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Abstract—We study the problem of transmitting a message
over a channel that randomly breaks the message block into small
fragments, deletes a subset of them, and shuffles the remaining
fragments. We characterize the capacity of the binary torn-
paper channel under arbitrary fragment length distribution and
fragment deletion probabilities. We show that, for a message with
block length n, discarding fragments shorter than log(n) does
not affect the achievable rates, and that the capacity is given
by a simple closed-form expression that can be understood as
“coverage minus reordering-cost”.

I. INTRODUCTION

Consider the problem of transmitting a message by writing it
on a piece of paper, which is then torn up into pieces of random
sizes. Some of these pieces are lost (randomly, depending on
their size in general) and the remaining pieces are shuffled.
This problem is a generalisation of the Torn Paper Channel
(TPC) introduced in [1], which is motivated by DNA-based
data storage [2—7]. In DNA-based storage, data is written onto
synthesized DNA molecules, which are then stored in solution.
During synthesis and storage, molecules in the solution are
subject to random breaks. Moreover, when retrieving the data
via sequencing, molecules are read in a random order, and
many fragments are lost [8].

Concretely, we study a TPC where the input is a length-
n binary string and a “tearing” occurs between any bits
with some probability. A sequence of i.i.d. random variables
N1, Ns, ... determine the length of the fragments obtained.
Moreover each piece can be independently deleted with a
probability d. In general, we allow d to be a function d(-) of
the fragment length NN;. The channel output is an unordered
multiset of all the fragments that remain. The torn-paper
channel with lost pieces is illustrated in Figure 1.

In order to build up some intuition, we consider two
previously established results. The first one is the capacity of
the shuffling channel [9]. The input to the shuffling channel are
strings of a fixed length, which are shuffled. Let us define the
expected fragment length to be E[N;] = £,,. We now consider
a shuffling channel with a fixed length ¢,, (which is actually
just a special case of the TPC with N; = ¢,,). The results in
[9] imply that the capacity of this shuffling channel is

. logn +
Cohus = <1 lim & ) s (D

n—oo {p,

where (z)* £ max(0,z). As explained in [9], the term
(logn) /4, can be understood as the fraction of bits in each
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length-/,, fragment that must be used for a unique index, which
allows the reordering of the shuffled fragments.

The second relevant result is the capacity of the TPC with
no fragment deletions, in the special case where the fragment
lengths are N; ~ Geometric(1/¢,,) [1], which is given by

CTPC = exp (— lim 1O€gn> . (2)

n—oo n

By letting o = lim,_,(logn)/l,, we see that Crpc =
€% > (1 — &)™ = Cspy. This is surprising because, in the
case of random fragment lengths, it is not possible to place
a unique identifier at the beginning of each fragment, as the
tearing locations are not known a priori. Moreover, the results
in (1) and (2) feel qualitatively different, and it is not clear
how to reconcile these two capacity expressions.

The main result in this paper generalizes the capacity of
the TPC to (i) accommodate the case of lost fragments with
a general deletion probability function d(-) and (ii) allow any
distribution for the fragment length N;, as long as some mild
regularity conditions hold. In Section III we obtain closed form
expressions for various choices of d(-) and N;. Moreover, in
doing so we provide a capacity expression that allows us to
reconcile (1) and (2). More precisely, we prove that discarding
fragments of length logn or shorter at the output does not
affect the capacity, and that the capacity of the TPC with Lost

Torn Paper Channel

ifs

N;
—
—

/

ﬂ
i

o &3
— o

Fragment Deletion

|
o %o
= ==

W

—
 —

O
#o

Fig. 1. The torn-paper channel with lost pieces.
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Pieces (TPC-LP) is given by
Crpc.Lp = coverage — reordering cost, 3)

where “coverage” represents the fraction of the original length-
n string that is covered by the output fragments (after discard-
ing those shorter than logn), and “reordering cost” represents
the fraction of the output fragments that would need to be
dedicated for the placing of a unique index if we knew the
tearing locations and were able to do so. Surprisingly, it turns
out that the reordering cost does not change even when the
tearing points are unknown. As a consequence we can state
that Ctpc.Lp = 0, whenever N; < logn with probability 1.

