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Abstract. Figures of research articles are entities that can be directly
used in many application systems to assist researchers, making the rep-
resentation of figures a problem worth studying. In this paper, we study
the effectiveness of distributed representations, learned using deep neu-
ral networks, for figures. We learn representations using both text and
image data and compare different model architectures and loss func-
tions for the task. Furthermore, to overcome the lack of training data
for the task, we propose and study a novel weak supervision approach
for learning embedding vectors and show that it is more effective than
using some of the pre-trained neural models as suggested by recent works.
Experimental results using figures from the ACL Anthology show that
distributed representations for research figures can be more effective than
the previously studied bag-of-words representations. Yet, combining the
two approaches can further improve performance. Finally, the results
also show that these representations, while effective in general, can be
sensitive to the learning approach used and that using both image data
and text and a simple model architecture is the most effective approach.

1 Introduction

Figures are entities in research articles that play an essential role in scientific
communications. To accelerate research, it is important to develop tools to assist
researchers in accessing and digesting figures. Figure representation is a fun-
damental problem in all applications involving figures. Different from general
images, figures are complex research entities that are associated with various
sources of data of various modalities, posing unique novel challenges for repre-
sentation learning. Thus, the study of how to optimize representation specifically
for research figures is crucial. Despite that, this problem has not been well stud-
ied in previous works. The dominant approach explored in the existing studies
is to represent a figure by its companion text data in an article using the bag-of-
words approach [15]. Using this representation of figures has some limitations.
First, it does not consider any other types of non-textual features, such as image
features. Second, it has limited capability in accommodating the inexact match-
ing of semantically related words.

To address the limitations of the previous work, we study a new view of
representation for figures, namely deep neural network-based distributed repre-
sentations. Learning distributed representations for many real-world entities has
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been shown to be very successful in recent years [19,25]. The main idea behind
the different approaches in this scope is to learn embeddings of those entities
using large data sets where the goal of learning is to capture the complex rela-
tions between the entities. For example, learning an embedding representation
of words [6,19] has proven to be useful for many text applications. Specifically,
word embeddings can effectively address some of the limitations of bag-of-words
representations, such as measuring the semantic similarity between words.

In this paper, our goal is to study the effectiveness of distributed represen-
tations for figures, exploring the learning of such a representation from multiple
views. Specifically, we focus on using both image data and text for learning rep-
resentations with different model architectures and loss functions to understand
how sensitive the embeddings are to the learning approach and the features used.

One technical challenge in learning deep neural network-based representa-
tions is that it requires massive amounts of data that is not available for this
domain. While word embeddings can be easily learned by leveraging the co-
occurrences of words in large amounts of text data, the amount of figure data
is quite limited. To overcome this problem, we propose and study two strate-
gies. The first is to leverage massively pre-trained models on general data (e.g.,
BERT [6]). The second is a novel weak supervision approach that can gener-
ate a large amount of training data by leveraging the already existing citation
relations between research articles.

We used a collection of figures from the ACL Anthology to empirically
study the effectiveness of different representations by their ability to measure
the semantic similarity between research figures. We also study the effective-
ness of embeddings in the downstream application of recommending figures of
interest based on an input (query) figure. The results show that embeddings
are generally more effective than bag-of-words, yet combining them is the best
performing approach. Another finding is that the pre-trained image/text embed-
dings have limited effectiveness compared to the weak supervision approach and
even the bag-of-words approach. Finally, the results show that the effectiveness
of embeddings for figures can be somewhat sensitive to the learning technique.
Specifically, the relatively simple model architectures are the most effective ones,
text features are more effective than image features, and combining image and
text features is the most successful approach.

2 Related Work

There has been growing interest recently in learning vector representations of
real-world entities using deep neural networks. This led to the development and
study of various embedding models for representing different entities such as
words [6,19], sentences [17], and images [22]. Our work can be regarded as the
first one to study the effectiveness of embedding-based representations for figures.

