
Lossless Instruction-to-Object Memory Tracing in the Linux Kernel

Nick Roessler
University of Pennsylvania

nroess@seas.upenn.edu

Yi Chien
Rice University

yc120@rice.edu

Lucas Atayde
Rice University

lsa4@rice.edu

Peiru Yang
Rice University

ypr17@mails.tsinghua.edu.cn

Imani Palmer
Null Hat Security

inp2@protonmail.com

Lily Gray
Rice University

lmg11@rice.edu

Nathan Dautenhahn
Rice University
ndd@rice.edu

Abstract
The lack of visibility into Linux’s behavior makes it hard
to refactor and maintain. To peer inside the box, we present
Memorizer, a self-contained, low-level tracing framework
that tracks (most) object allocations, data accesses, and func-
tion calls within the kernel. The core insight is a low-level
object-centric representation that records detailed lifetime in-
formation while linking each operation (call/read/write) with
its intended target. We evaluate Memorizer using extensive
input programs and demonstrate its value by showing how
Memorizer can (1) aid in refactoring, (2) extend code cov-
erage with object coverage to improve testing and analysis,
and (3) identify leaky abstractions. We also release a large
data set, visualization tools, and Memorizer’s source. This
generic, object-centric approach is the first to provide loss-
less instruction-to-object tracing, adding an essential software
engineering capability to the overly complex Linux kernel.

ACM Reference Format:
Nick Roessler, Yi Chien, Lucas Atayde, Peiru Yang, Imani
Palmer, Lily Gray, and Nathan Dautenhahn. 2021. : Lossless
Instruction-to-Object Memory Tracing in the Linux Kernel. In
The 14th ACM International Systems and Storage Conference (SYS-
TOR ’21), June 14–16, 2021, Haifa, Israel. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3456727.3463767

1 Introduction
An abstraction is “leaky” when it fails to completely shield a
user from the need to understand its implementation [32].
Leaky abstractions can be particularly problematic when
software circumvents encapsulation by directly manipulat-
ing objects—a pervasive problem in the Linux kernel [36, 38].
These leaks can lead to security vulnerabilities [33] and poor

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8398-1/21/06.
https://doi.org/10.1145/3456727.3463767

interoperability. While leaky abstractions are easy to describe,
they are difficult to identify and quantify. As a result, leaky
abstractions are often only discovered when an abstraction
has failed, or when it’s time to refactor.

Leaky abstractions hint at a broader set of problems devel-
opers face when updating the kernel. In Linux’s large multi-
module environment, designer intents for encapsulation are
often difficult to communicate and enforce. Communication
difficulties arise not only from the large volume of knowl-
edge required to understand it, but also the lack of tooling
to observe its concrete inner-workings. These issues lead to
portions of the kernel that are incredibly difficult to refactor
without breaking prior code’s incorrect usage of internal inter-
faces. The issue is further complicated by a kernel developer’s
unrestrained access to the entire address space, with few mech-
anisms in place to check for inconsistent or improper use of
subsystems. Together, these issues result in a kernel that is
often difficult to understand, refactor, and maintain.

Despite these challenges, developers are not without help.
There are over 150 tools for performance observability, bench-
marking, tuning [11, 12], debugging, vulnerability discov-
ery [10, 16, 17, 40, 42], and automated refactoring [6]. Yet
none of these tools expose a global picture of the kernel’s
dynamic behavior. Debuggers and tools like eBPF [37] enable
manually driven analysis of the kernel, but narrowly focus
on a specific context. Other approaches, like memory saniti-
zation and allocation analysis, provide global coverage but
only support a few specialized analysis and miss entire object
classes (e.g., early boot memory). These tools fail to expose
detailed information about the lifetime interactions between
objects, leading developers to a slow, iterative style involving
reading about a kernel component, modifying it, and then
waiting for bugs to arrive to fully understand its footprint.

The objective of this work is to open the box and expose
an accessible and detailed view of the Linux kernel’s mem-
ory access patterns to enable new debugging, refactoring
and analysis methodologies. Our key hypothesis is that fine-
grained object lifetime tracing—i.e., tracing object creation,
destruction, and access patterns—can provide a high fidelity
representation of the underlying concrete system while being

https://doi.org/10.1145/3456727.3463767
https://doi.org/10.1145/3456727.3463767

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

implementable in practice. To that end we present Memo-
rizer, which instruments all allocations, frees, memory ac-
cesses, and function calls to build a fine-grained picture of
dynamic Linux behavior. To do this we develop an in-kernel
component that automatically builds a live object tree and
stores access information in shadow objects. The core insight
is a low-level, universal representation that allows for simple
instrumentation and dynamic processing.

Building Memorizer required solving several challenges.
First, tracing all kernel allocators is complex: prior work [16,
17, 42] provides a foundation but neglects early boot objects,
special virtual memory mapped regions, and stack frame
objects. The complexity was so high that we developed a
methodology, unidentified foreign objects (UFOs), to trace
allocators we failed to find during early development. Second,
losslessly recording lifetime object interactions and storing
it for analysis—instruction-level access—stresses space and
time, introducing the trade-off of storing just enough infor-
mation for meaningful analysis. Third, though prior work has
built out-of-VM based monitors [4, 5], Memorizer aims to be
maintainable, preferably by the Linux community; as such,
we built it inside of Linux. This led to several issues which
demanded custom concurrency and memory management so-
lutions. Last, efficiently extracting meaningful data is hard;
Memorizer’s approach is to trace low-level events at runtime
and constructing a C-level view in post-processing.

To demonstrate the value of the tool and collected data, we
build on and extend three common analysis tasks. First, we
show how Memorizer can streamline refactoring projects by
automatically exposing data abstractions with its access graph.
We validate our dataset and methodology by comparing Mem-
orizer’s results to a recent security refactoring. Second, we
show how Memorizer’s access graph can be used to analyze
leaky abstractions. Last, we show how Memorizer can extend
traditional code coverage metrics with object coverage to
open up a new dimension of kernel test case development and
analysis. Overall, these examples only scratch the surface of
what is possible with detailed object accesses and lifetime
information. Our core contributions include:

• The design and implementation of Memorizer, which
provides the first lossless object lifetime and access
tracing in the Linux kernel (Section 3).

• A large data set for analyzing Linux (Section 5).
• A demonstration of Memorizer’s utility through three

use cases: streamlining kernel refactoring and mainte-
nance, leaky abstractions analysis, and extending code
coverage with object coverage (Section 6).

• Memorizer’s source code, visualizations, and statistics
from kernel tracing available at https://fierce-lab.gitlab.
io/memorizer.

