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Abstract

Red and blue particles are placed in equal proportion throughout either the complete or star graph
nd iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles
ith different colors meet. We compare the time it takes to extinguish every particle to the analogous

ime in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle
peeds.
c 2021 Elsevier B.V. All rights reserved.

1. Introduction

We introduce a discrete-time annihilating particle system and study the effects of multiple
article types and asymmetric speeds on the time to extinguish every particle. We consider such
ystems in two geometries: the complete graph on 2n vertices, K2n , and the star graph with 2n

leaves and a single non-leaf vertex, called the core, S2n . Initially, one particle is placed at every
site of K2n , or at every leaf of S2n . In the one-type system, at each step a particle is chosen

∗ Corresponding author.
E-mail addresses: icristali@statistics.uchicago.edu (I. Cristali), yj49@uw.edu (Y. Jiang),

Matthew.Junge@baruch.cuny.edu (M. Junge), remy.kassem@duke.edu (R. Kassem), dsivakoff@stat.osu.edu
(D. Sivakoff), grayson.york@duke.edu (G. York).
https://doi.org/10.1016/j.spa.2021.05.004
0304-4149/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2021.05.004
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2021.05.004&domain=pdf
mailto:icristali@statistics.uchicago.edu
mailto:yj49@uw.edu
mailto:Matthew.Junge@baruch.cuny.edu
mailto:remy.kassem@duke.edu
mailto:dsivakoff@stat.osu.edu
mailto:grayson.york@duke.edu
https://doi.org/10.1016/j.spa.2021.05.004


I. Cristali, Y. Jiang, M. Junge et al. Stochastic Processes and their Applications 139 (2021) 321–342

e

f

uniformly at random and takes one step of a simple random walk. When any two particles
meet, they mutually annihilate.

In our two-type system, half of the particles are colored blue and half are colored red. At
ach step, a blue particle is chosen uniformly at random with probability p ∈ [1/2, 1], or else

a red particle is chosen uniformly at random, and the chosen particle takes a random walk
step. When two particles with different colors meet, they mutually annihilate; particles of the
same color do not interact. Note that the incremental movement of particles corresponds to the
embedded jump chain from the analogous process with particles performing continuous time
random walks. Increasing p is equivalent to increasing the rate at which blue particles jump.
Accordingly, we call the case p = 1/2 the symmetric speeds case and p > 1/2 the asymmetric
speeds case.

The two-type system belongs to a family of processes that model systems with two
compounds in which reactions neutralize both chemicals involved. These dynamics have been
rigorously studied on infinite graphs, typically lattices. The main focus is on the asymptotic
density of the different particle types. We initiate the study of such systems on finite graphs.
Besides being natural for studying reactions with inherently limited space and material, the
finite setting also introduces a new quantity: the time to neutralize all reactants. By working
with simple geometries – complete and star graphs – we reveal complicated underlying features
of the dynamics. For example, clustering of like compounds is a phenomenon that makes the
two-type system more challenging to analyze than related one-type systems. Results for these
dynamics on more “realistic” finite graphs, such as tori and random networks, or for general
topologies would be natural next steps. However, as with the infinite setting, rigorous results
appear difficult to obtain. More background and references are provided in Section 1.2.

1.1. Results

Let T 1(G) and T 2
p (G) be the number of steps it takes in the one-type and two-type systems

for every particle to be annihilated on the graph G. We begin with an informal summary of
our results. It is straightforward and elementary to compute the distributions of T 1(K2n) and
T 1(S2n) exactly. This is done in Proposition 1, which we include for comparison with our
quantitative bounds on ET 2

p (G). In particular, we show that for G = K2n and G = S2n and
for all p ∈ [1/2, 1], we have ET 2

p (G) is asymptotically larger than ET 1(G). How much larger
depends of course on the particular graph and the value of p. For the complete graph we prove
that

2n log n ≤ ET 2
p (K2n) ≤ 20n(log n)2/ log log n

for large n, and in particular, lim inf ET 2
p (K2n)/ET 1(K2n) ≥ 2. Our strongest results are for

the star graph. For p = 1/2, we have

c
√

n ≤ ET 2
1/2(S2n)− ET 1(S2n) ≤ C

√
n log n

or large n. For p ∈ (1/2, 1), we have that ET 2
p (S2n)/ET 1(S2n) is bounded away from 1 and

∞ as n→∞ and diverges like log(1/(1− p)) as p ↑ 1; and for p = 1, the ratio diverges like
2 log n.

Throughout this article we let X (p) denote a geometric random variable with distribution
P(X (p) = k) = (1− p)k−1 p for k ≥ 1. We write X ⪯ Y to denote the usual notion of stochastic
dominance P(X ≥ a) ≤ P(Y ≥ a) for all a ≥ 0. Or, equivalently, that there is a coupling so
that X ≤ Y almost surely. We say that X d

= Y if X and Y have the same distribution. Our
results make use of the standard asymptotic notation:
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• f = O(g) if lim sup f/g <∞,
• f = Ω (g) if lim inf f/g > 0, and
• f = Θ(g) if f = O(g) and g = O( f ).
• We write f ∼ g if lim f/g = 1.

One can exactly characterize how long it takes to go from having 2i to 2(i − 1) particles
in the system in terms of a geometric random variable. Though elementary, this gives us a
baseline for comparing to the two-type system.

Proposition 1. In both distributional equalities below the geometric random variables being
summed are independent.

(i) T 1(K2n) d
=
∑n

i=1 X (pi ) with pi = (2i − 1)/2n. In particular,

ET 1(K2n)− (n log n + γ n) = Θ(1)

where γ = lim(− log n +
∑n

1 i−1) is the Euler–Mascheroni constant.
(ii) T 1(S2n) d

= 2
∑n

i=1 X (qi ) with qi = 1− ( 1
2i )( 2n−2i+1

2n ). In particular,

ET 1(S2n)− (2n + 2 log n) = Θ(1).

Precisely analyzing the two-type system appears to be much more difficult. The issue on the
omplete graph is that, as the process evolves, like-particles tend to cluster at the same sites.
he clustering should not be too extreme. Namely, when there are Ω (n) particles, red and blue
hould occupy Ω (n) distinct sites at all times, and when there are o(n) particles red and blue
hould be nearly perfectly spread out. However, there is dependence between which particles
re removed and the number of particles at each site. This appears to make it difficult to prove
hat red and blue particles stay sufficiently spread out.