Learning embeddings using neural networks often requires massive amounts
of data. To address this, there has been an active research direction exploring the
use of weak supervision for learning [3,5]. Our work adds to the existing work a
new line of application of weak supervision for learning figure embeddings.
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There have been several previous works that studied various figure retrieval
and mining tasks [2,10,13,16,18]. These previous works mostly relied on the
bag-of-words representation of figures. In this work, we explore distributed rep-
resentations of figures that can benefit a variety of tasks that involve figures.

Previous works have studied the joint embedding of images and text, focus-
ing mostly on images that contain different objects and text that identifies
the objects and the interactions between them (e.g., “An apple on a table”)
[7,8,14,21,23,25]. The main idea in many of these works was to embed image
and text to the same space. Learning joint embeddings for image and text aims to
find a common representation that can explain both and is thus less appropriate
for research figures in which image and text are often two types of complemen-
tary information. Thus, in this paper, we learn text- and image-based features
separately and combine them using a third model. Using this strategy is suffi-
cient for studying the different aspects of the problem that we are interested in,
such as the effectiveness of various architectures for image/text modeling, the
effectiveness of image and text feature combination, and the effectiveness of pre-
training vs. weak supervision. We thus leave the study on finding the optimal
integration of image and text features for figures for future work.

3 Figure Embeddings

Problem Definition: A collection of figures FD can be generated using a col-
lection of research articles D by extracting the figures from all articles. Each
figure can be associated with different types of data of different modalities. For
example, a figure can be associated with a caption, the abstract section of its
article, an image, and a set of numbers. In this study, as a first step, we focus on
learning figure embeddings using only text and image data. Given two figures
in the collection, fi and fj , the goal is to learn corresponding vectors in a con-
tinuous space, fi and fj , such that the distance between them in that space is
inversely proportional to their semantic similarity. In this paper, we use neural
networks to learn these representations of figures.

Textual Representation of Figures: While the image data of a figure is well
defined, the textual data for a figure is not readily available. In the general case,
the article that contains the figure can be used to extract text that directly
describes it (e.g., the figure caption) and text that does not directly describe
it, but is related to its topic (e.g., parts of the abstract section). One previous
work [15] has explored the effectiveness of using different types of textual data for
figure representation to be used for the figure retrieval task. Based on the findings
of that work, we generate a textual representation for a figure as follows. We use
the caption of the figure, concatenated together with the text in the article that
directly describes the figure, for the figure representation. To extract this text,
first, the locations in the article where the figure is mentioned are identified.
Then, the sentence that directly mentions the figure, one sentence before it, and
one sentence after it, are extracted. (In the case of several mentions for the figure,
all the text which was extracted is merged.) We use this text as a single textual
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input which resulted in a good enough performance. In future work, we plan to
take into account the sources of those different texts in the learning approach.

Model Architecture: To learn figure embeddings using neural networks, we use
the Siamese architecture [4]. According to this architecture, given two figures,
the same model is used to generate embeddings for both of them. Then, the
dot product between the figure vectors is used as a semantic similarity score.
The Siamese model is appropriate for our scenario since the two figures are
entities of the same type and we also assume the relationship between them is
symmetric. We note that the symmetry assumption may not always hold but is
still useful to learn meaningful representations; we thus leave the treatment of
asymmetric relationships for future work. The model for our figure embedding
approach is composed of three sub-models: (1) An image model that generates
visual features. (2) A text model that generates textual features. (3) A fusion
model that combines the image and text features. While the image and the
text model are both Siamese models, the fusion model is a feed-forward neural
network model.

