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ABSTRACT

Molecular modeling and simulations are invaluable tools for polymer science and engineering, which
predict physicochemical properties of polymers and provide molecular-level insight into the underlying
mechanisms. However, building realistic polymer systems is challenging and requires considerable
experience because of great variations in structures as well as length and time scales. This work describes
Polymer Builder in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based
infrastructure that provides a generalized and automated process to build a relaxed polymer system.
Polymer Builder not only provides versatile modeling methods to build complex polymer structures, but
also generates realistic polymer melt and solution systems through the built-in coarse-grained model and
all-atom replacement. The coarse-grained model parameterization is generalized and extensively validated
with various experimental data and all-atom simulations. In addition, the capability of Polymer Builder for
generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt
systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of
poly(styrene-b-methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic
poly(ethylene oxide-b-ethyl ethane) block copolymers in water. We hope that Polymer Builder is useful to
carry out innovative and novel polymer modeling and simulation research to acquire insight into structures,

dynamics, and underlying mechanisms of complex polymer-containing systems.



1. INTRODUCTION

Polymers have been used for a wide range of applications, such as smart surfaces!, sensors?, actuators?, bio-
imaging®*, drug delivery™ %, and energy devices’ !, as they are versatile and can be easily mass-produced
and processed. To date, owing to technological advances in various fields, more effective and eco-friendly
polymer materials are being designed and produced in each application'! 2. However, it is challenging to
design new polymer-based materials because of the significant time and cost to synthesize prototypes and
analyze their physicochemical properties. Furthermore, improving their desired properties and performance
requires a good understanding of the relationship between molecular structures and key physicochemical

properties.

Computational modeling and simulation have played important roles in polymer science and engineering
as they provide molecular-level insight into the underlying mechanisms of macromolecular properties that
are difficult to elucidate only with experiments® 1314, Current state-of-the-art computational modeling and
simulation have been validated enough to interpret experiments and guide new experiments with testable
hypotheses. However, as larger spatial scales, longer time scales, and higher levels of realism become
possible and necessary, generation of realistic complex polymer systems becomes a major obstacle even
for simulation experts. In addition to the reproducibility of simulation outcomes, the grand challenges are
how to utilize modeling and simulation techniques effectively to solve practical problems (for experts) and

how to lower the high entry barrier in using these models and techniques (for non-experts).

Polymers exhibit interesting and important phenomena over a broad range of length and time scales!®. To
capture this range effectively, most computational polymer models fall coarse-grained (CG) or all-atom
models. In the last two decades, CG methods have facilitated the simulation of polymer systems,
complementing atomistic simulations and allowing exploration of the behavior of larger systems over
longer time scales'®?*, Several CG models have been developed to reproduce universal (scaling laws)

properties of polymers using both bottom-up and top-down approaches for CG force field parameterization.



The bottom-up approaches, which include iterative Boltzmann inversion'®, force matching?®, and inverse
Monte Carlo?®, derive parameters from extensive all-atom simulation results. The top-down approaches,
such as MARTINI!"-22, SDK??, or SAFT-y CGFF?*, use experimental data to optimize force field parameters.
The bottom-up approaches can parameterize CG models for specific chemistries, and the top-down
approaches are restricted by the number of experimental data available for parameterization. Still, general
and systematic approaches are lacking, which makes it a daunting task to model realistic polymer systems.
Furthermore, in many cases, atomistic insight is required even if simulations are carried out at a coarser

level.

Several programs have been developed to help users build all-atom polymer model systems, including web
applications for modeling polymer structures, such as Polymer Modeler’’, and stand-alone software
packages such as polymatic®® and pysimm?®®. Polymer Modeler supports 7 pre-built all-atom polymer
structures and user-uploaded polymer structures to create polymer systems. polymatic and pysimm provide
methods to prepare cross-linked polymer structure and an API to integrate different features of existing
software packages using Python-based scripting, respectively. However, all software requires significant
pre-processing to prepare structures, topologies, and parameters of monomers, and initial configurations of
desired polymer systems. While expensive commercial programs, such as Material Studio®® and
Schrodinger®!, have state-of-the-art polymer building tools, they also have limitations in terms of system
size, and the models from these programs are not transferable to other molecular dynamics (MD) simulation

packages.

Most importantly, to investigate physicochemical properties of polymers, it is crucial to analyze the
simulation systems from statistical averages on relaxed configurations of polymer chains. However,
generating reliable initial configurations of various polymer structures is itself a challenging problem
because it requires extensive equilibration simulation. In some cases, an inappropriate initial configuration

makes polymer configuration relaxation impossible, even after the simulation is performed beyond



microseconds. Although some molecular packing tools, such as PACKMOL?2, have been used to facilitate
modeling of the (known) equilibrated morphology structures, it needs further extensive simulation after
modeling initial configurations, and it is impossible to model the structure when its equilibrated

morphology is unknown.

To address this shortcoming, we have developed Polymer Builder (http://www.charmm-
gui.org/input/polymer) in CHARMM-GUI***, which provides a generalized and automated building
process to help users build complex polymer systems easily and interactively using a web browser. Given
user-specific polymer structure(s) and various system parameters (such as the system size, polymer
composition, polymer concentration in solvent, and temperature), Polymer Builder performs an
equilibration simulation of the polymer structures with the Polymer Builder CG model in the web interface.
The parameterization method of our CG model is designed to be general and systematic. Relaxed all-atom
configurations are generated by converting CG models into corresponding atomistic models, either for
direct inspection of the atomistic interaction or for continuation of the simulation with a higher resolution.
Importantly, Polymer Builder also provides well-validated all-atom simulation inputs for various MD
programs, such as CHARMM?®, GROMACS?, NAMD?®, LAMMPS*, AMBER*, GENESIS*,
OpenMM*2, and Desmond®, allowing users to perform MD simulation with their familiar package(s). The
capability and efficiency of Polymer Builder are examined by density and characteristic ratio calculations
of 34 homopolymer melt systems. Furthermore, its robustness is tested by building and simulating various
polymer-containing systems for phase behaviors of block copolymers and self-assembly of block
copolymers in aqueous environments, illustrating the versatile simulation contents that one can perform
with Polymer Builder. Current limitations and future directions of Polymer Builder are also discussed

briefly.



