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Introduction

apping and inspection of under-
water structures is an important task
found in environmental studies, ma-
rine archaeology, resource acquisition,
and infrastructure maintenance, often
performed by underwater vehicles. In
order to inspect a structure, an under-
water vehicle has to move over most
(ideally all) of the region of interest,
a task often termed as coverage. The
coverage problem in an underwater
environment inherits all the chal-
lenges faced by planning for an aerial
robot in three dimensions related to
the increased dimensionality of the
planning space. The coverage path
planning (CPP) problem’s complexity
exponentially increases when moving
from two to three dimensions. In
addition, the underwater environ-
ment presents novel challenges from
both the coverage and the naviga-
tion perspective. Underwater vision
presents unique challenges such as
hazing, color attenuation (Roznere
& Quattrini Li, 2019; Skaff et al.,
2008), and lack of good features
(Quattrini Li et al., 2016b; Shkurti
et al., 2011). Dynamics of the water
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(Moulton et al., 2018) and visibility
constraints contribute to instability,
drifting, and error in localization of
an autonomous underwater vehicle
(AUV). For details on the challenges
of underwater sensing, please refer to
the comparison studies in Joshi et al.
(2019) and Quattrini Li et al. (2016a).

The focus of this work is visual
mapping of a shipwreck. Historical
shipwrecks tell an important part of
history and at the same time have a
special allure for most humans, as ex-
emplified by the plethora of movies
and artworks of the 7itanic, see, for
example, the work of Eustice et al.
(20006) for the visual mapping of the
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Titanic. Shipwrecks are also one of
the top scuba diving attractions all
over the world. The historical ship-
wrecks are deteriorating due to warm,
salt water; human interference; and, in
some places, extreme weather (fre-
quent tropical storms). Reconstructing
accurate models of these sites will be of
high importance not only for the his-
torical study of the shipwrecks but also
for monitoring subsequent deterio-
ration (National Park Service, U.S.
Department of the Interior, 2020;
National Oceanic and Atmospheric
Administration [NOAA] National Ma-
rine Sanctuaries, 2020); see Figure 1(a)
for the different floors of a shipwreck



FIGURE 1

(a) The different levels of the Stavronikita shipwreck, Barbados, after a partial collapse. (b) Diver
collecting visual data for training at the Pamir shipwreck, Barbados.

(a)

exposed after a partial collapse.
Currently, limited mapping efforts
are performed by divers who take
measurements manually using a grid
and measuring tape or using hand-
held sensors (Henderson et al.,
2013)—a slow and sometimes danger-
ous task; see Figure 1(b) for a diver
collecting data manually to be used
in training the navigation model.
While acoustic sensing sound navi-
gation and ranging (SONAR) is com-
mon, the resulting maps do not
contain the details vision can provide.
Vision has been utilized successfully to
map underwater structures (Hogue
et al., 2007) or even underwater caves
(Rahman et al., 2019).

This method presents a metho-
dology for training a learning system
to guide an underwater vehicle cover-
ing a shipwreck using only vision.
The trained system’s aim is to per-
form coverage in a completely un-
known space by learning a set of
motion strategies based on the previ-
ous visual observations of different
environments.

In order to perform coverage or re-
construction of 3-D structures tradi-
tionally, reliable state estimation is
required (Bircher et al., 2018). How-
ever, even with ideal state estimation,
performing a coverage in an unknown
underwater environment exposes new

(b)

and very different challenges. The aim
of this work is to answer the question:
is it possible to achieve autonomous
behavior that will provide meaningful
coverage decisions relying only on
vision? In contrast to the works pre-
sented in the literature on 3-D cover-
age (Galceran & Carreras, 2013), this
work is solely based on vision and
does not rely on state estimation nor
requires a map of the environment for
navigation.

The main contribution of this ar-
ticle is a deep learning framework for
learning the motions for navigating
around a shipwreck. The proposed
system is based on data collected
by human operators who are trained
to guide an autonomous system in
similar behavior around different
shipwrecks using only vision. Results
demonstrate the accuracy of the
learned system in validation datasets.