Text Models: To generate textual features, we experimented with three models
to explore varying levels of complexity, compare auto-regressive to non-auto-
regressive models, and compare pre-training to weak supervision-based training.
The first model we used is LSTM [11] that generates features for a text using a
recurrent neural network. Specifically, our LSTM-based model contains a word
embedding layer (learned from scratch) which is followed by a single LSTM layer,
where the weights of the last hidden state of the LSTM layer are used as the
textual features. The second model we use is Bi-LSTM [9]. This model is similar
to LSTM but has a higher level of complexity since it models dependencies
using both directions of the text. As in the case of the LSTM model, we use
a word embedding layer which is followed by the Bi-LSTM layer. Additionally,
the Bi-LSTM layer generates two sets of features (backward and forward). The
two sets of features are concatenated, a dropout layer is added on top of this
concatenation, and a final dense layer is added to obtain the textual features.
The last model we use is BERT [6] which uses transformers and self-attention
mechanisms to learn dependencies in text. This model was shown to achieve
state-of-the-art performance in many NLP tasks, where the main approach that
was taken is to pre-train the model using a very large amount of text data and
then fine-tune the output of the model for the specific task. We experiment with
three versions of this model. In the first one, we use a pre-trained model and
treat the pooled output as the textual features. In the second version, we add a
dropout layer, a dense layer with a Relu activation, and a final dense layer on
top of the pooled output. Then, we learn the weights of those dense layers using
the Siamese architecture; the output of the final dense layer serves as the textual
features. In the third version, we use the same model as in the second one but
also fine-tune the last layer of BERT.

Image Models: Previous works on using neural networks for computer vision
leveraged massive amounts of data which enabled the learning of complex models
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with remarkable performance. Another technique that is highly effective for com-
puter vision is transfer learning in which a model is trained using large amounts
of data and then is fine-tuned for a specific task. In this work, our goal is to
generate effective image features for figures. This is challenging, however, since
we do not have available massive amounts of image training data. Furthermore,
since images of figures are quite different than images in the massive training
data sets (e.g., ImageNet), it is not clear how pre-training will be useful for our
scenario. To better understand these issues, we experiment with two models as
follows. The first model that we use is a simple Convolutional Neural Network
Model (CNN) which is fully trained using the figure image data. The model is
composed of two convolutional layers, a max-pooling layer, a dropout layer, a
dense layer with Relu activation, and a final dense layer. The second model we
use is DenseNet [12] which uses densely connected convolutional networks. This
model has higher complexity than the simple CNN and we use it since it was
previously shown to be very effective for image representation. We use three ver-
sions of this model. In the first one, we use a pre-trained model with ImageNet
to generate image features (no fine-tuning). In the second version, we add layers
on top of the DenseNet model including a dropout layer, a dense layer with Relu
activation, and a final dense layer. We then learn the parameters of the dense
layers using the Siamese model. In the third one, we use the same architecture
as in the second version but additionally fine-tune the last dense block of the
DenseNet model.

Fusion Model: To combine the image and text features, we concatenate them
and use a batch normalization layer on top of that. Finally, we use a single
dense layer to generate the figure embedding. We take this approach since we
are interested in obtaining a single embedding vector for a figure using different
types of features.

Loss Function: We assume that each pair of figures, fi and fj , is associated with
a numeric semantic similarity score Ri,j ∈ R (larger values of Ri,j correspond
to greater similarity). A semantic similarity label Li,j ∈ {0, 1} can be generated
using Ri,j by setting Li,j to 1 when Ri,j > 0 and setting Li,j to 0 otherwise.
We experiment with three loss functions. The first one is the Cross-Entropy loss,
computed using the Sigmoid of the dot product between the two vectors and the
semantic similarity label, CE(fi · fj , Li,j). Secondly, we use the Mean Squared
Error loss, computed using the dot product between the two vectors and the
semantic similarity score, MSE(fi · fj , Ri,j). Finally, we use the triplet hinge
loss [22]. The triplet hinge loss is defined for a triplet of figures, comprised of a
query figure fq, a positive figure f+ (i.e., a related figure), and a negative figure
(f−). This loss is defined as: max(0, 1 + fq · f− − fq · f+). The main idea is that
we want a figure to be closer to a related figure compared to an unrelated figure.
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4 Weak Supervision for Figure Embeddings

