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Abstract—A spatiotemporal reachability query identifies
whether a physical item (or information, virus etc.) could have
been transferred from the source moving object OS to the target
moving object OT during a time interval I (either directly,
or through a chain of intermediate transfers). Previous work
on spatiotemporal reachability queries, assumes the transferred
information remains the same. This paper introduces a novel
reachability query under the scenario of information decay. Such
queries arise when the value of information (virus load etc.)
that travels through the chain of intermediate objects decreases
with each transfer. To address such queries efficiently over large
spatiotemporal datasets, we introduce the RICCdecay algorithm.
An experimental evaluation shows the efficiency of the proposed
algorithm over previous approaches.

Index Terms—spatio-temporal data, reachability queries.

I. INTRODUCTION
Answering reachability queries on large spatiotemporal

datasets is important for a wide range of applications, such
as security monitoring, surveillance, public health, epidemi-
ology, social networks, etc. Nowadays, with the perpetuation
of Covid-19, the reachability and trajectory analysis are as
important as ever, since efficient contact tracing helps to
control the spread of the disease.

Given two objects OS and OT , and a time interval I ,
a spatiotemporal reachability query identifies whether infor-
mation (or physical item etc.) could have been transferred
from OS to OT during I (typically indirectly through a chain
of intermediate transfers). The time to exchange information
(or physical items etc.) between objects affects the problem
solution and it is application specific. An ‘instant exchange’
scenario (where information can be instantly transferred and
retransmitted between objects) is assumed in [1], but may not
be the case in many real world applications. On the other
hand, [2] and [3] consider two reachability scenarios without
the ‘instant exchange’ assumption: reachability with process-
ing delay and transfer delay. After two objects encountered
each other, the contacted object may have to spend some
time to process the received information before being able to
exchange it again (processing delay). In other applications, for
the transfer of information to occur, two objects are required
to stay close to each other for some period of time (transfer
delay); we call such elongated contact a meeting. To contract
the virus, one has to be exposed to an infected person for a
brief period of time; to exchange messages through Bluetooth,
two cars have to travel closely together for some time.

The problems discussed above had a common feature: the
value of information carried by the object that initiated the

information transmission process and the value of informa-
tion obtained by any reached object was assumed to remain
unchanged. In this paper, we remove this assumption, since
for some applications it may not be valid. For example, if
two persons communicate over the phone (or a Bluetooth-
enabled device), some information may be lost due to faulty
connection. We introduce a reachability with transfer decay
problem, where the value of the transmitted item experiences
a decay with each transfer. Note that we will still assume the
transfer delay scenario as this is more realistic.

In this paper, we present algorithm RICCdecay, that can
efficiently compute reachability with transfer decay queries
on large spatiotemporal datasets. More details and query
extensions within this decay framework appear in [4]. The rest
of the paper is structured as follows: Section II is an overview
of related work, Section III defines the problem. Sections IV
and V describe the preprocessing and query processing of
RICCdecay. Section VI contains the experimental evaluation
and Section VII concludes the paper.

II. RELATED WORK

Graph Reachability. A large number of works is proposed
for the static graph reachability problem. They are categorized
in [5] as those, that use: (i) transitive closure compres-
sion [6], [7], (ii) hop labeling [8], [9], and (iii) refined online
search [10], [11]. In our model, the reachability question can
be represented as a variation of a shortest path query. The
state-of-the-art algorithm for solving shortest path problems
on road networks is Contraction Hierarchies (CH) [12].
Evolving Graphs. In [13], an external hierarchical index
structure is used for efficient storing and retrieving of historical
graph snapshots. For large dynamic graphs, [14] constructs a
reachability index, based on labeling, ordering, and updating
techniques.
Spatiotemporal Databases. A survey on spatiotemporal ac-
cess methods appears in [15]. Such indexes often involve some
variation on hierarchical trees [16]–[18], some form of a grid-
based structure [19], or indexing in parametric space [20], [21].
The existing spatiotemporal indexes support traditional range
and nearest neighbor queries Recently complex queries have
focused on identifying the behavior and patterns of moving
objects (i.e., flocks, ROIs, clusters) [22]–[25].
Spatiotemporal Reachability Queries. The first disk-based
solutions for the spatiotemporal reachability problem, Reach-
Grid and ReachGraph appeared in [1]. These are indexes on