2 Background and Related Work
Linux has a plethora of tools to help with profiling, debugging,
and analysis. ftrace [21] provides significant transparency
into the kernel’s runtime behavior by tracing the kernel’s
dynamic control flow; this feature has been invaluable to
the Linux community for enabling efficient debugging and
allowing users to profile their operating system’s behavior
to both diagnose and optimize performance. BPF [11] and
eBPF [37] are useful for performance profiling and perform-
ing specialized analyses by attaching programs to tracepoints
and monitoring kernel events in a running system. While these
tools are powerful, Memorizer traces all memory operations
and integrates with all of the kernel’s allocation systems for
more fine-grained and complete tracing than eBPF is capa-
ble of. strace [41] profiles system calls to provide trans-
parency into the interactions between applications and the
kernel. Other tools provide similar functionality for querying,
tracing, and logging specific subsystems [12].

Other tools try to profile and track memory. Kmemleak [28]
tracks dynamic heap objects and can be used to diagnose
memory leaks inside the kernel. Kernel Address Sanitizer
(KASAN) [16] has been used to detect and diagnose mem-
ory errors; KASAN works by maintaining a shadow space of
valid allocations and checking runtime accesses against the
shadow space. Valgrind [31, 39], Pin [25], DynamoRio [1],
and DIOTA [26] monitor and trace memory access. However,
these tools are primarily designed for userspace applications
and focus on detecting errors or providing specialized analy-
sis, while Memorizer’s focus is on complete memory tracing
for the kernel. Some work has also been done on extracting
the structure of Linux using static analysis [22]. However,
static analysis suffers from imprecision and does not expose
actual dynamic runtime counts for analysis. Table 1 summa-
rizes core differences between Memorizer and related efforts.

3 Memorizer Design and Implementation
Memorizer’s goal is to trace all dynamic memory accesses
to kernel objects as well as control operations. To do so, it
maintains a shadow object for each runtime object and records
memory dependencies through read/write monitoring and
control dependencies through call monitoring. Tracing kernel
operations at this granularity is challenging because of the
number of operations, the complexity of kernel’s allocators,
and the concurrent nature of the kernel.

3.1 Design Principles
Complete Allocator Coverage: Associate every memory ac-

cess with its target object, statically or dynamically allocated.
Lossless: Existing tools commonly use ring buffers which

lose data. Memorizer seeks to log every access.

https://fierce-lab.gitlab.io/memorizer
https://fierce-lab.gitlab.io/memorizer

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Tool Capability Object Tracing Allocator Coverage Call Tracing Use Cases

ftrace [21] Function tracing - - Yes
Profiling, performance
and behavioral analysis

eBPF [37] Attach monitor Alloc Slab, Page, Stack Probe
Tracing, packet filtering,
dynamic programmability

kmemtrace [30] Slab statistics tracing Alloc Slab No Slab and memory analysis
KASAN [16] Memory error detection Alloc + access Slab, Page, Stack, Globals No Memory error detection

Memorizer Access/call tracing Alloc + access
Slab, Page, Stack,
Globals, Memblock

Yes,
log call

Analyze access patterns,
object coverage, refactoring

Table 1: A summary of Memorizer’s features compared to other tracing and analysis tools.

Reusable: Many analysis tools provide fixed-functionality,
instead enable flexible post-processing for analysis.
Maintainable: Build directly into the Linux kernel with

minimal hooks into other subsystems.
Meaningful: Minimize complexity while providing mean-

ingful data: use virtual addresses and map to language level.

3.2 Overview
Memorizer’s system architecture is shown in Figure 1. To
capture events, Memorizer (1) instruments the Linux source
code to hook object allocations, and (2) adds compile-time in-
strumentation for every read, write, and call. When an object
is allocated, Memorizer allocates a new shadow object for it
and installs it into the live object map. When a memory ac-
cess occurs, Memorizer locates the associated shadow object
and updates its access counts. Similarly, Memorizer tracks
function calls by updating its accounting on each call. When
an object is free’d, Memorizer removes it from the object map
and places the shadow object into a queue awaiting serializa-
tion. Data is serialized through a debugfs interface for easy
collection. Memorizer is controlled through the debugfs inter-
face, i.e., enabling and disabling logging and configuring op-
tions. Memorizer includes a stats module for analyzing events,
such as the number of allocations (broken down by allocator),
accesses, calls, and internal memory usage. Collected logs
are mapped to higher-level semantics and visualized using a
suite of graphing and analysis tools.

3.3 Object and Memory Management
The heart and soul of Memorizer is the object management
and tracing system, which maintains a shadow object for each
kernel object as well as the live object map that associates
each address with its shadow object.

3.3.1 Universal Representation The two design princi-
ples of lossless and meaningful contend with each other: the
more information stored the harder it is to remain lossless.
We have found the standard object model [18, 32] to be an
informative way to analyze systems. That is, some subject
performs operations on some object. Thus, our low-level
representation traces events as (subject, operation, object)

triples. The core data structure for object-centric tracing is
struct shadow_obj, as shown in Figure 1. A key fea-
ture is that all objects, regardless of allocator, have the same
shape. This opaque representation simplifies tracing and anal-
ysis, and can represent objects of diverse types, from individ-
ual fields to large block regions.

Memorizer traces read, write, call, return, alloc and free op-
erations. The subject for each is minimally the virtual address
that invoked the operation. The subject for allocation is richer,
i.e., both multidimensional and extensible, as we not only
track the allocation site but also other valuable contextual data,
such as the size, alloc/free time, current process, and slabname
if available. Rather than keeping a log of each access, which
requires too much memory, Memorizer compresses all ac-
cesses from the same program address into a single structure
that sums all accesses, struct access_from_counts.
Access contexts could be extended, but each dimension gen-
erates more list items, which overruns available memory.

3.3.2 Representing Time We originally attempted to use
Linux jiffies [7, 29] but they demonstrated atomicity
discrepancies, so we settled on using our own logical time.
While logical time does not capture global system time, it
does make analysis for data structure lifetimes and critical
optimizations [29, 44] possible. An alternative option is to
use a hardware clock (e.g., TSC).

3.3.3 Live Object Map: Lookup Table Memorizer maps
each byte of virtual address space to a shadow object using
a three-level hash table, where the key is the virtual address
of the live object—analogous to software page tables. The
internal interface is: init, alloc, lookup, and free.
init performs initial allocation of the lookup tables. alloc
takes the virtual address and size of an object and updates
each leaf entry with the address of the shadow object. free
zeros out the entries for the free’d object region and sets both
the free time and freeing code pointer in the shadow object.
Lookup returns the shadow object pointed to by the given
virtual address. A key aspect of the map was table sizes, where
the address space is represented in three page levels. Poor
choices in sizes resulted in L3 thrashing in early prototypes,
which we manually tuned. Tables are allocated on demand.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

Compile

Memorizer

Statistics
Command Interface

and Logging

Memory

Manager

Linux

Source

Allocator Hooking

+ Memorizer

Call Instrument

Read/Write

Instrument

Memorizer

vmlinux
trace_access()

trace_object()

trace_control()

Live Object Manager

Shadow

Live Map

Call Manager

Call

Trace

Shadow

Object List

struct shadow_obj {
 struct list_head object_list;
 struct list_head access_counts;
 enum AllocType alloc_type;
 long obj_id;
 uintptr_t alloc_ip;
 uintptr_t free_ip;
 uintptr_t va_ptr;
 uintptr_t pa_ptr;
 size_t size;
 uint64_t alloc_time;
 uint64_t free_time;
 pid_t pid;
 char comm[TASK_COMM_LEN];
 char funcstr[KSYM_N_LEN];
 bool printed;
 char *slabname;
};