Since we are dealing with a novel problem in this paper, an important issue
that needs to be addressed is how to collect training data. Furthermore, since
we are interested in using deep neural networks, there is a need for a large set
of training examples. To address this challenge, since log data was not available
to us, we propose a novel approach for collecting data for the task using weak
supervision.1 This approach allows us to leverage large amounts of training data
that already exist. Specifically, to generate training data, we leverage existing
relations between research articles. First, since we know that two articles are
related if one is cited by the other, we assume that two figures are semantically
similar if they appear in two articles with a citation relation. Secondly, we assume
that any two figures that are in the same article are also semantically similar.
Although both kinds of relations may be noisy, we expect that most relations
are meaningful semantic associations and the learned embedding vectors to be
meaningful as in the case of word embeddings where there are also noisy word
associations, but they do not significantly affect the results. Comparing the two
types of relations, it is reasonable to assume that two figures that appear in the
same article are more likely to be more semantically similar than two figures that
appear in citing articles and that the latter should be more similar than a random
pair of figures. Based on this intuition, we set the semantic similarity score of
two figures in citing articles to be lower than the score of two figures in the
same paper. Finally, to generate negative examples, we randomly sample pairs
of figures from the collection. Formally, given two figures fi and fj , extracted
form the articles d(fi) and d(fj), respectively, and given that C(d(fi)) is the set
of articles that cite d(fi) or are cited by it, the semantic similarity score Ri,j is
set to 1 if d(fi) = d(fj), 0.6 if d(fj) ∈ C(d(fi)), and 0 otherwise.

When using this data for training the image model, some modifications need
to be made. This is the case since semantically similar figures, as defined by
our approach, may have images that are not visually similar. Our goal for the
image model is to be able to generate features that can help measure the visual
similarity between figures. For this reason, we filter out pairs of figures which are
not visually similar enough (we use the Structural Similarity Index (SSIM) [24]
with a threshold of 0.5 for filtering out pairs, and a threshold of 0.3 for sampling
negative pairs). Finally, we do not make a differentiation between figures in the
same paper and figures in citing papers since these relationships may not be
indicative of different levels of visual similarity. Taking this approach, a pair of
figures will be assigned only with a binary relevance label in the case of the
image model (and consequently we do not use the MSE loss).

1 While there are publicly available large collections of figures [20], they do not provide
any relations between figures for the purpose of representation learning.
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5 Empirical Study

5.1 Experimental Setup

Collection of Figures: A collection of figures was built using the ACL Anthol-
ogy (aclweb.org/anthology). 40,367 articles whose copyright belongs to ACL and
were published until October 2018 were crawled. Using those articles, a collection
of 84,340 figures was created. The PdfFigures toolkit (pdffigures2.allenai.org)
was used to extract the figure images. The Grobid toolkit was used to extract
the full text from the PDF files of the articles (github.com/kermitt2/grobid).

Data Pre-processing: Text data was Porter stemmed and stopwords were
removed (using the INQUERY list). Figures with an associated text, after pre-
processing, of less than 5 words were removed. Images of figures were resized to
fit a 224 × 224 × 3 matrix and were normalized by a factor of 255.

Training Data: 947,335 pairs of figures in citing articles and 202,944 pairs of
figures in the same article were used as related figures. After adding random
pairs as negative examples, we ended up having about 2M pairs of figures for
training the text network. For the image network, after filtering out images that
were not visually similar enough, we ended up with about 300K figure pairs for
training. For training the fusion network, since we are interested in figures with
both text and image data, we used about 1M pairs after filtering out figures with
no image data. In this work, we train all three components of the model (i.e., the
image model, text model, and fusion model) separately, due to our limited data.
For the evaluation of the different approaches, we only use figures for which both
image and text data is available to make it as realistic as possible (57K figures).

Neural Network Implementation: The neural network was implemented
using the TensorFlow library. We set the values of the different parameters based
on findings in recent works in the text and image domain. All models were trained
for 3 epochs using the Adam optimizer with a batch size of 64 and a learning
rate of 0.01. The vocabulary size was set to the 1000 most frequent words in the
training data. We used only the first 100 words in the text data of a figure (the
figure caption was concatenated first) due to BERT’s limitation on the input
size and the limited effectiveness of LSTM for long sequences. The embedding
size was set to 50 for all models which means that the number of hidden layers
in LSTM/Bi-LSTM was set to 50 as well as the size of the final dense layer
in the other models (our preliminary experiments showed that a larger size of
100 is less effective). The size of the dense layer on top of BERT, DenseNet, and
CNN was set to 100. The dropout rate was set to 0.5. The word embedding layer
dimension for the LSTM/Bi-LSTM model was set to 100. For BERT, we used a
model with 12 layers, 768 hidden units, and 12 attention heads. For DenseNet,
we used a 121-layer model. For the CNN model, we used convolutional layers
with 32 filters and a kernel size of 3 × 3.

