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BOOTSTRAP PERCOLATION ON THE PRODUCT OF
THE TWO-DIMENSIONAL LATTICE WITH A HAMMING

SQUARE

By Janko Gravner∗,‡ and David Sivakoff†,§

University of California, Davis∗ and The Ohio State University†

Bootstrap percolation on a graph is a deterministic process that
iteratively enlarges a set of occupied sites by adjoining points with
at least θ occupied neighbors. The initially occupied set is random,
given by a uniform product measure with a low density p. Our main
focus is on this process on the product graph Z2 ×K2

n, where Kn is
a complete graph. We investigate how p scales with n so that a typ-
ical site is eventually occupied. Under critical scaling, the dynamics
with even θ exhibits a sharp phase transition, while odd θ yields a
gradual percolation transition. We also establish a gradual transition
for bootstrap percolation on Z2 × Kn. The community structure of
the product graphs connects our process to a heterogeneous boot-
strap percolation on Z2. This natural relation with a generalization
of polluted bootstrap percolation is the leading theme in our analysis.

1. Introduction.

1.1. Background. Spread of signals — information, say, or infection —
on graphs with community structure has attracted interest in the mathemat-
ical literature recently [Schi, BL, Lal, LZ, Siv]. The idea is that any single
community is densely connected, while the connections between communi-
ties are much more sparse. This naturally leads to multiscale phenomena,
as the spread of the signal within a community is much faster then between
different communities. Often, communities are modeled as cliques, i.e., the
intra-community graph is complete, but in other cases some close-knit struc-
ture is assumed. By contrast, the inter-community graph may, for example,
impose spatial proximity as a precondition for connectivity. See [Sil+] for an
applications-oriented recent survey.

The principal graph under study in this paper is G = Z2×K2
n, the Carte-

sian product between the lattice Z2 and two copies of the complete graph
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2 JANKO GRAVNER AND DAVID SIVAKOFF

Kn on n points. Thus “community” consists of “individuals” determined by
two characteristics, and two individuals within the community only com-
municate if they have one of the characteristics in common. Between the
communities, communication is between like individuals that are also neigh-
bors in the lattice. For comparison, we also address the case where each
community is a clique, that is, the graph Z2 ×Kn.

The particular dynamics we use for spread of signals is bootstrap percola-
tion with integer threshold parameter θ ≥ 1. In this very simple deterministic
process, one starts with an initial configuration ω0 of 0s (or empty sites) and
1s (or occupied sites) on vertices of G, and iteratively enlarges the set of oc-
cupied sites in discrete time as follows. Assume ωt is given for some t ≥ 0,
and fix a vertex v of G. If ωt(v) = 1, then ωt+1(v) = 1. If ωt(v) = 0, and
v has θ or more neighboring vertices v′ with ωt(v

′) = 1, then ωt+1(v) = 1;
otherwise ωt+1(v) = 0. We will typically identify the configuration ωt with
the set of its occupied sites {v : ωt(v) = 1}. Thus ωt increases to the set
ω∞ = ∪t≥0ωt of eventually occupied vertices.

As is typical, we assume that the initial state ω0 is a uniform product mea-
sure with some small density p ∈ (0, 1). This makes the set ω∞ random as
well, and it is natural to ask how to choose p to make ω∞ large, i.e., to make
the initially sparse signal widespread. Observe that, if θ ≥ 3, ω∞ cannot
comprise all vertices of G with nonzero probability for any p < 1, as a block
of neighboring empty copies of K2

n (e.g, {(0, 0), (0, 1), (1, 0), (1, 1)} × K2
n)

cannot be invaded by occupied sites, and the infinite lattice will contain
such a block with probability 1. We therefore ask a weaker question: how
large should p be, in terms of n, so that ω∞ comprises a substantial pro-
portion of points? That is, we are interested in the size of the final density,
Pp (v0 ∈ ω∞), which is independent of v0 ∈ G by vertex-transitivity of G.

Bootstrap percolation was introduced on trees in [CLR], but it has re-
ceived by far the most attention on lattices Zd. In this case, Pp

(
ω∞ = Zd

)
=

1, as proved in [vE] for d = 2 and in [Scho] for d ≥ 3. Many deep and sur-
prising results originated from the study of metastability properties of the
model on finite regions (see e.g. [AL, Hol, BBDM, GHM]). We refer to the
recent survey [Mor] for a comprehensive review.