Consider the capacity expression for the deterministic case

with fragments of length ¢,, > logn and no lost fragments.
Notice that the coverage for this case is 1, since all the
fragments are retained. Now the reordering cost is the fraction
of bits in each length-/,, piece used for indexing purposes
given by lim,,—, logn/l, = « as discussed before. Thus
our result "coverage — reordering cost", yields (1) as a special
case. Similarly, the result in [1] for a TPC with geometric
piece lengths and no lost fragments is a special case of (3).
More specifically, for the setting in [1] the coverage can be
calculated as (14 «a)e~® and the reordering cost can be shown
to be ae™“, which yields (2).
Related Work: Several recent papers have proposed new code
constructions based on unique aspects of DNA data storage.
Some of these works focus on DNA synthesis constraints such
as sequence composition [6, 10, 11], the asymmetric nature of
the DNA sequencing error channel [12], the need for codes
that correct insertion errors [13], and the need for techniques
to allow random access [11].

Also motivated by DNA-based storage, the problem of
coding across unordered sets (of strings or points in a vector
space) has recently received considerable attention [9, 14-20].
A channel that breaks the message down to its symbols and
shuffles them was also studied in the context of the noisy
permutation channel [21].

II. PROBLEM SETTING

We consider the TPC-LP as shown in Figure 1. The trans-
mitter encodes a binary codeword X™ € {0, 1}", correspond-
ing to the message W € [1 : 2"%%]. The channel output is a
set of binary strings ). The process by which ) is obtained
from X" is described as follows: The channel first breaks the
input sequence into pieces of a random length. Specifically,
define Ny, No,... to be i.i.d. random variables. We assume
E[N;] = ¢, ¥V i. Let K be the smallest index such that
Zfil N; > n. Note that K is also a random variable. The
channel tears the string X,, into Xl, XQ, e ,X K Where

V. 2 )

V. A
i 2 Xy

’XZ§:1 NJ and
X
We define the (unordered) multiset )’ as

y/:{X17X27"'aXK}' (4)

The multiset y; is defined as follows. Each element XZ is
removed from the set )’ with probability d(N;). The new set
obtained is V). The output of the channel is J = ).

Note here that there are no bit-level errors (erasures or bit-
flips). Moreover /,, in general depends on the value of n.

For the purposes of this paper we assume (i) the limit o £
lim,,— o logn /¢, exists, a € (0,00) and (ii) E[N?/(logn)?]
is finite and bounded for all n. Our results hold irrespective of
the first assumption (i.e. when o = 0, c0), but would require
different steps to prove. Let £ be the event that the decoder
makes an error.

Definition 1. The capacity C is the supremum of rates R
such that there exists a sequence of encoder-decoder pairs
with P(£) — 0 as n — oo.

Notice that C' is a function of the sequence {1/¢,,}22 ;.

Notation: log(-) represents the logarithm in base 2. For func-
tions a(n) and b(n), we say a(n) = o(b(n)) if a(n)/b(n) —
oo. For an event A, we let 14 be the binary indicator of A.

III. MAIN RESULTS

Intuitively, the capacity of the TPC-LP should be affected
by two distinct sources of uncertainty: (i) some of the pieces
(which potentially carry information) are discarded by the
channel and (ii) the remaining pieces are observed as an
unordered set. As it turns out, (i) will be captured in the
capacity expression by a quantity that represents the fraction
of bits in X" retained at the output, which can be written as

1 K
~Y Nilizeyy )
i=1
The limit as n — oo of the expected value of (5) turns out to
be fundamental in calculating the capacity of the TPC-LP.

Definition 2. The coverage ® is defined as

K
A 1 1
®, £ lim B lnz;N"l{)?ieyé} . (6)

The capacity of the TPC-LP will also involve a quantity that
captures (ii). To build intuition, let us imagine a channel where
the tearing points and the set of pieces that are discarded are
known a priori. For this channel, to preserve the ordering, a
simple coding scheme is to include an index at the beginning
of each fragment. There are = n/{,, pieces. We therefore need

log (n/¢,) = logn —log ¥, @ logn — o(logn)

bits per piece for indexing, where (a) holds since a € (0, c0)
and ¢,, = «/ log n asymptotically. Therefore for a fragment X,
that exists in ), logn bits are needed for indexing. This can
be succinctly written as 1 (Riev} logn. As it turns out this
“reordering-cost” remains unchanged even when the tearing
locations are not known. The empirical average of this quantity
also plays a key role in the capacity of the TPC-LP.
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Definition 3. The reordering cost Qg is defined as

K
logn
. Zl{)ﬁ-ey;}} : 0
i=1

We now state our main result.