2. METHODS

2.1 Workflow of Polymer Builder

As shown in Figure 1A, the overall process to build a polymer system has been generalized and automated
in three subsequent steps. Each step is designed to incorporate user’s specific options through a web
interface and run CHARMM or OpenMM input files. Individual input and output files including generated
structures, as well as an archive of all the created files are available in each step. Polymer Builder provides
a visualization option for the generated system in each step, so that, if necessary, one can go back to the
previous step and modify the option interactively. Video demonstrations on how to use Polymer Builder

are available on the CHARMM-GUI website (http://www.charmm-gui.org/demo/polymer).

Step 1 — Building polymer structure(s)

Currently, Polymer Builder provides more than 60 different monomer structures and chemical
modifications (Figure 1B). Polymer Builder adopts a graphical user interface (GUI), allowing users to
easily check and design polymer sequences (i.e., monomer type, polymer length, and capping of polymer
ends). One can build a polymer structure with almost all combinations of the monomer structures and by
specifying the repeating number of each monomer (Figure 1C). Such a flexible user interface enables
Polymer Builder to cover diverse polymer structures. Detailed procedures on how to build polymer

structures using Polymer Builder are described in Supporting Tutorial and video demonstrations.
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Figure 1. (A) Workflow of Polymer Builder. Steps involving CG and all-atom models are in yellow and
red, respectively, and those involving both resolutions are in green. (B) Monomer classes available in
Polymer Builder and corresponding chemical structures. (C) Illustrative snapshots of Polymer Builder user
interface. (left) One can build a polymer sequence using one of the predefined monomers whose chemical
structure is displayed on the side panel. (right) Illustrative snapshots and corresponding output structures
are shown for polyethylene, nylon 66, poly(styrene-co-methyl methacrylate) block copolymer, and random
copolymer of polyethylene and polymethacrylate. Carbon, oxygen, nitrogen, and hydrogen atoms are

colored in black, red, blue, and white, respectively.



Step 2 — Generation of a relaxed system using Polymer Builder CG model

Polymer Builder not only provides single polymer chain modeling capability, but also supports a “melt
system” option for modeling amorphous and molten states and a “solution system” option for modeling
polymers dissolved in various solvents. Figure 2 illustrates how Polymer Builder operates to generate a
relaxed system. Each polymer structure from Step 1 is first fragmentized using an estimated (single) CG
bead size based on the monomer units, where different fragment structures (in a block copolymer) are
modeled as different CG bead types with different interaction parameters, which is elaborated below.
Polymer Builder then performs two tasks simultaneously. The first one is to model all-atom library
structures for each CG bead type by considering its connecting orientation to neighboring ones (Figure
2A), and these all-atom structures are used to replace each CG bead in Step 3. The second task is to run a
CG simulation to equilibrate a melt or solution system using OpenMM*2. The Polymer Builder CG force
field was developed by combining solubility parameters and machine learning techniques, and the force
field parameters (i.e., bead sizes and interaction parameters) have been extensively validated with various
experimental data and all-atom simulations (see next section). Note that a CG lattice structure is first built
based on the force field parameters, and the CG equilibration simulation is then performed longer than an

estimated relaxation time of the selected polymer structure (Figure 2B).
Step 3 — Generation of an all-atom simulation system and inputs

The CG beads in the relaxed configurations (melt or solution systems) from Step 2 are replaced by all-atom
segments in the library built in Step 2 via its translation and rotation to minimize bad contacts (Figure 2C).
After the replacement, users can obtain a relaxed all-atom polymer system (Figure 2D) with necessary
topology, force field parameter, and simulation input files for further simulations using any of supported
simulation programs such as CHARMM, GROMACS, NAMD, LAMMPS, AMBER, GENESIS, OpenMM,

and Desmond.
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Figure 2. Snapshots to illustrate how Polymer Builder operates. (A) A PMMA 30 (polymethyl methacrylate
with 30 monomer units) chemical structure and an initial process to make Kuhn fragment library. PMMA3
is fragmented based on its Kuhn length. The Kuhn length of PMMA is 15.3 A that corresponds to six
monomers per fragment and PMMA;¢ can be divided into five identical Kuhn fragments. Spherical and
positional restraints are applied to the Kuhn fragment to fit this all-atom structure to a corresponding CG
bead. The positional restraints are applied to make the angle between three points (the center of mass of the
Kuhn fragment and the positions of two carbon atoms that are connected to other fragments) ranging from
60° to 180° by 10° (see Supporting Tutorials for the details). The connecting carbons are marked with
magenta and orange spheres. (B) Snapshots of initial and final simulation systems of 50 PMMA 30 using the
Polymer Builder CG model. 7 is the (longest) relaxation time of the CG polymer model. (C) Replacement
of each CG bead with the corresponding all-atom structure from the structure library generated in (A) with
rotation and translation optimization to minimize bad contacts. (D) Final all-atom model obtained for a melt
system of 50 PMMA 3 with the primary simulation system in a white box and surrounding image systems

in the XY directions. Carbon, oxygen, and hydrogen atoms are colored in black, red, and white, respectively.