the contact datasets that enable faster query times. ReachGraph
makes the assumption that a contact between two objects can
be instantaneous, which allows it to be smaller in size and thus
reduces query time. ReachGrid does not have this assumption.

In [2], two novel types of the ‘no instant exchange’ spa-
tiotemporal reachability queries were introduced: reachability
queries with processing and transfer delays (meetings). The
proposed solution to the first type utilized CH [12] for path
contraction. Later, [3] considered the second type of delays
and introduced two algorithms, RICCmeetMin and RICCmeet-
Max. To reduce query processing time, these algorithms pre-
compute the shortest valid (RICCmeetMin), and the longest
possible meetings (RICCmeetMax) respectively. Neither one
of them can accommodate reachability queries with decay.

III. PROBLEM DESCRIPTION
A. Background

Let O = {O1, O2, ..., On} be a set of moving objects,
whose locations are recorded for a long period of time at
discrete time instants t1, t2, ..., ti, ..., with the time interval
between consecutive location recordings ∆t = tk+1 − tk
(k = 1, 2, ...) being constant. A trajectory of a moving object
Oi is a sequence of pairs (li, tk), where li is the location
of object Oi at time tk. Two objects, Oi and Oj , that at
time tk are respectively at positions li and lj , have a contact
(denoted as < Oi, Oj , tk >), if dist(li, lj) ≤ dcont, where
dcont is the contact distance (a distance threshold given by the
application), and dist(li, lj) is the Euclidean distance between
the locations of objects Oi and Oj at time tk.

The reachability with transfer delay scenario requires to dis-
cretize each [tk, tk+1) by dividing it into a series of non-
overlapping subintervals of equal duration ∆τ = τi+1 − τi,
such that τ0 = tk and τr = tk+1. Two objects, Oi and Oj ,
had a meeting < Oi, Oj , Im > during Im = [τs, τf ] if they
had been within dcont from each other at each τk ∈ [τs, τf ].
The duration of this meeting is m = τf − τs. A meeting
is valid if m ≥ mq∆τ (where mq is the query specifies
required meeting duration - time, needed for the objects to
complete the exchange). Object OT is (mq)-reachable from
object OS during time interval I = [τ ′s, τ

′
f ], if there exists

a chain of subsequent valid meetings < OS , Oi1 , Im0 >,
< Oi1 , Oi2 , Im1

>, ... ,< Oik , OT , Imk >, where each
Imj = [τsj , τfj ] is such that τfj − τsj ≥ mq , τ ′s ≤ τs0 ,
τfk ≤ τ ′f , and τsj+1

≥ τfj for j = 0, 1, ..., k−1. A reachability
query determines whether the target object OT is reachable
from the source object OS during time interval I .

Consider the example in Fig. 1. Table (a) shows the actual
meetings between all objects during one time block, which is
given as a meetings graph in (b). A materialized reachability
graph shows how the information is being dispersed. Suppose,
O1 is the source object and mq = 2∆τ . Then graph G2 in
(c) is the materialized (mq)-reachability graph for O1 on data
from (a). By looking at G2, one can discover all objects that
can be (mq)-reached by O1 during the time interval [τ0, τ8].
B. Reachability with Decay

In the reachability with transfer delay scenario, to complete
the transfer, it is necessary for the objects to stay within

the contact distance for at least mq time units. Under some
circumstances, the transfer may still fail to occur, or the value
of the transferred item may go down. We consider a new
type of reachability scenario, namely reachability with transfer
decay, that accounts for such events.

