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Abstract

Red and blue particles are placed in equal proportion throughout either the complete or star graph
and iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles
with different colors meet. We compare the time it takes to extinguish every particle to the analogous
time in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle
speeds.
© 2021 Elsevier B.V. Allrights reserved.

1. Introduction

We introduce a discrete-time annihilating particle system and study the effects of multiple
particle types and asymmetric speeds on the time to extinguish every particle. We consider such
systems in two geometries: the complete graph on 2n vertices, K»,, and the star graph with 2n
leaves and a single non-leaf vertex, called the core, S,,. Initially, one particle is placed at every
site of K»,, or at every leaf of S,,. In the one-type system, at each step a particle is chosen
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uniformly at random and takes one step of a simple random walk. When any two particles
meet, they mutually annihilate.

In our rwo-type system, half of the particles are colored blue and half are colored red. At
each step, a blue particle is chosen uniformly at random with probability p € [1/2, 1], or else
a red particle is chosen uniformly at random, and the chosen particle takes a random walk
step. When two particles with different colors meet, they mutually annihilate; particles of the
same color do not interact. Note that the incremental movement of particles corresponds to the
embedded jump chain from the analogous process with particles performing continuous time
random walks. Increasing p is equivalent to increasing the rate at which blue particles jump.
Accordingly, we call the case p = 1/2 the symmetric speeds case and p > 1/2 the asymmetric
speeds case.

The two-type system belongs to a family of processes that model systems with two
compounds in which reactions neutralize both chemicals involved. These dynamics have been
rigorously studied on infinite graphs, typically lattices. The main focus is on the asymptotic
density of the different particle types. We initiate the study of such systems on finite graphs.
Besides being natural for studying reactions with inherently limited space and material, the
finite setting also introduces a new quantity: the time to neutralize all reactants. By working
with simple geometries — complete and star graphs — we reveal complicated underlying features
of the dynamics. For example, clustering of like compounds is a phenomenon that makes the
two-type system more challenging to analyze than related one-type systems. Results for these
dynamics on more “realistic” finite graphs, such as tori and random networks, or for general
topologies would be natural next steps. However, as with the infinite setting, rigorous results
appear difficult to obtain. More background and references are provided in Section 1.2.

1.1. Results

Let T'(G) and TPZ(G) be the number of steps it takes in the one-type and two-type systems
for every particle to be annihilated on the graph G. We begin with an informal summary of
our results. It is straightforward and elementary to compute the distributions of 7''(K»,) and
T'(S,,) exactly. This is done in Proposition 1, which we include for comparison with our
quantitative bounds on E TPZ(G). In particular, we show that for G = K, and G = S, and
for all p € [1/2, 1], we have E T[f(G) is asymptotically larger than ET'(G). How much larger
depends of course on the particular graph and the value of p. For the complete graph we prove
that

2nlogn < ET;(K»,) < 20n(logn)*/loglogn

for large n, and in particular, liminf E T;(Kg,,)/ ETY(K,,) > 2. Our strongest results are for
the star graph. For p = 1/2, we have

cv/n < ET{(S2) — ET'(S2) < Ci/nlogn

for large n. For p € (1/2, 1), we have that ET}(S2,)/ ET'(S,) is bounded away from 1 and
oo as n — oo and diverges like log(1/(1 — p)) as p 1 1; and for p = 1, the ratio diverges like
2logn.

Throughout this article we let X(p) denote a geometric random variable with distribution
P(X(p)=k)= (1—p)'pfork > 1. We write X < Y to denote the usual notion of stochastic
dominance P(X > a) < P(Y > a) for all a > 0. Or, equivalently, that there is a coupling so
that X < Y almost surely. We say that X 2 ¥ if X and Y have the same distribution. Our
results make use of the standard asymptotic notation:
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e f=0(g) if limsup f/g < oo,

e f =g if liminf f/g > 0, and

o [=0(g)if f=0(g) and g = O(f).
e We write f ~ g if lim f/g = 1.

One can exactly characterize how long it takes to go from having 2i to 2(i — 1) particles
in the system in terms of a geometric random variable. Though elementary, this gives us a
baseline for comparing to the two-type system.

Proposition 1. In both distributional equalities below the geometric random variables being
summed are independent.

(i) T'(Ka,) £ Yy X(pi) with p; = (2i — 1)/2n. In particular,
ET'(K»,) — (nlogn + yn) = O(1)

where y = lim(—logn + Y i~") is the Euler-Mascheroni constant.
(ii) T'(Say) £ 2 Yo X(gi) with g; = 1 — (3)(252EL). In particular,

ET'(Sy,) — (2n + 2logn) = O(1).

Precisely analyzing the two-type system appears to be much more difficult. The issue on the
complete graph is that, as the process evolves, like-particles tend to cluster at the same sites.
The clustering should not be too extreme. Namely, when there are {2(n) particles, red and blue
should occupy {2(n) distinct sites at all times, and when there are o(n) particles red and blue
should be nearly perfectly spread out. However, there is dependence between which particles
are removed and the number of particles at each site. This appears to make it difficult to prove
that red and blue particles stay sufficiently spread out.

While we do not completely overcome the issues mentioned above, we are able to confirm
that the two-type system survives longer than the one-type system. Below we prove that
ET[,Z(KZ,,) > 2ET'(K2,)(1 — o(1)). This result should not be all that surprising since the
two-type system in some sense has at least twice as many “safe” sites for particles to jump to
among the occupied sites as the one-type setting. We also prove an upper bound that differs
by a logarithmic factor.