Study of bootstrap percolation and related dynamics on graphs with long-
range connectivity is a more recent undertaking [GHPS, Sli, GSS, BBLN,
GPS] and has a fundamentally different flavor: while on sparse graphs, the
dominant mechanism is formation of small nuclei that are likely to grow
indefinitely, the relevant events in densely connected graphs tend to depend
on the configuration on the whole space. It is therefore tempting to consider
graphs that combine aspects of both, and we continue here our work started
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in [GS].
As already remarked, ω∞ cannot cover all vertices of our graph G due to

the presence of local configurations of sparsely occupied copies of Hamming
squares, K2

n. Other copies, of course, have higher initial occupation, get fully
occupied and spread their occupation to the neighboring squares. Thus we
have a competition between densely occupied copies of K2

n that act as nuclei,
and sparsely occupied ones that function as obstacles to growth. This invites
comparison with polluted bootstrap percolation [GM, GraH, GHS] on Z2,
which is indeed the main source of our tools. However, by contrast with the
model in the cited papers, which has only three states (empty and occupied
sites, and permanent obstacles), the dynamics that arise from our process
has more types corresponding to all possible thresholds (0, 1, 2, 3, 4, 5) that
different sites in Z2 require to become occupied. Moreover, we need different
variants for the case θ = 3 and the graph Z2×Kn. We call these comparison
dynamics heterogeneous bootstrap percolation. We also encounter a technical
difficulty in the form of correlations in the initial state, which are handled
by coupling and other related perturbation methods.

After its introduction in [GM], the basic polluted version of heterogeneous
bootstrap percolation was further analyzed in [GraH, GHS]; it is the recent
techniques developed in these two papers that will be useful to us. Related
models include processes on a complete graph with excluded edges [J LTV],
Glauber dynamics with frozen vertices [DEK+], dynamics on complex net-
works with damaged vertices [BDGM2, BDGM1], and on inhomogeneous
geometric random graphs [KL].

1.2. Statements of main theorems. Our main results determine a critical
scaling for prevalent occupation on Z2 ×K2

n: we exhibit functions fθ(n) so
that, when p = afθ(n), the limit as n→∞ of the final density Pp (v0 ∈ ω∞)
is low for small a and high for large a. In fact, for all θ, this limit vanishes for
a < ac, where ac = ac(θ) is a critical value that we are able to identify (and
in fact compute explicitly for even θ). The behavior for a > ac is however
not the same for all θ: if θ is even, the limit is 1, while if θ is odd the
final density is bounded away from 1 for any finite a and only approaches 1
as a → ∞. We already encountered the non-intuitive qualitative difference
between odd and even θ in our earlier work [GS], in which the lattice factor
was one dimensional. This, and the connection with heterogeneous bootstrap
percolation, are the most inviting features of our present model.

We now proceed to formal statements of our results. We first remark that
for θ ≤ 2 we have no obstacles and Pp (ω∞ ≡ 1) = 1 for any p > 0 by
standard bootstrap percolation arguments [vE, Scho]; therefore, we assume
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4 JANKO GRAVNER AND DAVID SIVAKOFF

that θ ≥ 3 throughout the paper. As we have so far, we denote by v0 an
arbitrary fixed vertex of the graph in question, and we use the notation
0 = (0, 0) for the origin in Z2. We begin with our main result for even
thresholds.

Theorem 1.1. Consider bootstrap percolation on Z2×K2
n with threshold

θ = 2`+ 2, for some ` ≥ 1. Assume that

(1.1) p = a · (log n)1/`

n1+1/`
,

for some a > 0.
If a` < 2(`− 1)!, then

(1.2) Pp (v0 ∈ ω∞) = n−2/`+o(1) as n→∞.

Conversely, if a` ≥ 2(`− 1)!, then

(1.3) Pp
(
{0} ×K2

n ⊂ ω∞
)
→ 1 as n→∞.

Moreover, if a` > 2(`− 1)! , then

(1.4) Pp
(
{0} ×K2

n 6⊂ ω∞
)

=

{
n4/`−4a`/`!+o(1) ` ≥ 2

n−2a+o(1) ` = 1
as n→∞,

and Pp
(
ω0 = ω∞ on {0} ×K2

n

)
satisfies the same asymptotics.

Our results for odd thresholds are somewhat less precise, but suffice to
provide the announced distinction from even θ.

Theorem 1.2. Consider bootstrap percolation on Z2×K2
n with threshold

θ = 2`+ 1, for some ` ≥ 1. Assume that

(1.5) p =
a

n1+1/`
,

for some a > 0.
There exists a critical value ac = ac(`) ∈ (0,∞) so that the following

holds. If a < ac, then

(1.6) Pp (v0 ∈ ω∞)→ 0 as n→∞.

