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ABSTRACT 

Molecular modeling and simulations are invaluable tools for polymer science and engineering, which 

predict physicochemical properties of polymers and provide molecular-level insight into the underlying 

mechanisms. However, building realistic polymer systems is challenging and requires considerable 

experience because of great variations in structures as well as length and time scales. This work describes 

Polymer Builder in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based 

infrastructure that provides a generalized and automated process to build a relaxed polymer system. 

Polymer Builder not only provides versatile modeling methods to build complex polymer structures, but 

also generates realistic polymer melt and solution systems through the built-in coarse-grained model and 

all-atom replacement. The coarse-grained model parameterization is generalized and extensively validated 

with various experimental data and all-atom simulations. In addition, the capability of Polymer Builder for 

generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt 

systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of 

poly(styrene-b-methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic 

poly(ethylene oxide-b-ethyl ethane) block copolymers in water. We hope that Polymer Builder is useful to 

carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, 

dynamics, and underlying mechanisms of complex polymer-containing systems. 
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1. INTRODUCTION 

Polymers have been used for a wide range of applications, such as smart surfaces1, sensors2, actuators3, bio-

imaging4, drug delivery5, 6, and energy devices7-10, as they are versatile and can be easily mass-produced 

and processed. To date, owing to technological advances in various fields, more effective and eco-friendly 

polymer materials are being designed and produced in each application11, 12. However, it is challenging to 

design new polymer-based materials because of the significant time and cost to synthesize prototypes and 

analyze their physicochemical properties. Furthermore, improving their desired properties and performance 

requires a good understanding of the relationship between molecular structures and key physicochemical 

properties. 

Computational modeling and simulation have played important roles in polymer science and engineering 

as they provide molecular-level insight into the underlying mechanisms of macromolecular properties that 

are difficult to elucidate only with experiments2, 13, 14. Current state-of-the-art computational modeling and 

simulation have been validated enough to interpret experiments and guide new experiments with testable 

hypotheses. However, as larger spatial scales, longer time scales, and higher levels of realism become 

possible and necessary, generation of realistic complex polymer systems becomes a major obstacle even 

for simulation experts. In addition to the reproducibility of simulation outcomes, the grand challenges are 

how to utilize modeling and simulation techniques effectively to solve practical problems (for experts) and 

how to lower the high entry barrier in using these models and techniques (for non-experts). 

Polymers exhibit interesting and important phenomena over a broad range of length and time scales15. To 

capture this range effectively, most computational polymer models fall coarse-grained (CG) or all-atom 

models. In the last two decades, CG methods have facilitated the simulation of polymer systems, 

complementing atomistic simulations and allowing exploration of the behavior of larger systems over 

longer time scales16-24. Several CG models have been developed to reproduce universal (scaling laws) 

properties of polymers using both bottom-up and top-down approaches for CG force field parameterization. 
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The bottom-up approaches, which include iterative Boltzmann inversion18, force matching25, and inverse 

Monte Carlo26, derive parameters from extensive all-atom simulation results. The top-down approaches, 

such as MARTINI19-22, SDK23, or SAFT-γ CGFF24, use experimental data to optimize force field parameters. 

The bottom-up approaches can parameterize CG models for specific chemistries, and the top-down 

approaches are restricted by the number of experimental data available for parameterization. Still, general 

and systematic approaches are lacking, which makes it a daunting task to model realistic polymer systems. 

Furthermore, in many cases, atomistic insight is required even if simulations are carried out at a coarser 

level.  

Several programs have been developed to help users build all-atom polymer model systems, including web 

applications for modeling polymer structures, such as Polymer Modeler27, and stand-alone software 

packages such as polymatic28 and pysimm29. Polymer Modeler supports 7 pre-built all-atom polymer 

structures and user-uploaded polymer structures to create polymer systems. polymatic and pysimm provide 

methods to prepare cross-linked polymer structure and an API to integrate different features of existing 

software packages using Python-based scripting, respectively. However, all software requires significant 

pre-processing to prepare structures, topologies, and parameters of monomers, and initial configurations of 

desired polymer systems. While expensive commercial programs, such as Material Studio30 and 

Schrödinger31, have state-of-the-art polymer building tools, they also have limitations in terms of system 

size, and the models from these programs are not transferable to other molecular dynamics (MD) simulation 

packages. 

Most importantly, to investigate physicochemical properties of polymers, it is crucial to analyze the 

simulation systems from statistical averages on relaxed configurations of polymer chains. However, 

generating reliable initial configurations of various polymer structures is itself a challenging problem 

because it requires extensive equilibration simulation. In some cases, an inappropriate initial configuration 

makes polymer configuration relaxation impossible, even after the simulation is performed beyond 
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microseconds. Although some molecular packing tools, such as PACKMOL32, have been used to facilitate 

modeling of the (known) equilibrated morphology structures, it needs further extensive simulation after 

modeling initial configurations, and it is impossible to model the structure when its equilibrated 

morphology is unknown.  

To address this shortcoming, we have developed Polymer Builder (http://www.charmm-

gui.org/input/polymer) in CHARMM-GUI33-35, which provides a generalized and automated building 

process to help users build complex polymer systems easily and interactively using a web browser. Given 

user-specific polymer structure(s) and various system parameters (such as the system size, polymer 

composition, polymer concentration in solvent, and temperature), Polymer Builder performs an 

equilibration simulation of the polymer structures with the Polymer Builder CG model in the web interface. 

The parameterization method of our CG model is designed to be general and systematic. Relaxed all-atom 

configurations are generated by converting CG models into corresponding atomistic models, either for 

direct inspection of the atomistic interaction or for continuation of the simulation with a higher resolution. 