While we do not completely overcome the issues mentioned above, we are able to confirm
hat the two-type system survives longer than the one-type system. Below we prove that
ET 2

p (K2n) ≥ 2ET 1(K2n)(1 − o(1)). This result should not be all that surprising since the
wo-type system in some sense has at least twice as many “safe” sites for particles to jump to
mong the occupied sites as the one-type setting. We also prove an upper bound that differs
y a logarithmic factor.

heorem 2. For all p ∈ [1/2, 1] it holds that

T 2
p (K2n) ⪰

n∑
i=1

X (i/2n) (1)

ith the X (i/2n) independent. Thus, ET 2
p (K2n)− 2n log n = Ω (1). Furthermore, the distribu-

ional inequality is an equality when p = 1, so ET 2
1 (K2n) − 2(n log n + γ n) = Θ(1). As for

n upper bound, it holds for any fixed p ∈ [1/2, 1] that

ET 2
p (K2n)−

20n(log n)2

log log n
= O(1). (2)

The proof of the lower bound uses a comparison to a process that has red and blue
particles take up the maximal amount of space at each time step. Analogous to what occurs
in Proposition 1, we show that T 2

p (K2n) stochastically dominates a sum of geometric random
variables. The upper bound goes by showing that it is overwhelmingly unlikely for any site
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to host more than C log n/ log log n particles in the first n3 steps of the process. This gives
tractable way to lower bound the probability of a collision, but comes at the cost of the

dditional logarithmic factor.
We can say more about the two-type system on the star graph. The process in this setting

as the same clustering issue at the leaves as what occurs globally on K2n . Moreover, the
number of like-particles grouped at the core introduces another hub for many like-particles to
cluster. While, in principle, one could write down an explicit Markov chain for this process,
to do this precisely would require keeping track of the number of particles at the core, as well
as the number of red and blue leaves with 1, 2, . . . particles at them. Analyzing this Markov
chain exactly appears challenging since the state–space is of growing dimension, and there is
significant dependence between the transition rate and the population size.

Despite these difficulties, we prove a fairly precise characterization for all p ∈ [1/2, 1].
For symmetric speeds we show that the second order term is different for the two-type case.
The proof reveals that this is caused by clustering at the core. Recall that Proposition 1 shows
ET 1(S2n) has a logarithmic second order term. We show that ET 2

1/2(S2n) has a second order
term on an order between

√
n and

√
n log n. This demonstrates the effect of clustering at the

ore and, along with Proposition 1 (ii), also implies that ET 2
1/2(S2n)− ET 1(S2n) = Ω (

√
n).

heorem 3. It holds that

(i) ET 2
1/2(S2n)− (2n + C

√
n) = Ω (1) for any C < (32π )−1/2, and

(ii) ET 2
1/2(S2n)− (2n + c

√
n log n) = O(1) for some c > 0.

The starting point for the lower bound is a “master formula” in Lemma 7 that equates the
number of remaining particles to what has occurred up to that point at the core. We use this to
make estimates on the number of particles in the system at time 2n. This relies on a coupling
to the simple random walk which tracks the discrepancy between the number of times red and
blue have been sampled. The upper bound again uses the identity in Lemma 7, but this time
couples to a different random walk to estimate the number of particles clustered at the core as
the process evolves. The argument concludes by bounding the probability a particle is sampled
at the core.

For asymmetric speeds, we focus on the leading order coefficient and provide universal
upper and lower bounds. The lower bound implies that the asymmetric case has a strictly
larger leading coefficient than the symmetric case.

Theorem 4. Fix p ∈ (1/2, 1). It holds for all n that(
2+

2p − 1
2

)
n − 1 ≤ ET 2

p (S2n) ≤
2

(1− p)
n.

The lower bound is proven in a similar manner as Theorem 3 (i), and the upper bound
ollows from the observation in Lemma 11 that from any configuration, after two steps, the
robability of a collision is at least 1 − p. So T 2

p (S2n) is stochastically dominated by a sum
f independent geometric random variables. While these bounds hold for all p, they become
ather far from the truth for p near 1. The following theorem addresses what happens in this
egime. We provide matching order upper and lower bounds for the rate the leading constant
ends to infinity.
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Theorem 5. Given c < 4 there exists a value p∗ < 1 (which depends on c) such that for any
xed p ∈ (p∗, 1) it holds that

ET 2
p (S2n)− c log

(
1

1− p

)
n = Ω (1).

nd, given C > 12 there exists p∗ < 1 (which depends on C) such that for any fixed p ∈ (p∗, 1)
t holds that

ET 2
p (S2n)− C log

(
1

1− p

)
n = O(1).

These results use stochastic lower and upper bounds that relate T 2
p (S2n) to a coupon collector

process. This connection was not so obvious to make, and requires technical estimates on the
time to collect a random subset of the coupons, as well as on the number of coupons collected
after a random amount of time.

Finally, we handle the case p = 1, which corresponds to the setting in [15]. This setting is
tractable because the now immobile red particles cannot cluster.

Theorem 6. It holds that

T 2
1 (S2n) d

= 2
n∑

i=1

X (pi )

with the X (pi ) independent and pi = i/2n. In particular,

ET 2
1 (S2n)− (4n log n + 4γ n) = Θ(1)

ith γ the Euler–Mascheroni constant.

.2. Background

The study of annihilating particle systems dates back to the work of Erdős and Ney [17].
hey considered a system of continuous time random walks started at each nonzero integer in
hich collisions cause both particles to annihilate and disappear from the process. In particular,

hey asked if the origin was visited infinitely often, and, more precisely, they studied the
symptotic decay of pt , the probability the origin is occupied at time t .