Let d denote the rate of transfer decay - a part of infor-
mation lost during one transfer (d ∈ [0, 1)). Then p = 1 − d
(p ∈ (0, 1]) will define the portion of the transfered infor-
mation. Suppose, the weight of the item carried by a source
object OS is w. Then, during a valid meeting, OS can transfer
this item to some object Oi. However, considering the decay,
if d > 0, the value of information, obtained by Oi lessens
and becomes wp. With each further transfer, the value of the
received item will continue to decrease. This process can be
modeled with an exponential decay function.

We denote the number of transfers (hops), that is required to
pass the information from object OS to object Oi as h (h ≥ 0).
If Oi cannot be reached by OS , h =∞. Let gw : R→ R be a
function that calculates the weight of an item after h transfers.
Assuming that the transfer decay d and thus p are constant for
the same item, gw(h) can be defined as follows:

gw(h) = wph. (1)
The number of transfers h in (1) depends on the time when

it is being evaluated, and denoted as h(O
τj
i ). Consider Fig. 1:

O1 can reach O3 by τ = 6 with 3 hops, while it requires only
1 hop to reach O3 by τ = 8. So, h(Oτ63 ) = 3 and h(Oτ83 ) = 1.

The case with p = 1 corresponds to the reachability with
transfer delay problem [3]. If p < 1, the value of gw(h)
decreases exponentially with each transfer. Let ν denote the
threshold weight. If after some transfer, the weight of the item
becomes smaller than the threshold weight ν, we disregard that
event by assigning to the newly transferred item the weight of
0. We say, that h is the allowed number of hops (transfers) if
it satisfies the threshold weight inequality

gw(h) ≥ ν. (2)
We denote the maximum allowed number of transfers that

satisfies inequality (2) as hmax. Let fw : R→ R be a function
that assigns the weight to an item carried by object Oi at time
τj , and denote it as fw(O

(τj)
i ). (For brevity, we say ‘the weight

of object Oi at time τj’.) We define fw(O
(τj)
i ) as follows:
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Fig. 1: (a) Record of meetings; (b) G1-meetings graph; (c) G2-
materialized reachability with ‘transfer delay’ graph; (d) G3-
materialized reachability with ‘transfer decay’ graph; (source
object O1, mq = 2∆τ , d = 0.2, ν = 0.6, I = [τ0, τ8]).
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Fig. 2: The actual weight of an item gw and its assigned
weights fw1

and fw2
, calculated on data from Table 1(a) (sour-

ce object O1, p = 0.8, ν = 0.6 for fw1
and ν = 0.7 for fw2

).

fw(O
(τj)
i ) =

{
gw(h) if h(O

(τj)
i ) ≤ hmax,

0 otherwise.
(3)

The table in Fig. 1(a) shows the meetings between objects
O1, O2, O3, and O4 during the time interval I = [τ0; τ8]. Here
we assume again that O1 is the source object, mq = 2∆τ and
d = 0.2 ( thus p = 0.8). To illustrate the difference between
the actual weight of an item gw and its assigned weight fw, the
values gw, fw1 , and fw2 are computed for each object at time
instants from τ0 to τ8 and recorded in the table (see Fig. 2).
The values for the assigned weight functions fw1

and fw2
are

computed for ν = 0.6 and ν = 0.7 respectively. The graph
G3 in Figure 1(d) is constructed for fw1

.
Object OT is (mq, d)-reachable from object OS during

time interval I = [τ ′s, τ
′
f ], if there exists a chain of subse-

quent valid and successful (under mq, d conditions) meetings
< OS , Oi1 , Im0 >, < Oi1 , Oi2 , Im1 >, ... ,< Oik , OT , Imk >,
where each Imj = [τsj , τfj ] is such that, τ ′s ≤ τs0 , τfk ≤ τ ′f ,
and τsj+1

≥ τfj for j = 0, 1, ..., k− 1. The earliest time when
OT can be reached is denoted as τR(OT ).