Userspace Memorizer

Driver + Benchmarks + Logging
Logs

 struct access_from_counts {
 struct list_head list;
 uintptr_t ip;
 uintptr_t caller;
 uint64_t pid;
 uint64_t writes;
 uint64_t reads;
 };

Shadow

Frames

Object Serialization

Analysis, Mapping, and Visualization

Access

Tracing

Object

Tracing

Call

Tracing

Figure 1: System Architecture and Flow. Memorizer uses a combination of source code instrumentation and compile-
time hooks to capture all object allocation, memory access, and call operations that occur in the kernel. When an object is
allocated, Memorizer allocates a shadow object for it; when a memory access occurs, Memorizer locates the appropriate
shadow object and updates its access counts. The structs show the shadow object and access list, which together track
all accesses to each object. A debugfs interface allows for easy serialization and collection of the captured data and can
be used to control Memorizer, i.e., enable or disable its various tracers. Lastly, the log files are parsed by a suite of
analysis and graphing tools for offline analysis.

3.3.4 Allocator Promotion Linux’s allocators are struc-
tured in a hierarchy; for example, the slab allocator allo-
cates its memory by requesting large page-aligned memory
blocks from the page allocator. When an object is allocated
by a higher-level allocator, the containing region is promoted;
Memorizer only associates each address with the single active
object from the highest-level allocation. We describe some
complexities related to promotion (such as accesses from con-
structor functions that run before allocations) in Sect. 3.4.1.

3.3.5 Internal Allocator Using Linux allocators for inter-
nal memory created stability issues. Instead, Memorizer main-
tains its own memory region that is disjoint from the rest of
kernel memory; this design is simple and reduces Memo-
rizer’s impact on system behavior. We implement a simple
bump allocator that serves blocks from this region for Mem-
orizer’s allocation requirements, and for SMP we create per
core memory pools but have yet to implement a free interface.

3.4 Complete Object Tracing
One of the most complex and time-consuming aspects of
Memorizer was identifying, hooking, and labeling Linux allo-
cators and special memory regions. Enabling complete object
1Early boot (memblock) memory permits overlapping regions, which chal-
lenges Memorizer’s object tracking. Memorizer currently ignores frees and
considers all memblock allocations as a single object.

tracing required significant manual exploration of Linux ker-
nel memory management subsystems—we even used Memo-
rizer itself to learn about and expose allocators.

3.4.1 Hooking Linux Allocators This section details
the kernel’s allocators and how Memorizer hooks them—
coincidentally, it provides an introductory overview of various
Linux allocators and memory regions. Memorizer exports a
specialized interface for each such allocator so that it can
track type information about them. In this way, Memorizer
tracks general information about each allocation which is a
core component of tracing the access graph.
Globals and per-CPU variables Memorizer allocates

shadow objects for static data, including the global variables
from the .data, .rodata, and .bss sections, as well
as per-CPU variables, on system initialization. It hooks the
KASAN global variable initialization logic to process these
objects, assigning each to a single fixed range of virtual mem-
ory based on the object’s location and size. Static data are
never freed, thus there are no deallocation operations.
The Page Allocator The page allocator [2] is a low-

level, page-granular dynamic allocation subsystem in
the kernel. It is used by the kernel in contexts in which
large, contiguous, page-aligned regions of memory are
appropriate. We hook each allocation interface to the page
allocator, which includes __alloc_pages_nodemask

SYSTOR ’21, June 14–16, 2021, Haifa, Israel
D

yn
am

ic

Allocator Allocation Interfaces Deallocation Interfaces

Page Allocator
__alloc_pages_nodemask, get_free_pages,
alloc_pages_exact, get_zeroed_page free_page_prepare

Slab Allocator kmalloc, kmem_cache_alloc kfree, kmem_cache_free
Vmalloc vmalloc vfree
Memblock
(early boot) memblock_insert_region memblock_remove_region1

Stack Memory Prologue instrumention Epilogue instrumentation

St
at

ic

Region Allocation and Description
Globals Each global and per-CPU variable is hooked from kasan_register_global during system initialization
FIXADDR Addresses in range (FIXADDR_START, FIXADDR_START + FIXADDR_SIZE) are treated as a single object
VMEMMAP Addresses in range (VMEMMAP_BASE, VMEMMAP_END) are treated as a single object

Table 2: Overview of hooked allocators, including both dynamic memory (top) and static memory (bottom).

and __get_free_pages. Additionally, there are spe-
cialized interfaces such as alloc_pages_exact
and get_zeroed_page that internally call
__get_free_pages. Memorizer hooks these as
well. For deallocations, we hook free_page_prepare,
a function called by all the free routines, to capture page
freeing operations.
The Slab Allocator While the page allocator provides a

primitive for dynamic allocations, its page-granularity makes
it unsuitable for the (likely common) cases in which objects
are smaller than a page, and would thus lead to excessive
internal fragmentation. As a result, the kernel is equipped
with a general-purpose slab allocator [3], built on top of the
page allocator, for handling most dynamic memory use cases.
Memorizer supports SLUB, the default slab allocator in most
modern kernel distributions.

The Slab allocator provides a general-purpose inter-
face, kmalloc, which behaves similarly to the userspace
malloc; Memorizer hooks this interface, in addition to its
kfree analog for deallocation. In addition, for cases in
which many objects of the same type are expected to be
allocated, the slab allocator allows for the creation of en-
tire slabs of objects of the same type. A fresh, free object
from a particular slab (sometimes called a cache) can be
requested with kmem_cache_alloc, then subsequently
released with kmem_cache_free; Memorizer also hooks
these interfaces.

Slab allocation is complex in that whenever it initializes or
extends the cache it allocates a large region to hold many ob-
jects, effectively preallocating them. Moreover, caches with a
constructor may modify these objects in bulk before they are
used to satisfy allocations, meaning they can get accesses be-
fore their real use. Consequently, Memorizer allocates shadow
objects for individual cache objects as they are created and
initialized; this way accesses from the constructors can be
properly attributed to each of the objects. Subsequently, when
a cache object is used to satisfy a kernel allocation request,

the allocation address in the shadow object is updated to the
location of the call that performed the request, and no fresh
shadow object is created. This design means cache objects
have accesses from both (1) their constructors, and (2) the
accesses that result from their use by the kernel.
The vmalloc Interface Memorizer hooks the vmalloc