The question of whether or not the origin is visited infinitely often was answered in the
ffirmative by Lootgieter in [25] in discrete time and by Schwartz in [28] in continuous time.
ater, Arratia in [1,2] generalized the process to higher dimensions and more general initial
onfigurations. One of his main findings was that

pt ∼

⎧⎪⎨⎪⎩
1/(2
√

π t), d = 1
log t/(2π t), d = 2
1/(2γd t), d ≥ 3

(3)

where γd is the probability the simple random walk never returns to its starting position in Zd .
Due to a parity relation observed by Arratia, pt decays exactly twice as fast as what Bramson
and Griffeath in [4] proved occurs for coalescing random walk. This is the system in which

articles coalesce rather than annihilate upon colliding. The main proof technique in these
ystems is to analyze a dual process known as the voter model.
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Two-type annihilating particle systems first garnered interest in the chemistry and physics
iterature [21,24,26,29]. Initially particles are assigned to be either of type A or B, and
nly collisions between different particle types result in annihilation. Unlike the one-type
nnihilating and coalescing systems, the two-type system has no known tractable dual process.
vchinnikov and Zeldovich and later Toussaint and Wilczek predicted that in low dimensions

he density of particles at the origin of Zd is asymptotically much larger than in the one-type
ystem [26,29] due to local clustering of like particles.

In a definitive series of papers, Bramson and Lebowitz [5–8] proved this (and more) for
he two-type system on Zd , where initially each site has a Poi(µA)-distributed number of A
articles and a Poi(µB)-distributed number of B particles. At time 0, pairs of A and B particles
t the same site instantly annihilate. Particles then perform continuous time simple random
alks at rates λA and λB , and annihilate when they meet a particle of opposite type. Since
ultiple particles can occupy a given site, the main quantity of interest is the expected number

f particles at the origin at time t , which we denote by ρt . In the critical case, with particle types
n balance (µA = µB > 0) and symmetric speeds (λA = λB > 0), Bramson and Lebowitz [7]
roved that

ρt ≈

{
t−d/4, d ≤ 3
t−1, d ≥ 4

.

ere f ≈ g if 0 < lim inf f/g ≤ lim sup f/g < ∞. Note that, in low dimension, this is
symptotically much larger than the formula for pt at (3).

There has been recent interest in extending the results of Bramson and Lebowitz to
symmetric speeds. On lattices, physicists predicted that the asymptotic order of ρt does not
hange as the speeds are varied [21,24]. Cabezas, Rolla, and Sidoravicius in [10] considered
he asymmetric speed case on a class of infinite transitive graphs and proved a universal lower
ound ρt = Ω (t−1), and that the root is visited infinitely often when particle types are initially
n balance. In a different work [9], Cabezas, Rolla, and Sidoravicius considered the case that
ed particles move and blue particles are stationary. They proved that there is a phase transition
etween transience and recurrence when the different particle types are in balance on a broad
lass of transitive graphs. An Abelian property ensures that the results hold in either discrete
r continuous time. More recently Johnson, Junge, Lyu, and Sivakoff proved new upper and
ower bounds for the particle density in two-type annihilating systems on lattices and bi-directed
egular trees [19]. Bahl, Barnet, Johnson and Junge further explored how the volatility of the
istributions of the initial particle counts impacts the total occupation time of the root [3].

Damron, Gravner, Junge, Lyu, and Sivakoff considered a similar problem as [9] in discrete
ime and proved transience/recurrence results along with more quantitative estimates on the
umber of visits to the origin when the particle densities are initially out of balance [15].
ery recently, Przykucki, Roberts, and Scott proved quantitative results in discrete time with

B-particles stationary on the integers [27]. A slightly different, but related process was studied
y Goldschmidt and Przykucki on Galton–Watson trees [18]. The papers [15,18,27] refer to the
nnihilating system as parking since they view A-particles as cars and B-particles as parking
pots. Parking was introduced over fifty years ago in [22] and has attracted interest ever since.
ee [23] for an overview.

As for the finite setting, Cooper, Frieze, and Radzik studied similar quantities as us on
andom regular graphs [12,13]. They considered an “explosive” particle system with the
ame dynamics as our one-type system, but with the modification that all particles move

imultaneously. They proved that the time it takes to remove all particles is O(n log n) when
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there are sufficiently few particles initially. Additionally, the authors considered a two-type
“predator–prey” dynamics, in which predators remove prey on contact, but predators persist,
and they studied the expected time to remove all prey. These quantities are closely related
to the coalescence time. This is the number of steps needed to reach a single particle when
particles coalesce, rather than annihilate, upon colliding. There have been recent results for
how this behaves on general finite graphs [11,20], as well as a result from Cox concerning the
coalescence time on the torus [14]. Note that [11,14,20] only considered one-type systems. To
the best of our knowledge, the quantity T 2

p (G) for two-type systems has not been studied on
any finite graph.

1.3. Further questions

It would be interesting to find the correct leading order coefficient for ET 2
p (K2n) and for

ET 2
p (S2n). Note that currently we do not have a proof that ET 2

p (K2n) = O(n log n). For the
star graph, we conjecture that our asymptotic lower bound in Theorem 5 is sharp so that, for
large enough p,

ET 2
p (S2n) ∼ 4 log

(
1

1− p

)
n.

his is the answer one gets for the simplified model in which one assumes that the core is
lways occupied by blue particles and that every red step results in a collision. While the
onnection is difficult to make rigorous, it seems to be a reasonable approximation for large

p.
We also would like to know the exact second order term for ET1/2(S2n). This is a more

elicate question, but it would be interesting to decide if the logarithmic factor is needed,
nd if so, what is causing its appearance. We discuss this a bit more at Remark 15. Another
uture direction is to understand two-type annihilating systems on other finite graphs, such as
rdős–Rényi graphs, tori, and trees.

.4. Organization

In Section 2 we analyze the one-type system and prove Proposition 1. In Section 3 we prove
ur lower and upper bounds for the two-type system on the complete graph from Theorem 2. In
ection 4 we analyze the two-type system with symmetric speeds on the star graph by proving

he upper and lower bounds in Theorem 3. Section 5 houses the proofs of Theorems 4–6 for
symmetric speed two-type systems on the star graph.

. One-type systems

One-type systems are fairly straightforward to precisely describe because at most one
article can occupy each site. Combining this feature with the simple geometry of the complete
nd star graphs makes it so the time to annihilate every particle decomposes as a sum of
ndependent geometric random variables.

roof of Proposition 1. We start with a general decomposition then explain how to prove (i)

nd (ii). Let τi be the first time there are 2i particles in the system for 0 ≤ i ≤ n. Notice that

327



I. Cristali, Y. Jiang, M. Junge et al. Stochastic Processes and their Applications 139 (2021) 321–342

w

a

t
a
o
s
s
p

τ0 = T 1(G) and τn = 0 so that

T 1(G) = τ0 − τn =

n∑
i=1

τi−1 − τi . (4)

To prove (i), notice that on K2n we have τi−1 − τi
d
= X ((2i − 1)/2n). This is true because,

hen there are 2i particles in the system, when a particle is selected there are 2i − 1 out of
2n sites with another particle that it could move to and cause a collision.