We assume that the values of d and ν are query specified.
An (mq , d)-reachability query Qmd: {OS , OT , w, d, I,mq, ν}
determines whether the target object OT is reachable from
the source object OS , that caries an item whose weight is
w, during time interval I = [τs, τf ], given required meeting
duration mq , rate of transfer decay d, and threshold weight ν,
and reports the earliest time instant when OT was reached.

IV. PREPROCESSING

In order to simplify the presentation, we assume that the
minimum meeting duration µ (µ ≤ mq) is known before the
preprocessing, and set mq = µ, thus fixing it. However, the
proposed algorithm can be extended to work with any query
specified mq by combining it with RICCmeetMax [3].

Suppose, our datasets contain records of objects’ locations
ordered by the location reporting time t. We start by dividing

the time domain into non-overlapping time intervals of equal
duration - time blocks (denoted as Bk). Each Bk contains all
records whose reporting times belong to the corresponding
time period. The number of the reporting times in each block is
the contraction parameter C, which is discussed in Section VI.

Next, for each Bk, the following steps have to be completed:
(i) computing candidate contacts, (ii) verifying contacts (at
each tk), (iii) identifying meetings, (iv) computing reachabil-
ity, and (v) index construction. Steps (i), (ii), (iii), and (v)
are similar to those in [3]; we discuss them briefly, while
concentrating on the most challenging step (iv).

Information regarding each object Oi is saved in a data
structure objectRecord(Oi), which is created at the beginning
of Bk and deleted at the end, after all the needed information
is written on the disk. ObjectRecord(Oi) contains Object id,
Cell id (the object’s placement in the grid with side H when
it was first seen during Bk), ContactsRec and MeetingsRec
(records of the contacts and meetings of Oi during Bk). The
grid side H is a parameter, which is discussed in Section VI.
A. Computing Contacts and Finding Meetings

Two objects Oi and Oj are candidate contacts at time
tk if the distance between them is no greater than dcc =
2dmax + dcont at tk (where dmax is the largest distance that
can be covered by any object during ∆t). Candidate contacts
can potentially have a contact between tk and tk+1. At each
tk we partition the area covered by the dataset into cells with
side dcc. Now all candidate contacts of Oi are in the same
with Oi or neighboring cells.

Assuming that between tk and tk+1 objects move linearly, at
tk+1, we can verify if there were indeed any contacts between
each pair of candidate contacts during [tk, tk+1). If a contact
occurred, it is saved in the list ContactsRec of objectRecord
of each contacted object. If an object Oi had Oj for its contact
at two or more consecutive time instants, these contacts are
merged into a meeting, and written in the MeetingsRec list.
At the end of each Bk, m is computed for each meeting.
All meetings with m < µ (with the exception of boundary
meetings) are pruned, while all the remaining meetings are
recorded into file Meetings. Boundary meetings are recorded
regardless of their duration since they may span more than one
block, which needs to be verified during the query processing.
B. Computing Reachability

To speed up the query time, for each object Oi, we precom-
pute all objects that are (µ, d)-reachable from Oi during Bk.
However, to find, which objects can be (µ, d)-reached by Oi,
we need to know d and ν, which are assumed to be unknown
at the preprocessing time. To overcome this issue, we turn our
problem into a hop-reachability problem.

One of the requirements for object OT to be reachable from
object OS is that each meeting in the chain of meetings from
OS to OT has to be a successful meeting. It follows from (2),
that after each meeting, for each companion object Oi, the
following condition must hold: gw(h) = wph ≥ ν.

Thus, h ≤ logp
ν
w , and finally

hmax = blogp
ν

w
c. (4)
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Fig. 3: Computing (hmin)-reachable objects from O1 (µ = 2).

Now the problem can be stated as follows: for each object
Oi, compute all objects, that are (µ, hmax)-reachable from
Oi. Moreover, for each object Oj reached by Oi, we find the
minimum number of such transfers hmin ≤ hmax.