Theorem 2. For all p € [1/2,1] it holds that

T (Ky) = > X(i/2n) (1
i=1

with the X(i/2n) independent. Thus, ET[?(KQ,,) —2nlogn = (2(1). Furthermore, the distribu-
tional inequality is an equality when p = 1, so ETIZ(Kzn) —2(nlogn + yn) = O(1). As for

an upper bound, it holds for any fixed p € [1/2, 1] that

20n(log n)?
ET2(Kay) — =20 — 0(1). 5
loglogn

The proof of the lower bound uses a comparison to a process that has red and blue
particles take up the maximal amount of space at each time step. Analogous to what occurs
in Proposition 1, we show that T[?(Kzn) stochastically dominates a sum of geometric random
variables. The upper bound goes by showing that it is overwhelmingly unlikely for any site
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to host more than Clogn/loglogn particles in the first n° steps of the process. This gives
a tractable way to lower bound the probability of a collision, but comes at the cost of the
additional logarithmic factor.

We can say more about the two-type system on the star graph. The process in this setting
has the same clustering issue at the leaves as what occurs globally on K,,. Moreover, the
number of like-particles grouped at the core introduces another hub for many like-particles to
cluster. While, in principle, one could write down an explicit Markov chain for this process,
to do this precisely would require keeping track of the number of particles at the core, as well
as the number of red and blue leaves with 1, 2, ... particles at them. Analyzing this Markov
chain exactly appears challenging since the state—space is of growing dimension, and there is
significant dependence between the transition rate and the population size.

Despite these difficulties, we prove a fairly precise characterization for all p € [1/2, 1].
For symmetric speeds we show that the second order term is different for the two-type case.
The proof reveals that this is caused by clustering at the core. Recall that Proposition 1 shows
ET'(S>,) has a logarithmic second order term. We show that E T12/2(S2,,) has a second order
term on an order between /n and «/nlogn. This demonstrates the effect of clustering at the
core and, along with Proposition 1 (ii), also implies that ET12/2(SZn) — ETY(Sy,) = 2(/n).

Theorem 3. It holds that

(i) ET12/2(SZ,1) — (2n+ C/n) = 2Q1) for any C < 327)~ /2, and
(ii) ET12/2(S2,,) — (2n + cy/nlogn) = O(1) for some ¢ > 0.

The starting point for the lower bound is a “master formula” in Lemma 7 that equates the
number of remaining particles to what has occurred up to that point at the core. We use this to
make estimates on the number of particles in the system at time 2n. This relies on a coupling
to the simple random walk which tracks the discrepancy between the number of times red and
blue have been sampled. The upper bound again uses the identity in Lemma 7, but this time
couples to a different random walk to estimate the number of particles clustered at the core as
the process evolves. The argument concludes by bounding the probability a particle is sampled
at the core.

For asymmetric speeds, we focus on the leading order coefficient and provide universal
upper and lower bounds. The lower bound implies that the asymmetric case has a strictly
larger leading coefficient than the symmetric case.

Theorem 4. Fix p € (1/2, 1). It holds for all n that

n.

<2+2p_1)n—1<ET2(S ) <
2 ST = p)

The lower bound is proven in a similar manner as Theorem 3 (i), and the upper bound
follows from the observation in Lemma 11 that from any configuration, after two steps, the
probability of a collision is at least 1 — p. So T[f(Sz,,) is stochastically dominated by a sum
of independent geometric random variables. While these bounds hold for all p, they become
rather far from the truth for p near 1. The following theorem addresses what happens in this
regime. We provide matching order upper and lower bounds for the rate the leading constant
tends to infinity.
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Theorem 5. Given ¢ < 4 there exists a value p, < 1 (which depends on c) such that for any
fixed p € (px, 1) it holds that

2 . 1
ETP (82,) — clog 1

>n = Q(1).

And, given C > 12 there exists p* < 1 (which depends on C) such that for any fixed p € (p*, 1)
it holds that

1
ET}(Sy) — Clog (1

) n=0(1).

These results use stochastic lower and upper bounds that relate T[f(Szn) to a coupon collector
process. This connection was not so obvious to make, and requires technical estimates on the
time to collect a random subset of the coupons, as well as on the number of coupons collected
after a random amount of time.

Finally, we handle the case p = 1, which corresponds to the setting in [15]. This setting is
tractable because the now immobile red particles cannot cluster.

Theorem 6. It holds that

TAS) 22> X(pi)

i=l1

with the X(p;) independent and p; = i/2n. In particular,
ET}(S2,) — (4nlogn + dyn) = O(1)

with y the Euler—Mascheroni constant.
1.2. Background

The study of annihilating particle systems dates back to the work of Erdés and Ney [17].
They considered a system of continuous time random walks started at each nonzero integer in
which collisions cause both particles to annihilate and disappear from the process. In particular,
they asked if the origin was visited infinitely often, and, more precisely, they studied the
asymptotic decay of p,, the probability the origin is occupied at time ¢.

The question of whether or not the origin is visited infinitely often was answered in the
affirmative by Lootgieter in [25] in discrete time and by Schwartz in [28] in continuous time.
Later, Arratia in [1,2] generalized the process to higher dimensions and more general initial
configurations. One of his main findings was that

1/@Jrmt), d=1
pi~ logt/Q2nt), d=2 ?3)
1/(2yat), d>3

where y, is the probability the simple random walk never returns to its starting position in Z¢.
Due to a parity relation observed by Arratia, p, decays exactly twice as fast as what Bramson
and Griffeath in [4] proved occurs for coalescing random walk. This is the system in which
particles coalesce rather than annihilate upon colliding. The main proof technique in these
systems is to analyze a dual process known as the voter model.
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Two-type annihilating particle systems first garnered interest in the chemistry and physics
literature [21,24,26,29]. Initially particles are assigned to be either of type A or B, and
only collisions between different particle types result in annihilation. Unlike the one-type
annihilating and coalescing systems, the two-type system has no known tractable dual process.
Ovchinnikov and Zeldovich and later Toussaint and Wilczek predicted that in low dimensions
the density of particles at the origin of Z¢ is asymptotically much larger than in the one-type
system [26,29] due to local clustering of like particles.

