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In the polluted bootstrap percolation model, vertices of the cubic
lattice Z3 are independently declared initially occupied with proba-
bility p or closed with probability g. Under the standard (respectively,
modified) bootstrap rule, a vertex becomes occupied at a subsequent
step if it is not closed and it has at least 3 occupied neighbors (re-
spectively, an occupied neighbor in each coordinate). We study the
final density of occupied vertices as p,q — 0. We show that this
density converges to 1 if ¢ < p*(logp~*)~? for both standard and
modified rules. Our principal result is a complementary bound with
a matching power for the modified model: there exists C such that
the final density converges to 0 if ¢ > Cp®. For the standard model,
we establish convergence to 0 under the stronger condition g > Cp?.

1. Introduction. Bootstrap percolation is a fundamental cellular au-
tomaton model for nucleation and growth from sparse random initial seeds,
and can be viewed as a monotone version of the Glauber dynamics for the
Ising model. In this article we address the three-dimensional model, specifi-
cally a phase transition in the effect of pollution by sparse random permanent
obstacles.

Let Z¢ be the set of d-vectors of integers, which we call vertices or sites,
and let p,q € [0, 1] be parameters. In the initial (time zero) configuration,
each vertex is chosen to have exactly one of three possible states:

closed with probability g;
open and initially occupied with probability p;
open but not initially occupied with probability 1 —p — gq.
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2 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

Vertices that are open but not initially occupied are also called empty.
Initial states are chosen independently for different vertices. Closed vertices
represent pollution or obstacles, while occupied vertices represent a growing
agent.

The configuration evolves in discrete time steps t = 0,1,2,..., and we
consider two versions of the bootstrap rule that determines the evolution.
As usual we make Z? into a graph by declaring vertices u,v € Z¢ to be
neighbors if ||u — v||; = 1. The threshold r is an integer parameter. In
the standard rule, an open site x that is unoccupied at time ¢ becomes
occupied at time ¢ 4 1 if and only if

(1) at least r neighbors of x are occupied

at time ¢. In the modified rule, the condition (1) is replaced with:

(2)

where eq,...,eq are the standard basis vectors. In either version, closed
vertices remain closed forever, open vertices remain open, and once a vertex
is occupied it remains so for all later times.

Bootstrap percolation without pollution (the case ¢ = 0 in our formula-
tion) has a long and rich history including many surprises. For d > r > 1,
there is no phase transition in p, in the sense that every site of Z¢ is even-
tually occupied almost surely for every p > 0, as proved in [VE] (d = 2)
and [Sch| (d > 3). To see a phase transition, one must restrict the dynam-
ics in some way that is controlled by an additional parameter. The choice
that has received by far the most attention is restriction to a finite box
of large diameter n. This leads to consideration of metastability proper-
ties of the model, which are by now understood in great depth (see e.g.
[AL, Holl, BBDM, GHM]), as well as for a broad range of variant growth
rules (e.g. [GG, DvE, BDMS]); for further background see the excellent re-
cent survey [Mor]. Another natural choice is to restrict to the complement
of a random field of obstacles of density ¢ > 0. This is the subject of the
current article, together with the recent article [GraH| by two of the current
authors. This model, called polluted bootstrap percolation, was introduced
by Gravner and McDonald [GM] in 1997. In the intervening period, rigorous
progress on growth processes in random environments has been limited, but
see [DEKMS, BDGM1, BDGM2, GMa, GZH, JLTV] for some examples of
work on related models.

The principal quantity of interest in polluted bootstrap percolation is the
final density of occupied vertices, i.e. the probability that the origin is even-
tually occupied, in the regime where p and ¢ are both small. In dimension

for at least r of the coordinates 1 = 1,...,d,

either x — e; or x + e; is occupied,
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 3

d = 2 with threshold r = 2, Gravner and McDonald proved that the final
density is strongly dependent on the relative scaling of p and ¢. Specifically,
for the standard model, there exist constants ¢, C' > 0 such that, as p — 0
and ¢ — 0 simultaneously,

: 2.
(3) P(the origin is eventually occupied) — {1’ ?f 4= cp )
0, ifg> Cp~.
For the modified model, the probability in (3) goes to 1 under a stronger
assumption ¢ < p*(logp~!)~2. (It is not known whether the logarithmic
factor can be reduced or even eliminated; see [GM] and the second problem
in Section 11.)

By contrast, when r = 2 and d > 3, the main result from [GraH] is
that occupation prevails regardless of the p-versus-q scaling. We call a set of
vertices connected if it induces a connected subgraph of Z%, and let perc
be the event that the origin is in an infinite connected set of eventually
occupied vertices. Consider polluted bootstrap percolation on Z¢ with d > 3,
threshold r = 2, density p > 0 of initially occupied vertices, and density
g > 0 of closed vertices. Theorem 1 of [GraH] states that, for both the
standard and modified models,

IP’(the origin is eventually occupied) —1 as (p,q) — (0,0),

and moreover, P(perc) also tends to 1.

In this article we treat polluted bootstrap percolation on Z? with thresh-
old r = 3. Our strongest result is for the modified model given by (2).
Similarly to the case d = r = 2 of [GM2], but in contrast with the d > r =2
case of [GraH], the final density here depends on the p versus ¢ scaling, but
now with a cube law (modulo logarithmic factors).

THEOREM 1. Consider modified polluted bootstrap percolation (rule (2))
on 73 with threshold » = 3, density p of initially occupied vertices, and
density q of closed vertices.

(i) If p,q — 0 in such a way that ¢ = o(p>(logp=1)~3) then the probability
that the origin is eventually occupied tends to 1, and indeed so does
P(percy).

(ii) There exists a constant C € (0,00) for which the following holds. If
p,q — 0 in such a way that ¢ > Cp? then the probability that the origin
is eventually occupied tends to 0, and moreover P(percy) = 0 for small
enough p.
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4  JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

Our methods rely on the technology of oriented surfaces introduced re-
cently in [DDGHS]. The article [GraH] also used this technology, but for
different purposes. The proof in [GraH] involves the construction of an ori-
ented open surface on which occupation is able to spread. Our proof of
Theorem 1 (i) relies crucially on the main result of [GraH] for the threshold
r = 2 model (as stated above), together with a relatively straightforward
renormalization argument. Interestingly, we need almost the full power of
the result of [GraH], since the renormalized system that we apply it to has
p,q — 0 with p much smaller than g. We do not know any other route to
proving this bound.

The main contribution of this article is Theorem 1 (ii). The original proof
of (3) in [GM] is tailored to two dimensions, and there does not appear to be
a way to extend it to higher dimensions. Our proof instead uses an oriented
surface argument (this time inspired by [GH1]) to identify an octahedron-
like object (see Figure 1) with carefully placed closed vertices, which is
impervious to invasion of occupation from the outside. This construction is
delicate, especially due to vulnerability along the edges and at corners of
the octahedron. For this reason, the octahedron is equipped with plates to
protect the edges, making the object resemble a stegosaurus. An additional
challenge is to control interactions between the dynamics inside and outside
the object — this is achieved via a simple but subtle comparison result
(Proposition 4, below).

Turning to the standard model, when ¢ > Cp?, we are able to construct
infinite blocking surfaces that prevent the spread of occupied vertices from
one direction. However, our approach requires a number of surfaces of dif-
ferent orientations to be stitched together to create a finite blocking surface
of diameter a power of p~!; this size restriction is needed to prevent any
substantial growth of occupation on the inside. For the stitching not to leak
occupation, we cannot rely on the plates, as for the modified model; in-
stead we require a larger density of closed vertices, resulting in the following
weaker result in which the powers in the two bounds do not match each
other. Our primary open problem is to determine the correct p versus ¢
scaling for the standard model.

THEOREM 2. Consider standard bootstrap percolation (rule (1)) on Z3
with threshold r» = 3, density p of initially occupied vertices, and density q
of closed vertices.

(i) Ifp,q — 0 in such a way that ¢ = o(p>(logp~1)~3), then the probability
that the origin is eventually occupied tends to 1, and indeed so does
P(percy).
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 5

(ii) There exists a constant C' € (0,00) for which the following holds. If
p,q — 0 in such a way that ¢ > Cp?, then the probability that the
origin is eventually occupied tends to 0, and moreover P(percy) = 0
for small enough p.

As mentioned in [Mor| and elaborated in [GraH], it is easy to show directly
that when d = r > 2, the final density tends to 0 if ¢ exceeds some small
power of p. In addition to addressing the case d = r = 3, the (ii) parts of
Theorems 1 and 2 yield some improvements to the powers for d = r > 4.
Indeed, assuming everything outside {0}973x Z3 (respectively {0, 1}973x Z3)
is occupied, we can deduce that when d = r > 3, the final density goes to 0
if ¢ > p3 for the modified model (respectively if ¢ > p24_d for the standard
model). No power-law inequality between p and ¢ guaranteeing that the final
density goes to 1 is currently known for either model when d = r > 4. (See
the problems (i) and (ii) in Section 6 of [GraH] for open questions for d > 4.)

If obstacles are made slightly larger, then we can obtain matching up-
per and lower bounds (up to logarithms) for the standard model also. More
precisely, let the initial configuration be chosen as follows. Independently
mark each vertex as an obstacle center with probability q. For each obsta-
cle center, declare that vertex and each of its 6 neighbors closed; all other
vertices of Z? are declared open. Then, conditional on the set of open ver-
tices, declare each open vertex independently to be initially occupied with
probability p. Call this the big obstacles initial configuration.

THEOREM 3. Consider standard or modified bootstrap percolation (rule
(1) or (2)) on Z3 with threshold r = 3, and the big obstacles initial configu-
ration with density p of reserved vertices and density q of obstacle centers.

(i) Ifp,q — 0 in such a way that ¢ = o(p*(logp~1)~3) then the probability
that the origin is eventually occupied tends to 1, and so does P(perc).

(ii) There exists a constant C € (0,00) for which the following holds. If
p.q — 0 in such a way that ¢ > Cp> then the probability that the
origin is eventually occupied tends to 0, and P(perc,) = 0 for small
enough p.

Notation. Two norms will be used throughout the paper: the £°° norm
is denoted || - || and the ¢! norm is denoted | -|. When describing subsets of
73, intervals denote their intersections with the integers, so for real numbers
a < b we write [a,b) := [a,b) N Z, etc. In a deviation from commonly used
conventions, it is useful for us to define (b,a] = [a,b), and similarly for
other intervals. We use both “vertex” and “site” for elements of Z3, but in
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6 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

different contexts. Vertices refer to points in the original lattice, which can
be occupied, closed or empty, while sites refer to the locations of rescaled
boxes, as identified by points in Z3. Points that will eventually refer to the
locations of rescaled boxes at some later time in the proof are also referred
to as sites, as in Sections 4 and 5.

2. Comparison result and outline of proofs. Theorem 1 has two
parts. The lower bound states that the origin is eventually occupied with
high probability if ¢ is small compared with p®. As mentioned earlier, this is
derived via a relatively straightforward renormalization argument from the
threshold r = 2 result of the companion paper [GraH].