Qgéli_r>nE

Theorem 1. The capacity of the TPC-LP is
C=o;—Q; (8)

1 for x <logn

d(x) for x >logn’

where d(x) = {

The capacity expression is “coverage — reordering cost,”
which intuitively is the fraction of bits that carry information
about the message. Notice that the use of d € [0, 1] instead
of d in the coverage and reordering cost computations implies
the surprising fact that pieces of size < logn do not contribute
to improving the capacity of this channel. The following
corollary allows us to compute the capacity numerically.

Corollary 2. The capacity of the TPC-LP is equivalently
C=a[ G-n(i-d@)neis  ©
1

where we define J(B) 2 lim, 00 d(Blogn) and h(B) =
lim,, oo Pr(N7 = Blogn)logn, provided the limits exist.

We prove Corollary 2 in section VI. Note that the result
in [1] can be obtained by taking d(3) = 0, which implies
that no pieces are lost. Table I shows the capacity expression
evaluated for several choices of N; and ci( -). In the next two
sections, we prove Theorem 1.

TABLE 1
CAPACITY EXPRESSIONS

) | N; | nB | Crpc.Lp

0 Geometric(1/4y,) ae P e @

€ Geometric(1/4y) ae~B (1—¢e
e—B Geometric(1/£y,) ae— B | e~ (1 — &2‘?;})

0 Ul0:ylogn], v > 1 1/ ((v=1)/7)

0 Fixed(£n,), £n > logn | NA! 1—a

L h(-) does not exist, hence we directly employ Theorem 1.

IV. CONVERSE
In order to prove the converse, we partition the set ) into
sets that contain pieces of roughly the same length. This allows
us to view the TPC-LP as a set of parallel channels that process
pieces of roughly the same length. More precisely we define

k

yké{)?iey: LllognSNi<ilogn}, (10)
where L is a fixed integer. We then split the set of “channels”
into two sets, one with pieces of smaller sizes and the other
with larger sizes. Specifically, we fix another integer J > L,
and define V> ; = {X;: N; > (J/L)logn}. Then, by Fano’s
inequality, we have

< 1imM

R< lim {E"Y)
n—oo n

n—00 n

< lim
n—roo n
k=1

L7 (11
n

where (a) holds from the independence bound on partition
V= (U_ 1Y) UYV>,.

The idea is that for fixed large values of J the second term
in equation (11) is arbitrarily small. We will now use the fact
that || concentrates around its mean to tackle the first term
in (11). To that end, we define the event B = {X; € )} and

k—1 k
Qk,n:Pr( i logn < Ny < Llogn)
k—1

k
ekn = Pr (B’ logn < Ny < ngﬂ) . (12)

Additionally, we define the event
gk,n = {||yk| - nqk,nek,n/6n| > 6nn/gn}
We establish that || concentrates in the following lemma.

Lemma 3. For ¢, > 0 and n large enough,

8e2 ¢y,
Pr(Epn) < 270/ (20) 4 9~ TE ", (13)

We provide the proof of this lemma in the longer version of
this manuscript [22]. The lemma indicates that with high prob-
ability, || is close to ngk nekn/ln. We set €, = 1/logn,
ensuring that ¢, — 0 and Pr(&y,,) — 0 from Lemma 3. Then

H(yk) < H(ykvlfkm,) <1l+ H(yk|15k-,,n)

<1+ 2nPr(Ekp) + H(Vk|Ekm)- (14)

Here we loosely upper bound H (Vi |Ex,n) with 2n since Yy, is
fully described by X" and n — 1 binary variables that indicate
whether there is a tear between the (¢ — 1)th and ith bits. We
now need to upper bound H (Y |Ek. ). We first note that the
total number of possible distinct sequences in ), are

%logn
S 20 <22Flogn = 20M/E, (15)
i:%logn
Now given &,
|yk| S M = (en + qk,nek,n) n/gn (16)

Following the counting argument in [14], we note that the
set V). can be viewed as a histogram over 2n*/L sequences.
Moreover, we can view the last element of the histogram as
containing “excess counts” if |Vi| < M, so that the sum of
the histogram entries is exactly M. This allows us to bound
the term H (Vi |Ex.n) as