In a definitive series of papers, Bramson and Lebowitz [5—-8] proved this (and more) for
the two-type system on Z?, where initially each site has a Poi(j4)-distributed number of A
particles and a Poi(u g)-distributed number of B particles. At time 0, pairs of A and B particles
at the same site instantly annihilate. Particles then perform continuous time simple random
walks at rates A4 and Ap, and annihilate when they meet a particle of opposite type. Since
multiple particles can occupy a given site, the main quantity of interest is the expected number
of particles at the origin at time ¢, which we denote by p;. In the critical case, with particle types
in balance (us = pup > 0) and symmetric speeds (A4 = Ap > 0), Bramson and Lebowitz [7]
proved that

pr ~

744 4 <3
7, d=4

Here f ~ g if 0 < liminf f/g < limsup f/g < oo. Note that, in low dimension, this is
asymptotically much larger than the formula for p, at (3).

There has been recent interest in extending the results of Bramson and Lebowitz to
asymmetric speeds. On lattices, physicists predicted that the asymptotic order of p, does not
change as the speeds are varied [21,24]. Cabezas, Rolla, and Sidoravicius in [10] considered
the asymmetric speed case on a class of infinite transitive graphs and proved a universal lower
bound p, = 2(t~"), and that the root is visited infinitely often when particle types are initially
in balance. In a different work [9], Cabezas, Rolla, and Sidoravicius considered the case that
red particles move and blue particles are stationary. They proved that there is a phase transition
between transience and recurrence when the different particle types are in balance on a broad
class of transitive graphs. An Abelian property ensures that the results hold in either discrete
or continuous time. More recently Johnson, Junge, Lyu, and Sivakoff proved new upper and
lower bounds for the particle density in two-type annihilating systems on lattices and bi-directed
regular trees [19]. Bahl, Barnet, Johnson and Junge further explored how the volatility of the
distributions of the initial particle counts impacts the total occupation time of the root [3].

Damron, Gravner, Junge, Lyu, and Sivakoff considered a similar problem as [9] in discrete
time and proved transience/recurrence results along with more quantitative estimates on the
number of visits to the origin when the particle densities are initially out of balance [15].
Very recently, Przykucki, Roberts, and Scott proved quantitative results in discrete time with
B-particles stationary on the integers [27]. A slightly different, but related process was studied
by Goldschmidt and Przykucki on Galton—Watson trees [18]. The papers [15,18,27] refer to the
annihilating system as parking since they view A-particles as cars and B-particles as parking
spots. Parking was introduced over fifty years ago in [22] and has attracted interest ever since.
See [23] for an overview.

As for the finite setting, Cooper, Frieze, and Radzik studied similar quantities as us on
random regular graphs [12,13]. They considered an “explosive” particle system with the
same dynamics as our one-type system, but with the modification that all particles move
simultaneously. They proved that the time it takes to remove all particles is O(nlogn) when
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there are sufficiently few particles initially. Additionally, the authors considered a two-type
“predator—prey” dynamics, in which predators remove prey on contact, but predators persist,
and they studied the expected time to remove all prey. These quantities are closely related
to the coalescence time. This is the number of steps needed to reach a single particle when
particles coalesce, rather than annihilate, upon colliding. There have been recent results for
how this behaves on general finite graphs [11,20], as well as a result from Cox concerning the
coalescence time on the torus [14]. Note that [11,14,20] only considered one-type systems. To
the best of our knowledge, the quantity T;(G) for two-type systems has not been studied on
any finite graph.

1.3. Further questions

It would be interesting to find the correct leading order coefficient for E TPZ(KZH) and for
ET;(S2,). Note that currently we do not have a proof that ET;(K2,) = O(nlogn). For the
star graph, we conjecture that our asymptotic lower bound in Theorem 5 is sharp so that, for
large enough p,

1
n.
I—p

This is the answer one gets for the simplified model in which one assumes that the core is
always occupied by blue particles and that every red step results in a collision. While the
connection is difficult to make rigorous, it seems to be a reasonable approximation for large
p.

We also would like to know the exact second order term for ETj/2(S2,). This is a more
delicate question, but it would be interesting to decide if the logarithmic factor is needed,
and if so, what is causing its appearance. We discuss this a bit more at Remark 15. Another
future direction is to understand two-type annihilating systems on other finite graphs, such as
Erd6s—Rényi graphs, tori, and trees.

ET;(Sy) ~ 4log (

1.4. Organization

In Section 2 we analyze the one-type system and prove Proposition 1. In Section 3 we prove
our lower and upper bounds for the two-type system on the complete graph from Theorem 2. In
Section 4 we analyze the two-type system with symmetric speeds on the star graph by proving
the upper and lower bounds in Theorem 3. Section 5 houses the proofs of Theorems 4—6 for
asymmetric speed two-type systems on the star graph.

2. One-type systems

One-type systems are fairly straightforward to precisely describe because at most one
particle can occupy each site. Combining this feature with the simple geometry of the complete
and star graphs makes it so the time to annihilate every particle decomposes as a sum of
independent geometric random variables.

Proof of Proposition 1. We start with a general decomposition then explain how to prove (i)
and (ii). Let t; be the first time there are 2i particles in the system for 0 < i < n. Notice that
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7o = TY(G) and 7, = 0 so that

TG =t-T=) ti1-T )
i=1

. . d . -

To prove (i), notice that on K, we have 7,_; — 1, = X((2i — 1)/2n). This is true because,
when there are 2i particles in the system, when a particle is selected there are 2i — 1 out of
2n sites with another particle that it could move to and cause a collision.