/ vfree interface, another dynamic memory allocation sys-
tem built on top of the page allocator. Its primary use is for
creating large, virtually contiguous regions of memory, such
as creating space for loading dynamic kernel modules.
The Memblock Subsystem The memblock [23] system is

a primitive memory subsystem in the kernel, primarily used
during boot before the other allocation systems have been
initialized. Memorizer currently treats this type of memory
in a coarse-grained fashion, with all allocations sharing a
single shadow object. Memorizer hooks the subsystem from
memblock_insert_region, a function that is called by
its other interfaces.
Special Memory Regions In addition to the range of

static and dynamic objects in the kernel, there are sev-
eral special regions of the memory that Memorizer han-
dles. One is for fixed-map [24] memory, which con-
tains pages whose physical addresses do not depend
on __START_KERNEL_map. Fixed-map memory is used
for several low-level purposes, such as storing the In-
terrupt Descriptor Table (IDT) and during boot inside
early_ioremap_setup, for example. The kernel also
uses a sparse virtual memory map for fast address translation,
which Memorizer treats as a single object.
Stack Stack tracing, next to concurrency and managing the

complete set of allocators, is the most technically challenging
element of Memorizer because stack objects are implicitly
allocated by the compiler, which we wanted to avoid mod-
ifying. Memorizer provides two modes for tracking stack
objects. The first is a coarse-grained approach that minimally
attributes all accesses to the stack data type. It works by allo-
cating a single stack shadow object, and then at the time of a

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

fork, it maps the entire allocated stack (e.g., two-page region)
to the stack shadow object.

Additionally, Memorizer provides a frame-level tracing op-
tion for stack data. In this mode, the kernel is recompiled and
GCC’s -finstrument-function is used to insert trac-
ing code in each prologue and epilogue. This instrumentation
uses the RBP and RSP registers to identify the virtual address
range of the active stack frame. Memorizer then creates a
single shadow object for each caller-callee edge (as opposed
to one per function), which makes the frame tracing context-
sensitive. On each call, Memorizer updates the lookup table
for the allocated frame, which is a costly operation and one
reason for the slowdown incurred by this mode.

While this approach works for the majority of functions,
it is possible for the compiler to allocate locals after the
prologue, causing them to be allocated outside of the traced
frame. For this reason, we enable the coarse-grained tracing
as well to account for those accesses. In future work, one
might either modify the compiler or use debugging metadata
to compute the frame’s size to better handle this situation.

Lastly, we must free the allocated frame. Because frames
are frequently created and destroyed, updating the lookup
table on each epilogue would be slow. Instead, Memorizer
ignores deallocating on returns and relies on allocation pro-
motion to ensure that the active object is always the cor-
rect one. The major drawback of this approach is that if
a call edge is missed, then accesses would be attributed
to the most recent frame in that location. We find that
GCC’s -finstrument-function doesn’t instrument all
the function calls in the kernel; in post-processing, accesses
from those that it misses can be either be removed or attrib-
uted to the generic stack data type.

3.5 Access Tracing
Memorizer traces memory accesses by hooking KASAN’s
access tracing. KASAN uses a GCC compiler pass that
instruments reads and writes as well as functions like
memcpy. We modify KASAN with calls into Memorizer,
which requires a handful of hook points for various op-
erations that pass the address of the accessing instruc-
tion and size of the access. Access counts are stored in
the struct access_from_counts (Figure 1) within
a linked list pointed to by the shadow object. On an access,
Memorizer (1) queries the live object map to get the shadow
object, (2) searches the list for the access site, and (3) up-
dates the counts (and allocates and inserts it if missing). For
performance reasons, Memorizer tracks only the number of
accesses and does not include their temporal sequencing.

3.5.1 Missing Shadow Objects: UFOs Memorizer aims
for complete coverage, but in early prototypes, many accesses
did not have an associated shadow object—the allocation

was missed. To aid in debugging and still produce complete
tracing, we created a class of objects called Unidentified
Foreign Objects (UFOs), which are implicitly created on an
access to an address on a memory page for which Memorizer
does not have an allocated Shadow Object. The UFO implicit
allocator does two things. First, it interprets KASAN’s labels
to infer the type of object being accessed: Heap, Stack, Global,
etc., which can indicate valuable type information for missed
allocations. Second, it creates and adds a page-sized shadow
object for the UFO in the live map. The number of UFOs
diminished as we used this methodology to identify classes
of allocators we missed. For example, the UFOs and their
analysis helped us identify early boot allocators. Although the
number of UFOs has now reached zero in our implementation,
the UFO allocator is still valuable in that it can aid in the
maintainability of Memorizer by automatically exposing any
new/custom allocators.

3.6 Call Tracing
Memorizer traces calls by using GCC’s function instrumen-
tation (-finstrument-function) that inserts a call to
__cyg_profile_func_{enter,exit} at every func-
tion entry and exit. Memorizer traces call operations as
(caller,callee,shadow_frame,count) tuples and uses a bucket
hash table using the caller virtual address as the key. Memo-
rizer does not trace return edges but could easily be extended
to do so. The first Memorizer prototype used ftrace for call
tracing, but we found it lacked complete function coverage.

3.7 Concurrency Control
One of the most unique aspects of Memorizer is that it mon-
itors three separate but highly intertwined operations (call,
access, and alloc), while executing in every low-level context.
As such, we must protect from reentrance throughout inter-
leaved tracing contexts, interrupts, shadow object writes, and
lookup table updates. By design, Memorizer has only a few
global objects requiring protection. To prevent reentrance—
and thus preventing infinite loops—we use a monitor pattern
allowing only one entrance at a time. Memorizer disables
interrupts while operating on critical sections: currently, these
sections are coarse and can likely be optimized. This design
will not trace NMI handlers as they cannot be masked. This
means that if an NMI is delivered while Memorizer is run-
ning, Memorizer may lose a small number of accesses. NMIs
are rare e.g., for non-recoverable errors. Our monitor uses
atomic instructions to avoid relying on Linux functions, which
would instantly cause reentrance. Memorizer protects shadow
objects with a reader-writer lock since multiple cores could
modify the same object close in time. The lookup tables are
shared, however, Memorizer uses a lockless algorithm be-
cause the kernel should have proper concurrency control on
object allocation and free.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

3.8 Control and Serialization

Memorizer is controlled through a debugfs interface. Key fea-
tures include the ability to enable/disable logging of the dif-
ferent events (access,call,alloc), show stats, clean up runtime,
and export the access-graph. Each of these interfaces is quite
simple and self-explanatory. The more complex interface is
serialization, which is provided via the Linux seq_file
abstraction [20] because it allows for fine-grained locking and
internal control. The major challenge with serializing Mem-
orizer’s data for output is how often it should be performed.
Writing out the data can take a long time, and the system
cannot trace while the serialization is being performed. To
address this, we chose to run full test suites and do a single
serialization afterward. This puts enormous pressure on the
runtime memory and usability. Memorizer also provides boot-
based options that can enable/disable tracing and select the
amount of memory for the internal allocator.

