly isotoped into 77,
contradicting minimality. Hence, c N | J Q; = @. O
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Figure 4. Diagrams of alternating braids.

4. Tangle decompositions of alternating braids

Let L be an alternating, prime, non-split closed n-braid with a reduced alternating braid
diagram D, n > 3. For a diagram D, see Figure 4(1), where every square represents
either a twist or a 2-tangle with no crossings. By a rwist, we mean either a single cross-
ing, or a connected sequence of bigon regions of D that is not a part of another such
sequence. The point x in the figure represents the braid axis.

As before, let D lie on the projection plane Q. A curve C on Q will be called
special with respect to D if the following holds:

(1) C intersects D transversally in exactly four points. Denote them x1, x5, x3,
X4.

(2) C intersects every edge of D at most once.

(3) C is monotone—i.e., it can be isotoped (where the intersection points of C
with the link may slide along a link strand until they reach a crossing, but not
further) so that a ray from x always intersects C in a single point. Figure 5(1)
shows an example of a monotone curve, and Figure 5(2) shows an example of
a curve that is not monotone. If there is a choice whether to put x inside or
outside of C, while x stays in the same region of D, we always assume x is
outside of C. This is illustrated in Figure 5(3), where the curve is not
monotone.

Note that the last condition above also implies that, up to isotopy, C winds exactly
once around Xx.

Recall that by Lemma 2.1(1), a Conway sphere F in standard position results in
either one PPPP or two PSPS curves in F' N Si (similarly, in F N $2). Modify a
PSPS curve as follows. For every saddle it passes, push the curve from the saddle at a
crossing into one of the edges adjacent to this crossing, as in Figure 1(2). Call the new
curve a modified PSPS curve. This modification does not correspond to an isotopy of
F.
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Figure 5. In gray, a curve that is monotone (left) and two curves that are not (center, right).

THEOREM 4.1
Suppose D is a reduced alternating diagram of a prime alternating non-split n-braid
L. Assume S3 — L contains a Conway sphere F. Then either

e D admits a special curve that is a PP PP or modified PSPS curve for F, or
e D is adiagram of the 3-braid 010, "' 01?05 0130, "4, where ny, nz, n3, ns
are positive integers.

Proof

Note that for n = 1, we obtain an unknot that contains no essential surfaces. For n = 2,
we obtain a (2, n)-torus link, where an existence of a PSPS curve contradicts Lemma
2.1(2), and a PPPP curve bounds a rational tangle. Hence, there are no Conway
spheres, and the theorem holds vacuously. We therefore need to prove the theorem
forn > 3.

We claim that for F', any PPPP or modified PSPS curve C; coming from F
either is special or bounds a 2-tangle whose diagram contains exactly one twist.

The curve Cy cuts D into two 2-tangles and travels around x not more than once
since it does not have self-intersections. In addition, C; cannot intersect an edge of D
more than once by Lemma 2.1(2, 3).

If a PSPS curve enters a bigon through a saddle at a crossing (with ), it must
exit the bigon through an edge (with P). But this contradicts Lemma 2.1(2). Hence, if
C, is a modified PSPS curve, it cannot intersect a bigon. If Cy is an actual PPPP
curve, it can be isotoped so that it does not cross any bigons.

Therefore, we can depict Cy on the diagram from Figure 4(1) so that if it passes
through a black square, then the square represents a tangle with no crossings, and Cy
does not intersect L in that square. The intersections of C; with L can be grouped in
consecutive pairs (a pair of intersections corresponds to C; entering/exiting a region of
D), each pair arranged on a vertical, horizontal, or diagonal line through a region of D.
There are four intersections of C; with D, which can be denoted by x1, x2, x3, x4. C;
is a closed curve, and once a region where it starts is chosen, the fourth intersection,
X4, must allow the curve to return to the same region.
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Figure 6. Patterns of intersection.

Figure 6 shows all possible patterns once the starting region is chosen, and D is
placed on S2. In the figure, C, is depicted in gray, and dotted lines mean that more
twisting may occur there. Between two consecutive points of intersection, x; and x; 4
(up to cyclic order), the curve may pass through some black squares that have no cross-
ings in them, without intersecting the link. To see that these are all possible patterns,
note that C; must bound at least one twist but is allowed only four intersections with
L. Call the twist ¢: it is represented by a black square in the figure. Hence, a part of
C is necessarily a vertical segment between intersections with two strands of L com-
ing out of 7. Suppose the intersections are on the left of 7, and denote them by x5, x3
(for another side, the argument is similar). Then C; must close up in some way on
the right from ¢. Since there are just four intersections of L with C;, and ¢ already
has four strands, C; cannot proceed to the left before x, and after x3. Figure 6 then
demonstrates all ways for C; to close up, up to a symmetry/reflection, where the fact
that other segments of C; must be horizontal, vertical, or diagonal, is used.

Situation (1) includes the two possible ways of closing up C;: either making a full
circle around x, or through the shortest segment on the picture that connects its free
ends. Figure 4(2) shows an actual example of a braid and two PSPS curves that yield
modified curves of types (1) and (3) from Figure 6.

In each of the depicted situations, either C; bounds just one twist of D, or it is
monotone and therefore special. This concludes the proof of our claim.

Now consider the PP PP or PSPS curve C| represented by C;. Assume C; is not
special. Then by the claim, it bounds just one twist. If a PP PP curve bounds just one
twist, F is compressible. Hence, only a PSPS curve can bound a twist. The second
PSPS curve coming from F, denoted by C,, hits saddles at the same two crossings as
C|. By the claim above, the modified PSPS curve C, resulting from C; either bounds
a twist or is special itself.

If C5 is special, we are done. Otherwise, each of C; and C, bounds a twist. Then
there are six twists in the diagram: two enclosed by C{ and C,, two enclosed by the two
modified PSPS curves in S2, and two one-crossing twists outside of all four of these
modified PSPS curves. This is depicted in Figure 7, where Cy, C, are in gray. Hence,
L is a 3-braid. Each of the enclosed twists has just one crossing because we isotoped
F sothata PSPS curve does not go through a crossing of a bigon of D. Therefore, L
is the braid 010, "' 07205 1020, 4. O
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=9

Figure 7. Two modified PSPS curves are depicted in gray, and a link diagram is schematically depicted in
black, with squares representing twists.

EXAMPLE 4.2

Suppose that every black square in Figure 4(1) represents a tangle with at least one
crossing. One can immediately see that such a diagram contains no special curves,and
is not a diagram of a 3-braid. Therefore, by Theorem 4.1, S 3 _ L contains no Conway
sphere.
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