To prove (ii), for the star graph we claim that 7,_; — 7; Lox (gi) with
2i —1DH2n+1)
e ®)
ni
and the X(gq;) independent. Assuming (5) holds and applying this to (4), we then have
"1 ‘ 4ni
ETY(S,,) =2 — =2 B
(520) ;qi ;(2i—l)(2n+l)
8n 1 1
= — 11
st (1 5)
=2n +logn +log2 + o(1).
It remains to justify that t;_; — 7; Lox (g;) with g; as in (5). First notice that at time T;

there is no particle at the core, and 2i particles at the leaves. This is because the only way an
annihilation can occur on the star is by either (a) a particle moving from a leaf to the core,
or (b) a particle moving from the core to a leaf. Since only one particle can occupy a given
site, both (a) and (b) result in no particles at the core when annihilation occurs. Now, the next
step from this configuration will necessarily be a particle from a leaf moving to the core. This
particle is destroyed either if it is again selected and then moved to one of the 2i — 1 occupied
leaves, or if a particle at a leaf is next selected; these occur with total probability

12i—1 n 2i—1
2 2n 2
To obtain a renewal, notice that if the particle at the core is not destroyed in this second step,

then it must move back to an unoccupied leaf. On this event, we have no particle at the core,
and 2i particles at the leaves, which was the configuration at time t;. The next two steps once

again result in an annihilation with probability ¢;, so we have 7;,_; — 7; < 2X(g;). O

3. Two-type systems on the complete graph

Let A; be the total number of particles remaining in the system after ¢ steps. The fact that
collisions occur in pairs ensures that 0 < A, < 2n is even. It is also convenient to let R, and
B, be the total number of sites with at least one red or blue particle, respectively. We start by
giving the proof of the lower bound at (1), and then give the proof of the upper bound at (2).

Proof of Theorem 2 Eq. (1). We start by describing the transition probabilities for A,
conditional on the number of sites occupied by red and blue particles. Letting 0 <r,b <i <n,
we have

. r b
P(Ay = A =2 | R =r. B =b, A =20 = p(5-) + (1= p)5):
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Otherwise A,;; = A,. Notice that the above equality does not depend on the value of A;,. When
there are 2i particles remaining, the probability of an annihilation occurring on a given step is
thus bounded by probability of an annihilation when R, =i = B,. This is equal to p; =i/2n.
Using p; as a bound on the probability of an annihilation is equivalent to comparing to a
process that always has red and blue particles occupying the maximal number of sites. For the
case p = 1, the value p; is the actual transition rate, because red particles do not move.

It follows that the number of steps to transition from 2i to 2(i — 1) particles is stochastically
larger than X(p;). Decomposing TI?(KZ,,) into the time it takes to go from 2n to 2(n — 1) to
2(n — 2), and so on, we have

T (Ka) = > X(py).
1

The well-known asymptotic behavior of the harmonic series ensures that
n n
2n _
ET}(Ky)>=EY X(p)=)_ ~ =2nlogn+2yn+ 0(n h, O
1 1

Proof of Theorem 2 Eq. (2). We first show that with high probability no site has more than
m = 6logn/loglogn particles through time n>. Let Z, be the number of blue particles at
vertex 1 at time . Note that Z, cannot jump by more than 1 at any step, so we can dominate
it by a birth and death chain. For k > 0,

P(Ziy =k+1| z,=k,A,=2i>s%, ©6)

since a blue particle must move to 1. To decrease the number of blue particles at 1, it suffices
to choose a blue particle at 1 and move it somewhere else, so for 0 < k <i and n > 2,

k
P(Zt+1=k—1IZr=k,At=2i)Zp-f-(1——)>—- N
I

The ratio between the last two probabilities is at least

(pk/2n)/(p/2n) = k,

independent of i. Therefore, independent of (A,), we have that Z, is dominated by a birth and
death chain that is k times as likely to move left as right when it is at k. Thus, whenever
Z, = 1, the probability that it hits m before hitting 0 is at most 1/(m — 1)! (see, for instance,
Example 5.3.9 in [16]). Using the bound m! > (m/e)™, the probability that (Z;) reaches m by
time n® is at most

3 m
n 3

m—1) ="
independent of (A;). We obtain the same bound for the probability that the number of red
particles at 1 hits m by time 1’ by repeating the same argument as above, replacing the p-factor
with 1 — p in (6) and (7).

Define the events

=n’exp[—mlogm +m + logm)| (8)

G, = {every site has at most m particles through time 7},
so the union bound and (8) imply that for all + < n® and for all sufficiently large n, we have
P(G{ | A, =2i) < 2n*exp[—mlogm + m + logm]
—1
<n .
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On the event {A; = 2i} N G,, there are at least i /m sites that contain at least one blue particle,
and at least i /m sites that contain at least one red particle. A collision occurs if a particle is
selected and moves to one such site containing the opposite type. For 1 <i <n and ¢ < n’
and assuming 7 is sufficiently large, we have

P(Ar1 =21 =2 A =20) > P(Ar1 =20 =2 | {A, =2i}NGy) - P(G, | Ar = 20)
i/m

—— (A =1/n)

2n

i

i

v

=T

3nm
Therefore, for r < n, we have

P(T}(Ky) = 1) < P (Z X(r) = z) :

i=1
For t > n?, letting S,, = X +- - -+ X,, be the sum of n i.i.d. Geometric(1/2n) random variables,
we have the trivial upper bound,

P(T2(Kz) = 1) < P(S, = 1) < nP(Xy = [t/n]) = n(l — 1/2m)l/"=1 < =t/

for large n. Summing over ¢ and using the last two inequalities for ¢t < n® and t > n’
respectively, we have

i

n —
e n/4

ET}(Ky) <EY X(r)+ 1

‘ — e/’
i=1

&)

The first term is equal to

n

1 "1

— =3 - < .
Z - nm Z 7 = 3nm(logn + 1)
i=1 i=1

The second term in (9) is bounded by 8n?e~"/* for large n, so tends to 0 as n — oco. We have

proved that for large n,
20n(log n)?