2.2 Polymer Builder CG Model

A bead-spring model (also commonly known as Kremer-Grest models)** 43

is employed to represent the
constituent polymers. All bonded interactions between CG beads are modeled using a harmonic potential
Ubond(¥) = kbond (7 - 70)* with kvond = 100 ksT/0” and ro = o, where kgT is a thermal energy and o is a bead
diameter. The nonbonded interactions between all bead pairs are modeled through the combination of the

12-6 Lennard-Jones potential and the Weeks-Chandler-Andersen potential.* Developments of Polymer

Builder CG model parameters are subsequently described in detail.
2.2.1 Choice of ¢

Developing a CG force field requires a specific mapping method about how many all-atom monomers are
mapped onto a single CG bead (e.g., Figure 2A). For polymers, the spatial correlations between monomers
become negligible beyond a characteristic length scale known as the Kuhn length (b)*’. At a length scale
above b, the chain can be treated as a fully flexible polymer consisting of Ny Kuhn monomers. The Kuhn
length of a polymer is defined by the ratio of the mean square end-to-end distance (<A°>) and the fully
extended length of a polymer (max), b = <h?>/ hmax. Flory defined the characteristic ratio (C.) as the ratio

of the actual unperturbed <A’> and that of a freely jointed chain,*’
Co = <h?>/(n x I’) (1)

where / is an average backbone bond length and 7 is the number of backbone bonds in a polymer chain.
Using this definition and A = n [ cos(6/2) where 6 is an average backbone bond angle, the Kuhn length

can be rewritten as*’
b=Cxl/cos(6/2) )

The Kuhn length provides crucial information about the number of monomers that can be represented by a
single CG bead. To obtain C. for each monomer unit in Polymer Builder, we performed all-atom MD

simulations of homopolymers of each monomer with Ny, = 10, 20, 30, 40, and 50 in a melt system of 10 x
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10 x 10 nm?. Then, <h’> was fitted with Equation (1) and Figure S1 shows the results for four
representative polymers. Figure 3 shows the comparison of C. obtained from all-atom simulations with
experimental data for various homopolymers, indicating that the simulation results agree well with

experiments.
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Figure 3. Comparison of simulated and experimental characteristic ratios (Cx) of various homopolymers.
Some experimental characteristic ratios are derived from the persistence length and Kuhn length (see Table

S1 for polymer full names).

Next, to investigate a spatial correlation in our bead-spring model, we performed CG simulations of
homopolymers with Ncg = 10, 20, 30, 40, and 50 in a melt system of 10 x 10 x 10 nm® with a range of ¢
from 7 to 13 A (covering all polymer units in Polymer Builder). Using Equation (1), fitting <h*>cg/ ¢° to
Ncc — 1 yields C. = 1.48 (Figure S2), indicating a mild spatial correlation (as expected since C, = 1 can be
obtained only for the ideal freely-jointed chains). This in turn leads to a relation » = 1.48c from Equation

(2), so that a bead diameter ¢ of a homopolymer can be directly obtained from its Kuhn length, b.
1



To generalize this method for copolymer structures, we calculated the number of all-atom monomers
representing a Kuhn segment of a homopolymer (Nm:») and corresponding number of all-atom monomers
in a CG bead (Nm:s) using Nm:s = 6 Nmp / b = Nmp / 1.48 (Table S1). We assume that each monomer
contributes an amount of 1 / Nm: to the formation of a copolymer CG bead, so that we can sequentially

determine bead segments (S*7) where j is the starting monomer number and £ is the first monomer number

that makes Z] i 1/N,, @ m.e greater than 1. We can then approximate each bead segment to a sphere with a

diameter corresponding to ¢/ = (6/m ZJ i V(l))l/ 3, where Vi is the monomer volume and can easily be
determined from the monomer structure. The resulting ¢ are different for different segments with different
monomer units in a copolymer. Note that the Polymer Builder CG model does not use these different
diameters directly as it is practically impossible to parameterize associated interaction parameters for any
user-specified copolymer. Instead, the maximum diameter (omax) among the different bead sizes is used to

estimate the number of CG beads (Ncg) in the polymer by N¢g = int (6/m ZN“’ V(l) /(Omax)?). Then, a

diameter of Ncg beads can be calculated by o = (6/m ZNm V(l) /Ncg)Y/3; nb., o is always a bit larger than
Omax. Using ¢ and Ncg, from the first CG bead, we can sequentially assign the monomer units by adding its
Vi until the sum is close to no” / 6. In this way, depending on different monomer sizes in a polymer, the
number of monomer units in a CG bead (Nm:) is different in each bead and thus capture Vi, of different

monomer types with a single ¢ and its associated interaction parameters.

2.2.2 Evaluation of y from Solubility Parameters

With o for a given polymer in hand, the next task is to determine the interaction parameter. The Flory-
Huggins parameter y describes the degree of segregation in polymer blends and polymer solubility in
various solvents, which can be used as an intermediate parameter connecting the microscale (all-atom)

model and the mesoscale (CG) model. Based on a simple idea that two materials with similar solubility

12



parameters have balanced forces and thus are miscible, the Hildebrand solubility parameter concept has
been widely used to estimate .** %’ In the regular solution theory, the solubility parameter is formally
defined as 8> = AEvap / Vimolar, Where AEyqp is the molar energy of vaporization and Vmolar is @ molar volume
of the substance. y can be calculated by y = V; (8.a — 8,8)* / kT + 8, where 8 is an empirical constant (8 =
0 for polymer-polymer interactions and = 0.34 for polymer-solution interactions), d;4 and oy are the total
solubility parameters of two compounds A and B, and V; is the geometric mean of the polymer segment
molar volumes for polymer-polymer interactions or the solvent molar volume for solution systems.>
Therefore, molecular mixing of two components can occur when y is close to zero. However, derivation of
x for the compounds having polar and hydrogen-bonding interactions by above equations usually yield poor
results. To address this shortcoming, Hansen divided Hilderbrand solubility parameters into contributions
from dispersion forces (d), polar forces (p), and hydrogen bonding effects (h), i.e. & = (84> + §,> + 5n?)"2

and suggested™’
% =10.6 Vi ((84,a — 84.8)*> + 0.25 (8p,a — 8p.8)*> + 0.25 (Sh,a — On)?) / kT 3)