The main contribution of this paper is the upper bound, which states
that the origin remains unoccupied with high probability if ¢ is large com-
pared with p3. At the heart of the proof is the following simple but subtle
deterministic result comparing the » = 3 and r = 2 models on a suitable set
of vertices, with different boundary conditions. To state the result for the
modified model, for a set Z and = € Z, we define

na)=nz(x)=#{i=1,2,3:2—¢, ¢ Zorax+e; ¢ Z}

to be the number of coordinates in which x has a neighbor outside Z. For
use in the context of the standard model, we also let 7/(z) = n/,(x) be the
total number of neighbors of = outside Z.

PROPOSITION 4.  Fiz an integer m > 1. Fiz a finite set Z C 73, and run
two modified bootstrap percolation dynamics: the first with threshold r = 3
and Z€ initially occupied; the second with threshold r = 2 and Z°¢ closed.
Assume that the configuration on Z satisfies the following conditions.

(i) Any x € Z with n(x) = 3 is a closed vertex.
(ii) For any x € Z with n(x) > 2, there is no initially occupied vertex
within £°° distance m of x.
(iii) The final configuration in the second dynamics has no connected set
of occupied vertices with {>°-diameter larger than m/2.

Then any vertex x € Z that is occupied at any time by the first dynamics is
also occupied by that time in the second dynamics.

For standard bootstrap percolation, the same statement holds with n re-
placed by .

Proor. Consider the modified rule; the proof for the standard rule is
nearly identical. Assume the conclusion does not hold, and consider the first
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 7

time ¢ at which a vertex x € Z is occupied by the first but not by the second
dynamics. As the two dynamics have the same initial configuration on Z,
we have ¢ > 0. Then we cannot have n(x) > 3, since closed vertices do not
change. We cannot have n(x) = 2 either, as = has no occupied neighbors in
Z in the second dynamics at time ¢ —1 by conditions (ii) and (iii), and by the
minimality of ¢,  also has no occupied neighbors in Z in the first dynamics
at time t— 1. Thus n(x) < 1, but then = has an occupied neighbor in at most
one coordinate outside of Z in the first dynamics at time ¢ — 1, and therefore
must also get occupied by the second dynamics, a contradiction. O

We will apply Proposition 4 by carefully constructing a suitable random
set Z containing the origin. This set will have diameter at most p~° for
some large but fixed constant s. For small p, this is much smaller than
the critical size e“/? for threshold » = 2 bootstrap percolation on finite
sets. Consequently, it will follow from standard bootstrap methods (e.g. of
[AL]) that with high probability the r = 2 model restricted to Z does not
occupy the origin and does not produce large occupied clusters (as appearing
in condition (iii) of Proposition 4), even if we reassign all internal closed
vertices of Z to be open. The construction of the set Z will be an involved
and delicate task. We therefore explain some of the ideas before starting on
the technical details. Figure 1 illustrates the key features of the (random)
set Z given by our construction.

To see why it is reasonable to expect such a set to exist, consider first
the simpler problem of protecting from occupation from a single direc-
tion, say (1,1,1). Specifically, suppose that all vertices in the half space
{z : x1+x2+2x3 > 0} are initially occupied. In the absence of closed vertices,
the occupied set will advance deterministically to {z : 1 +x2+ 23 > —1} at
the next step, and so on, so that all of Z? is eventually occupied. Now sup-
pose instead that the origin (say) is closed, and no vertices in the negative
octant (—oo, 0] are intially occupied. Then this octant is protected from the
advancing occupation and remains empty forever. On the other hand, if the
origin is closed but some vertex (—¢,0,0) on a negative coordinate axis is
initially occupied, then the axis (—oo,0) x {0}? will become fully occupied.
If all three negative axes similarly contain an initially occupied vertex, then
once again all (open) vertices will become occupied. In a random configu-
ration, we can expect the negative axes to be free from initially occupied
vertices up to a distance L = ¢/p with reasonable probability (where c¢ is
small constant), so that the octant is temporarily protected until the occu-
pied half space advances by L. Moreover, if L3¢ is large, then we can expect
to find some closed vertex (the origin in this example) in a 3-dimensional
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8 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

Fic 1. The “stegosaurus,” Z, with only one of the six keystones shown, in magenta.
Cuboids are shown in red or yellow, according to whether they are protected by a plate
or not. Plates are shown in blue or green, according to whether they need protection by a
keystone or not. Black lines indicate “exposed” edges of cuboids and plates, which must be
near nice vertices at the corners, and be protected by other cuboids or plates nearby.
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 9

region of length scale L, so such a temporary protection is common. This
computation is the basic reason behind the ¢ versus p3 scaling. It is cru-
cial that we need only forbid initially occupied vertices on the 1-dimensional
edges of the region being protected, not its 2-dimensional faces (which would
give a different scaling).

Continuing with the example above, to make the temporary protection
permanent we need to find and use further closed vertices before we en-
counter initially occupied vertices along the axes. Because of the g versus
p scaling, we need to look for these closed vertices not on the axes but in
3-dimensional regions. Suppose that the origin is closed and there are no
initially occupied vertices in the interval [—L,0) x {0}? of the axis, and that
in addition the vertex (—L, L, L) is closed. This vertex generates its own
octant (=L, L, L) + (—00,0]3, and the axis (—o0,0) x {0}? pierces one of
its faces, obviating the need for the rest of the axis (—oo, —L) x {0}? to be
free of initially occupied vertices. More generally, suppose that we have an
infinite set of closed vertices. Each generates an octant, and suppose that
each of its three edges pierces a face of another octant before encountering
an initially occupied vertex. Then the octants will protect each other from
invasion of the occupied sites from the outside.

For such an arrangement to exist in the random setting, the infinite set of
closed vertices discussed above should be spaced at length scale about L, and
should be arranged in a kind of oriented surface, which can be regarded as
a random perturbation of the hyperplane {x : z1 + 22 + x3 = 0} with rather
strict conditions on its local geometry. We will construct such a surface by
considering renormalized boxes of scale L and by adapting the recent duality
technology introduced in [DDGHS] (and developed in [GH1, GH2, GH3]) for
constructing oriented surfaces in percolation models.

We now return to the harder problem of constructing a finite set Z to
protect the origin from occupation from all directions. We can imagine that
every vertex outside some very large ¢!-ball is initially occupied, and we
want to conclude that the origin remains unoccupied. The rough idea is
to surround the origin by an envelope of closed vertices at spacing about
L, each of which protects the cuboid having opposite corners at the closed
vertex itself and at the origin — these cuboids are colored red and yellow in
Figure 1. There should be no initially occupied vertices on the “exposed”
edges (black lines in Figure 1) of these cuboids before they pierce others,
which should happen within distance about L. The set Z will be the union
of the cuboids.

One approach to constructing an envelope as described is to combine
eight oriented surfaces of the previous type in various directions, with nor-

imsart-aap ver. 2014/10/16 file: "pbp3-AAP final-a".tex date: September 25, 2021



10 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

mal vectors (1,41, +1), to enclose the origin in an envelope in the shape
of a perturbed regular octahedron (¢!-sphere). However, as we will discuss
below, complications arise at the edges and corners of the octahedron, where
two or more surfaces intersect. It turns out to be easier to control the ge-
ometry of edges and corners if, instead of intersecting surfaces, we adapt
the percolation duality methods of [DDGHS] to construct the envelope di-
rectly. (A similar method appeared in [GH1].) The resulting shape is still a
perturbed octahedron, but its edges are guaranteed to lie on the coordinate
planes (at the level of renormalized sites of scale L).

The edges and corners of the octahedron require special treatment, essen-
tially because they are vulnerable to occupation from more directions. For
simplicity, suppose that the set Z approximates the octahedron {z : || < t}
and that it includes a closed vertex at = = (¢/2,¢/2,0), which is the center
of an edge of the octahedron. The line {(¢/2,t/2)} x Z will contain initially
occupied vertices on both sides of z (typically at distance of order 1/p, as
usual). But we should not expect the envelope to include any closed vertex
with the first two coordinates both greater than ¢/2, since it would have
f1-norm greater than ¢t. Therefore, there is nothing to protect this line, and
it is vulnerable to becoming fully occupied (except at x). The conclusion is
that the vertex x cannot itself protect a 3-dimensional cuboid, but only the
2-dimensional plate [0,¢/2]2 x {0}.

An important difference between the modified and standard models ap-
pears here. In the standard model, even the plate [0,%/2]? x {0} mentioned
above is not safe from occupation from outside. Vertices in its interior have
two potentially occupied neighbors on either side of the plate, so one initially
occupied vertex in the plate will cause the entire plate to become occupied.
To prevent this, the plate must be thickened to thickness at least 2, and must
have closed vertices at both its outermost corners (perhaps at (¢/2,t/2,+L),
for instance). But this means that we need two closed vertices on the same
axis-parallel line, with no initially occupied vertex between them. That re-
quires a different ¢ versus p scaling, and is the reason that our upper and
lower bounds for the standard model do not match. (However, if obstacles
are made larger as in Theorem 3, then these plates have thickness at least 2
at no additional cost, and we get the same g versus p scaling for the standard
and modified models.)

Returning to the modified model, our above assumption that there was
a closed vertex x exactly on the coordinate plane Z? x {0} was in fact an
unrealistic oversimplification. Since the renormalization scale L is chosen so
that L3¢ is large, finding a closed vertex typically requires a region of volume
L3. So a more realistic choice is = (¢/2,¢/2,0) + z for some (random)
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 11

z € (=L, L)% In this case, the closed vertex z protects a plate [0,z1] X
[0, z2] x {x3} that does not include the origin. However, it can still protect
the cuboids generated by nearby closed vertices on the faces of the shell.
This necessitates a further complication: these cuboids should be modified
so as to extend exactly up to the plate, rather than to the coordinate plane.
The plate itself can be protected by nearby cuboids. These plates are colored
green and blue in Figure 1.

Our set Z resembles a stegosaurus. The overall shape is a perturbed octa-
hedron (¢!-ball), with a rough surface composed primarily of corner regions
of randomly placed cuboids. Along each edge of the octahedron, there is a
row of protruding plates parallel to the edge, to protect the vulnerable spine.
Each cuboid and each plate has a closed vertex at its outermost tip, and no
initially occupied vertices on its exposed edges. The set Z is the union of
all cuboids and plates. The locations of plates vary in the direction perpen-
dicular to themselves — they do not all lie in the same plane. In fact, it is
useful to have two rows of plates side by side, on each side of the coordinate
plane, and for the plates to protrude slightly farther than the basic octahe-
dron shape would suggest, further enhancing the stegosaurus comparison. A
cuboid close to the coordinate plane is protected by plates on the far side of
the plane (red cuboids in Figure 1), while protecting plates on the near side
(green plates in Figure 1). The extra protrusion ensures that plates protect
nearby cuboids despite random fluctuations in the shape of the shell.