ET?(K»,) < 3nm(logn +2) <
p loglogn

4. The star graph with symmetric speeds

We start by fixing some notation. Again let A, be the total number of particles in the system
after ¢ steps. Let C, be the number of particles that are at the core after ¢ steps. Additionally,
let M, be the number of times up to time ¢ that a particle at the core is sampled to move, but
is not annihilated after taking a step. Let Z, = 1 if blue is sampled at time ¢, and —1 if red
is sampled (note that (Z;),> is an i.i.d. sequence, defined even for ¢ > T,%(S2,,) after there are
no particles remaining). Define the quantities

W, =3\, Z; and D, = |[W,|, (10)

so that D, has the same law as the displacement of a p-biased random walk. When we write
D, it is implicit that this is the value of D, at r = 2n for the process on Sy,.

The quantities A;, C; and M, are related by the following identity, which will be useful for
proving both lower and upper bounds on E Tlf(Sz,,).
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Lemma 7. Forall p € [1/2,1] and t < T(Sy,) we have
A =2n—t+4+C,+2M,. (1
Moreover, for t < 2n, we have
A, >2n —t,
and consequently Tlf(Sz,l) > 2n.
Proof. Clearly the formula holds for + = 0. We proceed inductively from here. Suppose that

(11) holds through step t. At step ¢ + 1, we sample a particle to move; call this particle x. If
the step taken by x results in a collision, then by (11),

A,+1=At—2=2n—l—2+C,+2Mt.

Either the collision happens at the core, or x moves from the core to a leaf. In either scenario
we have C;y; = C; — 1 and M, = M,, so

A =2n—1t-2+Cp+D+2M 1 =2n— @t + 1)+ Cry1 +2M; 4.

This is the desired statement at time 7 + 1.

Now, suppose that the step taken by x does not result in a collision. If x moves from a leaf
to the core, then C,,; = C; + 1, and if x moves from the core to a leaf, then M,y = M, + 1
and C;11 = C; — 1. In the first case, we have

Ar+l =At =2n—l‘+Ct+2Mt =2i’l—l‘+Ct+1 _1+2Ml+1
In the second case we have
A=A =2n—t+(Cryr + 1) +2(M; 41 — 1).

Simplifying either case gives A; 1 =2n — (¢t + 1) + C;1 +2M,44, as desired.
The second and third statements follow from (11) by observing that C; > 0 and M, > 0 for
t=0,1,...,2n—1. O

4.1. A lower bound for the symmetric case

The starting point for our lower bound is a simple observation that relates T[?(Sz,,) to the
process stopped at a given time.

Lemma 8. Forall pe[1/2,1]andt < Tlf(Szn) it holds that
T(So) = 1+ A//2.
Proof. At most two particles can be removed from the system at each step. Thus, if there are

A, particles at time ¢, then it deterministically takes at least A;/2 more time steps to remove
them all. O

We can further bound M5, in terms of D,,.

Lemma 9. For any p € [1/2, 1], we have EM,, > (1/8)E Dy, — 1.
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Proof. Without loss of generality, suppose that blue is sampled n + D, /2 times through time
2n. Let o be the number of times through time 2n that a blue particle moves from the core to
a leaf. By Lemma 7 we have sz(Sz,l) > 2n, so (n + Dy, /2) — « is the number of times that a
blue particle moves from a leaf to the core. Since we have only n blue particles initially, we
must have

[((n+ D2 /2) —a] —a < n,

so o > D,, /4. Since red can occupy at most half of the leaves, each core selection of blue
has at least a 1/2 chance of increasing the count of M;,. In particular, M,, stochastically
dominates a binomial thinning of D,, /4 with success probability 1/2. The same holds when
red is sampled D,, times more than blue. Using the bound |ED,,/8] > ED»,/8 — 1 gives
the claimed inequality. [J

It is a well-known estimate that E D, grows like 4/ when p = 1/2. We give a combinatorial
proof of this fact below.

Lemma 10. Suppose p = 1/2. It holds that ED, < \/t for all t > 0. Moreover, as n — 00
it holds that E D,, ~ /2n/m.

Proof.
Recalling the definition at (10), it is a standard exercise to show that W,2 —t is a martingale,
and thus EW? = t. We then have

ED, <\/EW? = /1.

Next we prove the asymptotic claim. Observe that for every integer x > 0, E[D,. | | D, =
x] = x, while E[D, | D, = 0] = 1. We then have

ED,,, = ED, + P(D, =0).
Using the parity observation that Dy, # 0, and that ED; = 1, gives the equation

n—1 n—1
2k
ED,, = 1 —i—ZP(DZk =0)=1 +Zz-2k(k>.

k=1 k=1
Stirling’s approximation then yields

2% <2k> N 1 '
k vk

Integrating 1/+/7k from 1 to n gives the claimed asymptotic formula for E£D,,. O
Proof of Theorem 3 (i). Evaluating the formula in Lemma 7 at ¢+ = 2n and ignoring the C»,
term give A, > 2M,,. Lemma 9 then tells us that

EMZn = (1/8)ED2n - 1,
which by Lemma 10 is (1/8)s/2n/7 + o(y/n). Thus, for any C’ < (327)~1/? we have

EAy, — C'n = 02(1).