- 2nk/L 4 M —1
H(YVi|Ekn) <log ( Y >

e(2n®/L 4 M — 1)
<M1
g (2
= M(log(2n*/t + M — 1) + loge — log M)

a k
@ [max(L logn, log M> +loge — log M + P}
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+
[ logn—logM) +loge + P|,
A

where P

a = max(b, d) + min(c, e). From (14), this implies that

H(yk) < 1+ 2nPr(5k,n) + H(yk|zk,n)
n - n
M [k +
< ([ Z _
< (Llogn logM> + A(k,n)

Mlogn (k  logM +
< - — A(k
- n (L logn > +Alk,n)
(@) Mlogn [k *
< - -1 A(k
- n (L ) + Ak, n)
N M lognlog (¢, logn)
n
1 k N
S Ogn(en + qk,nek,n) ( - 1) + A(ka n)
Ly L
n (en +1) l(;g (¢, logn) log n
n

where A(k,n) £ L +2Pr(&;, ) +

bound 377_, % as follows:

J +
yk) a) logn k
Z = gn Z qk,nCk.n Z -1 + A(n)

k= k=1
k
Z qk,n€k,n E -1)+ A(TL)
" k=L+1
®) logn = k logn
é én Z qu,nek,n + A(TL) - en E[]-BL
k=L+1

where in (a) we define

J
éz (en + 1) log (¢, logn)log (n)
n

k=1
J

+Zen (—1) —|—ZJ:A(k,n).

(b) holds if we define the event B = {X,; € Y’} and note

that >~ 41 9k n€k,n = E[13]. The first term in (19) is

logn = k
Zn Z qu,nek,n
k=L+1

oo
= Z B [% lognlpg
k=L+1
© S g g [Ny 1,| 2
- Z , 118 logn ©

k=L+1

ML [ 1,k)}

logn

[k — 1,k)]

+ > Zep [s(Vi)1p| Rk e
k=L+1

[k — 1,k)]

min log(2+ k/L) log(l +2n /L 1)) . In
step (a) we employ the fact that if a = b+ ¢ = d + e, then

M (loge + P). (a) follows
from the definition of M and €, = 1/logn. This allows us to

E N 1z
E[N11g] + Z fsz[ (Ny)1p| X logn [k—l,k)}
k=L+1
(20)
where, in (a), we define 6(N1) £ £logn — Nj.
Note that given 271 logn < Ny < £logn,
5(N1) < (logn)/L. e

The second summation in (20) can be upper bounded as

1

oo

o 2. EB(N)p| 5k € [k = 1,K)
" k=L+1
(@) logn
< BN S B ML ¢ (k- 1, k)
" k=L+1
logn < ®) logn
<Y s o (22)
" k=L+1 n

where (a) follows from (21) and (b) follows because ¢ is a
probability mass function over k € {0,1,2,...}.

In summary equations (19)-(22) show that
H(yk) E[Nllé] logn

logn
= — E[l;
n 4, n [ B]+ 0, L

+ A(n).
(23)
Lemma 4 formalizes H(Y>;)/n being bounded as n — oo.

Lemma 4. The entropy of the set V> j is upper bounded as

H
i A0%20) (S\/L/J + 5) ,
n—oo n
for some finite S, and every J, L and § > 0.

Lemma 5 shows that A(n) vanishes as n — oo.
Lemma 5. The value of A(n) as n — oo is given by

o3, Aln) =

We defer the proof of Lemmas 4 and 5 to a longer version

of the paper [22]. From (11) and (23), we get

) E[Ni15] logn H(Y>)
. logn
+ lim (0L
(@)
< 0 —Qd+2(5\/L/ +5) /L, (24)

where (a) is due to Lemmas 4 and 5, followed by Definitions 2
and 3. Note here that the equivalence between the terms in
(24) and Definitions 2 and 3 are implied by Lemmas 6 and
7 (which we state in the next section). Further, note that (24)
holds for all integers J > L and any > 0. We can thus
pick L = logJ and let 6 — 0 and J — oo. This proves the
converse part of Theorem 1.

This also proves that pieces of size < logn are futile in
increasing the achievable rates. This fact is used in the next
section while designing a decoder.
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V. ACHIEVABILITY

We use a random coding argument to prove the achievability
of Theorem 1. We generate a codebook C with 2% codewords,
by independently picking each letter as Bern(1/2). Let the
resulting random codebook be C = {x1,Xa, ..., Xgnr }.