We have not yet considered the corners of the octahedron. Here there
is a serious issue. Like the head and tail of a stegosaurus, the corners are
especially vulnerable to attack, and require extra protection. The problem
arises for a closed vertex on the surface of Z close to the coordinate axis, such
as the closed vertex y with the largest positive first coordinate, which will be
close to (t,0,0). By similar considerations to those concerning the edges, this
closed vertex can only protect the 1-dimensional ray [0, y1] x {(y2,y3)}, and
is thus essentially useless for protecting other nearby plates and cuboids.
Therefore, the vertex with the second largest first coordinate will have a
similar issue, and so on, unravelling the entire scheme!

Our solution is rather extravagant. Suppose that the cube of side length
20L (say) centered at (t,0,0) has closed vertices exactly at all 8 corners, and
no initially occupied vertices on its edges. It is easy to conclude that this
cube can never be invaded by occupation from outside, and therefore it acts
as a keystone, protecting all plates and cuboids nearby, and stabilizing the
entire structure. This of course comes at a cost. The probability of the above
event is very small, of order ¢%, and since we will need a keystone at each of
the 6 corners of the octahedron, the probability becomes ¢*®. One keystone
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12 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

(of the 6) is shown in magenta in Figure 1. (Regardless of the details of the
construction, it appears that this probability must be o(1), since any variant
of the keystone construction must involve two closed vertices on the same
axis parallel line). But the key point is that this probability is a constant
power of ¢ (equivalently, of p).

We can make many attempts to find a shell enclosing the origin, each
larger than the previous one. At each attempt, the random surface con-
struction succeeds with at least probability 1/2, say, regardless of the size
of the surface, because it is based on percolation arguments. On the other
hand, the keystones only exist with probability ¢*8, so we need to make
about ¢~*® attempts before we succeed. (Or rather ¢=%°, say, to succeed
with high probability). The resulting set will be very large, but, as promised
earlier, its size will be at most polynomial in 1/p.

One more complication was glossed over so far. A surface of the kind
described above can protect the origin from occupation from outside, but
there will also be initially occupied vertices inside it (i.e. in Z), including
on or near the faces of the cuboids. The internal dynamics might interact
with the external dynamics through the faces, causing a vertex on an edge
of a cuboid to become occupied, again leading to disaster. This is where
the comparison with internal threshold » = 2 dynamics in Proposition 4
is needed. The polynomial size of Z will ensure that internal clusters have
diameter bounded by some fixed (but large) constant m/2 with high proba-
bility. Therefore, for each closed vertex x that makes up our surface, we will
require absence of initially occupied vertices not only on the surrounding
axis-parallel line segments of length of order L, but also within ¢*° distance
m of these line segments in all directions. This requirement must of course
be taken into account in the percolation and renormalization calculations
that allowed the surface to be constructed. This creates a somewhat delicate
interplay between the various constants, but it turns out that they can all
be chosen appropriately, as summarized below.

Turning to some further details, we will construct the set Z via renormal-
ization. A vertex u will be declared “nice” if it is closed and there are no
initially occupied vertices within distance m of any axis-parallel line-segment
from u of length some multiple of L. All external corners of Z will be nice
vertices. The parameters will be chosen so that a cube of side L contains
a nice vertex with high probability. In fact, it will be convenient to control
the approximate placement of nice vertices within the cube, so that they
can be chosen on the outermost sides of Z, allowing for the protrusion and
the double row of plates discussed above. Therefore, we will consider cubes
twice the size, of side 2L + 1. We will call such a cube good if all eight of its
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 13

side-L subcubes contain a nice vertex. We will find a “shell” of good cubes
containing the origin. Following the approach of [DDGHS, GH1], the shell
will be constructed via duality, as the boundary of a set reachable via paths
of boxes of a certain carefully chosen type. This will allow us to accurately
control its geometry. The set Z will be constructed using the nice vertices in
these cubes, with the geometric constraints ensuring that the various mutual
protection conditions hold, provided keystones are present.

Symmetry conventions. Our construction of the random set Z satisfying
Proposition 4 will be symmetric (in distribution) under permutations of
coordinates and reflection through coordinate planes (sign-flips). Therefore,
we will state and prove many of the preliminary lemmas in Sections 5 and 8
for vertices in the positive octant and on the positive coordinate planes —
analogous statements clearly hold by symmetry for vertices in the other
octants and coordinate planes, but we omit these statements for the sake of
readability:.

Choice of key constants. A large integer s is chosen so that a box of
diameter p~° is likely to contain a successful “stegosaurus” Z. This number
only depends on the probability of the occurrence of 6 keystones at the
specific locations, and its value is determined (to be s = 300) in the proof
of Lemma 30.

The large integer m is the radius of the initially unoccupied regions around
the edges of Z in Proposition 4. Ultimately, m depends on the size of Z,
and therefore on s, as it depends on how much the threshold » = 2 dynam-
ics are likely to achieve inside Z. As a consequence of Proposition 27, the
dependence is a simple linear one (m = 12s), and leads to the choice of m
also in the proof of Lemma 30.

We will need a small parameter § > 0, which determines the length scale
L = |6/(m?p)]. The choice of § and the constant C' > 0 from the statement
of Theorem 1 determine the probability that a rescaled site (a box of di-
ameter 2L + 1) has enough strategically placed closed vertices and initially
unoccupied vertices (see Section 6). Lemma 19 implies this probability is
at least 1 — ¢ when we choose 6 = ¢/(16 - 10°) and C is chosen sufficiently
large depending on m and e (from the proof of Lemma 19, we can take
C = (16-10°m?/e)3 log(16/¢)). To deal with finite-range dependence between
rescaled sites, we use [LSS] to determine € > 0 in the proof of Lemma 29.
Thus, we do not give an explicit value to €, so neither § nor C' are given
explicit values.

We also emphasize that, after the values of the constants mentioned above
are determined, p needs to be assumed small enough (depending on all these
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14 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

values) for all the arguments to work properly. We also need to assume that
q is small enough (see Sections 6, 9, and 10), which we may, since the prob-
ability that the origin is eventually occupied and P(perc,) are decreasing in

q.

3. The lower bound. In this section we prove Theorem 1(i), which also
immediately implies Theorem 2(i). Thus, we consider the modified model for
the rest of this section. Pick an integer N > 1. For now, N is arbitrary, but
later we choose it to be on the order a bit larger that p~'. A site z € Z3
is called N-open if the box Nz + [0, N)? contains no closed vertices and
every nonempty intersection between a line parallel to a coordinate axis and
Nz + [0,N)? contains an initially occupied vertex; z is called N-closed
otherwise. Moreover, a site x is called N-occupied at some time ¢ if the
box Nz + [0, N)3 is fully occupied at that time.

LEMMA 5. Choose any N > 1. If v € Z3 is N-open, and it has two
nearest neighbors y1 and yo with ||y1—1y2||cc = 1 (i.€., y1 and yo are neighbors
in two different coordinates), which are both N -occupied at some time t, then
x is N-occupied at some later time.

PRrROOF. This is an easy verification. O

LEMMA 6. Let N = |[3p~tlogp~!| and assume q¢ = o(p?(logp~1)73).
Then the probability that 0 is N-open converges to 1 as p — 0.

PrROOF. The probability that there exists a nonempty intersection be-
tween a line parallel to a coordinate axis and [0, N)3 that fails to con-
tain an initially occupied vertex is bounded above by 3NZ%(1 — p)V <
3N2exp(—3logp~!) < 30p(logp—1)2. Moreover, the probability that this
box contains a closed vertex is at most ¢N3, which by the assumption ap-
proaches 0 as p — 0. ]

PROOF OF THEOREM 1(1) AND THEOREM 2(I). Assume that N is as in
Lemma 6. Run the threshold » = 2 modified bootstrap rule on initially
N-occupied and N-closed sites in Z3. That is, initialize a bootstrap perco-
lation with a configuration of closed and occupied vertices corresponding to
those sites that are initially N-closed and N-occupied in the rescaled con-
figuration. Let Y be the resulting set of eventually occupied vertices in this
threshold 2 process; Lemma 5 guarantees that the set of eventually occupied
vertices in the original, threshold 3 process contains the set NY + [0, N)3.
The probability that a site is initially N-closed converges to 0 as p — 0
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 15

by Lemma 6, the probability that a site is initially N-occupied is p™v DS 0,
and different sites are N-closed and N-occupied independently. Theorem 1
of [GraH] (restated here on page 3) thus guarantees that, with probability
approaching 1 as p — 0, the set Y contains an infinite connected set that
includes the origin, and therefore so does NY + [0, N)3. O

4. Definition of the Shell. In this section, we define a shell to be
a subset of Z3 having certain properties. Later, this shell will consist of
rescaled boxes having certain good properties as defined in Section 6, which
will be used to construct the stegosaurus. We make the definitions below
(of protected sites and of the shell) with the view that the corresponding
rescaled boxes contain closed sites positioned (relative to one another) to
protect the stegosaurus from the invasion of occupied sites, as outlined in
Section 2.

Let a € Z3 have no coordinate equal to zero. We say that a site x € Z2 is
a-protected by y € Z3 if

y—x € (0,a1] x (0,as] x (0,as], or

Yy = (07y27y3) and y —x € (0,(11] X [0,&2} X [07&3]7 or
y = (y1,0,y3) and y — x € [0, a1] x (0,az2] x [0,as], or
y = (y1,y2,0) and y — x € [0, a1] x [0, a2] x (0,as).

In other words, if one of the coordinates of y is zero, then the intervals in
the other two coordinates are allowed to include 0.
Let E C Z3. A site x € [1,00)3 is called protected by FE if for each

(4) a€{(~3,3,3),(3,-3,3),(3,3,-3)}

there exists a corresponding y € E such that x is a-protected by y. A site
x € [1,00) x [1,00) x {0} is called protected by E if for each

(5) a€{(-3,3,3),(-3,3,-3),(3,-3,3),(3,-3,-3)}

there exists a corresponding y € E such that x is a-protected by y. Similarly,
for x € Z3 with three or two non-zero coordinates, we say x is protected
by FE if it satisfies the definition above with the signs of the coordinates
flipped in displays (4) or (5) in an identical way throughout. For example, if
x € (—00, —1] x[1,00)?, then we flip all the first coordinates, and replace (4)
with “a € {(3,3,3),(-3,-3,3),(—3,3,—-3)}”. For x with zero or one non-
zero coordinates, we will not need to refer to x as being protected.

A shell S of radius n is defined to be a non-empty subset of Z3 that
satisfies the following properties. See Figure 2.
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16 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

of a shell; its bottom half is also shown,

F1G 2. Top: a set satisfying properties (S2)—-(54)

so that the interior can be seen. The spine is in green. Bottom: the additional condition

(S1) is satisfied provided the shell is deterministically

“flat” near its six corners, as here.

(A non-trivial example satisfying (S1) would be too large for a convenient illustration.)
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 17

(S1) The shell S contains all sites € Z3 such that |z| = n and ||z|/c >
n — 12. (This implies that S contains portions of the | - |-sphere of
radius n in neighborhoods of each of the six sites (£n,0,0), (0, £n,0)
and (0,0,+n).)