The result then follows by applying the above bound on E A,, to the inequality E T12/2(S2,1) >
2n 4+ E A,,/2 implied by Lemmas 7 and 8. O
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4.2. An upper bound for the symmetric case

We start with a simple observation that provides a stochastic upper bound on TPZ(SZn) by
stopping the process at a given time and then using a worst-case upper bound related to the
number of particles still in the system at that time.

Lemma 11. For all p € [1/2, 1) we have
A2
TXSu) <t +2) Xi(1—p),
i=1
where (X;(1 — p) :i > 1) are i.i.d. Geometric(1 — p), and are independent of A,; the sum on
the right is 0 when A, = 0.

Proof. If the core is occupied, then the probability of a collision in the next step is at least
(1—p)Ap = 1—p. If the core is not occupied, then after one step it becomes occupied, and the
probability of a collision on the next step is at least 1 — p. Therefore, from any configuration of
particles, the probability of a collision occurring in the next two steps is always at least 1 — p,
and each collision reduces A; by 2. The formula follows. [

Keeping in mind the identity in Lemma 7, we will require a bound on C5,. Because C,
always has a slight drift towards zero, it can be dominated by the displacement of a simple
random walk.

Lemma 12. Fix p = 1/2. Let D, be the displacement from the origin of a simple symmetric
random walk on 7 started at 0. There exists a coupling such that

C, <D, +1
forall t > 0.

Proof. We explain how to construct D] from C,. Notice that the probability C, increases is
equal to the probability of picking a particle at a leaf that is the same color as those currently
occupying the core, or 1 if no particles are there. Thus, we define D; | = D; + 1 if one of the
following occurs:

(a) D; =0,

®) C; >0and C,yy =C; + 1,

(¢) C; > 0 and C;4; = C; — 1 because of a particle moving away from the core,
(d) with probability 1/2 if C, =0 and D; > 0.

Otherwise D, = D; — 1.

It is easy to check that D is the displacement of a simple random walk, since, when it is
nonzero, it transitions up or down with equal probability (the probabilities in (b) and (c) sum to
p = 1/2, the probability of choosing the color at the core). Moreover, D; and C, are coupled
so that D] increases whenever C, does with one exception. The only situation in which C, can
exceed D; is if C;_y =0 and D,_, =1 and D; = 0. When this occurs we have C; = D; + 1.
However, the gap cannot become any larger than this, because while C, is larger than Dj, case
(d) is prohibited, so D; increases whenever C, does. [J
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We will soon require an estimate on a sum via comparison to an integral. We provide the
antiderivative and asymptotic behavior of that integral now.

Lemma 13. It holds that [[" x~'/2n — x dx = O(y/nlogn).

Proof. This follows immediately from setting C = 2n in the equation
¢JCc- Cc—1
/ = dx = /Clog C +2/Clog —— 1)/t (12)
1 X

We obtain this formula by computing the indefinite integral [ x~'/C —x dx. Start with
the substitution u = +/C — x so that the integral becomes

u? C 1

Next, make the substitution s = iu/~/C with i = /=1 so that the above is equal to

1 1
2u—2/ - du=2u+2i¢cf 2+1ds=2u+2i\/c:tan*1(s).
S

-

Substituting back u and then x yields

/x*lx/c % dx = 2C —x — 24/C tanh™! ( v f/gx) +Co.

We obtain the claimed formula at (12) by applying the identity

1
tanh~'(z) = 3 (log(1 + z) — log(1 — 2)),
combining logarithmic terms, and then computing the definite integral. [

We now put this inequality to work in bounding E M5,.
Lemma 14. Fix p = 1/2. It holds that EM,, = O(y/nlogn).

Proof. Let G; = {M, = M,_; + 1} be the event that a particle at the core is sampled at
time ¢ and the particle is not annihilated after taking a step. This tracks when M, increases;
accordingly, at time 2n we have

2n
My =) 1G,}.
=1
Notice that P(G,) is at most the probability of sampling a particle at the core at time . Given
A, = a and C, = c, this probability is equal to c/a, since p = 1/2. It follows that
P(G,) = E[E[I{G,} | A;, C/]] = E[C,/A(]. 13)

Using this for ¢ < 2n and the bound P(G,,) < 1 as we bring the expectation inside the sum,
we obtain
2n—1 2n—1

C, EC,
EMzn51+ZE[—}51+Z .
p A p—r 2n —t
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The second inequality uses the deterministic bound A; > 2n — ¢ from Lemma 7. Bounding
EC; < ED; + 1 via Lemma 12 and then bounding E D, with Lemma 10, we obtain

2n—1 2n—2
ED, +1 Jt
EM,, <1 — <142 .
n = +; 2n—t + ;Zn—t

Reindexing with s = 2n — ¢ gives

2n V2n — s

N

s=1

By comparison to the integral in Lemma 13, the summation above is O(y/nlogn). O

Remark 15. Note that in the previous argument at (13) we made the bound P(G,) <
E[C,/A,]. One might suspect that the logarithmic factor comes from this estimate. However,
the exact formula is

C: 2n—-Uy)
A, 2n

where U, is the number of sites occupied by particles of the opposite color from the core at
the leaves of S,, at time ¢. Exactly describing the quantity U, is subtle since it depends on
clustering at the leaves and on the current particle type occupying the core. Regardless, we
have 1/2 < (2n — U;)/2n < 1 for all ¢ since 0 < U, < n. So, P(G;) = (1/2)E[C,/A;]. Thus,
the estimate we make on P(G,) is not the source of the logarithmic factor.

P(G)=E [

In any case, we now we have the necessary ingredients to prove our upper bound.