4 Experimental Methodology

One aim of our work is to produce a large, meaningful data set
and analysis. However, since Memorizer is based on dynamic
analysis, we must be careful what claims can be made. We
address this problem in a few ways. First, we introduce the
access coverage metric for measuring coverage as the number
of distinct access edges—we explore analysis in Section 6.3.
Second, we use access coverage to measure the total observed
behavior and the difference per each new experiment. This
allows us to know when we’ve exposed as much as possible
from a given input program because the number of new edges
stabilizes. Third, we focus our analysis on observable claims
as indicated by the data instead of making claims that depend
on possibly undiscovered execution. For example, a leaky
abstraction is an access that violates an appropriate interface,
and can only be claimed by observing evidence in the graph.
We cannot claim that leaky abstractions do not exist.
Collection Methodology We collect data using Qemu to

boot a Memorizer 4.10.0 kernel while running inside Ubuntu
16.04. We modify the default Ubuntu kernel configuration to:
use a single core, disable preemption, and disable KASLR so
that addresses match the vmlinux and are consistent across
runs for analysis. We reserve enough memory so that Memo-
rizer can trace a full test before serializing, which is typically
between 16 and 50 GB. Incremental serialization is possible
but slows down progress significantly and can miss certain
behavior (interrupts). To drive the kernel, we run the Linux
Test Project (LTP) (26 test suites), as well as the system and
kernel Phoronix benchmarks (28 benchmarks). Each test
is run on a fresh Qemu instance; at the end of execution, the
access graph is written to disk for offline analysis. All tests
are run twenty times to improve and analyze coverage.

The first run of LTP adds approximately 300k unique edges
into the access graph. The second pass adds around one thou-
sand, and by the 15th trial only around 30 or so unique edges
are added for each pass of LTP (0.01% increase per complete
pass). This leads us to conclude that there is a small degree of
non-determinism but that coverage largely stabilizes. When
adding Phoronix data to the access graph derived from LTP,
we observe 1000 edges on the first first pass of the Phoronix
benchmarks, and between 0 to 10 unique edges on subsequent
passes (with 5 passes adding a total of 0), for a total of 1,200
additional edges. This indicates that coverage is stable and
that our method exposes most of the accesses that can be
observed from LTP and Phoronix benchmarks.
Data Details and Limitations Data is stored as an adjacency

matrix in ASCII containing the full count of all logged inter-
actions. Raw trace files are 2.0GB on average. We produce
compressed forms of these files by combining all dynamic
allocations from the same allocation site into a single object,
which speeds up our analysis for the cases in which we treat
objects as types; compressed trace files are 5.9MB on average.
We trace all allocations during boot, but do not trace accesses
or calls; access and call tracing is enabled immediately before
running a trial and disabled afterward.

5 Performance Evaluation
We evaluate four configurations: baseline Linux, Linux with
KASAN enabled, Linux with KASAN + Memorizer, and
finally Linux with KASAN + Memorizer + frame tracing. All
experiments are done using KVM with a single core (except
for the SMP evaluation), 64GB memory (40GB memory is
assigned to Memorizer if enabled). The bare metal machine
is equipped with an Intel(R) Xeon(R) Gold 6126 CPU @
2.60GHz, 188G memory, and 3.5T storage.
Microbenchmarks: We run the LMBench [27] latency and

bandwidth microbenchmarks on our various kernel configu-
rations and show the results in Table 3. Because Memorizer
logs every call and memory access, the latency overheads are
substantial for some metrics, e.g., the latency of a execve
(exec proc) is about 300X compared to the baseline ker-
nel configuration. For other microbenchmark metrics such
as bandwidth, the cost is less severe (e.g., Bcopy is around
72%). In general, the overhead introduced by Memorizer is in
direct proportion to the number of allocation, free, call, return,
and memory access operations that are performed. We find
that both call tracing and memory access tracing contribute
to overhead in about even proportion.
Microbenchmarks for SMP LMBenchmark results with 1,

2, 4, and 8 cores are shown in Figure 2. Memorizer scales
as anticipated with core count on most metrics, but some
(e.g., exec proc) degrade substantially. Since, Memorizer
uses a read-write spinlock for shadow object access this

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

LMBench Processes Times Overhead for Different Configurations

null call null I/O stat open/clos slct TCP sig inst sig hndl fork proc exec proc sh proc
KASAN 1.3 2.2 4.6 4.2 4.1 2.1 7.7 7.7 8 4.5
Memorizer 23 71 253 141 1824 73 14 263 296 177
Stack trace 5464 5997 8015 5778 44041 9200 1155 4802 5525 3068

LMBench Local Communication Bandwidth (MB/s) for Different Configurations

Pipe AF UNIX TCP File reread Mmap reread Bcopy (libc) Bcopy (hand) Mem read Mem write
Linux 9206 13000 7326 11900 25900 13300 10400 18K 12.6K
KASAN 4021 2054 1808 7710 25000 13200 9892 17K 11.9K
Memorizer 22 17 11 226 17300 9320 7584 13K 10.6K
Stack Trace 0.2 0.3 0.2 0.8 9218 5801 5184 9608 7188

Table 3: LMBench Evaluation

Linux KASAN Memorizer Stack Trace
encode-mp3 (secs) 10.8 10.9 19.8 42.3
openssl (signs/sec) 260.3 260.8 217.9 29.8
compress-7zip (MIPS) 4143 4230 1050 528
pybench (msecs) 1472 1479 2070 8293
ffmpeg (secs) 25.1 25.2 61.7 103.7
gnupg (secs) 14 15 112 136

Table 4: Phoronix Benchmark Evaluation

10

1,000

100,000

nu
ll c

all

nu
ll I

/O sta
t

op
en

/cl
os

slc
t T

CP

sig
 in

st

sig
 hn

dl

for
k p

roc

ex
ec

 pr
oc

sh
 pr

oc

M
ic

ro
se

co
nd

s cores
1
2
4
8

Figure 2: LMBench SMP Evaluation

trend is expected as contention increases. Some metrics e.g.,
slct TCP are largely independent of core count.
Macrobenchmarks In Figure 4 we show the results of the

various kernel configurations on a range of Phoronix [34]
benchmarks. Because these benchmarks spend a large portion
of their time in userspace, the overhead is lower than in LM-
Bench. Qualitatively, while some overheads are large (e.g.,
3.9X in the case of compress-7zip), the system is still
quite usable even when tracing; we are able to SSH into the
machine and perform tasks without issue.
Runtime Memory Consumption After booting the system

(in which allocations are traced but accesses are not), Mem-
orizer uses a total of 5634MB of memory (5287MB for the
lookup table and 347MB for the shadow objects). After trac-
ing lmbench, Memorizer uses a total of 14237MB of mem-
ory (11036MB for the lookup table, 1021MB for the shadow
objects, and 2180MB of access edges). For the same work-
load, the kernel itself uses about 50MB of memory including
its code and data. Measuring memory consumption in this

way helps us quantify Memorizer’s memory pressure and
determine how much should be allocated for tracing runs.

6 Uses
In this section, we show how Memorizer can: aid in refactor-
ing, maintaining, or adding new kernel subsystems; be used
to analyze and measure the leakiness of kernel abstractions;
and extend traditional coverage metrics with object coverage.