The article is structured as follows.
First, we will discuss the related work
and highlight challenges that each
approach is facing. In the following
section, the formal problem defini-
tion along with the proposed method
are outlined. In the next section, the
experimental results from real and
simulated data are reported. The last
section concludes with discussions on
lessons learned and how this work
will progress.

Related Work

The 3-D coverage problem is
quite challenging as there are expo-
nentially many solutions to choose
from. Some approaches have been
proposed and shown to have feasible
solutions both with single and multi-
ple robots using octomaps (Dornhege
& Kleiner, 2013; Dornhege et al.,
2016). In addition, some coverage so-
lutions in three dimensions have been
presented for ensuring the even distri-
bution of spray paint in the automo-
tive industry (Atkar et al., 2005).
Another work has addressed the cover-
age of an unknown environment using
a frontier-based approach (Dornhege
et al., 2013).

Cheng et al. (2008) addressed the
problem by representing an area
through well-defined 2.5-D features,
thus reducing the complexity of struc-
ture dependency of the 3-D coverage.
In this work, the coverage problem is
specifically designed for an aerial vehicle
with a conical field of view that can ro-
tate around a fixed point with 3 degrees
of freedom, thus somehow limiting its
application to other domains.

Similar to Palomeras et al. (2019),
Bircher et al. (2018) combine the
problem of covering an unknown en-
vironment with the given structure by
sampling random next-best views
around the target structure. It is an
extension of their previous work
(Bircher et al., 2016) that builds a
tree of next-best views and selects
the best branch using the size of un-
explored area covered as the metric.
As most next-best view-based ap-
proaches, these works are also subject
to the sensor data quality, system lo-
calization, and vehicle dynamics.

The coverage problem has been
studied also for underwater environ-
ments and has valuable environmen-
tal and archaeological importance. A
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number of works presented seabed
and underwater CPP methods with
autonomous surface vehicles and
AUVs (Galceran et al., 2014; Hollinger
et al., 2013). Behavior-based control of
an underwater vehicle for coral-reef
inspection was proposed by Rosenblatt
et al. (2002). The behavior selection
is implemented using both fuzzy
logic and utility fusion. The behaviors
ensure collision avoidance, proper
distance from the reef, and rope-
following or target-following actions,
but a similar approach has not been
developed for surveying more compli-
cated environments.

To ensure complete coverage
without overlaps, Galceran and Car-
reras (2012) suggest segmenting the
environment based on similar depths.
Each of these segments then is con-
sidered as an individual planning
problem. The proposed algorithm ex-
tends cellular decomposition (Choset,
2000) performing 2.5-D coverage by
traveling on constant depth from the
surface. This work has been extended
to also take into account the state
estimation uncertainty and perform
replanning as needed (Galceran et al.,
2015). The above works rely on know-
ing the approximate depth to split the
area, and it only views the environment
from above.

When the environment is un-
known, Vidal et al. (2017) proposes a
next-best view approach, but it is con-
strained by the certainty of the state es-
timation. To overcome the complexity
of 3-D exploration, simplified formula-
tion of the problem is considered, such
as 2-D mapping of an underwater
structure (Vidal et al., 2019). In this
work, authors use a view planner and
frontier-based strategies. The environ-
ment is represented as a quadtree occu-
pancy map, and it is also used to
generate viewpoints for the exploration.

It is worth noting that quadtree re-
presentations are computationally
becoming more expensive when repre-
senting large-scale complex structures
and require accurate localization.

The 3-D coverage also has been
shown to have a wide range of appli-
cations for mapping historical artifacts
and structures in underwater environ-
ments (Gracias et al., 2013). Most of
the presented works either assume
reliable localization or some type
of prior information about the
environment. Nevertheless, when
operating in an underwater environ-
ment, reliable state estimation is
very challenging. In contrast, a
wide range of vision-based naviga-
tion methods have been used in lit-
erature for aerial robots and ground
vehicles for either goal-oriented path
planning or coverage. Such exam-
ples are work by Smolyanskiy et al.
(2017), where they collect real and
simulation data to train a drone to
navigate over a trail.