Proof of Theorem 3 (ii). By Lemma 7 we have

EA, = ECy, +2EM,,.
It follows from Lemmas 10 and 12 that EC,, = O(y/n), and from Lemma 14 we have
EM,, = O(y/nlogn). Thus, EA,, = O(y/nlogn). Applying Lemma 11 with r = 2n gives

A2 /2
TPo(S) <20 +2 ) Xi(1/2).

i=1

It follows from Wald’s lemma and our bound on E A,, that

ET{(S) < 2n+4E Ay, =2n+ O(Ynlogn). O

5. Asymmetric speeds on the star graph

We break this section into three subsections. The first two subsections contain technical
estimates for a modified coupon collector problem, and also describe how these connect back
to the two-type system. The third subsection contains the proofs of Theorems 4-6.

5.1. Lemmas for the asymptotic lower bound

The idea behind the lower bound is that after t+ ~ —4log(l — p)n steps approximately
r = (1 — p)t red particles will move from their starting location. To eliminate all of the red
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particles by time ¢, blue particles must visit all n —r of the sites with red particles that did not
move. We identify the sites initially occupied by red particles as coupons, and view each jump
from the core by a blue particle as an attempt to collect one of these coupons. So Tlf(Sz,,) is
lower bounded by the number of steps needed for a coupon collector to collect n — r coupons,
which we prove has expected value on the order of 7.

Lemma 16. Fix any € € (0,1), let t, = t,(n) = —nlog(l — p) and let R < Bin(4(1 —
e)ty, 1 — p). Consider a coupon collector process in which there are n coupons. At each step,
with probability 1/2 no coupon is selected, and otherwise one is picked uniformly at random.
Let T,; be the number of steps needed to sample n — R distinct coupons. Then there exists
p'(€) < 1 such that for all p > p'(¢) we have

P (T; <2(l—ex,) =0

as n — OQ.

Proof. The time between each new coupon discovery is a geometric random variable, so

()

i=0

with the convention that the sum is zero if n — R < 0 and the X’s are independent. Let
a =5(1—¢€)(1—p)log(1—p)~!, and observe that a — 0 as p — 1. Noting that ER = 4an/5,
by a standard Chernoff bound for the binomial distribution, we have

P(R>an) <e (14)
for some ¢ = c(e, p). Letting

n—an—1 .
r=2 X(nzjzl)’

i=0

then using the bound logm < >/ i~! <1+ logm we have
n 1 1
EY=2n Y  —=>2n[log(l/a)—1]> 2 —enlog( —|.
J l—p
j=an+1
and
[e.¢]
1 4n
Var(Y) < 4n? - < —.
wnzae 3 5=t

j=an+1

for all p sufficiently close to 1 and n large enough, depending on p. Therefore, by Chebychev’s
inequality,

P < —2(1—e)log(l—p)-n)SP(|Y_EY| > zieEY)

4 15)

< n
~ ae*(log((1 — p)=h))?
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Combining (14) and (15), we arrive at
P (Tl/, < —2(1 —¢€)log(l — p) - n) < P(R=>an)+ P(Y < —-2(1 —¢€)log(l — p) -n)
—- 0

asn — oo. U

Lemma 17. For any € € (0, 1), there exists p'(€) < 1 such that for each p > p’(¢) and all
sufficiently large n, we have

1
ET;(S) = 4(1 — €)’nlog <—> )
l-p

Proof. Let t,, R and T1; be as in Lemma 16. Let Red_Moved be the number of red
particles that have moved from their starting locations through time 4(1 — €)t,, and let
Red _Sites_Visited_by_Blue be the number of leaf vertices that were initially occupied by red
particles and were visited by at least one blue particle through time 4(1 — €)t,, (whether or not
they are occupied by red at the time of blue’s visit). The number of red particles extinguished
through time 4(1 — €),, cannot exceed

Red_Moved + Red_Sites_Visited_by_Blue,
so if all particles are to be removed by time 4(1 — €)t,, we must have
Red_Sites_Visited_by_Blue > n — Red_Moved.

Note that Red_Moved cannot exceed the number of times that red particles are chosen to
move through time 4(1 — €)z,,, which has the same distribution as R, so we have Red Moved <
R. Also, through time 4(1 — €)t,,, a blue particle has moved to a uniformly sampled leaf on
at most 2(1 — €)t,, steps, since each visit to a leaf requires two moves by a blue particle. The
random variable Red_Sites_Visited by _Blue is therefore stochastically dominated by the
number of distinct coupons collected after 2(1 —¢€)z,, steps, where at each step, with probability
1/2 no coupon is selected, and otherwise one of n coupons is selected uniformly at random.
This number can be taken to be independent of R, as the number of steps taken by the coupon
collector is deterministic, so we are in the setting of Lemma 16, and we have

P(T2(S2) < 4(1 — o)tp) < P(T), < 2(1 — €)t,) — 0

as n — oo. Letting n be sufficiently large so that the probability above is smaller than € gives
the desired lower bound on the expectation. [J

5.2. Lemmas for the asymptotic upper bound

The idea behind the upper bound is to run the process for t = —8n log(1 — p) steps. At this
point, we prove that blue has moved to nearly pn of the sites that were initially red, and at
most r = (1—p)t = (1 — p)log((1 — p)~*)n red particles have moved to avoid a collision. This
means that at most n — pn + r red particles have avoided collision through time . We then
use the bound at Lemma 11 to show that the expected time to destroy the remaining particles
is O(n) with leading constant that does not depend on p.
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Lemma 18. Consider the following coupon collection process like that of Lemma 16. Let
t, = —nlog(l — p) and for r > 4, let B < Bin(rt,, p). Let N = (B —n)/2, and let V be
the number of the n coupons that are not collected through N steps, where we set V = n if
N < 0. For all fixed p sufficiently close to 1 and for all n sufficiently large,

PV = (1 —pn) <3/n.