By design, this formula shows very good estimation of y for systems having strong polar or hydrogen
bonding interactions. To estimate y for an arbitrary polymer system, the group contribution methods for
estimating &, which are based on the knowledge of structural fragments within the molecule, are by far the
most popular way of calculating 8. In the Polymer Builder CG model, the group contribution method of
Stefanis and Panayiotou®! is used to estimate the Hansen solubility parameter of all supported monomer
units (Table S1). These solubility parameters are used to calculate y, and then y is used to obtain cross-
interaction parameters (¢) between different CG bead types. Because of different nature of bead-bead
interactions for polymer-polymer and polymer-solvent due to its size, we have developed the separate

schemes to parameterize € for melt and solution systems.

2.2.3 Choice of € for Melt Systems

13



To establish interaction strengths between CG beads in melt systems, we start from Lennard-Jones (LJ)
fluid whose reported reduced critical temperature is 7." = kgT. / € = 1.31 in the case of the untruncated LJ
potential®’?, We note that the critical temperature (7¢c) of the constituent monomer groups are readily
available within the framework of the group contribution theory®?, from which the self-interaction strengths
between the same CG bead type A is given by eaa = ksTca / 1.31. Even though it is common to use the
Lorentz-Berthelot mixing rules for interactions between different species, i.e., €as = (€aa esp)'’?, polymer
blend systems are known to be highly sensitive to eas, and thus it is necessary to use a different approach
for accurate estimation of eag®*. In the Polymer Builder CG model, eap in melt systems was derived from
a machine learning method using eaa, €, 7, and y as the features, as there is no simple way to derive eas

from €aa, €BB, 7, and y.

First, to establish a relationship between y and 7 for given eaa, esB, and eap, we follow the simulation
approach of Groot et al*>. Briefly, the system consists of a biphasic mixture of A and B. After equilibration
MD simulation, the two phases mix to a certain degree, which leads to the free energy, F'/ kT = @a Inga /
Na + ¢ Ings / N + x* da @B, where @a and ¢p are the volume fractions of A and B molecules in the B and
A regions, and Na and Np are the number of beads per A and B molecules (Na = Ng = 1 for our binary
mixture simulations). Note that we use x* (calculated from simulations with a set of 7, €aa, BB, and €ag)
to distinguish it from y (calculated from chemical structures) in Equation (3). The minimum free energy at

OF/0¢a = 0 leads to

1 =In[(1 - @a) / gal/ (1 - 2¢4) “4)

Using Equation (4), we calculated x* as a function of 7. As shown in Figure 4A, the correlation between
y* and T can be approximated by a linear relationship, x* = /T + f, where a and f correspond to the
enthalpic and entropic contributions to y*, respectively.’® To estimate y* for different sets of T, €aa, €gB,

and eaB, we simulated 820 bi-phase systems with eaa = kg7 and eaa > egB > €aB > 0.5 kgT at a temperature

14



range of esp/ks > T> 0.5 ean/ks, where egp, €aB, and T were decreased in a step of 0.05 k7. Then, we

trained a machine to output eap using eaa, ess, 7, and y* as the features.

Kernel ridge regression (KRR) is one of the most popular supervised learning approaches, which has been
used for prediction of molecular properties in several studies®® 7. The basic idea of KRR is to map input
features into a higher-dimensional space, where a linear relation between the transformed features and the
property of interest could be established. In this study, KRR was performed with scikit learn package>® with
default parameters, and 655 data (80% of 820 data set) was randomly chosen as a training set and the rest
was used as a validation set. Figure 4B shows the target and predicted values for eas, which manifests an
excellent prediction with R? = 0.987. Figure 4C summarizes a workflow describing the overall process for
parameterization in melt systems. Detailed procedures on how to calculate interaction parameters are

described in Supporting Tutorial 3 using an example.

A eggle=090, B 09 0 C | petermination [ Scanning
eagle =070 ofo | polymer sequence(s)
® /e =095 4 2 _ e v
eagfe =0.80 P 0.8k R 0.987 Generation of
¢ w Kuhn segment(s
A \nd:: 7 * 7 ! Applying Group
," w b contribution theory
,‘ he} 0.7 Set self-interaction ¢ T
=4.85/T-3.74 g Uir f Kuh t(s
AL X § of Kuhn segment(s) ‘—l- Calculation Te
‘,I'. -8 of Kuhn segment(s)
»” a .
O 0.6} il Evaluation of y from
. re
®7y =3.34/T-267 o e Set cross-interaction € -r Solubility parameters
> of Kuhn segment(s) q.l_ ¥
1 ! 0.5 1 1 1 7 Prediction of
1.6 1.8 2.0 0.5 0.6 0.7 0.8 0.9 - cross-interaction €
Generation of
1T (kBI E) Target EAB"E Topology

Figure 4. (A) Flory-Huggins parameter y as a function of inverse temperature for a binary mixture of CG
beads. The dashed lines are the linear fits to the simulation data. (B) Target and predicted values for eag.
(C) Workflow of CG parameterization process in melt systems. Steps involving CG and all-atom models

are in yellow and red, respectively, and calculations related to the group contribution theory and prediction

of eap are in gray.
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2.2.4 Choice of € for Solution Systems

In general, the & parameterization method used for melt systems cannot be applied for solution systems
because of small solvent molecules (for which Kuhn length cannot be defined). To address this issue, we
first set € to ks7c / 1.31, where Tt is the critical temperature of a specific solvent. Then, we employed a
commonly used approach for polymer solutions®®, where a potential energy function (for different bead
type interactions) is defined as the combination of LJ and Weeks-Chandler-Andersen (WCA) potentials

with a tuning parameter (1),
V(r) = (1-2) Vii(r) + A Vwcea(r) 5)