Motivated by similar works,
Manderson et al. (2018) have built
a 3-D navigation deep learning
framework for underwater systems
by proposing a vision-based naviga-
tion in an unknown environment for
coral reef exploration. More recent
work (Manderson et al., 2020) has in-
corporated path planning in conjunc-
tion with obstacle avoidance and a
bias towards areas with corals. Their
approach is trained for navigating
over the coral reef and not navigating
around an underwater structure.

More generally, in computer vision
literature, methods grouped under the
terms shape-from-motion and next-
best-view have been utilized for the
visual mapping of an object or a struc-
ture. By definition, shape-from-
motion techniques always estimate
the location of the camera together
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with the shape of the mapped struc-
ture, thus requiring accurate state esti-
mation of the mapping system—a
difficult task as shown in Joshi et al.
(2019). Furthermore, all next-best-
view techniques require the knowledge
of where the camera is and an ability
to navigate to the next viewpoint. In
contrast, the proposed system navi-
gates around based only on the visual
input and does not require a represen-
tation of the vehicle’s location.

Proposed Approach

In general terms, the CPP prob-
lem is concerned with finding a tra-
jectory that moves an end effector/
sensor of the robot over each available
point of the environment (area or vol-
ume) while avoiding obstacles. For
the purposes of this work, the robot
is autonomous, operates without a
tether, and has 6 degrees of freedom
from which controllable are the three
orientations: yaw (rotation around
the z-axis), pitch (rotation around the
y-axis), and roll (rotation around the
x-axis) in a robot-centric frame of ref-
erence, up and down (depth change)
and forward motions. There is no
prior information about the environ-
ment, and it is deployed in a 3-D-
bounded area of interest ¢ C R°.
The robot follows a path 7 that will
result in the acquisition of a sequence
of camera frames V = { fi, fo,...f5)
where f; is the it image frame. The
objective of the CPP problem is to
ensure that 7 is obstacle free and that
the 3-D reconstruction resulting from
Vis covering the entire surface of the
& object.

The objective of this work is to
build a system that will use only the
current frame V to guide the robot
and build a path 7, in such a way
that it will imitate the behaviors of



FIGURE 2

The labeled data, showing the desired change in orientation along the yaw and pitch angles.
(a) The gazebo simulation, presenting changes in both the yaw and pitch angles, and (b) the
underwater video data, where there is a change only along the yaw angle.

(a)

a human diver when surveying a

shipwreck. As such, the main strate-

gies, which will be the building

blocks for CPP, considered within

this work are

1. keep the shipwreck in the field
of view,

2. follow the shipwreck’s side,

3. turn around the bow and stern of
the ship, and

4. circumnavigate the mast.

To create a vision-based naviga-
tion system, we need to have a large
dataset of different shipwrecks. We
begin with 3-D meshes of ship-
wrecks—the data consist of Gazebo
(Koenig & Howard, 2004) models
of shipwrecks provided by the
NOAA (https://nauticalcharts.noaa.
gov/data/wrecks-and-obstructions.
html). In addition, we have generated
test data from the coverage of the
Stavronikita shipwreck in Barbados
where we have collected different
sets of images utilizing an underwater
Aqua2 robot (Dudek et al., 2005), a
stereo sensor (Rahman et al., 2018),
and a GoPro camera. The Aqua2
vehicle is capable of autonomous
operations (Sattar et al., 2008) up to
a depth of 30 m.

(b)

A diver was asked to label data based
on the action that they would take if
they were to perform coverage around
a shipwreck. The possible values that
the diver selects are the directions in a
2-D image—the label windows are
illustrated in Figure 2. The labeling
performed is based on a diver’s strategy
of data collection, consistent with the
abovementioned four behavioral strate-
gies. Following the same strategies,
simulation data have been collected by
driving an Aqua2 robot in the Gazebo
simulator and recording the yaw and
pitch changes corresponding to the
current camera view (Figure 3).