Baselines: Since one of the main research questions that we study is whether
embeddings can improve over the currently used bag-of-words representations,
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we compare our model with two representative baseline methods: tf.idf and LDA.
For the LDA baseline [1], we learn a model with 50 topics and use the figure dis-
tribution over topics as its representation. The vocabulary used for both models
was also restricted to 1000 frequent words.

5.2 Experimental Results

Semantic Similarity Prediction: To evaluate the effectiveness of the different
representations in measuring the semantic similarity between figures, a binary
classification task was performed. Given two figure vectors, the cosine function
was used to get a similarity score which was then transformed into a binary label
using a threshold. Since the threshold value can vary depending on the represen-
tation type, a validation set was used to set it (selected from {0.1, 0.2, ..., 0.9}).
Three test sets were created for the evaluation. In the first one, denoted “Same”,
we used 500 pairs of figures that appear in the same article (related figures) and
500 randomly sampled (unrelated) pairs. In the second one, denoted “Citing”,
we used 500 pairs of figures that appear in citing articles (related figures) and
500 unrelated pairs. Finally, in the third set, denoted “Accuracy”, the first two
sets were combined. (All selected pairs were removed from the training set.)
The sets were balanced such that the accuracy of a random baseline is 0.5. The
results are presented in Table 1 for using text and image features separately and
in Table 3 for the fusion model. For pre-trained models that were fine-tuned (i.e.,
BERT and DenseNet), we added the term “(tuned)” when only the dense layers
on top of the model were fine-tuned and “(tuned+)” when the dense layers and
also part of the model were fine-tuned.

According to the results in Table 1, most text-based and image-based repre-
sentations perform better than a random baseline. Focusing on the embedding
models which use text features only, we can see that for the LSTM/Bi-LSTM
model the best performance is achieved for the MSE loss, while for the tuned
BERT models there are no large differences between the different loss functions.
Overall, based on the results, the best text-based embedding model is LSTM.
A possible reason for this might be its relatively small number of parameters
and the size of the training data set. Also, it is interesting to see that it out-
performs the pre-trained BERT model which might be attributed to the unique
vocabulary used in ACL research articles. Comparing the embedding models to
the baselines, we can see that LSTM/Bi-LSTM largely outperforms all baselines
including tf.idf, LDA, and the pre-trained BERT model. We can also see from
the results that tf.idf is the strongest baseline. For this reason, we focus on com-
paring our embedding approaches mostly to this baseline in the remainder of the
evaluation section. Focusing on BERT, we can see that fine-tuning can improve
its performance, but resulting in overall effectiveness that is still low. Another
finding from the table is that the improvements of the embedding methods over
the bag-of-words baselines for the case of citing figures are much larger than
the case of figures in the same article. This might be due to the soft matching
nature of distributed (dense) representations and their ability to identify more
loosely related figures. Moving on to the image features, we can see that most
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Table 1. Semantic similarity prediction: text vs. image.

Accuracy Same Citing

Text features tf.idf .720 .818 .622

LDA .688 .766 .609

BERT .525 .522 .527

CE LSTM .740 .776 .704

Bi-LSTM .732 .743 .720

BERT(tuned) .533 .535 .530

BERT(tuned+) .534 .534 .533

MSE LSTM .802 .831 .772

Bi-LSTM .791 .811 .770

BERT(tuned) .527 .527 .527

BERT(tuned+) .527 .528 .525

Hinge LSTM .505 .508 .501

Bi-LSTM .500 .500 .500

BERT(tuned) .522 .525 .518

BERT(tuned+) .534 .537 .530

Image features DenseNet .620 .623 .616

CE CNN .500 .500 .500

DenseNet(tuned) .635 .641 .629

DenseNet(tuned+) .518 .510 .526

Hinge CNN .662 .663 .661

DenseNet(tuned) .630 .655 .605

DenseNet(tuned+) .500 .500 .499

of them perform better than a random approach and that the best performing
model is CNN. Finally, we can see that using fine-tuning for the DenseNet model
can improve its performance. Yet, the performance of the fine-tuned DenseNet
model is still not as good as that of CNN. Comparing the image to text features
we can see that the text features are more effective.