(S2) For each z € S, we have n < |z| < n+ 3y/n and ||| < n.

(S3) For each x € S that has at most one coordinate that is less than 4 in
absolute value, x is protected by S.

(S4) For each of the eight directions ¢ € {(£1,£1,+1)}, there exists an
integer k = k() > n/3 such that kp € S.

If S is a shell, the intersection of S with the union of the three coordinate
planes is called the spine of S.

5. Construction of the Shell. In this section we prove the existence
(with large probability) of shells in a suitable site percolation model. Later
we will apply this fact to show that there exists a shell of rescaled boxes,
each having certain good properties as defined in Section 6.

Let sites in the lattice Z? be independently marked black with probability
b and white otherwise. We will identify a shell of black sites through a dual
construction. To specify paths of a certain type, and we start by defining
two types of steps. We settled on the definitions of these steps through some
experimentation to guarantee property (S3), as the dual operation is not
easily reversible. An ordered pair of distinct sites (z,y) is called:

1. a taxed step if each non-zero coordinate of x increases in absolute
value by 1 to obtain the corresponding coordinate of y, while each
zero coordinate of x changes to —1,0 or 1 to obtain the corresponding
coordinate of y;

2. afree step if |y| < || and y —x € F, where F is the set of all vectors
obtained by permuting coordinates and flipping signs from any of

(1,0,0),(1,1,1) and (3,1,1).

(For example, (—1,3,1) € F.)

Observe that, in a taxed step (x,y), we have |y| > |z|.

A permissible path from z( to z, is a finite sequence of distinct sites
(%0, x1,...,2) such that for every i = 1,...,, the pair (x;_1, ;) is either a
free step or a taxed step; in the latter case, we also require that x; is white.

To obtain a (random) shell S of radius n, we let
(6)

A={yeZ: 3z e Z® with |z| < n and a permissible path from z to y},
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18 JANKO GRAVNER, ALEXANDER E. HOLROYD, AND DAVID SIVAKOFF

and we define
(7) S={y € Z3\ A: there exists z € A such that (z,y) is a taxed step}.

The remainder of this section is devoted to proving Proposition 7, which
asserts that if the density of black sites is sufficiently high, then a shell of
radius n exists with large probability.

PROPOSITION 7. Let E, be the event that there exists a shell of radius
n consisting of black sites. There exists by € (0,1) such that for any b > by
and n > 1, we have P(E,) > 3/4.

Note that the event E,, depends only on the colors of sites in {x € Z3 :
n < |z| < n+ 3y/n}. However, in proving Proposition 7, we will show that
the set S defined in (7) is, in fact, the desired shell with large probability.

5.1. Probabilistic properties of S. In this section we describe random
properties of S that hold with probability close to 1 when the black-site
density b is close to 1. The following lemmas will be used to show that S
satisfies properties (S1) and (S2) with large probability.

LEMMA 8. There exists a constant by < 1 such that for all b > by the
following holds. For any integer k > 1 and any site x € 73, the probability
that there exists y € Z3 such that |y| — || > 0 and |y — x| = k and there is
a permissible path from x to y is at most 2(1 — b)*/25,

PROOF. Suppose ~ > 1, and consider a (self-avoiding) path
(x0,21,...,2y) such that each step is either taxed or free, and z9 = x and
|| — |z| > 0 and |2z, — x| = k. The number of such paths is at most 467,
since for each site in Z> there are at most 27 taxed steps and at most 19
free steps originating at that site. Let ¢t and f be the number of taxed and
free steps in this path, and observe that

t+f=~ and 3t—f>0,

since each taxed step can increase the ¢!-norm by at most 3 and each free
step decreases the £'-norm by at least 1. In particular, t > ~/4, and the
probability that this path is permissible is (1—b)* < (1—b)?/%. Furthermore,
we in fact have v > [k/5], since each step (taxed or free) has £!-norm at most
5. Choosing by < 1 large enough such that 46(1 — b)'/* < (1 — b)/> < 1/2
for all b > bs, the expected number of permissible paths from x to some y
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POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 19

with |y| — || > 0 and |y — x| = k is at most

ST ode-nts Y [(1 . b)l/ﬂ7 < 2(1 — b)k/?,

v=[k/5] Y=[k/5]

This completes the proof. ]

LEMMA 9. There exists bg < 1 such that if b > b3, then for each n > 1,
the set S defined by (6) and (7) satisfies property (S1) with probability at
least 7/8.

PROOF. Let y be any site satisfying |y| = n and [|y||cc > n — 12. Observe
that for any such y, there is a z such that |z|] < n — 1 and (z,y) is a taxed
step; such a z can be found by decreasing the absolute value of each non-zero
coordinate of y by 1 while keeping the sign of each coordinate. For example,
if n >3 and y = (0,—n + 2,2), then z = (0, —n + 3, 1). Therefore, if there
is no z with |z| < n — 1 such that there is a permissible path from x to y
(so y is not in A), then y € S. To this end, the number of sites x such that
ly — x| = k > 1 is at most 4(k + 2)?, and Lemma 8 implies that if b > by
and (1 — b)1/?® < 1/2, then the probability that there exists z such that
|z| < n —1 and there is a permissible path from x to y is at most

D Ak 42?21 -b)HP < (1-p)V* Y " 8(k+2)* 27" = C(1-b)"/*,
k>1 k>1

where 1 < C' < 0o is the value of the sum in the middle. Estimating crudely,
there are at most 6 - 123 sites y satisfying |y| = n and |y|lcc > n — 12.
Therefore, taking b3 € (bo, 1) large enough such that 6-123C/(1—b3)'/?> < 1/8
finishes the proof. O

LEMMA 10. There exists by < 1 such that if b > by, then for eachn > 1,
the set A defined by (6) is finite, and the set S defined by (7) satisfies
property (S2) with probability at least 7/8.

PrROOF. We first verify that if y € S then n < |y| < n + 3y/n with large
probability. The lower bound |y| > n is trivial, since {x : |z| < n} C A and
S C 73\ A. To prove the upper bound, we will show that A C {y : |y| <
n + 3y/n — 3} with probability at least 7/8. Since a taxed step can increase
the £'-norm by at most 3, this event implies that S C {z : |z| < n + 3/n}.
Observe that there are at most 8n3 sites x with |z| < n. If b > by and
(1 — b)Y/? < 1/2, then summing over k > 3y/n — 2 in Lemma 8 implies
that the probability that there exists a permissible path from some z with
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|z] < n—1 to some y with |y| >n+3yn—3 (so |y —z| > 3y/n—2)is at
most
8n® . 4(1 — p)BVP=2)/25,

Since this tends to 0 as n — oo, we can choose b, > by large enough such
that the above bound on the probability is smaller than 1/8 for all n > 1
and all b > b). Therefore, A C {y : |y| < n+ 3y/n — 3} with probability at
least 15/16.

We now show that S C {y : ||y|]lcc < n} (and therefore S is finite) with
probability at least 15/16 for large enough b. First, observe that A C {y :
lylloo < m — 1} implies that S C {y : ||yl < n}, since each taxed step
has ¢*°-norm 1, so it suffices to show that there are no permissible paths
from some x with |z| < n — 1 to some y with ||y||cc > n. There are at most
60(¢ A (n—£))? sites = with |z| <n—1 and ||z| s = ¢ < n— 1. For any such
z, if ||[y|lc > n, then |y — x| > ||y — x||oc > n — £. Therefore, if [z <n —1
and ||z]|cc = ¢ < n—1, and b > b)j, then summing over k¥ > n—/ in Lemma 8
implies that the probability that there exists a permissible path from z to

some y with ||y||ec > n is at most
60(n — £) - 4(1 — b)(n=0/25,

Summing this expression over £ < n — 1, and again using (1 — b)'/? < 1/2
for b > b}, the probability that there exists a permissible path from some x
with |z| <n —1 to some y with ||y||c > n is at most

(1=b)"/% 240k . 271,
k=1

Choose by > b large enough so that the expression above is smaller than
1/16. We have shown that if b > by, then each statement in (S2) holds with
probability at least 15/16, so by the union bound implies, the probability
that (S2) holds is at least 7/8. O

5.2. Deterministic properties of S. In this section we describe determin-
istic properties of S, as defined in (6) and (7). Throughout this section we

assume that A is finite,

which happens with positive probability by Lemma 10. We start by showing
S satisfies property (S4).

LEMMA 11. The set S satisfies property (S4).
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PROOF. By symmetry, it suffices to show that (k, k, k) € S for some k € N
with &k > n/3. Let k = min{¢ € N : ({,¢,¢) ¢ A} > n/3, which is finite,
since A is assumed to be bounded. We have (k — 1,k — 1,k — 1) € A and
(k,k,k) ¢ A, and since (1,1, 1) is a taxed step, this implies (k, k, k) € S. O

The next five lemmas essentially say that S varies gradually and can-
not contain large flat regions. Taken together, they imply that S satisfies
property (S3).

LEMMA 12. Ifz = (x1,29,23) € S is such that 1 > 1 and x9 > 1 and
x3 >4, then x is (2,2, —3)-protected by some y € S.

PROOF. By the definition of S in (7), z must be reachable from A by a
taxed step. Since z is not on the spine of S, the only site from which we can
reach z via a taxed step is x4+ (—1,—1,—-1),so x+(—1,—1,—1) € A. Taking
a free step in the (1,1, —3)-direction, this implies x + (0,0, —4) € A (here is
where we require 3 > 4 so that |z + (0,0, —4)| < |z + (—1,—1, —1)|). Since
x € 8 C A° we must have = + (2,2, —2) € A, otherwise two free steps in
the (=1, —1, 1)-direction would imply = € A, giving a contradiction.

Now there are two cases. If x + (1,1,-3) € A° then z + (1,1,-3) € S,
since it is a taxed step away from x + (0,0, —4) € A, and we can take y =
x+ (1,1, —3). Otherwise, we have x + (1,1, —3) € A and x + (2,2, —2) € A,
which is a taxed step, so we can take y = = + (2,2, —2). O

LEMMA 13. Ifz = (z1,29,1) € S is such that x1 > 1 and x9 > 1, then
either (x1,z2,0) or (z1 + 1,22+ 1,0) is in S.

PROOF. Since z is reachable from A by a taxed step and is not on the
spine of S, we must have (z; — 1,22 — 1,0) € A. Since z € S C A°, we must
have (z141,22+1,0) € A, otherwise a free move in the (—1, —1, 1)-direction
would imply = € A, giving a contradiction.

There are now two cases. If (z1,22,0) € A€, then (z1,292,0) € S, since
it is reachable by a taxed step from (x; — 1,29 — 1,0) € A (recall that 0-
coordinates are not required to change along taxed steps). Otherwise, we
can take a taxed step from (x1,x2,0) € A to reach (z1 + 1,22 + 1,0) € AC,
so we take y = (z1+ 1,22 +1,0) € S. O

LEMMA 14. Ifz = (x1,x92,23) € S is such that 1 > 1 and x9 > 1 and
x3 > 1, then either (x1,x2,23 — 1) or (x1 + 1,29+ 1,23 — 1) is in S.