Our algorithm makes use of plane sweep algorithm. Con-
sider the data in the table (a1) of Fig. 3. It contains records
of actual meetings between all objects during one time block.
(a2)-(a6) describe how reached objects and meetings are being
discovered. The information about the ’reachability’ status of
each object is recorded into a temporary table, which is created
at the beginning of each block. A row is added to the table
for each reached object at the time when it is reached, and
it is updated with any new event. The development of the
reachability table is shown in (b1)-(b6).

We show how to compute all objects reached by object
O1 during the given time block, assuming that µ = 2∆τ .
At the beginning of the block, the sweep line is positioned
at τ = 0, and only O1 is reached (with hmin = 0), which
is recorded in (b1). During the given time block, O1 has
only one meeting, < O1, O3, [0, 3] > which is placed on
the plane (a2). As a result of this meeting, O3 is reached

at time τ = 2, with hmin = 1, which is recorded in (b2).
The sweep line moves to the time τ = 2 - time, when O3

was reached. Next, all meetings of O3 that are either active
at τ = 2 or start after this time, are materialized. These are
meetings < O3, O2, [1, 5] > and < O3, O4, [5, 7] >. Consider
the first meeting: < O3, O2, [1, 5] >. It begins at τ = 1, but
the retransmission does not start until τ = 2, since only at this
time O3 becomes reached. So O2 and O4 become reached at
τ = 4 and τ = 7 respectively, with hmin = 2 ((a3), (b3)).
The line changes its position to τ = 4. This process continues
until the sweep line reaches the end of the time block. Note
that the earliest reached time for an object may change, also
an object’s hmin value may decrease with time. For example,
object O4 was reached by O2 with hmin = 3 at τ = 6 ((a4),
(b4)), however as a result of the meeting with object O3, its
hmin value went down to hmin = 2 at τ = 7 ((a3), (b3)).

Algorithm 1 Reach(hmin)

1: Input: OS
2: procedure UpdateHmin (Oi, τs, τf , h)
3: for for each τk ∈ [τs, τf ] do hmin(O

τk
i ) = h

4: for each Oi do
5: τR(Oi) =∞
6: UpdateHmin(Oi, τ0, τend,∞) . τ0 and τend are the first and last time

units of a block
7: procedure REACHHOP(OS )
8: time = 0, τR(OS) = 0, UpdateHmin(OS , τ0, τend, 0), SPQ = {OS},
SReachHop = {∅}

9: while ((SPQ) 6= {∅} and time ≤ τend) do
10: Oi = ExtractMin (SPQ)
11: SReachHop = SReachHop ∪Oi, time = τR (Oi)
12: for each Oj that had a valid meeting with Oi do
13: if Oj /∈ SReachHop then
14: τRnew(Oj) =∞
15: while τRnew(Oj) ≥ τR(Oj) do
16: read next meeting Mij =< Oi, Oj , [τs, τf ] >
17: compute τRnew(Oj)
18: if τRnew(Oj) < τR(Oj) then
19: Update (SPQ, Oj), h = hmin(O

time
i ) + 1

20: if τR(Oj) =∞ then τR(Oj) = τend+1

21: UpdateHmin(Oj , τRnew, τR(Oj)− 1, h))
22: if (Mij = last meeting < Oi, Oj > in Bk) then
23: τRnew(Oj) = −1
24: return SReached

The process for computing all objects that are (hmin)-
reachable by OS during one time block is generalized in Al-
gorithm 1. Procedure UpdateHmin initializes and then updates
the table that records the reachability status of each reached
object. The SReachHop set keeps all objects for which all hmin
values as well as the earliest reached time had been computed
and finalized. Those objects that were found to be reached,
but not in SReachHop yet, are placed in the priority queue
SPQ, where priority to the objects is given according to their
‘reached’ times. When an object (say object Oi) that has the
earliest reached time (τR(Oi)) is extracted from SPQ, it is
placed into SReachHop (lines 10, 11). At this time, all meetings
of objects that can be reached by Oi (but not in SReachHop)
are analyzed (lines 13 - 23). As a result, τR(Oj) and hmin
may change (lines 19 and 21).
C. Index Construction

The index structure of RICCdecay is similar to the one of
RICCmeet algorithms [3]: to enable an efficient search in the



files Meetings and Reached(Hop) during the query processing,
we create three index files: Meetings Index, Reached Index,
and Time Block Index (Fig. 4).