Importantly, Polymer Builder also provides well-validated all-atom simulation inputs for various MD 

programs, such as CHARMM36, GROMACS37, NAMD38, LAMMPS39, AMBER40, GENESIS41, 

OpenMM42, and Desmond43, allowing users to perform MD simulation with their familiar package(s). The 

capability and efficiency of Polymer Builder are examined by density and characteristic ratio calculations 

of 34 homopolymer melt systems. Furthermore, its robustness is tested by building and simulating various 

polymer-containing systems for phase behaviors of block copolymers and self-assembly of block 

copolymers in aqueous environments, illustrating the versatile simulation contents that one can perform 

with Polymer Builder. Current limitations and future directions of Polymer Builder are also discussed 

briefly. 
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2. METHODS 

2.1 Workflow of Polymer Builder 

As shown in Figure 1A, the overall process to build a polymer system has been generalized and automated 

in three subsequent steps. Each step is designed to incorporate user’s specific options through a web 

interface and run CHARMM or OpenMM input files. Individual input and output files including generated 

structures, as well as an archive of all the created files are available in each step. Polymer Builder provides 

a visualization option for the generated system in each step, so that, if necessary, one can go back to the 

previous step and modify the option interactively. Video demonstrations on how to use Polymer Builder 

are available on the CHARMM-GUI website (http://www.charmm-gui.org/demo/polymer).  

Step 1 – Building polymer structure(s) 

Currently, Polymer Builder provides more than 60 different monomer structures and chemical 

modifications (Figure 1B). Polymer Builder adopts a graphical user interface (GUI), allowing users to 

easily check and design polymer sequences (i.e., monomer type, polymer length, and capping of polymer 

ends). One can build a polymer structure with almost all combinations of the monomer structures and by 

specifying the repeating number of each monomer (Figure 1C). Such a flexible user interface enables 

Polymer Builder to cover diverse polymer structures. Detailed procedures on how to build polymer 

structures using Polymer Builder are described in Supporting Tutorial and video demonstrations.  
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Figure 1. (A) Workflow of Polymer Builder. Steps involving CG and all-atom models are in yellow and 

red, respectively, and those involving both resolutions are in green. (B) Monomer classes available in 

Polymer Builder and corresponding chemical structures. (C) Illustrative snapshots of Polymer Builder user 

interface. (left) One can build a polymer sequence using one of the predefined monomers whose chemical 

structure is displayed on the side panel. (right) Illustrative snapshots and corresponding output structures 

are shown for polyethylene, nylon 66, poly(styrene-co-methyl methacrylate) block copolymer, and random 

copolymer of polyethylene and polymethacrylate. Carbon, oxygen, nitrogen, and hydrogen atoms are 

colored in black, red, blue, and white, respectively. 
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Step 2 – Generation of a relaxed system using Polymer Builder CG model  

Polymer Builder not only provides single polymer chain modeling capability, but also supports a “melt 

system” option for modeling amorphous and molten states and a “solution system” option for modeling 

polymers dissolved in various solvents. Figure 2 illustrates how Polymer Builder operates to generate a 

relaxed system. Each polymer structure from Step 1 is first fragmentized using an estimated (single) CG 

bead size based on the monomer units, where different fragment structures (in a block copolymer) are 

modeled as different CG bead types with different interaction parameters, which is elaborated below. 

Polymer Builder then performs two tasks simultaneously. The first one is to model all-atom library 

structures for each CG bead type by considering its connecting orientation to neighboring ones (Figure 

2A), and these all-atom structures are used to replace each CG bead in Step 3. The second task is to run a 

CG simulation to equilibrate a melt or solution system using OpenMM42. The Polymer Builder CG force 

field was developed by combining solubility parameters and machine learning techniques, and the force 

field parameters (i.e., bead sizes and interaction parameters) have been extensively validated with various 

experimental data and all-atom simulations (see next section). Note that a CG lattice structure is first built 

based on the force field parameters, and the CG equilibration simulation is then performed longer than an 

estimated relaxation time of the selected polymer structure (Figure 2B). 

Step 3 – Generation of an all-atom simulation system and inputs 

The CG beads in the relaxed configurations (melt or solution systems) from Step 2 are replaced by all-atom 

segments in the library built in Step 2 via its translation and rotation to minimize bad contacts (Figure 2C). 

After the replacement, users can obtain a relaxed all-atom polymer system (Figure 2D) with necessary 

topology, force field parameter, and simulation input files for further simulations using any of supported 

simulation programs such as CHARMM, GROMACS, NAMD, LAMMPS, AMBER, GENESIS, OpenMM, 

and Desmond. 
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Figure 2. Snapshots to illustrate how Polymer Builder operates. (A) A PMMA30 (polymethyl methacrylate 

with 30 monomer units) chemical structure and an initial process to make Kuhn fragment library. PMMA30 

is fragmented based on its Kuhn length. The Kuhn length of PMMA is 15.3 Å that corresponds to six 

monomers per fragment and PMMA30 can be divided into five identical Kuhn fragments. Spherical and 

positional restraints are applied to the Kuhn fragment to fit this all-atom structure to a corresponding CG 

bead. The positional restraints are applied to make the angle between three points (the center of mass of the 

Kuhn fragment and the positions of two carbon atoms that are connected to other fragments) ranging from 

60° to 180° by 10° (see Supporting Tutorials for the details). The connecting carbons are marked with 

magenta and orange spheres. (B) Snapshots of initial and final simulation systems of 50 PMMA30 using the 

Polymer Builder CG model. 𝜏 is the (longest) relaxation time of the CG polymer model. (C) Replacement 

of each CG bead with the corresponding all-atom structure from the structure library generated in (A) with 

rotation and translation optimization to minimize bad contacts. (D) Final all-atom model obtained for a melt 

system of 50 PMMA30 with the primary simulation system in a white box and surrounding image systems 

in the XY directions. Carbon, oxygen, and hydrogen atoms are colored in black, red, and white, respectively. 
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2.2 Polymer Builder CG Model 

A bead-spring model (also commonly known as Kremer-Grest models)44, 45 is employed to represent the 

constituent polymers. All bonded interactions between CG beads are modeled using a harmonic potential 

Ubond(r) = kbond (r - r0)2 with kbond = 100 kBT/σ2 and r0 = σ, where kBT is a thermal energy and σ is a bead 

diameter. The nonbonded interactions between all bead pairs are modeled through the combination of the 

12-6 Lennard-Jones potential and the Weeks-Chandler-Andersen potential.46 Developments of Polymer 

Builder CG model parameters are subsequently described in detail. 