PROOF. If z3 = 1, this follows from Lemma 13, so assume x3 > 2. Since ©
is reachable from A by a taxed step and is not on the spine of S, we must have
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x4+ (—1,—1,—1) € A. Taking a free move in the (0,0, —1)-direction implies
that x+(—1,—1,—2) € A. Since z € S C A°, we must have z+(1,1,0) € A°,
otherwise free moves in the (—1,0,0) and (0, —1,0)-directions imply = € A,
giving a contradiction. Similarly, we must have z + (1,1,—1) € A€, since a
free move in the (—1, —1, 1)-direction brings us back to x.

Once again, there are now two cases. If (x1,x9,23 — 1) € A, then it is
in S, since it is a taxed step away from = + (—1,—1,—2) € A. Otherwise,
(x1,x9,23—1) € A, which implies (z1, z2, 23 —2) € A by taking a free move
in the (0,0, —1)-direction. Therefore, we have x 4+ (1,1,—1) = (z1 + 1,29 +
1,23 — 1) € S, since it is a taxed step away from (1, z2, 23 — 2) € A. O

LEMMA 15. If x = (x1,x9,23) € S is such that x1 > 1 and zo2 > 1 and
1 <3 <3, then x is (3,3, —3)-protected by some y = (y1,y2,0) € S.

PROOF. By Lemma 14, either (z1, z9,23—1) € Sor (z1+1,z90+1,23—1) €
S. If z3 = 1 we are done, otherwise apply Lemma 14 at most twice more to
whichever of these sites is in S. O

LEMMA 16. If x = (x1,22,0) € S is such that 1 > 4 and xo > 1, then
x 1s (—3,3,3)-protected by some y € S.

PROOF. Since z € S is reachable from A by a taxed step, we have (z1 —
1,29 —1,0) € A. Also, we have (z1,x2,1) € A¢, otherwise we could return to
x by the free step (0,0, —1). Therefore, (z1,z2,1) € S because it is reachable
from (x; — 1,29 — 1,0) € A by a taxed step. Lemma 12 implies that there
exists y € S such that (z1,z9,1) € S is (=3, 2, 2)-protected by y. Therefore,
x is (—3,2, 3)-protected by y. O

LEMMA 17. If x € S is such that at most one coordinate has absolute
value smaller than 4, then x is protected by S.

PrROOF. If z = (21,292, x3) is such that min(x1, x2, x3) > 4, then Lemma 12
implies x is (3,3, —3)-protected by some y € S. By permuting coordinates,
x is also (3, —3, 3)-protected and (—3, 3, 3)-protected by sites in S. If 1 > 4
and g > 4 and 1 < 23 < 3, then Lemma 12 implies x is (3, —3, 3)-protected
and (—3, 3, 3)-protected by sites in S, and Lemma 15 implies z is (3,3, —3)-
protected by some site y in the spine of S. If 1 > 4 and zo > 4 and
x3 = 0, then Lemma 16 implies that = is (—3, 3, 3)-protected and (3, —3, 3)-
protected by sites in .S. By symmetry under flipping signs, we also have that
x is (—3,3, —3)-protected and (3, —3, —3)-protected by sites in S. Finally, by
symmetry under permuting coordinates, if x is in the non-negative octant
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FiG 3. Left: the set J. Middle: the unoccupied set centered at a nice vertex. Right: a good
box: each of the eight subcubes contains a nice vertex (two are shown).

and has at most one coordinate with absolute value smaller than 4, then x
is protected by .S, and by symmetry under flipping signs, this holds for all
x € S with at most one coordinate smaller than 4 in absolute value. O

5.3. Proof of Proposition 7. By Lemmas 9 and 10 and the union bound,
if by = b3 V by, then b > by implies that with probability at least 3/4, the
set A given by (6) is bounded and the set S given by (7) satisfies (S1) and
(S2). On the event that A is bounded, Lemma 17 implies that S satisfies
(S3), and Lemma 11 implies that S satisfies (S4). Therefore S is a shell of
radius n, and P(E,) > 3/4. O

6. Good boxes. Recall the integer m > 1, which was introduced in
Proposition 4. Its value will be chosen in the proof of Lemma 30 in Section 9;
until then, its value is fixed but arbitrary. Let L = |§/(m?p) ], where § > 0 is
a small constant to be fixed later (in Lemma 29). Also let M = 36L. Define
the set

(8) J = ({0}* x [-M, M]) U ({0} x [-M, M] = {0}) U ([-M, M] x {0}?).

Call a vertex u € Z? nice if u is closed and every vertex within ¢>° distance
m of the set u+.J is initially unoccupied. For each z € Z3, define the rescaled
box at = to be

Q. := (2L + )a + [-L, L]>.
For (01,02,03) € {4+, —}?, define the (01, 02, 03)-subcube of Q, to be the
set (2L + 1)z + (0,01L] x (0,02L] x (0,03L]. We call a box @, good if each
of its eight subcubes contains a nice vertex. See Figure 3 for an illustration.
Our goal in this section is to obtain a lower bound on the probability that
a box is good. We start with a few preliminaries. We call a vertex u € Z3
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viable if every vertex within ¢°° distance m of the set u + J is initially
unoccupied. Note that a viable closed vertex is nice.

We use a simple two-stage procedure to realize the initial configuration.
First, choose closed vertices in Z3 according to a product measure with
density ¢. Second, independently choose active vertices in Z? according
to a product measure with density p/(1 — g). The set of initially occupied
vertices are those that are active but not closed.

LEMMA 18.  Assume q < 1/2. Fix a vertex u € 73 and an € > 0. Assume
§ < €/10°. Then the probability that there is no active vertex within (>
distance m of u+ J is at least 1 — €. Consequently,

(9) P(u is viable) > 1 — .
PrROOF. The argument is a simple estimate,

]P’(there is no active vertex within ¢°° distance m of v+ J )

m m 2
(10) [1 . p/(l . Q)] 3(4M+2m+1)(2m+1)
> exp [—150 m*Mp/(1 — q)]

> exp (—108009),

provided p is small enough. Thus we can choose any § < €/(10800) to get
the probability in (10) at least 1 — . O

LEMMA 19.  Fiz any e > 0, and assume § = ¢/(16-10°). Then there exists
a constant C' = C(m,¢€), such that ¢ > Cp> implies that the probability that
the box Qg is good is at least 1 — .

PROOF. Let @ be the (+,+,+)-subcube of Q. Let G be the event that
@ contains a closed vertex. Provided that G occurs, use any deterministic
strategy to select a closed vertex u, € Q. By Lemma 18, conditioned on G,
the probability that there is no active vertex within distance m of u. + J is
at least 1 — ¢/16, and absence of active vertices implies absence of occupied
vertices. Then
(11)

P(there is a nice vertex in Q) > P(G) - P(u, is viable | G)

[1 (1—q)* }-(1—6/16)
> [1 —exp(—qL?)] - (1 — €/16)
> [1—exp(—(q/p )-53/2m6)} (1 —€/16).

V
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Now choose C large enough so that the first factor on the last line of (11)
exceeds 1 — €/16. Then (11) implies

(12) P(there is a nice vertex in Q) > 1 — ¢€/8.

Finally, (12), symmetry, and the union bound finish the proof. O

7. Construction of the stegosaurus. In this section we construct
a set Z C 732, called the stegosaurus, which is our candidate for the set
satisfying the assumptions of Proposition 4. In the next section we will show
that this set does, indeed, satisfy these assumptions.

Suppose that there exists a shell S of radius n so that @), is good for every
x € S. We first fix a set U C Z3, consisting of zero, one or two nice vertices
in each cube Q, for z € S. For each z € [1,00)3 N S such that at least two
coordinates of x are at least 4, choose a nice vertex in the (—, —, —)-subcube
of Q. For each x € {0} x [4,00)2N S choose a nice vertex in the (+, 4, +)-
subcube of @, and another nice vertex in the (—, +, +)-subcube of Q,. We
choose nice vertices analogously in the other octants and coordinate planes.
If at least two coordinates of x € S are less than 4, we do not choose any
nice vertices from ;. Let U be the set of all chosen nice vertices.

A keystone is a cube of side length 20L + 1, all eight of whose corners
are nice. We now suppose that there is a keystone centered at each of the
six vertices (£n(2L + 1),0,0), (0,£n(2L + 1),0), (0,0, £n(2L + 1)). Let K
be the set of all corner vertices of all keystones (48 in all).

We now proceed to define Z. For u,v € Z3, let Blu,v] = [uq,v1] X [ug, va] X
[u3, v3] denote a box in Z3. We will define Z to be the union of certain boxes,
one for each vertex in U U K. We define a box B(u) for every u € UU K as
follows.

(Z1) Suppose u € U is such that u € @, for a non-spine site z. Recall that
x is protected by S, so by definition it is a-protected by some y, € S,
for each a in (4). Such y, may not be unique; choose one y, for each
a. Consider two cases.

e If no y, is in the spine, then let B(u) = B0, u]. (Yellow cuboids
in Figure 1.)

o If exactly one y, is in the spine, say, without loss of generality,
with a = (—3,3,3), then let v € U be the nice vertex in the
(—, =+, +)-subcube of Q,. Take the box B(u) = B[(v1,0,0),ul.
(Red cuboids in Figure 1.)

(Z2) For every u € U such that u € @, where x is on the spine and, say,
has first coordinate 0, let B(u) = B[(u1,0,0),u]. Define B(u) similarly
if either of the other coordinates of x is 0. (Green plates in Figure 1.)
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(Z3) For every u € K (the corner of a keystone), let B(u) = B0, u]. (Ma-
genta cuboids in Figure 1.)

Now define the stegosaurus as

(13) Z= |J B).

ucUUK

8. Structural properties of the stegosaurus. In this section, we
will verify that the stegosaurus, Z, defined in (13) satisfies the first two
assumptions of Proposition 4. To do so, we will check that it satisfies the
sufficient condition given in Lemma 22 below.

Throughout this section, in Lemmas 20-26, we assume that a shell of
good boxes, S, of radius n exists, as well as keystones centered at each of
the six vertices (+n(2L+1),0,0), (0,£n(2L+1),0), (0,0,+n(2L+1)), and
that the sets U and K are given as in the previous section.

Recall that n(u) denotes the number of coordinates in which u has a
neighbor outside of Z. For a set of vertices B C Z3 (which will typically be
a box or union of boxes), we say v is a corner of B if v € B has neighbors
outside B in all three coordinates, and v is on an edge of B if v € B
has neighbors outside B in exactly two coordinates. We start with a simple
observation that follows from the construction of Z.

LEMMA 20. Suppose Z is defined as in (13).