Table 2. Combining tf.idf with text-based embeddings using an “Oracle”.

Accuracy Same Citing

tf.idf .720 .818 .622

LSTM .802 .831 .772

BERT(tuned+) .534 .534 .533

LSTM& tf.idf .914 .941 .886

BERT(tuned+)& tf.idf .864 .913 .815
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In light of the results in Table 1, an important question that comes up is
whether embeddings can replace tf.idf for the textual representation of figures.
To answer this, we examine the effectiveness of combining the predictions of
tf.idf and embeddings using an oracle in Table 2 which serves as an upper-
bound for the performance of such combination. We focus on effective models
according to Table 1: LSTM trained with MSE and BERT(tuned+) trained with
CE. The results show that this combination is of merit, always outperforming
the individual models. Even in the case of BERT, which is not very effective
according to Table 1, the combination can improve tf.idf substantially. In this
paper, we are mainly interested in studying distributed representations and thus
leave the study of how to combine the two approaches for future work.

Table 3. Semantic similarity prediction: fusion model.

Accuracy Same Citing

tf.idf .720 .818 .622

LSTM .802 .831 .772

BERT(tuned+) .534 .534 .533

CNN .662 .663 .661

DenseNet(tuned) .635 .641 .629

CE LSTM& CNN .805 .834 .775

BERT(tuned+)& CNN .684 .689 .678

LSTM& DenseNet(tuned) .643 .681 .604

BERT(tuned+)& DenseNet(tuned) .678 .680 .675

MSE LSTM& CNN .838 .866 .809

BERT(tuned+)& CNN .699 .704 .693

LSTM& DenseNet(tuned) .726 .760 .691

BERT(tuned+)& DenseNet(tuned) .693 .698 .687

Next, we analyze the performance of representations that combine both image
and text data in Table 3. We focus on studying the combination of the most
effective image and text features, based on the results in Table 1. Specifically,
we use LSTM trained with MSE, BERT(tuned+) with CE, CNN with Hinge
loss, and DenseNet(tuned) with CE. We also focus only on MSE and CE due
to the very poor performance of the Hinge loss for the textual features. The
results show that for the majority of model combinations, using both features
largely outperforms the individual components. This finding supports the idea
that image and text features are complementary and represent different aspects
of the figure. Finally, we can see that the MSE loss is the best performing for all
models and that the best performing model is the LSTM&CNN model.

Figure Recommendation: The goal of this task is to recommend figures to
the user that are related to a target figure. To address this problem, a standard
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two-phase approach was used. First, using the target figure, an initial retrieval
is performed to get an initial figure set. Then, a re-ranking model is used to
obtain the recommended figures. To build a test set of target figures for testing,
we first collected all figures that have at least 5 more figures in the same article
and also 5 figures in citing articles (to result in p@5 = 1 at the best scenario).
From this set, 500 figures were selected randomly (400 for testing and 100 for
validation); all pairs of figures that contained at least one of the target figures
were removed from the training set. The performance of the different models is
measured using p@3 and p@5. Since there are no human relevance judgments
available for the task, we assume that a figure is relevant if it appears in the
same article as the target figure (“Same”), a citing article (“Citing”), or in
either (the main performance measure). We note that while this evaluation is
not fully realistic, it can still help us make meaningful comparisons between
the different approaches. Statistically significant differences between approaches
were measured using the two-tailed paired t-test at a 95% confidence level.

Table 4. Retrieval performance of the recommendation task. All differences with tf.idf
are statistically significant.

Same Citing

p@3 p@5 p@3 p@5 p@3 p@5

tf.idf .298 .228 .354 .276 .057 .048

LSTM .044 .032 .058 .047 .014 .016

CNN .000 .001 .001 .003 .001 .002

LSTM& CNN .051 .039 .066 .054 .015 .014

Table 5. Figure recommendation performance. Statistically significant differences with
tf.idf are marked with an asterisk.