6.1 Refactoring and Maintenance
Refactoring and maintaining kernel code is a daunting task.
Understanding the underlying data abstractions is among the
most central of concepts: what are the interfaces to this par-
ticular object? How well-encapsulated is it? How many other
subsystems interact with this object? Currently, a typical de-
veloper workflow is iterative: a developer reads code, makes a
guess about a refactoring, finds what they missed, and repeats
the process. Such a workflow is haphazard and expensive in
human engineering time. In this section, we show how Memo-
rizer can streamline refactoring by providing developers with
automatically-generated access graphs to quickly understand
kernel data abstractions.

6.1.1 Case Study: Privilege Separation xMP [35] is
a recent security work that uses nested paging hardware to
enforce in-kernel abstractions at runtime. Although xMP pro-
vides memory protection services, using it requires significant
effort: an engineer selects an object (or group of objects) to
protect, defines what code can access it, transforms the code,
and instruments kernel operations to switch contexts.

The authors used xMP to isolate struct cred, which
is used for almost all runtime access control checks. To
isolate it, the authors first modified the slab allocator
to place cred_jar objects into separated nested pages.
Then, through reading kernel source and observing access
faults, they iteratively identified where write accesses came
from and wrapped each location with context switches,
xmp_unprotect, and xmp_protect, for access. In

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

other words, the process involved repeated trial and error,
which we have confirmed with the xMP authors.

We contrast this manual, time consuming method with us-
ing memorizer, where all allocations are tracked by default
and all that is needed is to query the access graph. We first
query to find the set of write instructions to cred objects.
We then compare these with the manually instrumented code
locations performed by the xMP authors, and found a nearly
perfect match: only 4/35 accesses were missed because the
xMP kernel used SELinux while ours used AppArmor. Fur-
thermore, we observe that cred objects are written only 9
times on average but are read 236 times—they are checked
on every privileged operation but rarely modified—indicating
an optimization that allows global read-only access and only
changes contexts for the less frequent write operations. These
compelling results demonstrate that (1) Memorizer can save
large amounts of engineering effort through its object trac-
ing by providing developers with fine-grained object access
graphs, and that (2) Memorizer can be used to estimate the
difficulty of refactoring by directly quantifying and exposing
the locations in the kernel that access a particular object type.

6.1.2 Memorizer to Implement Memorizer Perhaps the
biggest testament to the value of Memorizer’s approach is
in the development of Memorizer itself. None of the authors
began this work with deep knowledge of the kernel’s alloca-
tion systems. The trifecta of object, call, and access tracing
allowed us to quickly triangulate aspects of the system we
didn’t understand in order to complete our implementation.

In particular, Memorizer’s unidentified object allocator
(UFOs—Sec. 3.5.1) allowed us to quickly learn which al-
locators we were missing: in a system with a vast num-
ber of allocators, this approach gave us clear direction in
reaching nearly complete object coverage (an improvement
on all prior object tracing monitors). By inspecting our
data we found easily observable patterns, such as high-
degree objects, that we used to quickly and automatically
discover the hierarchical relationships among allocators: for
example, in our first iteration of tracing the page alloca-
tor, we hooked only the alloc_pages interface; however,
alloc_pages_exact calls alloc_pages: we quickly
saw this is a common and closely-located call site, which
we then hooked as an allocator. This process allowed us to
understand the complex relationships within the allocators.

6.2 Leaky Abstractions Analysis
In this section we introduce the Object Encapsulation model
and method for measuring abstraction leakiness. In the Ob-
ject Encapsulation model, each object, o, and instruction, i,
is assigned to exactly one encapsulating partition, p. An en-
capsulating partition is a grouping of code and data that is
treated as single compsite object for the purpose of analyzing

encapsulation boundaries. The Encapsulation Ratio (ER) is
a new metric that measures the leakiness of each object, and
is defined as the ratio of access sites not in the partition (X
external or public sites) to the total access sites (T): X/T . Intu-
itively, an external access crosses the encapsulation boundary,
implicitly making the data public. This model can be instanti-
ated with diverse assignments: directory, groups of functions,
or even using algorithms based on frequency and types of
access.

To make our analysis concrete, we assign each i and o to a p
based on the file where the instruction or object allocation site
resides. This means that each C file is considered a singleton
class. Table 5 presents the number of object allocation sites
that have exactly {0,1} external read (Xr) and write (Xw)
sites, as well as sites with an ER of 1. Our results show a
bimodal distribution of ERs, implying that in general, objects
are either well encapsulated, i.e., written mostly by the file
that allocated the object, or not at all, i.e., all accesses are
from outside the allocating file. In general, writes are much
better encapsulated than reads. Surprisingly, 284 object sites
had no external writes and 53 had exactly one external write,
meaning that 52% of the objects were only written by at most
one instruction not in the same file as the allocation site. This
indicates a high degree of write encapsulation for over half
of the observed objects. Interestingly, 91 of the 645 objects
(14%) had an ER of 1, indicating that all writes were external.
We corroborated that these writes were to objects allocated by
shared libraries and memory management code, confirming
that certain objects are legitimate public kernel data.

Allocation Sites % of Total Sites

Xw = 0 284 44%
Xw = 1 53 8%

ERw = 1 91 14%
Xr = 0 173 27%
Xr = 1 48 7%

ERr = 1 136 21%

Table 5: File Level Encapsulation Analysis

While this technique exposes the latent connections be-
tween components in a general way, it becomes particularly
useful if the encapsulating assignments are done by a devel-
oper, as they can precisely assign partitions to detect viola-
tions. We perform a non-expert variant in the next section, but
we envision that developers could make an assignment for
their code and then a CI system could automatically report
encapsulation analysis of how their abstractions are (ab)used.

6.2.1 Linux Cryptography API We use the encapsulation
analysis to investigate Linux’s Cryptography API by assign-
ing encapsulating objects based on our manual analysis of the
crypto library. We observed that all private keys or certificates

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

are well encapsulated with a write ER of 0, indicating high
integrity and that external components do not directly modify
them. These properties inspire confidence not only in the en-
gineering of the API but Memorizer’s ability to identify code
that has strongly defined encapsulation boundaries.

6.3 Testing: Coverage Metric
Code coverage is the traditional way to measure dynamic
analysis [9, 13, 14, 43]. However, we believe data coverage
is a critical dimension for understanding program behavior—
oftentimes it is impossible to tell where faults lie in a program
through code coverage alone, as the same code may run on a
wide range of data inputs at runtime. We propose Memorizer’s
access graph for augmenting traditional code coverage with
fined-grained object coverage. To handle dynamic objects in
this analysis, we combine all objects by allocation site, so
that an “object” is closer to the notion of a type, and a unit of
object coverage is an instruction-to-object pair.
Test Suite Effectiveness The Linux Test Project (LTP) [15]

is the most commonly used test suite for the Linux kernel.
Prior work has evaluated its code coverage using gcov [8],
and used that data to improve test quality [19]. We show how
to use object coverage to further understand and improve LTP
efficacy. Figure 3 (top) shows the number of unique accesses
that are covered by each test that are never covered in any
other test, indicating which tests contribute the most unique
coverage and thus should be prioritized in testing. For ex-
ample, (fs, syscall) contains thousands of unique edges,
whereas other tests (ipc, nptl, pipes) are interestingly
entirely covered by other tests. Figure 3 (bottom) shows the
percent of the accesses covered by each test’s runs compared
to the entire LTP suite, indicating how incomplete each test is
and can be used to know when to add more tests. Interestingly,
ltplite (a lightweight version of the complete LTP) covers only
60.3% of accesses compared to the complete testing suite.