A controls the interaction strength from attractive (4 = 0) to repulsive (4 = 1) interactions. Since there was
no available quantitative relation between 4 and y, we derived one in this work using the Flory exponent (v)
(that describes the scaling of the chain size (or radius of gyration, R) as a function of molecular weight) as
an intermediate parameter connecting the microscale (all-atom, i) model and the mesoscale (CG, 4) model.
First, the relationship between y and v from the all-atom model was obtained from single chain simulations
of various homopolymers with different molecular weights (Nm = 10, 20, 30, 40, and 50) in 10 different
solvents that have various y values ranging from 0.04 to 1.88 (Table S2). Figure SA shows R, for PP and
PVA as a function of molecular weight (M) in cyclohexane and acetone at 300 K, respectively. Fitting the
data to the power law yields v = 0.61 (PP in cyclohexane), 0.47 (PP in acetone), and 0.32 (PVA in
cyclohexane), for which the corresponding x values are 0.04, 0.46, and 1.87. This indicates that v and y are
anti-correlated. All v values obtained from MD simulations as a function of i are shown in Figure 5B. In
the framework of Flory theory, v values are 0.6, 0.5, and 0.33 when a polymer dissolves in good, theta, and
poor solvents, respectively.*’” Therefore, in the fitting, v = 0.6 and v = 0.33 were used as upper and lower

bounds and the result shows an excellent agreement with the theory (R? = 0.97).
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Figure 5. (A) Radius of gyration of PP and PV A as a function of molecular weight (My) in different solvents.
The solid lines are the fits to the corresponding all-atom simulation data points. (B) Flory exponent v (i.e.,
vin Rg o< My") as a function of Flory-Huggins interaction parameter x for PP, PVA, PMA, PNIPAAM, PE,
PLA, and PAN in various solvents (blue circle) and fit (solid line). Dashed lines are the upper and lower
bounds reported in the theory and experiments. (C) Radius of gyration of CG polymers as a function of
number of CG beads (Ncg) and the tuning parameter (1) that controls the solvent quality from good (4=0)

to poor (A=1). (D) Flory exponent v as a function of A (circle) and fit (dashed line) at various reduced
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from 0 to 1 with 0.05 interval. Figure SC shows the logarithmic plots of R / ¢ as a function of number of
CG beads (Ncg) with various 4. As 4 increases, the slope of R, / o gradually decreases from 0.64 to 0.41,
indicating that adjusting A can controls long range structural properties of CG polymers. We normalized v
based on the upper and lower bounds (0.6 to 0.33), and fitted v to 4 at reduced temperatures 7* = 0.7, 0.8,
and 0.9 (Figure 5D). Combining both y-v (Figure 5B) and A-v in (Figure 5D) relationships, we obtained a
desired quantitative relationship between y and A (Figure SE). Therefore, the interaction energy for different

bead types (polymer-polymer and polymer-solvent) in solution systems can be calculated using Equation

(3.

2.3 Polymer Builder CG Equilibration

After the construction of a lattice model and derivation of CG parameters for a polymer system in a melt
or solution state, Polymer Builder performs CG equilibration to generate relaxed polymer configurations
(Figure 2B). Therefore, it is crucial to estimate equilibration time and provides the expectation time to
users as a web-based cyberinfrastructure. For most polymer systems, relaxation of chain configurations is
slow compared to the density or pressure, so a chain-level measurement is required to assess whether the
system reaches equilibration. To this end, we generated the systems consisting of 100 polymer chains with
Nca from 9 to 72 beads, and the end-to-end vector autocorrelation function (<u(#)-u(0)>) was analyzed as
a function of Ncg at various temperature (Figure S3). At 7* = 0.5, <u(¢)-u(0)> decays to zero only for Ncg
=9 and 18 by the end of 250 ns, indicating an insufficient relaxation of the polymer chains with Ncg = 27,
36, and 72. To estimate the relaxation time, we fitted the data using the Kolrausch-Williams-Watts stretched
exponential,®® G(¢) = exp[-(#/t)’] with 0 < 8 < 1. The calculated average relaxation time, <r> = [G(t)dt =
[ (1/B)/, ranges from 7.9 to 810.9 ns, when Ncg increases from 9 to 72 beads. Figures S3B and S3C show
that <u(?)-u(0)> decays to zero within 250 ns even for Ncg = 72 at 7% = 0.6 and 0.7. A logarithmic

relationship between Ncg and <z> at various temperature show a linear relationship and provide a
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semiempirical relation to estimate the relaxation time of polymer systems (Figure S3D), which is used in

Polymer Builder.