FIGURE 3

(a) Gazebo model of a shipwreck used for training. (b) The Aqua2 robot navigating over a shipwreck
in Gazebo.

The labeled data are fed to an 18-
layer residual network with similar
architecture to the one proposed
by Smolyanskiy et al. (2017) and
adopted later by Manderson et al.
(2018) (see Figure 4). The network
is a variation of standard ResNet-18
(He et al., 2016). The first convolu-
tion layer has 7 x 7, and the rest are
3 x 3—all are downsized using strides
of 2. After each convolutional layer, a
dropout layer is added with a 0.2 rate.
To avoid the dead neuron problem,
we use the LeakyReLU activation
function. We used the momentum
gradient descent optimizer with a
learning rate of 0.001 and a momen-
tum of 0.1. Similar to Smolyanskiy
et al. (2017), we also treat this as a
classification problem rather than
regression, to ensure we have a con-
sistent data labeling process. As such,
similar to Manderson et al. (2018),
the change in yaw and pitch have
seven possible values for each.
Thus, our network operates on each
frame of the incoming video, classi-
fying each image into one of possi-
ble 49 classes. Each of these classes
consists of a different yaw/pitch
command composed of two integers
in the [-3, 3] range. The classifica-

tion indicates the chosen action for
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FIGURE 4

The overview of neural network architecture.
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the robot. After training, the network
is given images as input producing
classifications that are directly used
as input commands to the Aqua2
robot.

In training, the network used a
batch size of 32 and a dropout rate
of 0.2 over 2,048 epochs, a stochastic
gradient descent method optimized
network with a categorical cross-
entropy loss function. These vari-
ables were tuned until the expected
behavior could be observed. We
ended up with a system with 10 layers
that did not result in data overfitting
and achieved increased accuracy in
both the testing and validation data.
The output of the system are direction

TABLE 1

(Yaw,Pitch)

3x3 conv, 64 3x3 conv, 128

commands that are then converted to
the yaw, pitch, and roll commands to
control the Aqua2 robot.

Experimental Results

The experiments were performed
using the Aqua2 simulator in Gazebo.
It emulates the real dynamics of an
underwater environment and allows
control of the robot. The Aqua2
robot used in simulation uses the
motion from six flippers, each inde-
pendently actuated by an electric
motor, to swim. It has 6 degrees of
freedom, of which five are control-
lable. The robot’s primary sensing mo-
dality is vision. It is equipped with

3x3 conv, 256

three iDS USB 3.0 UEye cameras:
two facing forward and one in the
back. The front-facing cameras are
used for navigation and data collection.

The training has been performed
separately on simulation data and
real-world data, as well as on com-
bined data samples. Both simulation
and real-world datasets consisted of
over 25,000 labeled images. The sim-
ulation dataset was collected by driv-
ing Aqua2 in Gazebo using the
keyboard, which resulted in ready la-
beled data, whereas the data from the
Stavronikita shipwreck were collected
with handheld cameras and later were
labeled by a human with the above-
mentioned approach.

Comparison of accuracy of training using simulation and real-world data, and the convergence speed (accuracy values are approximations).

Training Dataset Simulation Based Real-World Collected Simulation and Real-World
Validation accuracy on simulation 82% 12% 34%*

Validation accuracy on real world 6% 80% 34%*

Test accuracy 78% 80% 47%

Convergence on epochs 500 1,000 1,000

Size of dataset 29,180 26,817 61,984

*Note that the validation is given for combined data,

28

hence reported as the same.
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The focus of this paper is on an-
swering the question if a deep neural
network can learn the motion controls
of an underwater vehicle using human-
driven commands informed solely by
the visual input. It is worth noting
that, during training with a simula-
tor, the human user only sees the
view from the robot’s camera, while
in the footage taken by a human
diver, the diver has higher awareness
as they swim around the structure. In
order to answer the above question,
we evaluate how well the learned sys-
tem is able to predict the motions
similarly to the human annotations.
Thus, within this work, we are con-
cerned with performance of the clas-
sifier and how different datasets
affect the prediction accuracy. The
training data, model test, and valida-
tion test data were selected with a
proportion of 6:2:2.