We also trace the kernel and systems benchmarks
from the Phoronix [34] test suite. The Phoronix benchmarks
encounter a total of 664 accesses that were not covered by
LTP. Memorizer can map these low-level traces back to high-
level models, which would enable us to extend LTP’s test
cases accordingly. As can be seen, Memorizer is a powerful
tool for measuring and improving test coverage.
Future Explorations These analyses show how using a

large collection of diverse training data can allow valuable
relative comparisons leading to concrete recommendations
(e.g., which tests to use). However, the ideal way to measure
coverage would be to compare with a ground truth. But, no
prior art explores access coverage. We believe such an ap-
proach would start with a points-to analysis; however, that
has obvious shortcomings as static analysis is by definition
an over-approximation. Our results suggest combining static

Figure 3: The relative object coverage of each LTP test
(bottom) as well as the number of unique accesses not
covered by any other test (top).

and dynamic access coverage for improving coverage met-
rics would be an impactful future direction. Furthermore,
improving coverage-guided fuzzers like syzkaller [10],
improving the precision and performance of symbolic exe-
cution, and performing optimizations like cache prefetching
would be interesting extensions to our work.

7 Conclusion
In this paper, we present Memorizer, a tool to trace the Linux
kernel access patterns. The primary objective is to completely
log all control, memory accesses, and object allocation events.
Our results indicate that it is possible to trace the complete
access patterns and demonstrate powerful use cases, which
we believe lay the foundation for future work in maintenance,
refactoring, optimization, fuzzing, and security.

Availability
All Memorizer resources are linked at https://fierce-lab.gitlab.
io/memorizer. The resources include: source code, Docker
LinuxKit custom kernel builder for easy use, visualizations for
dynamic exploration including flame graphs, force-directed
graphs, heat maps, and data set.

Acknowledgments
We would like to thank André DeHon for his in depth analysis
and enhancements to the ideas and system in this paper, as
well as members of the Penn IC lab, Penn DSL lab, and Rice
FIERCE lab. We would like to thank our anonymous review-
ers and our shepherd, Orna Agmon Ben-Yehuda, for their
precise direction that greatly improved the paper. We would
like to thank AuNoLeZeZo for their unwaivering support.
This research was supported by the Office of Naval Research
grant BAA N00014-17-S-B010 and NSF grant CNS 2008867.

https://fierce-lab.gitlab.io/memorizer
https://fierce-lab.gitlab.io/memorizer

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

References
[1] Derek L. Bruening and Saman Amarasinghe. “Effi-

cient, Transparent, and Comprehensive Runtime Code
Manipulation”. AAI0807735. PhD thesis. USA, 2004.

[2] Chapter 6: Physical Page Allocation. https : / /
www . kernel . org / doc / gorman / html / understand /
understand009.html.

[3] Chapter 8: Slab Allocation. https://www.kernel.org/
doc/gorman/html/understand/understand011.html.

[4] Austin Clements. Mtrace. 2014. URL: https://github.
com/aclements/mtrace.

[5] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. “The Scal-
able Commutativity Rule: Designing Scalable Soft-
ware for Multicore Processors”. In: ACM Transactions
on Computer Systems 32.4 (Jan. 20, 2015), 10:1–10:47.
URL: https://doi.org/10.1145/2699681.

[6] Coccinelle. https://www.kernel.org/doc/html/latest/
dev-tools/coccinelle.html.

[7] eLinux. Kernel Timer Systems - eLinux.Org. Oct. 2,
2017. URL: https://elinux.org/Kernel_Timer_Systems.

[8] Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[9] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Ro-

han Sharma, Mohammad Amin Alipour, and Darko
Marinov. “Comparing Non-Adequate Test Suites Us-
ing Coverage Criteria”. In: Proceedings of the 2013 In-
ternational Symposium on Software Testing and Anal-
ysis. ISSTA 2013. Lugano, Switzerland: Association
for Computing Machinery, 2013, pp. 302–313. URL:
https://doi.org/10.1145/2483760.2483769.

[10] Google. Syzkaller - Kernel Fuzzer. Google, May 25,
2020. URL: https://github.com/google/syzkaller.

[11] Brendan Gregg. BPF Performance Tools. Addison-
Wesley Professional, 2019.

[12] Brendan Gregg. Linux Performance. 2020. URL: http:
//www.brendangregg.com/linuxperf.html.

[13] Neelam Gupta and Zachary V Heidepriem. “A new
structural coverage criterion for dynamic detection
of program invariants”. In: 18th IEEE International
Conference on Automated Software Engineering, 2003.
Proceedings. IEEE. 2003, pp. 49–58.

[14] Mohammad Mahdi Hassan and James H. Andrews.
“Comparing Multi-Point Stride Coverage and Dataflow
Coverage”. In: Proceedings of the 2013 International
Conference on Software Engineering. ICSE ’13. San
Francisco, CA, USA: IEEE Press, 2013, pp. 172–181.

[15] Manoj Iyer. “Analysis of Linux test project’s kernel
code coverage”. In: Austin, TX: IBM Corporation
(2002).

[16] Kernel address sanitizer. https://www.kernel.org/doc/
html/v3.13/dev-tools/kasan.html. 2018.

[17] Kernel Memory Leak Detector — The Linux Kernel
Documentation. https://www.kernel.org/doc/html/v4.
10/dev-tools/kmemleak.html.

[18] Butler W. Lampson. “Protection”. In: SIGOPS Oper.
Syst. Rev. 8.1 (Jan. 1974), pp. 18–24. URL: http://doi.
acm.org/10.1145/775265.775268.

[19] Paul Larson, Nigel Hinds, Rajan Ravindran, and Hu-
bertus Franke. “Improving the Linux Test Project with
kernel code coverage analysis”. In: Proceedings of
the 2003 Ottawa Linux Symposium. Citeseer. 2003,
pp. 260–275.

[20] Linux Foundation. The Seq_fil Interface. 2020. URL:
https://github.com/torvalds/linux.

[21] Linux ftrace. https://www.elinux.org/Ftrace. 2018.
[22] Linux Kernel Map. https://makelinux.github.io/kernel/

map/.
[23] Linux kernel memory management Part 1: Introduction.

https://0xax.gitbooks.io/linux-insides/content/MM/
linux-mm-1.html.