V. QUERY PROCESSING

The reachability with decay query Qmd is issued in the
form Qmd: {OS , OT , w, d, [τs, τf ], µ, ν}. (Recall that during
the preprocessing, for simplicity, we set mq = µ.) First,
using equation (4), we rewrite the problem as hop-reachability
problem, replacing w, d, and ν from Qmd with hmax. The new
query can be written as Qmh: {OS , OT , hmax, [τs, τf ], µ}.

The processing of Qmh starts from computing the time
blocks Bs, ... , Bf that contain data for the query interval
I = [τs, τf ]. File Time Block Index (accessed only once per
query) points to the pages in the Meetings Index and Reached
Index that correspond to the required blocks. These index files
(accessed once per time block) in turn point to the appropriate
pages in files Meetings and Reached(Hop) respectively.

The set of reached objects S′reached is initialized with object
OS at the beginning of the query processing. We start reading
file Reached(Hop) from block Bs, retrieving all records for
OS . Durin Bk, an object Oj cannot be considered as reached
unless hmin(OBkj ) ≤ hmax (where hmin(OBkj ) is the value
hmin of object Oj at the end of Bk). So, each objects Oj that
was found to be reached by OS , is added to S′reached, along
with hmin, provided that hmin(OBsj ) ≤ hmax. Next, we pro-
ceed to block Bs+1. This time, retrieving all the companions
of each object from S′reached and updating it by either adding
new objects or adjusting the hmin value for the objects that
are already in the set. Such adjustment may be needed if, for
some object Oi ∈ S′reached, hmin(OBsj ) > hmin(O

Bs+1

j ). The
process continues until OT is added to S′reached while reading
some block Bi(i < f) or the last block Bf is reached.

If at the end of processing Bf , S′reached does not contain the
target OT , the query processing can be aborted, otherwise it
moves to the file Meetings. The process of identifying reached
objects inside each block is the same as the one described in
Algorithm 1. If there is a meeting between Oi and Oj that ends
at the end of the time block, but is shorter than mq , we check
if it continues in the next block, and merge two meetings into
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Fig. 4: Two-level index on files Meetings and Reached(Hop).

one if needed. Also, if during Bk object Oi was reached by
OS with hmin(OBki ) = h1, and in a later block Bm, Oj was
reached by Oi within h2 hops, hmin(OBmj ) = h1 +h2. Object
Oj is considered to be reached by OS if hmin(OBmj ) ≤ hmax.

If by the end of Bi, OT was not found to be reached,
and Bi < Bf , the search switches to Reached(Hop). This
process continues until OT is confirmed to be reached by the
information from Meetings, or the last block Bf is processed.

VI. EXPERIMENTAL EVALUATION

We proceed with the results of the experimental evalua-
tion of RICCdecay. Since there are no other algorithms for
processing spatiotemporal reachability queries with decay, we
compare RICCdecay against a modified version of RICCmeet-
Min [3] that enables it to answer such queries. All experiments
were performed on a Linux system with a 3.4GHz Intel CPU,
16 GB RAM, 3TB disk and 4K page size. All programs were
written on C++ and compiled using gcc version 4.8.5 with
optimization level 3.