To prove (ii), for the star graph we claim that τi−1 − τi
d
= 2X (qi ) with

qi =
(2i − 1)(2n + 1)

4ni
(5)

nd the X (qi ) independent. Assuming (5) holds and applying this to (4), we then have

ET 1(S2n) = 2
n∑

i=1

1
qi
= 2

n∑
i=1

4ni
(2i − 1)(2n + 1)

=
8n

2n + 1

n∑
i=1

1
2

(
1+

1
2i − 1

)
= 2n + log n + log 2+ o(1).

It remains to justify that τi−1 − τi
d
= 2X (qi ) with qi as in (5). First notice that at time τi

here is no particle at the core, and 2i particles at the leaves. This is because the only way an
nnihilation can occur on the star is by either (a) a particle moving from a leaf to the core,
r (b) a particle moving from the core to a leaf. Since only one particle can occupy a given
ite, both (a) and (b) result in no particles at the core when annihilation occurs. Now, the next
tep from this configuration will necessarily be a particle from a leaf moving to the core. This
article is destroyed either if it is again selected and then moved to one of the 2i − 1 occupied

leaves, or if a particle at a leaf is next selected; these occur with total probability
1
2i

2i − 1
2n
+

2i − 1
2i
= qi .

To obtain a renewal, notice that if the particle at the core is not destroyed in this second step,
then it must move back to an unoccupied leaf. On this event, we have no particle at the core,
and 2i particles at the leaves, which was the configuration at time τi . The next two steps once
again result in an annihilation with probability qi , so we have τi−1 − τi

d
= 2X (qi ). □

3. Two-type systems on the complete graph

Let At be the total number of particles remaining in the system after t steps. The fact that
collisions occur in pairs ensures that 0 ≤ At ≤ 2n is even. It is also convenient to let Rt and
Bt be the total number of sites with at least one red or blue particle, respectively. We start by
giving the proof of the lower bound at (1), and then give the proof of the upper bound at (2).

Proof of Theorem 2 Eq. (1). We start by describing the transition probabilities for At

conditional on the number of sites occupied by red and blue particles. Letting 0 ≤ r, b ≤ i ≤ n,
we have

P(At+1 = At − 2 | Rt = r, Bt = b, At = 2i) = p
( r )

+ (1− p)
( b )

.

2n 2n
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Otherwise At+1 = At . Notice that the above equality does not depend on the value of At . When
here are 2i particles remaining, the probability of an annihilation occurring on a given step is
hus bounded by probability of an annihilation when Rt = i = Bt . This is equal to pi = i/2n.
sing pi as a bound on the probability of an annihilation is equivalent to comparing to a
rocess that always has red and blue particles occupying the maximal number of sites. For the
ase p = 1, the value pi is the actual transition rate, because red particles do not move.

It follows that the number of steps to transition from 2i to 2(i−1) particles is stochastically
arger than X (pi ). Decomposing T 2

p (K2n) into the time it takes to go from 2n to 2(n − 1) to
(n − 2), and so on, we have

T 2
p (K2n) ⪰

n∑
1

X (pi ).

he well-known asymptotic behavior of the harmonic series ensures that

ET 2
p (K2n) ≥ E

n∑
1

X (pi ) =
n∑
1

2n
i
= 2n log n + 2γ n + O(n−1). □

roof of Theorem 2 Eq. (2). We first show that with high probability no site has more than
:= 6 log n/ log log n particles through time n3. Let Z t be the number of blue particles at

ertex 1 at time t . Note that Z t cannot jump by more than 1 at any step, so we can dominate
t by a birth and death chain. For k ≥ 0,

P(Z t+1 = k + 1 | Z t = k, At = 2i) ≤
p

2n
, (6)

ince a blue particle must move to 1. To decrease the number of blue particles at 1, it suffices
o choose a blue particle at 1 and move it somewhere else, so for 0 < k ≤ i and n ≥ 2,

P(Z t+1 = k − 1 | Z t = k, At = 2i) ≥ p ·
k
i
·

(
1−

1
2n

)
>

pk
2n

. (7)

The ratio between the last two probabilities is at least

(pk/2n)/(p/2n) = k,

independent of i . Therefore, independent of (At ), we have that Z t is dominated by a birth and
death chain that is k times as likely to move left as right when it is at k. Thus, whenever
Z t = 1, the probability that it hits m before hitting 0 is at most 1/(m − 1)! (see, for instance,
Example 5.3.9 in [16]). Using the bound m! ≥ (m/e)m , the probability that (Z t ) reaches m by
time n3 is at most

n3

(m − 1)!
≤ n3 em

mm−1 = n3 exp
[
−m log m + m + log m

]
(8)

ndependent of (At ). We obtain the same bound for the probability that the number of red
articles at 1 hits m by time n3 by repeating the same argument as above, replacing the p-factor
ith 1− p in (6) and (7).
Define the events

G t = {every site has at most m particles through time t},

o the union bound and (8) imply that for all t ≤ n3 and for all sufficiently large n, we have

P(Gc
t | At = 2i) ≤ 2n4 exp

[
−m log m + m + log m

]
−1
≤ n .
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On the event {At = 2i}∩G t , there are at least i/m sites that contain at least one blue particle,
nd at least i/m sites that contain at least one red particle. A collision occurs if a particle is
elected and moves to one such site containing the opposite type. For 1 ≤ i ≤ n and t ≤ n3,
nd assuming n is sufficiently large, we have

P(At+1 = 2i − 2 | At = 2i) ≥ P(At+1 = 2i − 2 | {At = 2i} ∩ G t ) · P(G t | At = 2i)

≥
i/m
2n
· (1− 1/n)

≥
i

3nm
=: ri .

Therefore, for t ≤ n3, we have

P(T 2
p (K2n) ≥ t) ≤ P

(
n∑

i=1

X (ri ) ≥ t

)
.