2.4 Simulation Details

All MD simulations were performed with Gromacs 2018.1 for CG and all-atom MD. To control the
temperature, a Nosé-Hoover temperature coupling method®! was used with t = 1 ps. The pressure was
maintained at 1 bar using the Berendsen and Parrinello-Rahman barostats®? for the equilibrium and
production run with tp, = 5 ps and a compressibility of 4.5 x 10 bar’!, respectively. Neighbor lists were
built using the Verlet cut-off scheme with a cut-off radius of 30 and 1.2 nm for the CG and all-atom MD,
respectively. The linear constraint solver (LINCS) algorithm® was used to constrain the hydrogen bond
length. All simulations were conducted using a leap-frog integrator with time-steps of 50 and 2 fs for CG
and all-atom MD, respectively. The CG model dynamics is faster because the CG interactions are much
smoother compared to atomistic interactions. On the basis of comparison of diffusion constants in the CG
models and in all-atom models, the effective time sampled using CG is 6 - 10 times longer. When
interpreting the simulation results with the CG model, the conversion factor is 8, which is the effective
speed up factor in the diffusional dynamics of CG water compared to the real water. Electrostatic
interactions were calculated using particle mesh Ewald® with a cutoff of 1.2 nm in all-atom MD. The all-
atom force field parameters in Polymer Builder are based on the CHARMM Generalized Force Field
(CGenFF).% To cover almost all combinations of monomer units, we have prepared 66 residues (monomer
units) and 1,004 patches (connecting monomers). Note that no specific optimization has been performed.
Detailed procedures on how to use Polymer Builder are described in Supporting Tutorial using four example
systems: 1) single polymer chains generation, ii) self-assembly of PEO76-PPO29-PEO76 block copolymer in
water, iii) a ternary blend system of a block copolymer (P(Sigo-b-MMA220)) and two homopolymers (PSiso
and PMMA»0), and iv) PETso membrane with CO2 molecules.
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3. RESULTS AND DISCUSSION
3.1 Generation of Relaxed Polymer Systems

To illustrate the capability of Polymer Builder, we investigated the homopolymer melt systems, phase
separation of PS-b-PMMA block copolymer, and self-assembly behavior of amphiphilic PEO-b-PEE block
copolymer in solution. Building relaxed polymer systems is crucial to predicting the properties of these
materials. In particular, reliable polymer configurations are essential to optimize polymer mechanical
properties, transport phenomena of small molecules through a polymer membrane, and surface and
interface interactions in polymer composite materials. These properties impact polymer’s performance in

66. 67 To check the quality of

applications such as separation processes, packaging, and drug delivery
polymer structures from Polymer Builder, we prepared an initial configuration of 250 PEs¢ chains from
Polymer Builder, as well as a stack of linear chains (Figure 6A) and compared the end-to-end distance
distributions of PEso with theoretical estimation at 440 K; n.b., the melting temperature (7w) of PE is about
420 K. As expected, the initial polymer system generated by simple stacking takes long to make relaxed
configurations (Figure 6B), where the end-to-end distance distribution deviates significantly from the
theoretical distribution even after 50-ns equilibration. The situation would deteriorate for longer polymers
(i.e., long relaxation time) and it may not be possible to obtain a relaxed configuration even after extensive
equilibration. On the contrary, the system generated from Polymer Builder shows a distribution close to
theory only after 10-ns equilibration (Figure 6B). To further investigate the formation of relaxed polymer
configurations of high molecular weight polymers, initial configurations of 217 PE2qo, 144 PE300, 108 PE4qo,
and 86 PEso0 were prepared using Polymer Builder, and the end-to-end distance probability distributions
were compared with theoretical estimations after 10-ns equilibration at 450 K (Figure 6C); n.b., a short 10-

ns simulation was performed just to illustrate the quality of the initial relaxed structure from Polymer

Builder. The distributions obtained from all-atom simulations show excellent agreements with
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corresponding theoretical estimations. Furthermore, highly entangled polymers were observed in all

systems (Figure S4). This indicates that Polymer Builder can generate relaxed initial configurations of

polymer systems regardless of the polymer length.
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Figure 6. (A) Initial all-atom configuration of 250 PEso chains from Polymer Builder (upper) and a stack

of linear chains (lower). (B) Probability distributions of PEso end-to-end distance from the initial

configurations of (A) and a worm-like chain model (black line). (C) Probability distributions of end-to-end

distances of 217 PE2oo, 144 PE300, 108 PE400, and 86 PEso from 10-ns all-atom simulations at 450 K (solid

line) and wormlike chain model (dashed line). (D) Comparison of simulation and experimental densities of
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34 homopolymers at 1 bar and 298.15 K. The straight line corresponds to the perfect agreement and the
dashed lines delineate the 95 % confidence area. The polymers belonging to the same class are colored

together (see Table S1 for polymer full names).

To investigate bulk properties as well as long-range structural properties of polymers, we have performed
simulations of 34 homopolymer melt systems. The relaxed configurations that contained 100 homopolymer
chains with 50 monomer units per chain were generated using Polymer Builder. Each initial configuration
underwent a simulated annealing stage that began at 7= T;, + 50 K and ended at 7= 298.15 K with a
cooling rate of 0.01 K / ps to prevent formation of defects that could be generated by a sudden temperature
change. Figure 6D shows the comparison of the densities obtained from the simulations with the
experimental data. For most homopolymers, the experimental densities are well reproduced (within 5 %),
given the fact that no attempt has been made to improve the all-atom polymer force field parameters
obtained directly from the CGenFF®. Note that the limitation of the current all-atom force field is discussed

below.

3.2 PS-b-PMMA Block Copolymer Melt System

Polystyrene and poly(methyl methacrylate) block copolymers (PS-b-PMMA) are widely used because they
can phase separate to form periodic nanostructures®® ¢, Depending on relative lengths of each block, several
morphologies such as spherical, cylindrical, gyroid, and lamellar phases can be formed’ 7!. Such
nanostructures could potentially be used for nanoscale templating and separations. For styrene (S) and
methyl methacrylate (MMA) of PS-b-PMMA, the number of monomers in each CG bead was calculated
to be 4.9 S and 6.9 MMA monomers. For €s s and emvma mma, we calculated 7. for each bead based on the
group contribution theory, yielding Tcs = 700 K and 7cmma = 684 K, which are equivalent to ess = 1.39
kcal/mol and emmamma = 1.36 kcal/mol, respectively. The solubility parameter difference Ad between S

and MMA beads is 3.16 kcal/mol, which corresponds to y = 0.87 at 400 K (7* = 0.57). €smma was
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determined to be 1.24 kcal/mol from our machine learning method (see METHODS). Note that the
conventional Lorentz-Berthelot mixing rule yields esmma = (€s,s-emmamma)’? = 1.37 kcal/mol, meaning

that the system would not microphase separate because €ss = 1.39 kcal/mol and emma,mma = 1.36 kcal/mol.