TABLE I: Size of datasets, auxiliary files and indexes

Dataset MV1 MV2 MV4 RW1 RW2 RW4

Size of Dataset (GB) 54 107 213 97 194 387

Auxiliary Data           
and Index Size (GB)

RICCmeetMin 4.6 23 83.3 11.6 44.9 157

RICCdecay 5.2 27.7 98 12.7 50 178.7

All experiments were performed on six realistic datasets
of two types: Moving Vehicles (MV) and Random Walk
(RW). The MV datasets were created by the Brinkhoff data
generator [26], and contain information about 1000, 2000, and
4000 vehicles respectively (denoted as MV1, MV2, and MV4).
We set dcont = 100 m (for a (class 1) Bluetooth connection).

For the RW datasets, we created our own generator (see
details in [2], [3]). RW datasets consist of trajectories of
10000, 20000, and 40000 individuals respectively (denoted as
RW1, RW2, and RW4). The size of each dataset (in GB)
appears in Table I. We set dcont = 10 m, to identify physical
contacts or contacts in the range of Bluetooth-enabled devices.

The performance was evaluated in terms of disk I/Os during
query processing. The ratio of a sequential I/O to a random
I/O is system dependent; for our experiments this ratio is 20:1
(20 sequential I/Os take the same time as 1 random). We thus
present the equivalent number of random I/Os using this ratio.

A. Parameter Optimization
The values of the contraction parameter C and the grid

resolution H , that are used for the preprocessing, were tuned
on the 5% subset of each dataset as follows. We performed the
preprocessing of each subset for different values of (C,H),
and tested the performance of RICCdecay on a set of 200
queries, varying the query length between 500 and 3500 sec for
the MV, and between 600 and 4200 sec for the RW datasets.

The hmax value was picked uniformly at random from 1
to 4 (we stopped at hmax = 4 since the higher the hmax,
the less information is caried by the reached object and thus
presents less interest). The parameters C and H were varied
as follows: H - from 500 to 40000 m for MV, and from 250



to 2000 m for RW datasets; and C - from 0.5 to 30 min. For
each dataset, the pair (C,H) that minimized the number of
I/Os was used for the rest of the experiments. For example,
for MV1 we used C = 14 min and H = 20000 m, while for
RW4 we used C = 2 min nd H = 500 m.

B. Preprocessing Space and Time
The sizes of the auxiliary files and the index sizes for

RICCmeetMin and RICCdecay appear in Table I.

C. Query Processing
The performance of RICCdecay was tested on sets of

100 queries of different time intervals and various hmax =
1, 2, 3, 4, while µ was set to 2 sec, and the initial weight w of
the item carried by OS was set to 1 for all the experiments.
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Fig. 5: Increasing maximum allowed number of transfers

Increasing the Maximum Allowed Number of Transfers.
First, we analyze the impact of hmax on the performance of
the RICCdecay. We ran a set of 100 queries varying hmax from
1 to 4; each query’s interval was picked uniformly at random
from 500 to 3500 sec for the MV datasets, and from 600 to
4200 sec for RW datasets. The results are presented in Fig. 5
(a1−b3). RICCdecay accesses from 1.8 (for MV 2 dataset) to
11.5 (for RW4 dataset) times less pages than RICCmeetMin.

Increasing Query Length. Now we test the performance of
RICCdecay for various query lengths and compare with that
of RICCmeetMin. Each test was run on a set of 100 queries
varying query length from 500 to 3500 sec for MV , and from
600 to 4200 sec for RW datasets. The hmax value for each
query was picked uniformly at random from 1 to 4. The results
are shown in Fig. 6. For these sets of queries, RICCdecay
outperforms RICCmeetMin in all the tests, accessing about
44% less pages in average, and this result does not change
significantly from one dataset to another.
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Fig. 6: Increasing query length

VII. CONCLUSIONS
We presented a novel reachability problem on reachability

with transfer decay. To process these queries efficiently, we
designed algorithm RICCdecay and tested it on six realistic
datasets against a modified version of the RICCmeetMin
algorithm [3]. The performance comparison showed that RIC-
Cdecay is more efficient on the new types of queries.
Acknowledgements: This work was partially supported by
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