2.2.1 Choice of σ  

Developing a CG force field requires a specific mapping method about how many all-atom monomers are 

mapped onto a single CG bead (e.g., Figure 2A). For polymers, the spatial correlations between monomers 

become negligible beyond a characteristic length scale known as the Kuhn length (b)47. At a length scale 

above b, the chain can be treated as a fully flexible polymer consisting of Nb Kuhn monomers. The Kuhn 

length of a polymer is defined by the ratio of the mean square end-to-end distance (<h2>) and the fully 

extended length of a polymer (hmax), b = <h2> / hmax. Flory defined the characteristic ratio (C∞) as the ratio 

of the actual unperturbed <h2> and that of a freely jointed chain,47  

C∞ = <h2> / (n × l2)      (1) 

where l is an average backbone bond length and n is the number of backbone bonds in a polymer chain. 

Using this definition and hmax = n l cos(θ/2) where θ is an average backbone bond angle, the Kuhn length 

can be rewritten as47 

b = C∞ l / cos(θ/2)      (2) 

The Kuhn length provides crucial information about the number of monomers that can be represented by a 

single CG bead. To obtain C∞ for each monomer unit in Polymer Builder, we performed all-atom MD 

simulations of homopolymers of each monomer with Nm = 10, 20, 30, 40, and 50 in a melt system of 10 ´ 
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10 ´ 10 nm3. Then, <h2> was fitted with Equation (1) and Figure S1 shows the results for four 

representative polymers. Figure 3 shows the comparison of C∞ obtained from all-atom simulations with 

experimental data for various homopolymers, indicating that the simulation results agree well with 

experiments.  

 

 

Figure 3. Comparison of simulated and experimental characteristic ratios (C∞) of various homopolymers. 

Some experimental characteristic ratios are derived from the persistence length and Kuhn length (see Table 

S1 for polymer full names). 

 

Next, to investigate a spatial correlation in our bead-spring model, we performed CG simulations of 

homopolymers with NCG = 10, 20, 30, 40, and 50 in a melt system of 10 ´ 10 ´ 10 nm3 with a range of σ 

from 7 to 13 Å (covering all polymer units in Polymer Builder). Using Equation (1), fitting <h2>CG / σ2 to 

NCG – 1 yields C∞ = 1.48 (Figure S2), indicating a mild spatial correlation (as expected since C∞ = 1 can be 

obtained only for the ideal freely-jointed chains). This in turn leads to a relation b = 1.48σ from Equation 

(2), so that a bead diameter σ of a homopolymer can be directly obtained from its Kuhn length, b.  
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To generalize this method for copolymer structures, we calculated the number of all-atom monomers 

representing a Kuhn segment of a homopolymer (Nm:b) and corresponding number of all-atom monomers 

in a CG bead (Nm:σ) using Nm:σ = σ Nm:b / b = Nm:b / 1.48 (Table S1). We assume that each monomer 

contributes an amount of 1 / Nm:σ to the formation of a copolymer CG bead, so that we can sequentially 

determine bead segments (S(k-j)) where j is the starting monomer number and k is the first monomer number 

that makes ∑ 1/𝑁!:#
(%)'()

%*'  greater than 1. We can then approximate each bead segment to a sphere with a 

diameter corresponding to 𝜎' = (6/𝜋∑ V!
(%)'()

%*' )+/-, where Vm is the monomer volume and can easily be 

determined from the monomer structure. The resulting σj are different for different segments with different 

monomer units in a copolymer. Note that the Polymer Builder CG model does not use these different 

diameters directly as it is practically impossible to parameterize associated interaction parameters for any 

user-specified copolymer. Instead, the maximum diameter (σmax) among the different bead sizes is used to 

estimate the number of CG beads (NCG) in the polymer by 𝑁./ = int	(6/𝜋 ∑ V!
(%)0!

%*+ /(𝜎!12)-). Then, a 

diameter of NCG beads can be calculated by 𝜎 = (6/𝜋∑ V!
(%)0!

%*+ /𝑁./)+/-; n.b., σ is always a bit larger than 

σmax. Using σ and NCG, from the first CG bead, we can sequentially assign the monomer units by adding its 

Vm until the sum is close to pσ3 / 6. In this way, depending on different monomer sizes in a polymer, the 

number of monomer units in a CG bead (Nm:σ) is different in each bead and thus capture Vm of different 

monomer types with a single σ and its associated interaction parameters. 

 

2.2.2 Evaluation of c from Solubility Parameters  

With σ for a given polymer in hand, the next task is to determine the interaction parameter. The Flory-

Huggins parameter χ describes the degree of segregation in polymer blends and polymer solubility in 

various solvents, which can be used as an intermediate parameter connecting the microscale (all-atom) 

model and the mesoscale (CG) model. Based on a simple idea that two materials with similar solubility 
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parameters have balanced forces and thus are miscible, the Hildebrand solubility parameter concept has 

been widely used to estimate χ.48, 49 In the regular solution theory, the solubility parameter is formally 

defined as δ2 = ΔEvap / Vmolar, where ΔEvap is the molar energy of vaporization and Vmolar is a molar volume 

of the substance. χ can be calculated by χ = Vr (δt,A – δt,B)2 / kBT + β, where β is an empirical constant (β = 

0 for polymer-polymer interactions and β = 0.34 for polymer-solution interactions), δt,A and δt,B are the total 

solubility parameters of two compounds A and B, and Vr is the geometric mean of the polymer segment 

molar volumes for polymer-polymer interactions or the solvent molar volume for solution systems.50 

Therefore, molecular mixing of two components can occur when χ is close to zero. However, derivation of 