For t > n3, letting Sn = X1+· · ·+Xn be the sum of n i.i.d. Geometric(1/2n) random variables,
we have the trivial upper bound,

P(T 2
p (K2n) ≥ t) ≤ P(Sn ≥ t) ≤ n P(X1 ≥ ⌊t/n⌋) = n(1− 1/2n)⌊t/n⌋−1

≤ e−t/(4n2)

or large n. Summing over t and using the last two inequalities for t ≤ n3 and t > n3,
espectively, we have

ET 2
p (K2n) ≤ E

n∑
i=1

X (ri )+
e−n/4

1− e−1/(4n2)
. (9)

he first term is equal to
n∑

i=1

1
ri
= 3 nm

n∑
i=1

1
i
≤ 3nm(log n + 1).

The second term in (9) is bounded by 8n2e−n/4 for large n, so tends to 0 as n→∞. We have
roved that for large n,

ET 2
p (K2n) ≤ 3nm(log n + 2) ≤

20n(log n)2

log log n
. □

4. The star graph with symmetric speeds

We start by fixing some notation. Again let At be the total number of particles in the system
after t steps. Let Ct be the number of particles that are at the core after t steps. Additionally,
let Mt be the number of times up to time t that a particle at the core is sampled to move, but
is not annihilated after taking a step. Let Z t = 1 if blue is sampled at time t , and −1 if red
is sampled (note that (Z t )t≥1 is an i.i.d. sequence, defined even for t ≥ T 2

p (S2n) after there are
o particles remaining). Define the quantities

Wt =
∑t

s=1 Zs and Dt = |Wt |, (10)

o that Dt has the same law as the displacement of a p-biased random walk. When we write
D2n it is implicit that this is the value of Dt at t = 2n for the process on S2n .

The quantities At , Ct and Mt are related by the following identity, which will be useful for
roving both lower and upper bounds on ET 2

p (S2n).
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Lemma 7. For all p ∈ [1/2, 1] and t ≤ T 2
p (S2n) we have

At = 2n − t + Ct + 2Mt . (11)

oreover, for t ≤ 2n, we have

At ≥ 2n − t,

and consequently T 2
p (S2n) ≥ 2n.

Proof. Clearly the formula holds for t = 0. We proceed inductively from here. Suppose that
(11) holds through step t . At step t + 1, we sample a particle to move; call this particle x . If
he step taken by x results in a collision, then by (11),

At+1 = At − 2 = 2n − t − 2+ Ct + 2Mt .

Either the collision happens at the core, or x moves from the core to a leaf. In either scenario
we have Ct+1 = Ct − 1 and Mt+1 = Mt , so

At+1 = 2n − t − 2+ (Ct+1 + 1)+ 2Mt+1 = 2n − (t + 1)+ Ct+1 + 2Mt+1.

his is the desired statement at time t + 1.
Now, suppose that the step taken by x does not result in a collision. If x moves from a leaf

o the core, then Ct+1 = Ct + 1, and if x moves from the core to a leaf, then Mt+1 = Mt + 1
and Ct+1 = Ct − 1. In the first case, we have

At+1 = At = 2n − t + Ct + 2Mt = 2n − t + Ct+1 − 1+ 2Mt+1.

In the second case we have

At+1 = At = 2n − t + (Ct+1 + 1)+ 2(Mt+1 − 1).

Simplifying either case gives At+1 = 2n − (t + 1)+ Ct+1 + 2Mt+1, as desired.
The second and third statements follow from (11) by observing that Ct ≥ 0 and Mt ≥ 0 for

t = 0, 1, . . . , 2n − 1. □

4.1. A lower bound for the symmetric case

The starting point for our lower bound is a simple observation that relates T 2
p (S2n) to the

process stopped at a given time.

Lemma 8. For all p ∈ [1/2, 1] and t ≤ T 2
p (S2n) it holds that

T 2
p (S2n) ≥ t + At/2.

Proof. At most two particles can be removed from the system at each step. Thus, if there are
At particles at time t , then it deterministically takes at least At/2 more time steps to remove
hem all. □

We can further bound M2n in terms of D2n .

emma 9. For any p ∈ [1/2, 1], we have E M2n ≥ (1/8)E D2n − 1.
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Proof. Without loss of generality, suppose that blue is sampled n+ D2n/2 times through time
2n. Let α be the number of times through time 2n that a blue particle moves from the core to
a leaf. By Lemma 7 we have T 2

p (S2n) ≥ 2n, so (n + D2n/2)− α is the number of times that a
blue particle moves from a leaf to the core. Since we have only n blue particles initially, we
must have

[(n + D2n/2)− α]− α ≤ n,

so α ≥ D2n/4. Since red can occupy at most half of the leaves, each core selection of blue
has at least a 1/2 chance of increasing the count of M2n . In particular, M2n stochastically
dominates a binomial thinning of D2n/4 with success probability 1/2. The same holds when
red is sampled D2n times more than blue. Using the bound ⌊E D2n/8⌋ ≥ E D2n/8 − 1 gives
the claimed inequality. □

It is a well-known estimate that E Dt grows like
√

t when p = 1/2. We give a combinatorial
proof of this fact below.

Lemma 10. Suppose p = 1/2. It holds that E Dt ≤
√

t for all t ≥ 0. Moreover, as n →∞
t holds that E D2n ∼

√
2n/π .

Proof.
Recalling the definition at (10), it is a standard exercise to show that W 2

t − t is a martingale,
and thus EW 2

t = t . We then have

E Dt ≤

√
EW 2

t =
√

t .

Next we prove the asymptotic claim. Observe that for every integer x > 0, E[Dn+1 | Dn =

x] = x , while E[Dn+1 | Dn = 0] = 1. We then have

E Dn+1 = E Dn + P(Dn = 0).

Using the parity observation that D2n+1 ̸= 0, and that E D1 = 1, gives the equation

E D2n = 1+
n−1∑
k=1

P(D2k = 0) = 1+
n−1∑
k=1

2−2k
(

2k
k

)
.