Proof. Note that B is a binomial random variable with mean rpt,, so for p sufficiently close
to 1, standard large deviation estimates for the binomial distribution imply that

P (B < rpty (1= rpty) ™) < e 0716 < o' (16)
for all large enough n. Let a = a(r, p) = %(rp log ﬁ — 2), which is large for p close to 1,
so for all large enough n, we have

P(N <an)< P (N < %[rpt,,(l — (rpt,)™ " — n])

=P (B <rpt,(1— (rpt,,)fl/“))
< e_nl/z

Letting V’ be the number of coupons not collected through an steps, we have
EV' =n(1—1/2n)"

< ne—a/2

1 1
< nexp [—erlog = + 1:|

1
<n-=(1-p),
—”2( p)

where in the last line we use the assumption r > 4 and take p such that rp/4 > 1.
In anticipation of our variance bound, observe that for n sufficiently large, by Taylor’s
theorem, we have

(1 _ 1/n)an _ (1 _ 1/2n)2an < efa(ea/Zn _ ea/Sn)
<e “a/n—a/8n)
<ae “/n.

The probability that coupons labeled 1 and 2 (say) are not chosen through an steps is
(1 —=2/2n)*", so we have for p close to 1,

Var(V') < EV' +n*[(1 — 1/n)* — (1 — 1/2n)**"]
<n(e™? + ae™)
= —pn.
Finally, noting that V < V'1{y-4n) + nlin<an), We have
P(V=(~-pn)< P(V' >~ pn)+ P(N <an)
<PV -EV|>0~-pmn/2)+e"
<3/n. O

1/2
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Lemma 19. For any € > 0 there exists p'(¢) < 1 such that for each p > p'(¢) and all
sufficiently large n, we have

1
ET; < (12 +e)nlog I

Proof. Let r > 4 and ¢, be as in Lemma 18. Let B < Bin(rt,, p) be the number of
times that blue is chosen to move through time ¢ = rt, (based on the values of (Zy)<,
defined at the start of Section 4). Like in the proof of Lemma 17, we let Red_Moved be the
number of red particles that have moved from their starting locations through time ¢, and let
Red_Sites_Visited_ by Blue be the number of leaf vertices that were initially occupied by
red particles and were visited by at least one blue particle through time ¢.

The number of times that blue particles are chosen to move from the core to a leaf through
time ¢t must be at least N = (B — n)/2, provided particles persist through time 7. To see this,
let C™ be the number of jumps from the core to leaves up to time ¢, and C be the number
of jumps from leaves to the core up to time 7. Adding the equations

C”+C™
c”-C™

B

v

—n,

and solving for C™ gives the claimed inequality C~ > N. We now satisfy the hypotheses of
Lemma 18. Therefore,

P(Red_Sites_Visited by Blue < pn, A, > 0) < P(V > (1 — p)n) < 3/n.

Moreover, by (16), for p close to 1 and sufficiently large n we have

1
P (RedJVIoved >nr(l — p) (log 7

- + 1)) <P (B <rpt,(1—(rpt,)""*))

12
<e .

Observe that A, < 2(n — Red_Sites_Visited by Blue + Red Moved), since red particles
that have not moved and are at sites that are visited by blue particles by time ¢ must be
eliminated. Combining this observation with the last two inequalities gives

P(A,22n((1—p)+r(1—p)<10g11p+1>>)

< P(Red_-Sites_Visited by Blue < pn, A, > 0)

1
+ P (RedJ"Ioved >nr(l — p) (log 1 + 1))
-p

172

<3/n+e"
<4/n.
Since we have A; < 2n, we arrive at
EA, <2n ((1 —p)+r(l—p) <log I ip + 1)) + 2n(4/n).
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Combining this bound with Lemma 11 applied at time ¢ = r#,, and Wald’s equation gives

ET) <nrlog

1
+2E[A,)2]—
1—p l-p

1
<n|3rl —_— .
_n|:rog1_p +2(1—p)

Taking r close to 4, then p close enough to 1, then n sufficiently large completes the proof. [J

+2+2r]

5.3. Proofs

Proof of Theorem 4. The upper bound follows from Lemma 11 by setting t = 0 and taking
expectation. The lower bound follows from similar reasoning as the proof of Theorem 3 (i).
Lemmas 7-9 together imply that

Esz(Szn) >2n+(1/4)ED, — 1. 17
Recalling the definition D, = | Z’] Z,| at the start of this section, we have
D >Zi+ -+ Z.
Since EZ; = 2p — 1, we then have
ED;, > (2p — 1)2n.
Applying this inequality at (17), it follows that
2p—1
2

ET;(S) = 2n+ n—1. 0O

Proof of Theorem 5. The lower bound follows from Lemma 17 and the upper bound from
Lemma 19. O

Proof of Theorem 6. Let M denote the value of M, at time t = T12(Sz,,). Evaluating Lemma 7
at t = T2(S»,) and rearranging give

T3(Sy,) = 2n +2M. (18)

Let M(i) be the number of times a particle is sampled at the core and moves without being
annihilated when there are 2i particles in the system. Since red particles do not move, each
time a particle at the core is sampled there is an i /2n chance of annihilation, and annihilations
cannot occur in any other way. It follows that M (i) has distribution X(i/2n) — 1 and thus

ML > (X(i/2n) - D).
1
In light of (18) and the above equality, we have
n n
T2(Son) £ 2n + 2 > (XG/2m) = 1) =2 X(i/2n),
1 1

which has expectation 4nlogn + 4yn + o(n). 0O
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