Same Citing

p@3 p@5 p@3 p@5 p@3 p@5

tf.idf .298 .228 .354 .276 .057 .048

Cross Entropy (CE)

LSTM& CNN .308 .241∗ .368 .296∗ .060 .056∗

BERT(tuned+)& CNN .296 .227 .352 .277 .056 .050

LSTM& DenseNet(tuned) .303 .233 .355 .289∗ .053 .056∗

BERT(tuned+)& DenseNet(tuned) .303 .229 .357 .279 .054 .050

Mean Squared Error (MSE)

LSTM& CNN .320∗ .240∗ .380∗ .299∗ .060 .059∗

BERT(tuned+)& CNN .296 .226 .353 .277 .057 .052

LSTM& DenseNet(tuned) .313∗ .235∗ .371∗ .287∗ .058 .053

BERT(tuned+)& DenseNet(tuned) .300 .229 .356 .278 .056 .049
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First, we study the effectiveness of the retrieval step in Table 4. The per-
formance of three embedding methods (which use text data, image data, and
both), trained using the MSE loss, is compared with that of tf.idf. We can see
that the tf.idf approach is the most successful. This result is expected since tf.idf
relies mostly on exact keyword matching while embedding-based methods rely
more on soft matching. Since we are searching over the entire collection, the
embedding model may not be discriminative enough.

The performance of the recommendation task is reported in Table 5. To
obtain these results, we first perform retrieval using tf.idf and then re-rank the
first 100 figures using the cosine similarity between the figure embeddings. The
final score for a figure is defined as a linear interpolation between the tf.idf
score and the embedding score. The weight for the tf.idf component and the
embedding component in the interpolation is determined using a validation set
(selected from {0.1, 0.2, ..., 0.9}; the weights are set to sum up to 1). We exper-
iment with embedding approaches that use both text and image data with the
same setting as in Table 3. According to the results in Table 5, we can see
that using embeddings on top of the initial retrieval results (tf.idf based) can
largely improve the recommendation performance. Specifically, the embedding
approaches outperform the baseline in terms of the overall p@3 and p@5 for the
majority of relevant comparisons. Comparing the LSTM model to BERT, we
can see that the former is better in the majority of cases. The best embedding
model, according to the results, is the LSTM&CNN model with the MSE loss.

Table 6. Figure recommendation example.

LDA graphical representation

tf.idf Embeddings

1. The graphical representation of LDA 1. The graphical representation of LDA

2. Graphical models of LDA and DMM 2. Topic model

3. Topic model 3. Graphical representation of strTM

4. Plate notation of our model: MATM 4. Plate notation of our model: MATM

5. LDA plate diagram 5. Graphical representation of (a) BTM,
(b) Twitter-BTM

An example target figure with its recommendation list is presented in Table 6.
In the table, the caption of the target figure is presented together with the
captions of five recommended figures when using either tf.idf or embeddings
(LSTM&CNN with MSE); in both cases, tf.idf was used for the initial retrieval.
The subject of the figure is the graphical representation of the LDA topic model.
Using the tf.idf approach, we get figures that are either equivalent (e.g., “LDA
plate diagram”), or diagrams of related models (e.g., “MATM” and “DMM”).
When using the embedding approach, we can see that we get more diverse rec-
ommendations. This difference can be because using embeddings results in softer
matching compared to tf.idf.
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6 Conclusions

In this work, we studied the effectiveness of neural network-based figure embed-
dings. The experimental results showed that figure embeddings outperform the
bag-of-words approach in the tasks of semantic similarity prediction and figure
recommendation. We also observed that embeddings cannot replace the bag-of-
words approach and that combining the two is the best practice. Finally, the
results also showed that some learning approaches can be more effective than
others. Specifically, using a simple model architecture and combining both image
and text features performs the best.

In future work, different methods for combining the different figure features
can be studied. Collecting user data to learn more effective representations and
improve the evaluation is another possible future direction.
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