Stirling’s approximation then yields

2−2k
(

2k
k

)
∼

1
√

πk
.

ntegrating 1/
√

πk from 1 to n gives the claimed asymptotic formula for E D2n . □

Proof of Theorem 3 (i). Evaluating the formula in Lemma 7 at t = 2n and ignoring the C2n
erm give A2n ≥ 2M2n . Lemma 9 then tells us that

E M2n ≥ (1/8)E D2n − 1,

hich by Lemma 10 is (1/8)
√

2n/π + o(
√

n). Thus, for any C ′ < (32π )−1/2 we have

E A2n − C ′
√

n = Ω (1).

he result then follows by applying the above bound on E A2n to the inequality ET 2
1/2(S2n) ≥

n + E A2n/2 implied by Lemmas 7 and 8. □
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4.2. An upper bound for the symmetric case

We start with a simple observation that provides a stochastic upper bound on T 2
p (S2n) by

topping the process at a given time and then using a worst-case upper bound related to the
umber of particles still in the system at that time.

emma 11. For all p ∈ [1/2, 1) we have

T 2
p (S2n) ⪯ t + 2

At /2∑
i=1

X i (1− p),

here (X i (1− p) : i ≥ 1) are i.i.d. Geometric(1− p), and are independent of At ; the sum on
he right is 0 when At = 0.

Proof. If the core is occupied, then the probability of a collision in the next step is at least
(1− p)∧ p = 1− p. If the core is not occupied, then after one step it becomes occupied, and the
probability of a collision on the next step is at least 1− p. Therefore, from any configuration of

articles, the probability of a collision occurring in the next two steps is always at least 1− p,
nd each collision reduces At by 2. The formula follows. □

Keeping in mind the identity in Lemma 7, we will require a bound on C2n . Because Ct

lways has a slight drift towards zero, it can be dominated by the displacement of a simple
andom walk.

emma 12. Fix p = 1/2. Let D′t be the displacement from the origin of a simple symmetric
random walk on Z started at 0. There exists a coupling such that

Ct ≤ D′t + 1

for all t ≥ 0.

Proof. We explain how to construct D′t from Ct . Notice that the probability Ct increases is
equal to the probability of picking a particle at a leaf that is the same color as those currently
occupying the core, or 1 if no particles are there. Thus, we define D′t+1 = D′t + 1 if one of the
following occurs:

(a) D′t = 0,
(b) Ct > 0 and Ct+1 = Ct + 1,
(c) Ct > 0 and Ct+1 = Ct − 1 because of a particle moving away from the core,
(d) with probability 1/2 if Ct = 0 and D′t > 0.

Otherwise D′t+1 = D′t − 1.
It is easy to check that D′t is the displacement of a simple random walk, since, when it is

nonzero, it transitions up or down with equal probability (the probabilities in (b) and (c) sum to
p = 1/2, the probability of choosing the color at the core). Moreover, D′t and Ct are coupled
so that D′t increases whenever Ct does with one exception. The only situation in which Ct can
exceed D′t is if Ct−1 = 0 and D′t−1 = 1 and D′t = 0. When this occurs we have Ct = D′t + 1.
However, the gap cannot become any larger than this, because while Ct is larger than D′t , case

′
(d) is prohibited, so Dt increases whenever Ct does. □
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We will soon require an estimate on a sum via comparison to an integral. We provide the
ntiderivative and asymptotic behavior of that integral now.

emma 13. It holds that
∫ 2n

1 x−1
√

2n − x dx = O(
√

n log n).

roof. This follows immediately from setting C = 2n in the equation∫ C

1

√
C − x

x
dx =

√
C log C + 2

√
C log

(√
C − 1

C
+ 1

)
− 2
√

C − 1. (12)

We obtain this formula by computing the indefinite integral
∫

x−1
√

C − x dx . Start with
he substitution u =

√
C − x so that the integral becomes

−2
∫

u2

C − u2 du = 2
∫

C
u2 − C

+ 1 du = −2
∫

1

1− u2

C

du + 2u.

ext, make the substitution s = iu/
√

C with i =
√
−1 so that the above is equal to

2u − 2
∫

1

1− u2

C

du = 2u + 2i
√

C
∫

1
s2 + 1

ds = 2u + 2i
√

C tan−1(s).

ubstituting back u and then x yields∫
x−1
√

C − x dx = 2
√

C − x − 2
√

C tanh−1

(√
C − x
√

C

)
+ C0.

e obtain the claimed formula at (12) by applying the identity

tanh−1(z) =
1
2

(log(1+ z)− log(1− z)) ,

ombining logarithmic terms, and then computing the definite integral. □

We now put this inequality to work in bounding E M2n .

emma 14. Fix p = 1/2. It holds that E M2n = O(
√

n log n).

roof. Let G t = {Mt = Mt−1 + 1} be the event that a particle at the core is sampled at
ime t and the particle is not annihilated after taking a step. This tracks when Mt increases;
ccordingly, at time 2n we have

M2n =

2n∑
t=1

1{G t }.

otice that P(G t ) is at most the probability of sampling a particle at the core at time t . Given
At = a and Ct = c, this probability is equal to c/a, since p = 1/2. It follows that

P(G t ) = E[E[1{G t } | At , Ct ]] ≤ E[Ct/At ]. (13)

sing this for t < 2n and the bound P(G2n) ≤ 1 as we bring the expectation inside the sum,
e obtain

E M2n ≤ 1+
2n−1∑

E
[

Ct

A

]
≤ 1+

2n−1∑ ECt

2n − t
.

t=1 t t=1
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The second inequality uses the deterministic bound At ≥ 2n − t from Lemma 7. Bounding
ECt ≤ E Dt + 1 via Lemma 12 and then bounding E Dt with Lemma 10, we obtain

E M2n ≤ 1+
2n−1∑
t=1

E Dt + 1
2n − t

≤ 1+ 2
2n−2∑
t=1

√
t

2n − t
.

eindexing with s = 2n − t gives

E M2n ≤ 1+ 2
2n∑

s=1

√
2n − s

s

By comparison to the integral in Lemma 13, the summation above is O(
√

n log n). □

emark 15. Note that in the previous argument at (13) we made the bound P(G t ) ≤
E[Ct/At ]. One might suspect that the logarithmic factor comes from this estimate. However,
he exact formula is

P(G t ) = E
[

Ct

At

(2n −Ut )
2n

]
where Ut is the number of sites occupied by particles of the opposite color from the core at
the leaves of S2n at time t . Exactly describing the quantity Ut is subtle since it depends on
lustering at the leaves and on the current particle type occupying the core. Regardless, we
ave 1/2 ≤ (2n −Ut )/2n ≤ 1 for all t since 0 ≤ Ut ≤ n. So, P(G t ) ≥ (1/2)E[Ct/At ]. Thus,

the estimate we make on P(G t ) is not the source of the logarithmic factor.

In any case, we now we have the necessary ingredients to prove our upper bound.