(i) Ifw € Z has n(w) = 3, then w is a corner of B(u) for someu € UUK.
(ii) If w € Z has n(w) = 2, then w is either a corner or on an edge of
B(u) for someu € UUK.

PROOF. In the case n(w) = 3, if w € B(u) is not a corner of B(u), then
this gives a contradiction. In the case n(w) = 2, if w € B(u) is not a corner
and not on an edge of B(u), then this gives a contradiction. O

The next lemma states that vertices near the coordinate axes are not
corner or edge vertices of Z. This is because these vertices are protected by
the keystones, in the sense that vertices of Z near the axes lie within the
union of cuboids B(u) for v € K. Note that the vertices in the statement of
Lemma 21 exclude those that are corners or edges of the set U,cx B(u).

LEMMA 21. Suppose Z is defined as in (13).

(i) If w € Z has two coordinates that are strictly smaller than 10L in
absolute value, then n(w) < 1.
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(ii) If w € Z has one coordinate equal to 10L in absolute value and one
coordinate strictly smaller than 10L in absolute value and |w||s <
(2L + 1)n + 10L, then n(w) < 1.

PROOF. Observe that U,cxB(u) C Z contains all vertices v € Z? such
that ||v]|ec < (2L 4 1)n + 10L and at least two coordinates of v are smaller
than or equal to 10L in absolute value. Property (S2) of the shell S implies
that ||v]|ec < (2L + 1)n 4+ 10L for all v € Z, so if w € Z has at least two
coordinates smaller than or equal to 10L —1 in absolute value, then n(w) <1
(with equality if and only if ||w||cc = (2L + 1)n+ 10L). This proves part (i).
For part (ii), observe that if w satisfies the three conditions given, then w
has at most one neighbor outside of U,ecx B(u), so n(w) < 1.

O

The next lemma gives sufficient conditions for Z to satisfy the first two
assumptions in Proposition 4, and by Lemma 20, it suffices to verify these
conditions for each box comprising Z. Essentially, it says that for each u €
U U K, we need to show that all edges and corners of B(u) that are not
sufficiently close to u are hidden within other cuboids or plates.

LEMMA 22. Let Z be defined as in (13). Suppose that for eachu € UUK,
if w € B(u) is a corner or on an edge of B(u), then either

(i) w has at least two coordinates strictly smaller than 10L in absolute
value, or
w has one coordinate equal to 10L in absolute value and one coordinate
strictly smaller than 10L in absolute value and ||w||c < (2L + 1)n +
10L, or

(il)) w=wu, or

(iii) w € U and w is on an edge (not a corner) of B(u) and w € u+ J, or

(iv) uw € K and w is either a corner or on an edge of B(u) and w € u+ J,
or

(v) there exists v € U such that w € B(v) and w is not a corner and not
on an edge of B(v).

Then Z satisfies the first two assumptions of Proposition 4.

PROOF. Suppose w € Z has n(w) > 2. By Lemma 20, w is a corner or on
an edge of B(u) for some v € UUK, and by Lemma 21, w does not satisfy (i).
If w satisfies condition (v) for some v € U, then w can only have neighbors
that are outside of B(v) C Z in at most one coordinate, so n(w) < 1; this is
a contradiction. Therefore, by (ii), (iii) and (iv), we have w € u + J. Since
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u is a nice vertex, there are no initially occupied vertices within distance
m of uw+ J > w. This verifies that Z satisfies the second assumption in
Proposition 4. If, in addition, n(w) = 3, then Lemma 20 implies w is a
corner of B(u) for some v € U U K. If u € U, then (ii) and (iii) imply that
w = u. In this case, w € U is a nice vertex, so w is closed. Suppose now that
u € K. In this case, we claim that if n(w) = 3 and w € B(u), then w = u.
Indeed, if w € Uyerx B(u) has n(w) = 3, then w € K (in fact, w must be one
of the 24 outermost corners of the keystones, so w is a permutation of one
of the points (£((2L + 1)n + 10L),+10L, £10L)). Furthermore, if u and v’
are distinct points in K with n(u) = n(u’) = 3, then B(u) N B(u') is disjoint
from K. Therefore, if w € B(u) and n(w) = 3, then w = w. This verifies
that Z satisfies the first assumption in Proposition 4. O

In the next series of lemmas, we verify the conditions in Lemma 22 hold
for the corner and edge vertices of every box used to construct Z. There are
four cases for the location of u € UUK, and by symmetry of the construction
of S and Z, we will assume for all statements that v is in the first octant or
near one of the positive coordinate planes or axes. The analogous statements
(for other octants) hold by permuting coordinates and flipping signs.

We start with cuboids of vertices far from the coordinate axes; this case
corresponds to the yellow cuboids in Figure 1.

LEMMA 23.  Suppose u € U is such that u € Q, with min(zy, 9, x3) > 4.
Then u satisfies the condition of Lemma 22.

PROOF. Since x is far from the spine, it is a-protected by a non-spine site
Yq € S for each a in (4), so B(u) = B[0, u]. We will show that all corner and
edge vertices of B(u) satisfy some condition of Lemma 22.

First observe that each point in the intervals

[(wr = M)V 1,u1] x {uz} x {us},
(14) {Ul} X [(UQ — M) V 1,’LL2] X {U3},
and  {ui} x {ug} x [(us — M)V 1, us]

satisfy either condition (ii) or (iii) of Lemma 22, depending on whether the
vertex is a corner or on an edge of B(u) (note that w is the only corner among
these vertices). Taking a = (—3, 3, 3), we have that there is a v € U such that
v € Qy,, which implies va > up and v3 > uz and 0 < w1 —v; < 4(2L+1) < M.
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Since B[0,v] C B(v), this implies that the intervals

0, (u; — M)V 1) x {ug} x {us},
(15) {0} x [1,u9] x {us},
and {0} x {u2} x [1,us]

are contained in B(v), and do not contain any corner or edge vertices of
B(v). By taking a to be (3,—3,3) or (3,3, —3), similar arguments imply
that the intervals

(16)

{ul} X [O, (ug — M)V 1) x {U3}, {U1} X {UQ} X [0, (us — M) V1),
[1,u1] x {0} x {us}, (1, ur] x {ug} x {0},

{ur} x {0} x [1,us], and {ur} x [1,uz] x {0}

are each contained in B(v) for some v € U (depending on a), and do not
contain any corner or edge vertices of B(v). Therefore, the vertices in (15)
and (16) satisfy condition (v) of Lemma 22. Finally, the intervals

[0, ua] x {0} x {0},
(17) {0} x [0, ug] x {0},
and {0} x {0} x [0, us]

satisfy condition (i) of Lemma 22. The vertices in (14), (15), (16) and (17)
comprise all of the corner and edge vertices of B(u), so this completes the
proof of the lemma. O

The next case is for vertices near enough to the coordinate planes to have
their cuboids protected by plates; this case corresponds to the red cuboids
in Figure 1.

LEMMA 24. Suppose u € U is such that v € Q. and x; € [1,3] and
min(xg, x3) > 4. Then u satisfies the condition of Lemma 22.

PROOF. If z is a-protected by a non-spine site y, € S for each a in (4),
then B(u) = BJ0, u, and the proof that u satisfies the condition of Lemma 22
is identical to the proof of Lemma 23. Otherwise, x is (—3, 3, 3)-protected
by the spine site y = (0, y2,y3) € S (recall that in this case we allow yo = x5
or y3 = x3), and x is a-protected by the (non-spine) sites y, € S for a =
(3,—3,3) and a = (3, 3, —3). Since z is a non-spine site in the positive octant,
we have that u is in the (—, —, —)-subcube of Q.. Since y € {0} x [4,00)2N S,
there exists v € U such that v is in the (—,+,+)-subcube of @Q,, and we
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have B(u) = B[(v1,0,0),u] with —L < v; < 0. We will show that all corner
and edge vertices of B(u) satisfy some condition of Lemma 22.
First, since 0 < u; —v1 < 4(2L 4 1) < M, the vertices in the intervals

[v1 + 1, ug] x {ua} x {us},
(18) {ul} X [('LLQ — M) V 1,’11,2] X {U3},
and  {u1} x {ug} X [(us — M) V 1, us]

each satisfy condition (ii) or (iii) of Lemma 22. Now observe that since
v € @y and y is on the spine, we have B(v) = B|(v1,0,0),v]. Furthermore,
since v is in the (—, +, +)-subcube of @, and u is in the (—, —, —)-subcube
of @, we have vy > usg and v3 > ug, so the intervals

(19) {vr}y > [0, ug] x {us},
and  {v1} x {ug} x [0, ug)

are contained in B(v), and do not contain any corner or edge vertices of
B(v). Therefore, these vertices satisfy condition (v) of Lemma 22.

Next, let a = (3,—3,3), and recall y, is not on the spine. Therefore,
taking v, € Qy, NU, we have B[0,v,] C B(v,), and vg1 > u1 and ve3 > u3
and 0 < ug — vg2 < 4(2L 4+ 1) < M. These inequalities (and the analogous
argument for a = (3,3, —3)) imply that the intervals

(20)

{’U,l} X [O, (ug — M) V 1) X {U3}, {ul} X {UQ} X [0, (’LL3 — M) V 1),
[1,u1] x {0} x {us}, [1,u1] x {u2} x {0},

{ur} x {0} x [1,us], and {ur} x [1,uz] x {0}

are each contained in B(v,) (for the respective value of a), and do not contain
any corner or edge vertices of B(v,). Therefore, the vertices in (20) satisfy
condition (v) of Lemma 22.

Finally, the intervals

[v1, u1] x {0} x {0},
(21) {vi} x [0,us] x {0}, [v1,0] x {ug} x {0},

{v1} x {0} x [0, us], and [v1,0] x {0} x {us}
consist entirely of vertices having at least two coordinates smaller than or
equal to L in absolute value, and therefore satisfy condition (i) of Lemma 22.

Note that the two intervals on the right in (21) extend below the yz-
coordinate plane; this compensates for the fact that the non-spine cuboids
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providing protection to B(u) may not extend (far enough) below the yz-
coordinate plane (their contribution is in the middle row of (20)). The ver-
tices in (18), (19), (20) and (21) comprise all of the corner and edge vertices
of B(u), so this completes the proof. O

The next lemma addresses plates, depicted in green in Figure 1.

LEMMA 25. Suppose u € U is such that u is in the (+,+, +)-subcube of
Qz with = (0,22, x3) and min(xy, x3) > 4. Then u satisfies the condition
of Lemma 22.