χ for the compounds having polar and hydrogen-bonding interactions by above equations usually yield poor 

results. To address this shortcoming, Hansen divided Hilderbrand solubility parameters into contributions 

from dispersion forces (d), polar forces (p), and hydrogen bonding effects (h), i.e. δt = (δd2 + δp2 + δh2)1/2 

and suggested50  

χ = 0.6 Vr ((δd,A – δd,B)2 + 0.25 (δp,A – δp,B)2 + 0.25 (δh,A – δh,B)2) / kBT   (3) 

By design, this formula shows very good estimation of χ for systems having strong polar or hydrogen 

bonding interactions. To estimate χ for an arbitrary polymer system, the group contribution methods for 

estimating δ, which are based on the knowledge of structural fragments within the molecule, are by far the 

most popular way of calculating δ. In the Polymer Builder CG model, the group contribution method of 

Stefanis and Panayiotou51 is used to estimate the Hansen solubility parameter of all supported monomer 

units (Table S1). These solubility parameters are used to calculate χ, and then χ is used to obtain cross-

interaction parameters (ϵ) between different CG bead types. Because of different nature of bead-bead 

interactions for polymer-polymer and polymer-solvent due to its size, we have developed the separate 

schemes to parameterize ϵ for melt and solution systems. 

 

2.2.3 Choice of ϵ for Melt Systems  
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To establish interaction strengths between CG beads in melt systems, we start from Lennard-Jones (LJ) 

fluid whose reported reduced critical temperature is Tc* = kBTc / ϵ = 1.31 in the case of the untruncated LJ 

potential52. We note that the critical temperature (Tc) of the constituent monomer groups are readily 

available within the framework of the group contribution theory53, from which the self-interaction strengths 

between the same CG bead type A is given by ϵAA = kBTc,A / 1.31. Even though it is common to use the 

Lorentz-Berthelot mixing rules for interactions between different species, i.e., ϵAB = (ϵAA ϵBB)1/2, polymer 

blend systems are known to be highly sensitive to ϵAB, and thus it is necessary to use a different approach 

for accurate estimation of ϵAB54. In the Polymer Builder CG model, ϵAB in melt systems was derived from 

a machine learning method using ϵAA, ϵBB, T, and χ as the features, as there is no simple way to derive ϵAB 

from ϵAA, ϵBB, T, and χ.  

First, to establish a relationship between χ and T for given ϵAA, ϵBB, and ϵAB, we follow the simulation 

approach of Groot et al55. Briefly, the system consists of a biphasic mixture of A and B. After equilibration 

MD simulation, the two phases mix to a certain degree, which leads to the free energy, F / kBT = ϕA lnϕA / 

NA + ϕB lnϕB / NB + χ* ϕA ϕB, where ϕA and ϕB are the volume fractions of A and B molecules in the B and 

A regions, and NA and NB are the number of beads per A and B molecules (NA = NB = 1 for our binary 

mixture simulations). Note that we use χ* (calculated from simulations with a set of T, ϵAA, ϵBB, and ϵAB) 

to distinguish it from χ (calculated from chemical structures) in Equation (3). The minimum free energy at 

∂F/∂ϕA = 0 leads to  

χ* = ln[(1 - ϕA) / ϕA] / (1 - 2ϕA)     (4) 

Using Equation (4), we calculated χ* as a function of T. As shown in Figure 4A, the correlation between 

χ* and T can be approximated by a linear relationship, χ* = α/T + β, where α and β correspond to the 

enthalpic and entropic contributions to χ*, respectively.50 To estimate χ* for different sets of T, ϵAA, ϵBB, 

and ϵAB, we simulated 820 bi-phase systems with ϵAA = kBT and ϵAA ≥ ϵBB ≥ ϵAB ≥ 0.5 kBT at a temperature 



15 

 

range of ϵBB/kB ≥ T ≥ 0.5 ϵAA/kB, where ϵBB, ϵAB, and T were decreased in a step of 0.05 kBT. Then, we 

trained a machine to output ϵAB using ϵAA, ϵBB, T, and χ* as the features. 

Kernel ridge regression (KRR) is one of the most popular supervised learning approaches, which has been 

used for prediction of molecular properties in several studies56, 57. The basic idea of KRR is to map input 

features into a higher-dimensional space, where a linear relation between the transformed features and the 

property of interest could be established. In this study, KRR was performed with scikit learn package58 with 

default parameters, and 655 data (80% of 820 data set) was randomly chosen as a training set and the rest 

was used as a validation set. Figure 4B shows the target and predicted values for ϵAB, which manifests an 

excellent prediction with R2 = 0.987. Figure 4C summarizes a workflow describing the overall process for 

parameterization in melt systems. Detailed procedures on how to calculate interaction parameters are 

described in Supporting Tutorial 3 using an example. 

 

 

Figure 4. (A) Flory-Huggins parameter 𝜒 as a function of inverse temperature for a binary mixture of CG 

beads. The dashed lines are the linear fits to the simulation data. (B) Target and predicted values for ϵAB. 

(C) Workflow of CG parameterization process in melt systems. Steps involving CG and all-atom models 

are in yellow and red, respectively, and calculations related to the group contribution theory and prediction 

of εAB are in gray. 
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2.2.4 Choice of ϵ for Solution Systems  

In general, the ε parameterization method used for melt systems cannot be applied for solution systems 

because of small solvent molecules (for which Kuhn length cannot be defined). To address this issue, we 

first set ϵ to kBTc / 1.31, where Tc is the critical temperature of a specific solvent. Then, we employed a 

commonly used approach for polymer solutions59, where a potential energy function (for different bead 

type interactions) is defined as the combination of LJ and Weeks-Chandler-Andersen (WCA) potentials 

with a tuning parameter (λ),  

V(r) = (1-λ) VLJ(r) + λ VWCA(r)      (5) 

λ controls the interaction strength from attractive (λ = 0) to repulsive (λ = 1) interactions. Since there was 

no available quantitative relation between λ and χ, we derived one in this work using the Flory exponent (ν) 

(that describes the scaling of the chain size (or radius of gyration, Rg) as a function of molecular weight) as 

an intermediate parameter connecting the microscale (all-atom, χ) model and the mesoscale (CG, λ) model. 