Proof of Theorem 3 (ii). By Lemma 7 we have

E A2n = EC2n + 2E M2n.

It follows from Lemmas 10 and 12 that EC2n = O(
√

n), and from Lemma 14 we have
E M2n = O(

√
n log n). Thus, E A2n = O(

√
n log n). Applying Lemma 11 with t = 2n gives

T 2
1/2(S2n) ⪯ 2n + 2

A2n/2∑
i=1

X i (1/2).

It follows from Wald’s lemma and our bound on E A2n that

ET 2
1/2(S2n) ≤ 2n + 4E A2n = 2n + O(

√
n log n). □

. Asymmetric speeds on the star graph

We break this section into three subsections. The first two subsections contain technical
stimates for a modified coupon collector problem, and also describe how these connect back
o the two-type system. The third subsection contains the proofs of Theorems 4–6.

.1. Lemmas for the asymptotic lower bound

The idea behind the lower bound is that after t ≈ −4 log(1 − p)n steps approximately
= (1 − p)t red particles will move from their starting location. To eliminate all of the red
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particles by time t , blue particles must visit all n− r of the sites with red particles that did not
ove. We identify the sites initially occupied by red particles as coupons, and view each jump

rom the core by a blue particle as an attempt to collect one of these coupons. So T 2
p (S2n) is

ower bounded by the number of steps needed for a coupon collector to collect n− r coupons,
hich we prove has expected value on the order of t .

emma 16. Fix any ϵ ∈ (0, 1), let tp = tp(n) = −n log(1 − p) and let R d
= Bin(4(1 −

)tp, 1− p). Consider a coupon collector process in which there are n coupons. At each step,
ith probability 1/2 no coupon is selected, and otherwise one is picked uniformly at random.
et T ′p be the number of steps needed to sample n − R distinct coupons. Then there exists

p′(ϵ) < 1 such that for all p > p′(ϵ) we have

P
(
T ′p ≤ 2(1− ϵ)tp

)
→ 0

s n→∞.

roof. The time between each new coupon discovery is a geometric random variable, so

T ′p
d
=

n−R−1∑
i=0

X
(

n − i
2n

)
ith the convention that the sum is zero if n − R ≤ 0 and the X ’s are independent. Let
= 5(1−ϵ)(1− p) log(1− p)−1, and observe that a→ 0 as p→ 1. Noting that E R = 4an/5,

by a standard Chernoff bound for the binomial distribution, we have

P(R ≥ an) ≤ e−cn (14)

for some c = c(ϵ, p). Letting

Y =
n−an−1∑

i=0

X
(

n − i
2n

)
,

hen using the bound log m ≤
∑m

i=1 i−1
≤ 1+ log m we have

EY = 2n
n∑

j=an+1

1
j
≥ 2n

[
log(1/a)− 1

]
> (2− ϵ)n log

(
1

1− p

)
,

and

Var(Y ) ≤ 4n2
∞∑

j=an+1

1
j2 ≤

4n
a

.

for all p sufficiently close to 1 and n large enough, depending on p. Therefore, by Chebychev’s
inequality,

P(Y < −2(1− ϵ) log(1− p) · n) ≤ P
(
|Y − EY | >

ϵ

2− ϵ
EY

)
≤

4
2 −1 2 n−1.

(15)
aϵ (log((1− p) ))
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Combining (14) and (15), we arrive at

P
(
T ′p < −2(1− ϵ) log(1− p) · n

)
≤ P(R ≥ an)+ P(Y < −2(1− ϵ) log(1− p) · n)

→ 0

s n→∞. □

emma 17. For any ϵ ∈ (0, 1), there exists p′(ϵ) < 1 such that for each p > p′(ϵ) and all
ufficiently large n, we have

ET 2
p (S2n) ≥ 4(1− ϵ)2n log

(
1

1− p

)
.

Proof. Let tp, R and T ′p be as in Lemma 16. Let Red Moved be the number of red
articles that have moved from their starting locations through time 4(1 − ϵ)tp, and let
ed Sites Visited by Blue be the number of leaf vertices that were initially occupied by red
articles and were visited by at least one blue particle through time 4(1− ϵ)tp (whether or not
hey are occupied by red at the time of blue’s visit). The number of red particles extinguished
hrough time 4(1− ϵ)tp cannot exceed

Red Moved+ Red Sites Visited by Blue,

so if all particles are to be removed by time 4(1− ϵ)tp, we must have

Red Sites Visited by Blue ≥ n − Red Moved.

Note that Red Moved cannot exceed the number of times that red particles are chosen to
ove through time 4(1−ϵ)tp, which has the same distribution as R, so we have Red Moved ⪯

R. Also, through time 4(1 − ϵ)tp, a blue particle has moved to a uniformly sampled leaf on
at most 2(1− ϵ)tp steps, since each visit to a leaf requires two moves by a blue particle. The
random variable Red Sites Visited by Blue is therefore stochastically dominated by the

umber of distinct coupons collected after 2(1−ϵ)tp steps, where at each step, with probability
/2 no coupon is selected, and otherwise one of n coupons is selected uniformly at random.
his number can be taken to be independent of R, as the number of steps taken by the coupon
ollector is deterministic, so we are in the setting of Lemma 16, and we have

P(T 2
p (S2n) ≤ 4(1− ϵ)tp) ≤ P(T ′p ≤ 2(1− ϵ)tp)→ 0

as n→∞. Letting n be sufficiently large so that the probability above is smaller than ϵ gives
the desired lower bound on the expectation. □

5.2. Lemmas for the asymptotic upper bound

The idea behind the upper bound is to run the process for t = −8n log(1− p) steps. At this
oint, we prove that blue has moved to nearly pn of the sites that were initially red, and at

most r = (1− p)t = (1− p) log((1− p)−8)n red particles have moved to avoid a collision. This
eans that at most n − pn + r red particles have avoided collision through time t . We then

se the bound at Lemma 11 to show that the expected time to destroy the remaining particles
s O(n) with leading constant that does not depend on p.
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Lemma 18. Consider the following coupon collection process like that of Lemma 16. Let
tp = −n log(1 − p) and for r > 4, let B d

= Bin(r tp, p). Let N = (B − n)/2, and let V be
he number of the n coupons that are not collected through N steps, where we set V = n if
N ≤ 0. For all fixed p sufficiently close to 1 and for all n sufficiently large,

P(V ≥ (1− p)n) ≤ 3/n.