PROOF. Since z is on the spine, we have that B(u) = B((u1,0,0), ), and
that z is a-protected by y, € S for a = (3,-3,3) and a = (3,3, —3). (We
note that x is also (—3, —3, 3)-protected and (—3, 3, —3)-protected by sites
in S, and these sites are needed to protect the (—, +, +)-subcube of @,, but
are not needed here. Also, note that in this case B(u) is a rectangle, not a
cuboid, so only has four edges and corners.) First, observe that each vertex
in the intervals

{ur} x [(ug — M)V 1,ug] x {us},

(22) and {1} x {ug} x [(ug — M)V 1,us]

satisfy either conditions (ii) or (iii) of Lemma 22, depending on whether it
is a corner or on an edge of B(u). Now, let a = (3,—3,3), and observe that
1o is not on the spine. This follows from the definition of a-protected, and
the fact that (y,)2 > 22 — 3 > 0 and (yq)3 > 23 > 0, s0 (ya)1 > 21 = 0.
Therefore, taking v, € Q,, NU, we have B[0,v,] C B(vg), and (ve)1 > ug
and (vg)s > uz and 0 < ug — (vg)2 < 4(2L + 1) < M. These inequalities
(and the analogous argument for a = (3,3, —3)) imply that the intervals
(23)

{ul} X [0, (Ug — M) V 1) X {Ug}, {ul} X {UQ} X [0, (U3 — M) V 1),

{ur} x {0} x [1,us], and {ur} x [1,uz] x {0}
are contained in B(v,) (for the respective value of a), and do not inter-

sect any corner or edge vertices of B(v,). Therefore, these vertices satisfy
condition (v) of Lemma 22. Finally, the vertices in the intervals

{U1} X [O,UQ] X {0},

(24) and  {u1} x {0} x [0, ug]

have at least two coordinates with absolute values smaller than or equal to
L, and therefore satisfy condition (i) of Lemma 22. The vertices in (22),
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(23) and (24) comprise all of the corner and edge vertices of B(u), so this
completes the proof. O

Finally, we show that the keystones (magenta in Figure 1) are protected
by the rest of Z.

LEMMA 26. Suppose u € K. If p is small enough (depending on § and
m) such that L > 12, then u satisfies the conditions of Lemma 22.

PROOF. By symmetry, we may assume u = ((2L + 1)n + 10L, 10L,10L).
Observe that the point v’ = ((2L 4+ 1)n — 10L,10L,10L) € K has B(u') C
B(u), so it suffices to consider the outer corner, u, of the keystone. Here (in
the first line below) is where we use the full radius of the set u + J, which
is M = 36L. Observe that the vertices in the intervals

[(2L+ 1)n —26L, (2L + 1)n + 10L] x {10L} x {10L},

(25) {(2L + 1)n + 10L} x [0, 10L] x {10L},

and {(2L+ 1)n+ 10L} x {10L} x [0,10L]
all satisfy condition (iv) of Lemma 22. Now, by property (S1) of the shell
S, the site y = (n — 12,6,6) is in S, so there exists v € Q, N U. Since y is
far from the spine (all coordinates are at least 4), we have B(v) = B0, v].
Furthermore, for p small enough such that L > 12,

v > (2L +1)(n—12) — L = (2L + 1)n — (25L + 12) > (2L + 1)n — 261,

and vg > 6(2L + 1) — L > 11L and vg > 11L. Therefore, all of the vertices
in the intervals

[0,(2L + 1)n — 26L] x {10L} x {10L},
(26) {0} x [1,10L] x {10L},
and {0} x {10L} x [1,10L]
are contained in B(v) and do not intersect any corner or edge vertices of

B(v). Therefore, the vertices in (26) satisfy condition (v) of Lemma 22.
Finally, all of the vertices in the intervals

[0,(2L + 1)n + 10L) x {0} x {10L},
[0, (2L + 1)n + 10L) x {10L} x {0},
[0, (2L 4+ 1)n + 10L] x {0} x {0},
(27) {(2L + 1)n + 10L} x [0,10L) x {0},
{(2L + 1)n + 10L} x {0} x [0,10L),
{0} x [0,10L] x {0},
and {0} x {0} x [0,10L]

imsart-aap ver. 2014/10/16 file: "pbp3-AAP final-a".tex date: September 25, 2021



POLLUTED BOOTSTRAP PERCOLATION IN THREE DIMENSIONS 33

satisfy condition (i) of Lemma 22. The vertices in (25), (26) and (27) com-
prise all of the corner and edge vertices in B(u), so this completes the
proof. O

9. Putting it all together. In this section, we put together the pieces
from previous sections to prove the existence of a set Z satisfying Proposi-
tion 4 with probability tending to 1 as p — 0. This entails identifying a shell
of radius n for some n and adding keystones. However, since all 6 keystones
appear with probability about ¢*®, we will need to construct polynomially
many (in 1/p) shells before finding one that can successfully be adorned
with keystones to complete the construction of Z. It then remains to check
that this Z satisfies the third condition of Proposition 4, which states that
threshold r = 2 modified bootstrap percolation, restricted to Z and without
closed vertices, does very little. We start with this verification, then move
on to actually identifying Z.

9.1. Threshold 2 bootstrap percolation. In the next lemma, we assume
that ¢ = 0, so the initial state has no closed vertices. We also suppose that
the dynamics follow the threshold » = 2 modified bootstrap rule (2) internal
to the box [~ N, N]?, meaning we set all vertices outside of [—~N, N]? to be
initially (and forever) empty. By monotonicity, any vertex left unoccupied
in the final configuration by these dynamics will also be left unoccupied by
the threshold r > 2 modified bootstrap dynamics internal to Z C [~N, N3
with ¢ > 0. In what follows, we say a set R C Z3 is internally spanned if
the set R is fully occupied in the final configuration by the threshold r = 2
modified bootstrap dynamics internal to R.

LEMMA 27. Set ¢ = 0. Fiz an integer s > 0, and let N = |p~*]. Sup-
pose the dynamics follow the modified threshold v = 2 bootstrap rule (2)
internal to [—~N, N]3. Then all connected clusters (mazimal connected sets)
of occupied vertices in the final configuration are cuboids. Furthermore, with
probability converging to 1 as p — 0, the final configuration has the following
two properties: all fully occupied cuboids have side lengths at most 6s, and
the origin is not occupied.

PROOF. The first claim follows from the bootstrap rule. To demonstrate
the second claim, fix an integer £ > 0. Let Ej be the event that the final
configuration contains an occupied cuboid whose longest side has length at
least k. If Ej occurs, [N, N]? contains an internally spanned cuboid R
whose longest side length is in the interval [k/2, k] [AL]. Then, any plane
perpendicular to the longest side of R that intersects R must contain an
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occupied vertex within R. There are at most (2N + 1)3k® possible selections
of the cuboid R. Therefore,

(28) P(Ey) < 10 N33 (k2p)*/? = 10 kF+3p(h=69)/2,
Furthermore,
P(the origin is occupied in the final configuration)
(29) < P([-k, k)® contains an initially occupied vertex) + P(Ej)
< (2k +1)%*p + P(Ey).
If £ > 65, then the probabilities in (28) and (29) both go to 0 as p — 0. O

9.2. Euxistence of Z. Let T = Lp_146/10J, and define a sequence of inte-
gers (ng,...,ny) by ng = Lp_292J and np = 2ng and for k=1,...,T — 1,

(30) ng = ng + k |5y/nr] .

For each k, we will attempt to find a shell S of radius n; within the

annulus
A ={z € Z® :ny, < |z| < my, + 3y/nye }

such that @, is a good box for every x € S; let Shell(k) denote the
event that there is such a shell. Simultaneously, for each k, we also at-
tempt to find keystones (boxes with side lengths 20L + 1, all of whose cor-
ners are nice) centered at the six vertices (+ng(2L 4 1),0,0), (0, +nk (2L +
1),0),(0,0,+nk(2L+1)). Let K, be the set of corner vertices of these 6 (po-
tential) keystones, so |Kj| = 48, and let Keystones(k) be the event that all
of the vertices in K}, are nice. We declare the k"™ attempt to be successful if
we find both the shell of radius n; and the keystones at all six locations, and
we let F}, = Shell(k)NKeystones(k) denote the event that the k" attempt
is successful. First, we show that the annuli (Ay)x>0 are spaced sufficiently
far apart.

LEMMA 28. For the sequence (ng,...,nr) defined in (30) and p < 1/2,
we have

ng < ngr1 < np = 2ng and ne+1 — (ng + 3v/ng) > 103

forall 0 <kE<T-—1.

PrOOF. The first lower bound ny > ng is obvious. For the upper bound,
ne < no+ T - 5v2n0 < ng + (p~4/10) - (5v/2p149),

which is smaller than 2ng for p < 1/2. The second bound follows from

L5,/nTJ — 3Nk > 2/nr — 1> 103 for p < 1/2. O
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Now we are ready to prove the following lemma, which is the key to finding
the set Z.

LEMMA 29. There exist § > 0 and C > 0 such that if ¢ € [Op3,1/2],
then for all sufficiently small p the events {Fj}i>0 are independent and
P(Fy) > p'*5 for every k > 0.

PROOF. For each k > 0, let
By, = {u € Z3 : (ng — 100)(2L + 1) < |u| < (ny, + 35 + 100)(2L + 1)},

and note that the sets By for k > 0 are disjoint (for small enough p) by
the second inequality in Lemma 28. By the definition of a good box, for
each x € Z3, the event that @, is a good box depends only on the states
(occupied, closed or empty) of vertices in the set

(31) Qu+ [-M —m, M +m]® € (2L + 1)z + [—40L, 40L]3,

where the containment holds for small enough p, recalling M = 36L. There-
fore, since (2L +1).Ag +[—40L,40L]? C By, the event Shell(k) depends only
on the states of the vertices in By. Also, for each k, the event Keystones(k)
depends only on the states of vertices in

Kp+[-M —m, M +m]* C
{u € 73 : np(2L+1) — 3(10L+M+m) <|u| < ng(2L+1) + 3(10L+M+m)},

which is a subset of B for all small enough p. Therefore, for each k, the
event Fj, depends only on the states of vertices in By, so the events {F}, } x>0
are independent.

If we paint each site z € Z3 black if Q, is a good box, and white otherwise,
then the argument surrounding (31) shows that this coloring forms a 120-
dependent random field. Let by be the constant from Proposition 7. By [LSS],
if P(Q is good) > 1 — ¢ for all € Z3 and € > 0 is sufficiently small, then
there exists b > b; such that this random coloring stochastically dominates
a product measure with density b of black sites. Therefore, choosing such an
€ € (0,1/50) and letting § = €/(16 - 10°), Lemma 19 implies the existence of
C > 0 such that P(Q, is good) > 1—e€ whenever ¢ > Cp?, and Proposition 7
implies that P(Shell(k)) > 3/4 for every k > 0.

To produce the keystones in the k' annulus, as in Section 6, we use a
two-stage procedure to realize the initial state: we choose closed vertices
through a product measure with density ¢ and independently choose active
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vertices through a product measure with density p/(1 — ¢), then declare a
vertex initially occupied if it is active but not closed. By Lemma 18, for each
u € K}, the probability that there are no active vertices in u + J + [—m, m]3
is at least 1 — € > 49/50. Therefore, the probability that there are no active
vertices in Kj, + J + [-m,m]? is at least 2/50. Now, independently, the
vertices in K, are all closed with probability ¢*® > C*¥p!44, so

P(Keystones(k)) > (C*®/25)p'4

for every k > 0.