Six block copolymer structures (Ss0MMA3s0, SsoMMAs60, SooMMA320, S120MMA290, S150MMA2s0, and
S180MMA220) were built with different S volume fractions (fs), and melt systems with 100 polymer chains
in a box of ~20 x 20 x 20 nm? were simulated to investigate phase behavior according to various yN. As
shown in Figure 7, a good agreement with the results from self-consistent field theory (SCFT)
calculations” demonstrates the validity of our modeling and simulation protocol in Polymer Builder.
Furthermore, the replacement of CG beads with all-atom monomers allows us to simulate all-atom PS-b-
PMMA block copolymer systems that were previously challenging due to limited time and length scales of
all-atom simulation. To further investigate the alignment of phase separated domains, we increased the
system size two times for P(S¢0-b-MMA360) and performed CG equilibration for 5 ps. During equilibration,
S beads were agglomerated with each other to form spherical phases, and they were packed in a body

centered cubic fashion (Figure S5).
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Figure 7. Phase diagram of PS-b-PMMA and snapshots of CG and corresponding all-atom models from
Polymer Builder, where yN was calculated from the solubility parameter difference using Equation (3) and
fs is the volume fraction of PS. The solid lines represent the boundary between lamellar (L), gyroid (G),
cylindrical (C), and spherical (S) phases based on a self-consistent field theory (SCFT) model’”®. Shown
together are the observed phases in our CG simulations (symbols) and a few representative snapshots from
CG model and corresponding all-atom model. PS and PMMA are colored in yellow and blue, respectively.

A quarter of PMMA is omitted for clarity in the fs = 0.11 and fs = 0.25 systems.

As a web-based cyberinfrastructure, it is important to generate a user’s system in a reasonable time. Figure
S6A shows a phase behavior of S4oMMA3g0 system at 7* = 0.50 (yN = 58). As the CG simulation proceeded,
S beads were agglomerated with each other, and phase separation was completed after 4-ps simulation.
With current computing power in CHARMM-GUI, the 4-us CG simulation takes about 4 hours and the
simulation time increases exponentially as the system size increases. To reduce this equilibration time, one

can use the Weeks-Chandler-Andersen (WCA) potential (see Equation (5) in METHODS) with A = 1 (fully
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repulsive for different bead types), which is widely used to accelerate phase separation®*. When the purely
repulsive potential was applied, phase separation of Sio0MMAs3go system took less than 100 ns in the
simulation time and 10 minutes in real world. However, this intended acceleration could cause unwanted
phase separation in certain systems. To overcome this shortcoming, the standard LJ potential (A = 0) was
applied to the system after accelerated equilibration with the WCA potential. Figure S6B shows time series
of normalized contact numbers between S beads and corresponding morphologies at various temperature
ranging from 0.50 to 1.01. At 7* = 0.50 (N = 58), spherical phase was maintained during 1-us equilibration.
At T* =1.01 (yN = 25), the number of contacts between S beads abruptly decreased during 100 ns and turn
into disordered phase. All morphologies obtained by sequentially applying WCA for 100 ns and LJ potential

for 100 ns show good match with morphologies in the phase diagram shown in Figure 7.

3.3 PEO-b-PEE Amphiphilic Block Copolymer Solution System

We investigated whether the solution system building protocol in Polymer Builder could self-assemble
important morphologies known to form in polyethylene oxide and polyethyl ethylene block copolymer
(PEO-b-PEE)!* 72, Three amphiphilic diblock copolymers (EO21EE37, EOsoEE37, and EO9,EE37) with
hydrophilic mass fractions (fpni) of 0.31, 0.51, and 0.66 were built, and 120 EO21EE37, 58 EOsoEE37, and
30 EO9EE37 CG polymer chains were randomly distributed with water beads in a box of 10 x 10 x 10 nm?
(for EO21EE37) or a box of 12 x 12 x 12 nm? (for EOsoEE37 and EO9:EE37). Figure 8A-F depicts the final
snapshots of CG models and corresponding all-atom structures. Bilayer, cylindrical micelle, and spherical
micelle formations are observed at low fonii (< 45 %), intermediate fphii (= 50 %), and high fonii (> 60 %),
respectively. For a quantitative analysis of bilayers as a function of My, five M, systems (EO1oEEy,
EO19EE 3, EO29EE2s, EO40EE37, and EOs3EEs0) with a constant fpnii (~43%) were constructed. The density
profiles of hydrophobic segments in all systems are shown in Figure 8G. Note that the density profile of
the smallest My copolymer (i.e., EO10EEy) is similar to that of a common phospholipid bilayer. The density
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dip at the mid-plane becomes smoothed as M., increases, indicating that interdigitation and entanglement
of hydrophobic chains as the chain length increase. Figure 8H shows a quantitative comparison of a
logarithmic relationship between the hydrophobic molecular weight (Mywpnos) and the hydrophobic
thickness with theoretical and experimental measurements. An exponent of 0.49 in our results is close to
an exponent of 0.50 that is typical of three-dimensional hydrophobic core melts'*. Therefore, our results
demonstrate that Polymer Builder provides new ways to analyze novel properties of high Mw copolymer

membranes at the atomic resolution and to gain new insight into complex polymers.
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Figure 8. (A-C) Snapshots taken from CG simulations in Polymer Builder and (D-E) corresponding all-
atom models of PEO-b-PEE in water. (A, D) A bilayer assembly of EO2EE37. (B, E) A cylindrical or
worm-like micelle assembly of EOsoEE37 with (left) and without (right) the hydrophobic EE core; n.b., the
cylindrical core extends through the periodic boundary conditions. (C, F) A spherical micelle assembly of
EO9EE37. EO and EE are colored in red and yellow, respectively. (G) Density profiles of hydrophobic
blocks in five different PEO-b-PEE bilayer systems with a constant hydrophilic fraction and variable My.