Proof. Note that B is a binomial random variable with mean r ptp, so for p sufficiently close
to 1, standard large deviation estimates for the binomial distribution imply that

P
(
B ≤ r ptp

(
1− (r ptp)−1/4))

≤ e−(r ptp)1/2/16
≤ e−n1/2

(16)

for all large enough n. Let a = a(r, p) := 1
2 (r p log 1

1−p − 2), which is large for p close to 1,
o for all large enough n, we have

P(N ≤ an) ≤ P
(

N ≤
1
2

[r ptp(1− (r ptp)−1/4)− n]
)

= P
(
B ≤ r ptp

(
1− (r ptp)−1/4))

≤ e−n1/2
.

etting V ′ be the number of coupons not collected through an steps, we have

EV ′ = n(1− 1/2n)an

≤ ne−a/2

≤ n exp
[
−

1
4

r p log
1

1− p
+ 1

]
≤ n

1
2

(1− p),

where in the last line we use the assumption r > 4 and take p such that r p/4 > 1.
In anticipation of our variance bound, observe that for n sufficiently large, by Taylor’s

heorem, we have

(1− 1/n)an
− (1− 1/2n)2an

≤ e−a(ea/2n
− ea/8n)

≤ e−a(a/n − a/8n)

≤ ae−a/n.

he probability that coupons labeled 1 and 2 (say) are not chosen through an steps is
1− 2/2n)an , so we have for p close to 1,

Var(V ′) ≤ EV ′ + n2 [(1− 1/n)an
− (1− 1/2n)2an]

≤ n(e−a/2
+ ae−a)

≤ (1− p)n.

inally, noting that V ≤ V ′1{N>an} + n1{N≤an}, we have

P(V ≥ (1− p)n) ≤ P(V ′ ≥ (1− p)n)+ P(N ≤ an)

≤ P(|V ′ − EV ′| ≥ (1− p)n/2)+ e−n1/2

≤ 3/n. □
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Lemma 19. For any ϵ > 0 there exists p′(ϵ) < 1 such that for each p > p′(ϵ) and all
ufficiently large n, we have

ET 2
p ≤ (12+ ϵ)n log

1
1− p

.

Proof. Let r > 4 and tp be as in Lemma 18. Let B d
= Bin(r tp, p) be the number of

imes that blue is chosen to move through time t = r tp (based on the values of (Zs)s≤t

defined at the start of Section 4). Like in the proof of Lemma 17, we let Red Moved be the
umber of red particles that have moved from their starting locations through time t , and let
ed Sites Visited by Blue be the number of leaf vertices that were initially occupied by

red particles and were visited by at least one blue particle through time t .
The number of times that blue particles are chosen to move from the core to a leaf through

ime t must be at least N = (B − n)/2, provided particles persist through time t . To see this,
et C→ be the number of jumps from the core to leaves up to time t , and C← be the number
f jumps from leaves to the core up to time t . Adding the equations

C→ + C← = B

C→ − C← ≥ −n,

nd solving for C→ gives the claimed inequality C→ ≥ N . We now satisfy the hypotheses of
emma 18. Therefore,

P(Red Sites Visited by Blue ≤ pn, At > 0) ≤ P(V ≥ (1− p)n) ≤ 3/n.

oreover, by (16), for p close to 1 and sufficiently large n we have

P
(
Red Moved ≥ nr (1− p)

(
log

1
1− p

+ 1
))
≤ P

(
B ≤ r ptp

(
1− (r ptp)−1/4))

≤ e−n1/2
.

Observe that At ≤ 2(n − Red Sites Visited by Blue + Red Moved), since red particles
that have not moved and are at sites that are visited by blue particles by time t must be
eliminated. Combining this observation with the last two inequalities gives

P
(

At ≥ 2n
(

(1− p)+ r (1− p)
(

log
1

1− p
+ 1

)))
≤ P(Red Sites Visited by Blue ≤ pn, At > 0)

+ P
(
Red Moved ≥ nr (1− p)

(
log

1
1− p

+ 1
))

≤ 3/n + e−n1/2

≤ 4/n.

Since we have At ≤ 2n, we arrive at

E At ≤ 2n
(

(1− p)+ r (1− p)
(

log
1
+ 1

))
+ 2n(4/n).
1− p
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T

5

P

P
L

P
a

L
a

I

w

Combining this bound with Lemma 11 applied at time t = r tp and Wald’s equation gives

ET p
2 ≤ nr log

1
1− p

+ 2E[At/2]
1

1− p

≤ n
[

3r log
1

1− p
+ 2+ 2r

]
+

1
2(1− p)

.

aking r close to 4, then p close enough to 1, then n sufficiently large completes the proof. □

.3. Proofs

roof of Theorem 4. The upper bound follows from Lemma 11 by setting t = 0 and taking
expectation. The lower bound follows from similar reasoning as the proof of Theorem 3 (i).
Lemmas 7–9 together imply that

ET 2
p (S2n) ≥ 2n + (1/4)E Dt − 1. (17)

Recalling the definition Dt = |
∑t

1 Zs | at the start of this section, we have

Dt ≥ Z1 + · · · + Z t .

Since E Z1 = 2p − 1, we then have

E D2n ≥ (2p − 1)2n.

Applying this inequality at (17), it follows that

ET 2
p (S2n) ≥ 2n +

2p − 1
2

n − 1. □

roof of Theorem 5. The lower bound follows from Lemma 17 and the upper bound from
emma 19. □

roof of Theorem 6. Let M denote the value of Mt at time t = T 2
1 (S2n). Evaluating Lemma 7

t t = T 2
1 (S2n) and rearranging give

T 2
1 (S2n) = 2n + 2M. (18)

et M(i) be the number of times a particle is sampled at the core and moves without being
nnihilated when there are 2i particles in the system. Since red particles do not move, each

time a particle at the core is sampled there is an i/2n chance of annihilation, and annihilations
cannot occur in any other way. It follows that M(i) has distribution X (i/2n)− 1 and thus

M d
=

n∑
1

(X (i/2n)− 1).

n light of (18) and the above equality, we have

T 2
1 (S2n) d

= 2n + 2
n∑
1

(X (i/2n)− 1) = 2
n∑
1

X (i/2n),

hich has expectation 4n log n + 4γ n + o(n). □
340
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