Finally, if we identify the initial states of the vertices as
(occupied, empty, closed) = (—1,0,+1), then both Shell(k) and
Keystones(k) are increasing events. Indeed, if Shell(k) occurs, then
there is a shell S of radius nj contained in Ay such that x € S implies Q.
is good. By flipping the states of some vertices from occupied to empty or
closed, or from empty to closed, we cannot change a good box to a bad
box, so we cannot destroy the shell S. Likewise, if Keystones(k) occurs, we
cannot alter its occurrence by flipping vertices from occupied to empty or
closed, or from empty to closed. Therefore, by the FKG inequality we have

P(F},) > P(Shell(k)) - P(Keystones(k)) > (3C*®/100)p'**,
which is at least p'#® for sufficiently small p. O
We can now prove existence of the set Z in the desired region.

LEMMA 30. Let § > 0 and C' > 0 be chosen as in Lemma 29, and let
No = |L/3] |p™*?] If q € [Cp?,1/2], then with probability converging to
1 as p — 0 there exists a set Z such that the initial configuration on Z
satisfies the three assumptions of Proposition 4, and such that [—Ng, No]® C
Z C [-22Ny, 22Ng]3.

PROOF. By Lemma 29, recalling T' = Lp*146/10J,

]P’(OZ:SF]S) <(1-pHT-l< exp(—p~'/10+2) =0 asp— 0.
Therefore, with high probability the events Shell(k) and Keystones(k)
occur for some k < T — 1. Given a shell, S, of radius n, comprised of
good boxes and keystones centered at the six appropriate vertices, we can

define Z as in (13). By Lemmas 22-26 and symmetry, this set Z satis-
fies the first two assumptions of Proposition 4. By Lemma 28, we have
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ng + 3y/ng < np = 2ng = 2 Lp‘QgQJ. Therefore, for all small enough p, if
u € Z, then
[ulloo < (2L + 1)np + L < TLng < 22N,

This shows Z C [-22Ny, 22N0]3. Note that 22Ny < p~3% for small enough
p. Therefore, applying Lemma 27 with s = 300 implies that Z satisfies the
third assumption of Proposition 4, and that we may take m = 12s = 3600.

Property (S4) of the shell S of radius ny implies that there exists £ > ny /3
such that (¢,¢,¢) € S. Since this site is far from the spine of S, there exists
a nice vertex u € Q(M’g) so that

[0, (2L + 1)(ny, — 1)/3]° € B[0,4] C Z.

Considering the other seven diagonal directions, symmetry and Lemma 28
imply that [—Ng, No]> C Z, which finishes the proof. O

9.3. Lack of percolation. We are now ready to conclude the proof of
Theorem 1.

PROOF OF THEOREM 1. Part (i) was proved in Section 3, so we proceed
to prove (ii). To prove that, provided ¢ > Cp?, the final density goes to 0,
we apply Lemma 30, Proposition 4, and Lemma 27. The last step is to show
that, almost surely, perc, does not happen.

Let Ny be as in Lemma 30, and N = |Ny/2|. We say that x € Z3 is
N-closed, if Z satisfies the three assumptions of Proposition 4 and Nz +
[—No, No]> € Z C Nz + [-22Np, 22No]®. A site is N-open if it is not N-
closed. Observe that, for an N-closed site x, there is no nearest neighbor
path between Nx + [-N, N]? and (Nx + [-22Np, 22No)?)¢, on eventually
occupied vertices (provided p is small enough).

By Lemma 30 and translation invariance, there are constants § > 0 and
C > 0 so that for any « > 0, there exists p* > 0 such that the probability
that a fixed site is N-closed is at least 1 — « for all p < p*. Observe that
x,y € Z® at £ distance at least 100 are N-closed independently. Using
[LSS], we therefore may choose p* small enough to guarantee the event that
there is no infinite connected set of N-open sites has probability 1. This
event is a subset of percf, as we will now argue.

Assume 7 is an infinite self-avoiding nearest-neighbor path of vertices
starting at the origin. If two neighboring vertices 21,29 € Z3 satisfy 2 €
Nxz;+[—N, N]3 fori = 1,2 and x1 # 2, then x1 and x5 are also neighbors in
73. 1t follows that 7 must enter Nz+[—N, N|3, for some N-closed site z. But
then m must also exit Nz + [~22Ng, 22Np]3, and therefore it cannot consist
solely of eventually occupied vertices. Therefore perc, does not happen. [
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10. The standard model and big obstacles. In this section, we
sketch the proofs of Theorems 2 and 3. We do not give full details, as the
arguments are very similar to those for Theorem 1, and in the case of The-
orem 2 we do not obtain a precise value of the critical exponent.

We start with the standard bootstrap percolation with density ¢ of closed
vertices and density p of initially occupied vertices, Theorem 2(ii), and
the proof for the standard bootstrap percolation with big obstacles, The-
orem 3(ii), will be similar. As already mentioned, the key difference from
the modified bootstrap percolation is that for the standard model the con-
struction of the set Z from a shell consisting of nice boxes does not suffice:
while such Z still enjoys the same protection in the bulk, it is vulnerable
to the invasion of occupied vertices near the spine. That is, a vertex in a
plate near a coordinate plane can be penetrated by two occupied neighbors
outside of the plate (and one additional occupied vertex in the plate) so
Lemma 25 no longer holds. The plate therefore needs to be replaced by a
cuboid. To protect the exposed corners of this cuboid, we need two closed
vertices on the same axis-parallel line. This problem, which we are unable to
overcome, necessitates g to be on the order of p? for the critical probability
for existence of a successful stegosaurus.

To make the first new ingredient precise, we say that a box @, is swell
if for each of its eight subcubes, and for each of the three coordinate direc-
tions, there is a line in that direction that contains two nice vertices in that
subcube. Lemma 19 is then replaced by the following.

LEMMA 31. Fiz any € > 0, and assume § = €/107. Then there exists
a large enough constant C = C(m,€), such that ¢ > Cp? implies that the
probability that the box Qq is swell is at least 1 — €.

PrROOF. By monotonicity, we may assume that q¢ < p3/2. Let @ be the
(+, +, +)-subcube of Qo, and let G.. (resp. G;,) be the event that Q) contains
two closed (resp. nice) vertices on the same vertical (i.e., z-axis-parallel) line.
Provided that G, occurs, select such a pair (u.,u.) of closed vertices by any
deterministic strategy. By Lemma 18, conditioned on G, the probability
that there is no active vertex within ¢°° distance m of (u.+ J) U (u, + J) is
at least 1 — €/48. Thus,

P(Gy) (Ge) - P(u. and ul, are both viable | G,)

(32 (Ce) - (1 e/48).

>P
>P

To get a lower bound on the probability of G, divide @}, into two halves of
height [ L/2] by a horizontal cut and then observe G, will occur if a vertical
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line has a closed vertex in each half. Therefore,
PG 21— [1-(1- (1 - g2y
(33) > 1 exp (~[L(1 - eTHHA)2)

>1—exp (—[L%q/4]),

for p small enough. Therefore, we can choose C' large enough to make
P(G.) > 1 — ¢/48 and therefore, by (32), P(G,) > 1 — ¢/24. The union
bound then ends the proof. O

SKETCH OF THE PROOF OF THEOREM 2(ii). Provided ¢ > Cp?, for a
large enough C, Lemma 31 now ensures the existence of a shell with the
same properties as in the modified case.

The second difference is the definition of Z. Now we add to U additional
nice vertices in the boxes corresponding to the spine of the shell. Namely, for
each = € {0} x [4,00)2N S, we now choose a pair of nice vertices, that lie on
a line in the z-direction, in the (+, 4, +)-subcube of @, and another such
pair in the (—, 4, +)-subcube of Q.. (Again, we make analogous choices in
the other octants and coordinate planes.) Selection of other nice vertices is
identical. Every z in the spine now contributes two boxes that are defined by
the collinear pairs and are no longer plates of width 1. That is, the second
part (Z2) of the construction is replaced by the following.

(Z2’) For every u,u’ € U such that u,u’ are in the same subcube of @,
where z is on the spine and, say, has first coordinate 0, let B(u,u’) =
Bl(u1,0,0),u']. Define B(u,u’) similarly if either of the other coordi-
nates of x is 0.

Then the verification of protection properties in Section 8 is the same,
except for the outward edges of B(u,u), which are of length at most L and
connect two closed vertices.

The final ingredient that is slightly different is Lemma 27 on the threshold
r = 2 rule, where the bound on the side length of final cuboids is 12s instead
of 6s, again using the standard argument from [AL].

With these adjustments, the proof proceeds along the same lines, and the
constants can be chosen in the same order. O

The proof of Theorem 3 follows nearly the same argument, and we now
sketch the proof for this case.

SKETCH OF THE PROOF OF THEOREM 3. The proof for Theorem 3(i) fol-
lows the same argument given in Section 3 for Theorem 1(i). It suffices to
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consider the modified bootstrap percolation dynamics, but now for a site
x € 73 to be N-open, there must not be any obstacle centers within ¢!
distance 1 of Nz + [0, N)3. This makes the collection of N-open sites a 1-
dependent random field. Lemma 6 still holds in this case, and an application
of [LSS] handles the dependence. The rest of the proof is nearly identical to
the proof of Theorem 1(i).

For Theorem 3(ii) it suffices to consider the standard bootstrap dynamics,
and the modifications required in this case are similar to those for Theo-
rem 2(ii) given above. Again, plates are no longer impervious to invasion by
occupied vertices, and we need two nice vertices on the same axis-parallel
line within each box for the construction of Z, so we require a shell of swell
sites to exist. However, now that obstacle centers appear with density ¢ and
make closed each of their six neighboring vertices, the probability that the
box @ is swell is almost the same as the probability that the box @, is
good. Therefore, Lemma 31 holds for ¢ > Cp?, and its proof is almost iden-
tical to the proof of Lemma 19. The rest of the proof is the same as for
Theorem 2(ii). O

11. Open Problems. We conclude by adding a few open problems to
the collection in [GraH].

1. Consider the standard model on Z? with threshold » = 3, and suppose
p,q — 0 in such a way that log q/logp — a < 3. Does the final density
then go to 07

2. Consider the modified model on Z¢ with threshold r = d, and ¢ =
p?(logp~)~7. For which v > 0 does the final density approach 0
(resp. 1), as p — 07 The answer is already unknown in d = 2 and
d = 3, although [GM] and Theorem 1 provide some information. For
d > 4, not even the power scaling p? is established. (See the open
problem (ii) in Section 6 of [GraH].)

3. Consider the modified model on Z3 with threshold r = 3. Let T be the
first time the origin is occupied and let A = 72/6. When ¢ = 0, [Hol2]
proved that

P[exp exp (()\ - e)p_l) < T < expexp (()\ + e)p_l)} — 1,
for any € > 0. Does this still hold if we assume instead that p,q — 0

in such a way that ¢ < p" for some v > 37 (The lower bound on T is
immediate.)
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