Assume that W =1 is the message that is transmitted. The
output ) is available at the decoder. We follow steps similar
to [1], but with considerable generalisation. We choose a sub-
optimal decoder, which throws out all substrings of size <
log n. The set obtained is precisely y(’j. If elements of y('z exist
as non-overlapping substrings in some X;, then the decoder
declares the index of that codeword as the message. We bound
the probability of error averaged over all codebook choices as

Pr(&) =Pr(E|W =1)

=Pr(3 z; :j # 1 contains all € y&\W =1) (25)

We now state two lemmas (the proofs of which are available in
[22]) that are crucial to prove the achievable part of Theorem 1.
They provide us with a concentration on the coverage and
reordering cost. This intuitively can be used to bound the
probability of error by restricting the possibility of the value
of coverage being too high or the reordering-cost too low.

Lemma 6. For any ¢ > 0,

.

as n — oQ.

LS N, - ENts)
n PH{X eV} ‘,

=1

> e> -0, (26

Lemma 7. For any € > Q,

K
nk[1g]
Pr ( > Nzieyy — 0
1=1
as n — oQ.

Now we let By = (14¢)222ed and B, = (1—¢) 2N Ler]
and define the event

K K
1
B = {Zl{iiey:;} > Bl}U{nZ;Nil{X:ieyé} < 32} .

i=1
(28)

> Z&) 50, @)

Lemmas 6 and 7 imply that Pr(B) — 0 as n — co. Therefore

Pr(€) = Pr(3 z; contains all elements in Y'|W = 1)
< Pr(3 z; contains all elements in Y'|W = 1, B)
+ Pr(B)

nb

5 + Pr(B)

S 2nR2Bl logn27nBQ + 0(1)

(@)
< Ic]

Inequality (a) follows from the Union Bound and the fact that
given B, there are at most n”' ways to align )’ to a codeword
x;. To see this note that, given |y&| < By, there are at most n
places the fragments can start from to align each piece and at
most B, such pieces. Since a non-overlapping alignment of the
strings in y& to a codeword x; covers at least nB; positions of

x;, the probability that it matches x; on all covered positions
is at most 2752, Now Pr(€) — 0 if

R< lim ((1 = e)%ilé] _a +6)E[1ilog”>
=(1-60;— (1460

Letting ¢ — 0 we obtain B < ®; — ;. This proves the
achievable part of Theorem 1.

(29)

VI. PROOF OF COROLLARY 2

Corollary 2 provides us with an expression to numerically
compute the TPC-LP capacity for certain classes of fragment
length distributions (JV;). Intuitively it holds for distributions
of N; which have a continuous analog (for example the
geometric or uniform distributions). We proceed as follows:

C—a,-Q, @ i (E[J\Zlg] B logngff[lg]>

= lim (logn/t,) lim E [(lé\;ln - 1> 13]

=a lim E {(15\;1” - 1) E [1B|N1]]

=a lim 3 (lozn - 1) (1 — d(z))Pr(Ny = z).
z=logn

Note in (a) we use the equivalent definition of coverage that
we employed in (24). Now we substitute © = Slogn in the
above equation, where 8 € {1,1 + @, 1+ ﬁ, Y2
Then we have

C= %%BZQ (8—1) (1 — d(Blog n))Pr(Ny = Blogn)
S

- anh—gnooﬁzg(ﬂ - 1) (1 - (Z(ﬂlogn))w%flogn)An
@ a/:O(ﬂ 1)(1 — d(B))h(B)dp, 0

where lim,,—yo, Pr(N; = Blogn)logn £ h(B) and A, =
B+ 1/logn — B. (a) follows from the definition of Riemann
integration. This result holds when h(f) exists and is finite.

VII. CONCLUSION

We have shown that the capacity of a TPC-LP can be
expressed as “coverage — reordering cost” (after throwing
out fragments of size < logn), where the channel deleted
entire fragments randomly. It would be worthwhile to compare
the effect of these fragment-level erasures to that of bit
level erasures, where each bit is erased independently with a
probability e. This is essentially concatenating a binary erasure
channel to the TPC-LP. Finding capacity expressions for this
case is not straightforward and is the subject of future work.
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