The model accuracy results using
different datasets are depicted in
Table 1. We performed separate
training using only simulation data
and then only real-world data col-
lected from shipwrecks, and finally,
we performed training on combined
data. Test accuracy is reported on
the same type of data, whereas addi-
tionally, we performed validation
tests using models trained in a real
environment on simulation and vice
versa. We also report the number of
epochs after which the model is
converging, for example, when more
iterations of training do not result
in an improvement of the model.
When the Convolutional Neural
Network (CNN) is trained on sepa-
rate datasets, the validation accuracy
converges close to 80% (see Figure 5).
In contrast, when the training happens
on the combined dataset, the vali-
dation accuracy drops to 34% (see
Table 1). This discrepancy between

FIGURE 5

The accuracy per epoch plot of the proposed method trained only on real data.
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simulation and real-world datasets is
indicative of the different visual ap-
pearances between the simulator and
the real world. In future work, the
simulation data will be enhanced by
using generative adversarial networks
(GANs) (Goodfellow et al., 2020) to
resemble the real-world imagery, sim-
ilar to the approach used for training
vision-based cooperative localization
(Joshi et al., 2020). It is worth noting
that, in Joshi et al. (2020), a separate

FIGURE 6

1000
epoch

1500 2000

GAN was necessary for pool and
ocean images.

Nevertheless, the quantitative re-
sults on separate datasets highlight
the feasibility of the method. The re-
sulting control commands have been
used to navigate the Aqua2 robot in
Gazebo simulation over different ship-
wreck models. From the earlier men-
tioned target behaviors, the Aqua2 in
simulation performed the “keeping
the shipwreck in the field of view”

Portion of a trajectory of robot in simulation produced by a prediction-based controller.
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and “following the side of shipwreck”
strategies (see Figure 6), which are crit-
ical for the majority of the exploration.
These experiments demonstrate the
capabilities of the proposed system
trained only on one real shipwreck da-
taset using vision as the only sensor.

Conclusions

This work proposed a new ap-
proach tackling underwater navi-
gation around a complex structure
based solely on visual input. The
method is based on the diver’s exper-
tise in performing navigation collect-
ing data around a structure. Reported
preliminary results of 80% accuracy
achieved from training on separate
sets of simulated and real underwater
data showed that this approach is
feasible and capable of performing
some of the expected behaviors.
Thus, this is a step towards building
a vision-based navigation system for
coverage of shipwreck structures.

Key challenges of this work are re-
lated to the complexity of under-
standing the underwater scene from
limited amounts of data. To address
this, more restrictions and more
systematic data labeling must be
performed. Given the extremely chal-
lenging circumstances of data collec-
tion of underwater shipwrecks, the
introduction of GAN-generated arti-
ficial training data is necessary for
enabling smooth transitions between
real and simulated environments.

When working in the underwater
domain, we are limited by the techni-
cal constraints of the autonomous
platform more than when operating
with surface, ground, or aerial vehi-
cles. The constraints of underwater
vehicles include but are not limited
to the battery life, computational
power, and cost. In order to be able

to successfully execute the online
learning-based method proposed
above, for 3-D coverage, our main ex-
perimental platform, the Aqua2 robot,
must be upgraded to include a Jetson
TX2 Module for computations. New
experiments and more data have to
be collected with Aqua2 to illustrate
the robustness of the proposed system.
An alternative to AUV data collection
is manual collection by divers, using a
sensor suite (Rahman et al., 2018),
where the human guides the explora-
tion. In addition, a 3-D reconstruction
of the underwater structure should be
generated using the proposed method
and state-of-the-art 3-D coverage
methods employed to highlight the
qualitative differences.
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