Conversely, if a > ac, then

(1.7) 0 < lim inf
n→∞

Pp
(
{0} ×K2

n ⊂ ω∞
)
≤ lim sup

n→∞
Pp (v0 ∈ ω∞) < 1.

Furthermore,

(1.8) lim inf
n→∞

Pp
(
{0} ×K2

n ⊂ ω∞
)
→ 1 as a→∞.
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Finally, we state our result for the case of clique community, in which
there is no difference between odd and even θ and no phase transition as in
Theorems 1.1 and 1.2.

Theorem 1.3. Consider bootstrap percolation on Z2×Kn with threshold
θ ≥ 3. Assume that p = a/n for some a ∈ (0,∞). Then both

lim inf
n

Pp (ω∞(v0) = 1) and lim sup
n

Pp (ω∞(v0) = 1)

are in (0, 1) and converge to 0 (resp. 1) as a→ 0 (resp. a→∞). If θ ≥ 14,
then limn Pp (ω∞(v0) = 1) exists and is continuous in a.

A similar result to Theorem 1.3 holds for Zd × Kn for all d ≥ 3, but
extension of our results to Zd ×K2

n is much more challenging (see Section 7
on open problems).

1.3. Sketch of the main ideas and organization. The main purpose of
this subsection is to outline our strategy for proving Theorems 1.1 and 1.2.
For any x ∈ Z2, find the smallest integer k ∈ [0, θ], so that the bootstrap
dynamics restricted to {x}×K2

n, and using threshold θ− k, eventually fully
occupies this copy of the Hamming square. (Below, we introduce a technical
term, internal spanning, for the ability to fill a part of the space without
outside help.) Then let ξ0(x) = k. Thus, ξ0(x) = 0 means that {x} × K2

n

will get occupied regardless of the configuration on the surrounding copies
of K2

n, ξ0(x) = 1 implies that {x} ×K2
n will get occupied provided at least

one neighboring copy of K2
n gets fully occupied, and so on.

By definition, ξ0(x) = 0 implies that {x} × K2
n ⊂ ω∞. Iteratively, for

t = 1, 2, . . ., we define ξt as follows: if ξ0(x) = k and x has at least k lattice
neighbors y with ξt−1(y) = 0, then let ξt(x) = 0. By induction, if ξt(x) = 0
for some t, then {x} ×K2

n ⊂ ω∞. This heterogeneous bootstrap percolation
process is discussed in Subsection 2.2, while two other variants are used in
Subsection 5.4 and Section 6. The decreasing sequence ξt of configurations
provides a lower bound on ω∞ (see Lemma 2.6 for a formal statement),
which also turns out to be sufficiently close to an upper bound (provided by
Lemma 2.7).

The dynamics ξt is rather similar to the polluted bootstrap percolation
[GM]. To explain the connection, let us call active sites those x with ξ0(x) ∈
{0, 1}. Although 1s must be activated by neighboring 0s, it turns out that
we can treat the two states as equivalent, provided 0s are not too rare. The
active sites spread, using the bootstrap percolation rule with threshold 2,
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6 JANKO GRAVNER AND DAVID SIVAKOFF

over the background sites, the 2s in ξ0. The remaining sites, those x with
ξ0(x) ≥ 3, are obstacles that are able to stop the growth of active sites.

To estimate the densities of active sites and obstacles, we need a fairly
detailed understanding of the bootstrap dynamics on a single copy of a
Hamming square, provided in Subsection 2.1, which is mostly a review the
results from [GHPS, GS]. In this outline, we will use informal versions of
these results.

For even θ = 2` + 2, ` ≥ 2, a necessary, and asymptotically sufficient,
condition for x to be active is that {x} × K2

n contains either a horizontal
or a vertical line with at least ` + 1 occupied points. This happens with
probability about n(np)`+1. (Multiplicative constants are not important in
this case.) On the other hand, the asymptotically necessary and sufficient
condition for x not to be an obstacle is that {x} × K2

n contains both a
horizontal and a vertical line with at least ` occupied points, which results
in the density of obstacles about (1−n`p`/`!)n ≈ exp(−n`+1p`/`!). According
to [GM], the critical transition is when

density of obstacles ≈ (density of active sites)2,

which forces the choice of (1.1) as the critical scaling, the critical a to satisfy
a`/`! = 2/`, and the sharp transition in Theorem 1.1.