First, the relationship between χ and ν from the all-atom model was obtained from single chain simulations 

of various homopolymers with different molecular weights (Nm = 10, 20, 30, 40, and 50) in 10 different 

solvents that have various χ values ranging from 0.04 to 1.88 (Table S2). Figure 5A shows Rg for PP and 

PVA as a function of molecular weight (Mw) in cyclohexane and acetone at 300 K, respectively. Fitting the 

data to the power law yields ν = 0.61 (PP in cyclohexane), 0.47 (PP in acetone), and 0.32 (PVA in 

cyclohexane), for which the corresponding χ values are 0.04, 0.46, and 1.87. This indicates that ν and χ are 

anti-correlated. All ν values obtained from MD simulations as a function of χ are shown in Figure 5B. In 

the framework of Flory theory, ν values are 0.6, 0.5, and 0.33 when a polymer dissolves in good, theta, and 

poor solvents, respectively.47 Therefore, in the fitting, ν = 0.6 and ν = 0.33 were used as upper and lower 

bounds and the result shows an excellent agreement with the theory (R2 = 0.97). 
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Figure 5. (A) Radius of gyration of PP and PVA as a function of molecular weight (Mw) in different solvents. 

The solid lines are the fits to the corresponding all-atom simulation data points. (B) Flory exponent ν (i.e., 

v in Rg ∝ Mwv) as a function of Flory-Huggins interaction parameter χ for PP, PVA, PMA, PNIPAAM, PE, 

PLA, and PAN in various solvents (blue circle) and fit (solid line). Dashed lines are the upper and lower 

bounds reported in the theory and experiments. (C) Radius of gyration of CG polymers as a function of 

number of CG beads (NCG) and the tuning parameter (𝜆) that controls the solvent quality from good (𝜆=0) 

to poor (𝜆=1). (D) Flory exponent v as a function of 𝜆 (circle) and fit (dashed line) at various reduced 

temperature. (E) 𝜆 as a function of χ at various reduced temperatures. 

 

Then, the relationship between ν and λ for the Polymer Builder CG model was obtained from simulations 

of a single chain polymer with different chain lengths (from 2 to 18 beads) in solvent where λ was changed 
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from 0 to 1 with 0.05 interval. Figure 5C shows the logarithmic plots of Rg / σ as a function of number of 

CG beads (NCG) with various λ. As λ increases, the slope of Rg / σ gradually decreases from 0.64 to 0.41, 

indicating that adjusting λ can controls long range structural properties of CG polymers. We normalized ν 

based on the upper and lower bounds (0.6 to 0.33), and fitted ν to λ at reduced temperatures T* = 0.7, 0.8, 

and 0.9 (Figure 5D). Combining both χ-ν (Figure 5B) and λ-ν in (Figure 5D) relationships, we obtained a 

desired quantitative relationship between χ and λ (Figure 5E). Therefore, the interaction energy for different 

bead types (polymer-polymer and polymer-solvent) in solution systems can be calculated using Equation 

(5). 

 

2.3 Polymer Builder CG Equilibration 

After the construction of a lattice model and derivation of CG parameters for a polymer system in a melt 

or solution state, Polymer Builder performs CG equilibration to generate relaxed polymer configurations 

(Figure 2B). Therefore, it is crucial to estimate equilibration time and provides the expectation time to 

users as a web-based cyberinfrastructure. For most polymer systems, relaxation of chain configurations is 

slow compared to the density or pressure, so a chain-level measurement is required to assess whether the 

system reaches equilibration. To this end, we generated the systems consisting of 100 polymer chains with 

NCG from 9 to 72 beads, and the end-to-end vector autocorrelation function (<u(t)×u(0)>) was analyzed as 

a function of NCG at various temperature (Figure S3). At T* = 0.5, <u(t)×u(0)> decays to zero only for NCG 

= 9 and 18 by the end of 250 ns, indicating an insufficient relaxation of the polymer chains with NCG = 27, 

36, and 72. To estimate the relaxation time, we fitted the data using the Kolrausch-Williams-Watts stretched 

exponential,60 G(t) = exp[-(t/𝜏)β] with 0 < β ≤ 1. The calculated average relaxation time, <τ> = ∫G(t)dt = 

τΓ(1/β)/β, ranges from 7.9 to 810.9 ns, when NCG increases from 9 to 72 beads. Figures S3B and S3C show 

that <u(t)×u(0)> decays to zero within 250 ns even for NCG = 72 at T* = 0.6 and 0.7. A logarithmic 

relationship between NCG and <τ> at various temperature show a linear relationship and provide a 
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semiempirical relation to estimate the relaxation time of polymer systems (Figure S3D), which is used in 

Polymer Builder. 

 

2.4 Simulation Details 

All MD simulations were performed with Gromacs 2018.1 for CG and all-atom MD. To control the 

temperature, a Nosé-Hoover temperature coupling method61 was used with tt = 1 ps. The pressure was 

maintained at 1 bar using the Berendsen and Parrinello-Rahman barostats62 for the equilibrium and 

production run with tp = 5 ps and a compressibility of 4.5 x 10-5 bar-1, respectively. Neighbor lists were 

built using the Verlet cut-off scheme with a cut-off radius of 3𝜎	and 1.2 nm for the CG and all-atom MD, 

respectively. The linear constraint solver (LINCS) algorithm63 was used to constrain the hydrogen bond 

length. All simulations were conducted using a leap-frog integrator with time-steps of 50 and 2 fs for CG 

and all-atom MD, respectively. The CG model dynamics is faster because the CG interactions are much 

smoother compared to atomistic interactions. On the basis of comparison of diffusion constants in the CG 

models and in all-atom models, the effective time sampled using CG is 6 - 10 times longer. When 

interpreting the simulation results with the CG model, the conversion factor is 8, which is the effective 

speed up factor in the diffusional dynamics of CG water compared to the real water. Electrostatic 

interactions were calculated using particle mesh Ewald64 with a cutoff of 1.2 nm in all-atom MD. The all-

atom force field parameters in Polymer Builder are based on the CHARMM Generalized Force Field 

(CGenFF).65 To cover almost all combinations of monomer units, we have prepared 66 residues (monomer 

units) and 1,004 patches (connecting monomers). Note that no specific optimization has been performed. 