[24] Linux kernel memory management Part 2: Fix-Mapped
Addresses and ioremap. https://0xax.gitbooks.io/linux-
insides/content/MM/linux-mm-2.html.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Build-
ing Customized Program Analysis Tools with Dynamic
Instrumentation”. In: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation. PLDI ’05. Chicago, IL, USA:
Association for Computing Machinery, 2005, pp. 190–
200. URL: https://doi.org/10.1145/1065010.1065034.

[26] Jonas Maebe, Michiel Ronsse, and Koen De Boss-
chere. “DIOTA: Dynamic Instrumentation, Optimiza-
tion and Transformation of Applications”. eng. In:
Compendium of Workshops and Tutorials Held in con-
junction with PACT’02: International Conference on
Parallel Architectures and Compilation Techniques /
Charney, M.; Kaeli, D. (eds.), Charlottesville, Va, 2002.
2002.

[27] Larry McVoy and Carl Staelin. “lmbench: Portable
Tools for Performance Analysis”. In: Jan. 1996,
pp. 279–294.

[28] memleak-bpfcc(8) — bpfcc-tools — Debian unstable —
Debian Manpages. URL: https://manpages.debian.org/
unstable/bpfcc-tools/memleak-bpfcc.8.en.html.

[29] Ingo Molnar. LKML: Ingo Molnar: Kernel/Timer.c De-
sign (Was: Re: Ktimers Subsystem). 2005. URL: https:
//lkml.org/lkml/2005/10/19/46.

[30] Eduard Gabriel Munteanu. Documenta-
tion/vm/kemtrace.txt. https://lwn.net/Articles/327579/.

https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://github.com/aclements/mtrace
https://github.com/aclements/mtrace
https://doi.org/10.1145/2699681
https://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html
https://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html
https://elinux.org/Kernel_Timer_Systems
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://doi.org/10.1145/2483760.2483769
https://github.com/google/syzkaller
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
https://www.kernel.org/doc/html/v3.13/dev-tools/kasan.html
https://www.kernel.org/doc/html/v3.13/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.10/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/v4.10/dev-tools/kmemleak.html
http://doi.acm.org/10.1145/775265.775268
http://doi.acm.org/10.1145/775265.775268
https://github.com/torvalds/linux
https://www.elinux.org/Ftrace
https://makelinux.github.io/kernel/map/
https://makelinux.github.io/kernel/map/
https://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-1.html
https://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-1.html
https://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://doi.org/10.1145/1065010.1065034
https://manpages.debian.org/unstable/bpfcc-tools/memleak-bpfcc.8.en.html
https://manpages.debian.org/unstable/bpfcc-tools/memleak-bpfcc.8.en.html
https://lkml.org/lkml/2005/10/19/46
https://lkml.org/lkml/2005/10/19/46
https://lwn.net/Articles/327579/

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Roessler and Dautenhahn, et al.

[31] Nicholas Nethercote and Julian Seward. “Valgrind: A
Framework for Heavyweight Dynamic Binary Instru-
mentation”. In: Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation. PLDI ’07. San Diego, California,
USA: ACM, 2007, pp. 89–100. URL: http://doi.acm.
org/10.1145/1250734.1250746.

[32] D. L. Parnas. “On the Criteria to Be Used in Decompos-
ing Systems into Modules”. In: Commun. ACM 15.12
(Dec. 1972), pp. 1053–1058. URL: http://doi.acm.org/
10.1145/361598.361623.

[33] Manfred Paul. CVE-2020-8835: Linux Kernel Privi-
lege Escalation via Improper eBPF Program Verifica-
tion. 2020. URL: https://www.thezdi.com/blog/2020/4/
8/cve-2020-8835-linux-kernel-privilege-escalation-
via-improper-ebpf-program-verification.

[34] Phoronix Test Suite. https://www.phoronix-test-suite.
com. 2018.

[35] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P Kemerlis, and Michalis Poly-
chronakis. “xMP: selective memory protection for ker-
nel and user space”. In: 2020 IEEE Symposium on
Security and Privacy (SP). IEEE. 2020, pp. 563–577.

[36] S.R. Schach, B. Jin, D.R. Wright, G.Z. Heller, and A.J.
Offutt. “Maintainability of the Linux Kernel”. In: IEE
Proceedings - Software 149.1 (Feb. 2002), pp. 18–23.

[37] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K.
Lesiak, and G. Carle. “Performance Implications of
Packet Filtering with Linux eBPF”. In: 2018 30th In-
ternational Teletraffic Congress (ITC 30). Vol. 01. Sept.
2018, pp. 209–217.

[38] Ben Schoon. Google calls out Samsung for ’unneces-
sary’ changes to Android’s kernel. 2020. URL: https:
/ / 9to5google . com / 2020 / 02 / 14 / google - samsung -
android-kernel-changes-security/.

[39] Julian Seward and Nicholas Nethercote. “Using Val-
grind to Detect Undefined Value Errors with Bit-
Precision”. In: Proceedings of the Annual Conference
on USENIX Annual Technical Conference. ATEC ’05.
Anaheim, CA: USENIX Association, 2005, p. 2.

[40] Sparse. https://www.kernel.org/doc/html/latest/dev-
tools/sparse.html.

[41] strace(1) - Linux manual page. URL: http://man7.org/
linux/man-pages/man1/strace.1.html.

[42] The Undefined Behavior Sanitizer - UBSAN. https :
//www.kernel.org/doc/html/v4.11/dev-tools/ubsan.
html.

[43] Michael Whalen, Gregory Gay, Dongjiang You, Mats
Heimdahl, and Matt Staats. “Observable Modified Con-
dition/Decision Coverage”. In: May 2013.

[44] John Whaley and Martin Rinard. “Compositional
Pointer and Escape Analysis for Java Programs”. In:

ACM SIGPLAN Notices 34.10 (Oct. 1, 1999), pp. 187–
206. URL: https://doi.org/10.1145/320385.320400.

http://doi.acm.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://9to5google.com/2020/02/14/google-samsung-android-kernel-changes-security/
https://9to5google.com/2020/02/14/google-samsung-android-kernel-changes-security/
https://9to5google.com/2020/02/14/google-samsung-android-kernel-changes-security/
https://www.kernel.org/doc/html/latest/dev-tools/sparse.html
https://www.kernel.org/doc/html/latest/dev-tools/sparse.html
http://man7.org/linux/man-pages/man1/strace.1.html
http://man7.org/linux/man-pages/man1/strace.1.html
https://www.kernel.org/doc/html/v4.11/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v4.11/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v4.11/dev-tools/ubsan.html
https://doi.org/10.1145/320385.320400

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Memorizer Design and Implementation
	3.1 Design Principles
	3.2 Overview
	3.3 Object and Memory Management
	3.4 Complete Object Tracing
	3.5 Access Tracing
	3.6 Call Tracing
	3.7 Concurrency Control
	3.8 Control and Serialization

	4 Experimental Methodology
	5 Performance Evaluation
	6 Uses
	6.1 Refactoring and Maintenance
	6.2 Leaky Abstractions Analysis
	6.3 Testing: Coverage Metric

	7 Conclusion
	Acknowledgments