(H) Scaling of the hydrophobic thickness with the hydrophobic molecular weight (M phob).

4. LIMITATION AND FUTURE DIRECTIONS

While we have demonstrated that CHARMM-GUI Polymer Builder is robust for practical use of modeling
and simulation of complex polymer systems, there are some limitations to be noted. As we described above,
a pair interaction parameter in the Polymer Builder CG model is dependent on y that is obtained from the
solubility parameter differences between Kuhn segments (Equation (3)). Since most group contribution
methods for solubility parameters use neutral fragments, the direct prediction of solubility parameters of
highly charged polymers such as polyelectrolytes remains challenging. Currently, Polymer Builder provides
one charged monomer unit (polyacrylic acid). Its solubility parameters are obtained from its neutral form
and used to calculate interaction strength in the CG model. After CG equilibration, the system is neutralized
by randomly adding counter ions in the all-atom replacement step. Therefore, additional equilibration is

necessary to relax such a charged system by letting the ions find their proper positions.

The CG equilibration of most melt or solution systems can be done in a reasonable time in Polymer Builder.
However, a long equilibrium simulation is required when one tries to perform the simulation at low
temperature (7' < Tm), because the relaxation time is heavily affected by temperature and polymer chain
length (see RESULTS AND DISCUSSION). Furthermore, if polymers with long chain lengths or strong

intermolecular interactions are suddenly quenched, structural defects can be formed. To avoid such defect
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formation, a user needs to perform additional simulated annealing for polymers that have high 7. Polymer
Builder provides input files for the simulated annealing simulation with CHARMM, GROMACS, NAMD,

LAMMPS, and OpenMM.

Currently, Polymer Builder supports a polymer mixture containing up to 99 unique polymer chains, but if
a user wants to build a large system of random copolymers, this approach is not efficient, as all unique
polymer chains have to be modeled manually. We plan to provide a new option in the system setup step
(step 2 in Figure 1) to make it easy to build systems containing many unique disordered chains.
Furthermore, Polymer Builder currently supports 12 single types of solvent. Although one can make some
solvents from polymer structure (e.g., octane as 4-mers polyethylene), this approach is limited to cover

various solvents. We plan to add more solvents and provide a solvent mixing option in the future update.

In the Polymer Builder workflow, adding a new monomer unit requires three major tasks: 1)
parameterization of a monomer unit (i.e., bonded and nonbonded parameters), ii) generation of patch
information (i.e., atom type and partial charge modifications when a monomer unit is connected to other
monomers), and iii) parameterization of its CG model (i.e., solubility parameters and Kuhn length of the
monomer unit for equilibration). While Polymer Builder currently supports a variety of monomer units
(more than 60) far more than other available software, we will expand available monomer units by
generating the necessary monomer libraries based on the aforementioned three tasks. In addition, we will
incorporate a method of building non-linear polymer structures such as branched (star, comb, and brush

type) and conjugated polymer units in the future.

The all-atom force field parameters of Polymer Builder are based on the CGenFF. Although, the long range
structural and bulk properties are well reproduced in most of the currently supported homopolymers, the
densities of the polymers containing the ester group show deviations of about 10 % compared to the
experimental values. This indicates that there is room for improvement in the current all-atom polymer

force field.
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5. CONCLUSIONS

We have described a generalized and automated process to build a relaxed polymer system interactively
and easily using Polymer Builder in CHARMM-GUIL. Its versatile and efficient modeling methods to build
polymer structures are illustrated by building homopolymers, block copolymers, and random copolymers.
The significance of this work is that Polymer Builder not only provides single polymer chain modeling
capability, but also has carefully built-in methods to generate realistic polymer melt and solution systems
using the Polymer Builder CG model and its unique all-atom replacement method. The parameterization of
the Polymer Builder CG model is generalized and extensively validated with various experimental data and
all-atom simulations. Using four polymer systems (i.e., PEso melt system, 34 homopolymer melt systems,
phase behavior of PS-b-PMMA, and self-assembly of PEO-b-PEE in water), we have also illustrated that
the generated systems through Polymer Builder are reliable. Together with other CHARMM-GUI

modules,”37°

one can easily study polymer interactions with biological systems such as proteins, nucleic
acids, carbohydrates, lipids, detergents, and small molecules. We hope that Polymer Builder is useful to

carry out innovative and novel polymer modeling and simulation research to acquire insight into structures,

dynamics, and underlying mechanisms of complex polymer-containing systems.

Supporting Information

Figure S1. Evaluation of characteristic ratio for all-atom models. Table S1. Flory's characteristic ratio, the
number of monomer units in a homopolymer Kuhn segment, and calculated solubility parameter. Figure
S2. Evaluation of characteristic ratio for CG models. Table S2. Flory Huggins interaction parameters and
corresponding Flory exponents. Figure S3. End-to-end vector autocorrelation functions for CG models with
different chain lengths at T* = 0.5, T*= 0.6, and T* = 0.7. Figure S4. Highly entangled polymer system

generated from Polymer Builder. Figure S5. Microphase separation of PS-b-PMMA and its packing in a
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body centered cubic fashion. Figure S6. Acceleration of phase separation using WCA potential.

Supporting Information Polymer Builder Tutorial

Tutorial 1. Three single polymer chain examples. Tutorial 2. A solution system of PEO76-PPO29-PEO76 in
water. Tutorial 3. A ternary blend system of block copolymer (PSig0-b-PMMA220) and homopolymer (PSiso

and PMMAyo). Tutorial 4. Building complex system with PETso and CO».
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