Detailed procedures on how to use Polymer Builder are described in Supporting Tutorial using four example 

systems: i) single polymer chains generation, ii) self-assembly of PEO76-PPO29-PEO76 block copolymer in 

water, iii) a ternary blend system of a block copolymer (P(S180-b-MMA220)) and two homopolymers (PS180 

and PMMA220), and iv) PET50 membrane with CO2 molecules. 
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3. RESULTS AND DISCUSSION 

3.1 Generation of Relaxed Polymer Systems 

To illustrate the capability of Polymer Builder, we investigated the homopolymer melt systems, phase 

separation of PS-b-PMMA block copolymer, and self-assembly behavior of amphiphilic PEO-b-PEE block 

copolymer in solution. Building relaxed polymer systems is crucial to predicting the properties of these 

materials. In particular, reliable polymer configurations are essential to optimize polymer mechanical 

properties, transport phenomena of small molecules through a polymer membrane, and surface and 

interface interactions in polymer composite materials. These properties impact polymer’s performance in 

applications such as separation processes, packaging, and drug delivery66, 67. To check the quality of 

polymer structures from Polymer Builder, we prepared an initial configuration of 250 PE50 chains from 

Polymer Builder, as well as a stack of linear chains (Figure 6A) and compared the end-to-end distance 

distributions of PE50 with theoretical estimation at 440 K; n.b., the melting temperature (Tm) of PE is about 

420 K. As expected, the initial polymer system generated by simple stacking takes long to make relaxed 

configurations (Figure 6B), where the end-to-end distance distribution deviates significantly from the 

theoretical distribution even after 50-ns equilibration. The situation would deteriorate for longer polymers 

(i.e., long relaxation time) and it may not be possible to obtain a relaxed configuration even after extensive 

equilibration. On the contrary, the system generated from Polymer Builder shows a distribution close to 

theory only after 10-ns equilibration (Figure 6B). To further investigate the formation of relaxed polymer 

configurations of high molecular weight polymers, initial configurations of 217 PE200, 144 PE300, 108 PE400, 

and 86 PE500 were prepared using Polymer Builder, and the end-to-end distance probability distributions 

were compared with theoretical estimations after 10-ns equilibration at 450 K (Figure 6C); n.b., a short 10-

ns simulation was performed just to illustrate the quality of the initial relaxed structure from Polymer 

Builder. The distributions obtained from all-atom simulations show excellent agreements with 
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corresponding theoretical estimations. Furthermore, highly entangled polymers were observed in all 

systems (Figure S4). This indicates that Polymer Builder can generate relaxed initial configurations of 

polymer systems regardless of the polymer length. 

 

  

Figure 6. (A) Initial all-atom configuration of 250 PE50 chains from Polymer Builder (upper) and a stack 

of linear chains (lower). (B) Probability distributions of PE50 end-to-end distance from the initial 

configurations of (A) and a worm-like chain model (black line). (C) Probability distributions of end-to-end 

distances of 217 PE200, 144 PE300, 108 PE400, and 86 PE500 from 10-ns all-atom simulations at 450 K (solid 

line) and wormlike chain model (dashed line). (D) Comparison of simulation and experimental densities of 
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34 homopolymers at 1 bar and 298.15 K. The straight line corresponds to the perfect agreement and the 

dashed lines delineate the 95 % confidence area. The polymers belonging to the same class are colored 

together (see Table S1 for polymer full names). 

 

To investigate bulk properties as well as long-range structural properties of polymers, we have performed 

simulations of 34 homopolymer melt systems. The relaxed configurations that contained 100 homopolymer 

chains with 50 monomer units per chain were generated using Polymer Builder. Each initial configuration 

underwent a simulated annealing stage that began at T = Tm + 50 K and ended at T = 298.15 K with a 

cooling rate of 0.01 K / ps to prevent formation of defects that could be generated by a sudden temperature 

change. Figure 6D shows the comparison of the densities obtained from the simulations with the 

experimental data. For most homopolymers, the experimental densities are well reproduced (within 5 %), 

given the fact that no attempt has been made to improve the all-atom polymer force field parameters 

obtained directly from the CGenFF65. Note that the limitation of the current all-atom force field is discussed 

below. 

 

3.2 PS-b-PMMA Block Copolymer Melt System 

Polystyrene and poly(methyl methacrylate) block copolymers (PS-b-PMMA) are widely used because they 

can phase separate to form periodic nanostructures68, 69. Depending on relative lengths of each block, several 

morphologies such as spherical, cylindrical, gyroid, and lamellar phases can be formed70, 71. Such 

nanostructures could potentially be used for nanoscale templating and separations. For styrene (S) and 

methyl methacrylate (MMA) of PS-b-PMMA, the number of monomers in each CG bead was calculated 

to be 4.9 S and 6.9 MMA monomers. For ϵS,S and ϵMMA,MMA, we calculated Tc for each bead based on the 

group contribution theory, yielding Tc,S = 700 K and Tc,MMA = 684 K, which are equivalent to ϵS,S = 1.39 

kcal/mol and ϵMMA,MMA = 1.36 kcal/mol, respectively. The solubility parameter difference Δδ between S 

and MMA beads is 3.16 kcal/mol, which corresponds to χ = 0.87 at 400 K (T* = 0.57). ϵS,MMA was 
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determined to be 1.24 kcal/mol from our machine learning method (see METHODS). Note that the 

conventional Lorentz-Berthelot mixing rule yields ϵS,MMA = (ϵS,S·ϵMMA,MMA)1/2 = 1.37 kcal/mol, meaning 

that the system would not microphase separate because ϵS,S = 1.39 kcal/mol and ϵMMA,MMA = 1.36 kcal/mol. 

Six block copolymer structures (S40MMA380, S60MMA360, S90MMA320, S120MMA290, S150MMA250, and 

S180MMA220) were built with different S volume fractions (fS), and melt systems with 100 polymer chains 

in a box of ~20 ´ 20 ´ 20 nm3 were simulated to investigate phase behavior according to various χN. As 

shown in Figure 7, a good agreement with the results from self-consistent field theory (SCFT) 

calculations70 demonstrates the validity of our modeling and simulation protocol in Polymer Builder. 

Furthermore, the replacement of CG beads with all-atom monomers allows us to simulate all-atom PS-b-

PMMA block copolymer systems that were previously challenging due to limited time and length scales of 

all-atom simulation. To further investigate the alignment of phase separated domains, we increased the 

system size two times for P(S60-b-MMA360) and performed CG equilibration for 5 μs. During equilibration, 

S beads were agglomerated with each other to form spherical phases, and they were packed in a body 

centered cubic fashion (Figure S5). 
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Figure 7. Phase diagram of PS-b-PMMA and snapshots of CG and corresponding all-atom models from 

Polymer Builder, where 𝜒N was calculated from the solubility parameter difference using Equation (3) and 

fS is the volume fraction of PS. The solid lines represent the boundary between lamellar (L), gyroid (G), 

cylindrical (C), and spherical (S) phases based on a self-consistent field theory (SCFT) model70. Shown 

together are the observed phases in our CG simulations (symbols) and a few representative snapshots from 

CG model and corresponding all-atom model. PS and PMMA are colored in yellow and blue, respectively. 

A quarter of PMMA is omitted for clarity in the fS = 0.11 and fS = 0.25 systems. 

 

As a web-based cyberinfrastructure, it is important to generate a user’s system in a reasonable time. Figure 

S6A shows a phase behavior of S40MMA380 system at T* = 0.50 (χN = 58). As the CG simulation proceeded, 

S beads were agglomerated with each other, and phase separation was completed after 4-μs simulation. 

With current computing power in CHARMM-GUI, the 4-μs CG simulation takes about 4 hours and the 

simulation time increases exponentially as the system size increases. To reduce this equilibration time, one 

can use the Weeks-Chandler-Andersen (WCA) potential (see Equation (5) in METHODS) with λ = 1 (fully 
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repulsive for different bead types), which is widely used to accelerate phase separation54. When the purely 

repulsive potential was applied, phase separation of S40MMA380 system took less than 100 ns in the 

simulation time and 10 minutes in real world. However, this intended acceleration could cause unwanted 

phase separation in certain systems. To overcome this shortcoming, the standard LJ potential (λ = 0) was 

applied to the system after accelerated equilibration with the WCA potential. Figure S6B shows time series 

of normalized contact numbers between S beads and corresponding morphologies at various temperature 

ranging from 0.50 to 1.01. At T* = 0.50 (χN = 58), spherical phase was maintained during 1-μs equilibration. 

At T* = 1.01 (χN = 25), the number of contacts between S beads abruptly decreased during 100 ns and turn 

into disordered phase. All morphologies obtained by sequentially applying WCA for 100 ns and LJ potential 

for 100 ns show good match with morphologies in the phase diagram shown in Figure 7.  

 

3.3 PEO-b-PEE Amphiphilic Block Copolymer Solution System 

We investigated whether the solution system building protocol in Polymer Builder could self-assemble 

important morphologies known to form in polyethylene oxide and polyethyl ethylene block copolymer 

(PEO-b-PEE)14, 72. Three amphiphilic diblock copolymers (EO21EE37, EO50EE37, and EO92EE37) with 

hydrophilic mass fractions (fphil) of 0.31, 0.51, and 0.66 were built, and 120 EO21EE37, 58 EO50EE37, and 

30 EO92EE37 CG polymer chains were randomly distributed with water beads in a box of 10 ´ 10 ´ 10 nm3 

(for EO21EE37) or a box of 12 ´ 12 ´ 12 nm3 (for EO50EE37 and EO92EE37). Figure 8A-F depicts the final 

snapshots of CG models and corresponding all-atom structures. Bilayer, cylindrical micelle, and spherical 

micelle formations are observed at low fphil (< 45 %), intermediate fphil (≂ 50 %), and high fphil (> 60 %), 

respectively. For a quantitative analysis of bilayers as a function of Mw, five Mw systems (EO10EE9, 

EO19EE18, EO29EE28, EO40EE37, and EO63EE60) with a constant fphil (~43%) were constructed. The density 

profiles of hydrophobic segments in all systems are shown in Figure 8G. Note that the density profile of 

the smallest Mw copolymer (i.e., EO10EE9) is similar to that of a common phospholipid bilayer. The density 
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dip at the mid-plane becomes smoothed as Mw increases, indicating that interdigitation and entanglement 

of hydrophobic chains as the chain length increase. Figure 8H shows a quantitative comparison of a 

logarithmic relationship between the hydrophobic molecular weight (Mw,phob) and the hydrophobic 

thickness with theoretical and experimental measurements. An exponent of 0.49 in our results is close to 

an exponent of 0.50 that is typical of three-dimensional hydrophobic core melts14. Therefore, our results 

demonstrate that Polymer Builder provides new ways to analyze novel properties of high MW copolymer 

membranes at the atomic resolution and to gain new insight into complex polymers.  
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Figure 8. (A-C) Snapshots taken from CG simulations in Polymer Builder and (D-E) corresponding all-

atom models of PEO-b-PEE in water. (A, D) A bilayer assembly of EO21EE37. (B, E) A cylindrical or 

worm-like micelle assembly of EO50EE37 with (left) and without (right) the hydrophobic EE core; n.b., the 

cylindrical core extends through the periodic boundary conditions. (C, F) A spherical micelle assembly of 

EO92EE37. EO and EE are colored in red and yellow, respectively. (G) Density profiles of hydrophobic 

blocks in five different PEO-b-PEE bilayer systems with a constant hydrophilic fraction and variable Mw. 

(H) Scaling of the hydrophobic thickness with the hydrophobic molecular weight (Mw,phob). 

 

4. LIMITATION AND FUTURE DIRECTIONS 

While we have demonstrated that CHARMM-GUI Polymer Builder is robust for practical use of modeling 

and simulation of complex polymer systems, there are some limitations to be noted. As we described above, 

a pair interaction parameter in the Polymer Builder CG model is dependent on χ that is obtained from the 

solubility parameter differences between Kuhn segments (Equation (3)). Since most group contribution 

methods for solubility parameters use neutral fragments, the direct prediction of solubility parameters of 

highly charged polymers such as polyelectrolytes remains challenging. Currently, Polymer Builder provides 

one charged monomer unit (polyacrylic acid). Its solubility parameters are obtained from its neutral form 

and used to calculate interaction strength in the CG model. After CG equilibration, the system is neutralized 

by randomly adding counter ions in the all-atom replacement step. Therefore, additional equilibration is 

necessary to relax such a charged system by letting the ions find their proper positions.  

The CG equilibration of most melt or solution systems can be done in a reasonable time in Polymer Builder. 

However, a long equilibrium simulation is required when one tries to perform the simulation at low 

temperature (T < Tm), because the relaxation time is heavily affected by temperature and polymer chain 

length (see RESULTS AND DISCUSSION). Furthermore, if polymers with long chain lengths or strong 

intermolecular interactions are suddenly quenched, structural defects can be formed. To avoid such defect 
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formation, a user needs to perform additional simulated annealing for polymers that have high Tm. Polymer 

Builder provides input files for the simulated annealing simulation with CHARMM, GROMACS, NAMD, 

LAMMPS, and OpenMM. 

Currently, Polymer Builder supports a polymer mixture containing up to 99 unique polymer chains, but if 

a user wants to build a large system of random copolymers, this approach is not efficient, as all unique 

polymer chains have to be modeled manually. We plan to provide a new option in the system setup step 

(step 2 in Figure 1) to make it easy to build systems containing many unique disordered chains. 

Furthermore, Polymer Builder currently supports 12 single types of solvent. Although one can make some 

solvents from polymer structure (e.g., octane as 4-mers polyethylene), this approach is limited to cover 

various solvents. We plan to add more solvents and provide a solvent mixing option in the future update. 

In the Polymer Builder workflow, adding a new monomer unit requires three major tasks: i) 

parameterization of a monomer unit (i.e., bonded and nonbonded parameters), ii) generation of patch 

information (i.e., atom type and partial charge modifications when a monomer unit is connected to other 

monomers), and iii) parameterization of its CG model (i.e., solubility parameters and Kuhn length of the 

monomer unit for equilibration). While Polymer Builder currently supports a variety of monomer units 

(more than 60) far more than other available software, we will expand available monomer units by 

generating the necessary monomer libraries based on the aforementioned three tasks. In addition, we will 

incorporate a method of building non-linear polymer structures such as branched (star, comb, and brush 

type) and conjugated polymer units in the future. 

The all-atom force field parameters of Polymer Builder are based on the CGenFF. Although, the long range 

structural and bulk properties are well reproduced in most of the currently supported homopolymers, the 

densities of the polymers containing the ester group show deviations of about 10 % compared to the 

experimental values. This indicates that there is room for improvement in the current all-atom polymer 

force field. 
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5. CONCLUSIONS 

We have described a generalized and automated process to build a relaxed polymer system interactively 

and easily using Polymer Builder in CHARMM-GUI. Its versatile and efficient modeling methods to build 

polymer structures are illustrated by building homopolymers, block copolymers, and random copolymers. 

The significance of this work is that Polymer Builder not only provides single polymer chain modeling 

capability, but also has carefully built-in methods to generate realistic polymer melt and solution systems 

using the Polymer Builder CG model and its unique all-atom replacement method. The parameterization of 

the Polymer Builder CG model is generalized and extensively validated with various experimental data and 

all-atom simulations. Using four polymer systems (i.e., PE50 melt system, 34 homopolymer melt systems, 

phase behavior of PS-b-PMMA, and self-assembly of PEO-b-PEE in water), we have also illustrated that 

the generated systems through Polymer Builder are reliable. Together with other CHARMM-GUI 

modules,73-79 one can easily study polymer interactions with biological systems such as proteins, nucleic 

acids, carbohydrates, lipids, detergents, and small molecules. We hope that Polymer Builder is useful to 

carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, 

dynamics, and underlying mechanisms of complex polymer-containing systems. 

 

Supporting Information 

Figure S1. Evaluation of characteristic ratio for all-atom models. Table S1. Flory's characteristic ratio, the 

number of monomer units in a homopolymer Kuhn segment, and calculated solubility parameter. Figure 

S2. Evaluation of characteristic ratio for CG models. Table S2. Flory Huggins interaction parameters and 

corresponding Flory exponents. Figure S3. End-to-end vector autocorrelation functions for CG models with 

different chain lengths at T* = 0.5, T*= 0.6, and T* = 0.7. Figure S4. Highly entangled polymer system 

generated from Polymer Builder. Figure S5. Microphase separation of PS-b-PMMA and its packing in a 
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body centered cubic fashion. Figure S6. Acceleration of phase separation using WCA potential. 

 

Supporting Information Polymer Builder Tutorial 

Tutorial 1. Three single polymer chain examples. Tutorial 2. A solution system of PEO76-PPO29-PEO76 in 

water. Tutorial 3. A ternary blend system of block copolymer (PS180-b-PMMA220) and homopolymer (PS180 

and PMMA220). Tutorial 4. Building complex system with PET50 and CO2. 
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