In Section 3, we prove the subcritical rate (1.2). Our argument closely
follows that of [GHS], but we give a substantial amount of details due to
the differences in the assumptions and conclusions. In Section 4, we focus on
the supercritical part of Theorem 1.1, which is handled by the method from
[GM], and then involves finding the most likely configuration that prevents
occupation from spreading inwards from a circuit of fully occupied copies of
the Hamming square.

When θ = 2` + 1, ` ≥ 2, is odd, the active density is approximated
by the probability that both a horizontal and a vertical line with at least `
occupied points exist in {x}×K2

n, which is about (1−(1−n`p`/`!)n)2 ≈ (1−
exp(−n`+1p`/`!))2. Moreover, now the density of obstacles, approximated by
a probability that there is no line in {x} × K2

n with ` occupied points, is
about (1 − n`p`/`!)2n ≈ exp(−2n`+1p`/`!). Observe the crucial difference
from the case of even θ: the number of required sites on a line in {x} ×K2

n

is the same, namely `, for both active sites and non-obstacles. The two
probability estimates now force the critical scaling (1.5), under which in
this case both probabilities converge to a constant depending on a. As a
changes, the dynamics experiences a percolation transition at some critical
value ac.

Section 5 contains the proof Theorem 1.2, in which we characterize ac
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through the limiting dynamics (as n→∞), which can be appropriately cou-
pled to the dynamics for finite n. A different (but related) limiting dynamics
is similarly used in Section 6, which is devoted to the proof of Theorem 1.3.
We conclude with a list of open problems in Section 7.

2. Preliminaries.

2.1. Copies of Hamming squares. Fix an initial state ω0 for our boot-
strap dynamics on Z2×K2

n. For a set A ⊂ Z2×K2
n, the dynamics restricted

to A uses the bootstrap rule on the subgraph induced by A, with the initial
state ω0 on A. As in [GS], we call a copy {x} ×K2

n, x ∈ Z2:

• internally spanned at threshold r (r-IS ) if the bootstrap dynamics with
threshold r, restricted to {x}×K2

n, eventually results in full occupation
of {x} ×K2

n;
• internally inert at threshold r (r-II ) if the bootstrap dynamics with

threshold r, restricted to {x} × K2
n, never changes the state of any

vertex in {x} ×K2
n; and

• inert at threshold r (r-inert) if the (unrestricted) bootstrap dynamics
with threshold r does not occupy any point in {x} × K2

n in the first
time step.

In the rest of this subsection, we mostly summarize the results from [GS]
and [GHPS]. We begin with the results for even θ, which were essentially
proved in [GS].

Lemma 2.1. Assume that p is given by (1.1).

1. If ` ≥ 1, then

Pp
(
K2
n is not (2`− 2)-IS

)
= O(n−L),

for any constant L > 0.
2. If ` ≥ 2, then

Pp
(
K2
n is not (2`− 1)-IS

)
∼ Pp

(
K2
n is (2`− 1)-II

)
∼ n−2a`/`!.

and for ` = 1 we have

Pp
(
K2
n is not 1-IS

)
= Pp

(
K2
n is 1-II

)
∼ 1

na
.

3. If ` ≥ 2, then

Pp
(
K2
n is not (2`)-IS

)
∼ Pp

(
K2
n is (2`)-II

)
∼ 2n−a

`/`!,
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8 JANKO GRAVNER AND DAVID SIVAKOFF

and for ` = 1 we have

Pp
(
K2
n is not 2-IS

)
∼ Pp

(
K2
n is 2-II

)
∼ a log n

na
.

4. If ` ≥ 1, then

Pp
(
K2
n is (2`+ 1)-IS

)
∼ Pp

(
K2
n is not (2`+ 1)-II

)
∼ 2a`+1

(`+ 1)!
· (log n)1+1/`

n1/`
.

5. If ` ≥ 1, then

Pp
(
K2
n is (2`+ 2)-IS

)
∼ Pp

(
K2
n is not (2`+ 2)-II

)
∼
(

a`+1

(`+ 1)!

)2

· (log n)2+2/`

n2/`
.

Proof. Statements 1 through 4 are Lemmas 3.6, 3.3, 3.4 and 3.5 in [GS],
and the proof of the last statement is similar to the proof of the 4th, so we
omit it.

The next lemma compares probabilities for inertness and internal inert-
ness for ` ≥ 2.

Lemma 2.2. Assume θ = 2`+2, ` ≥ 2, and p is given by (1.1). If a`

`! < 1,
then for any x ∈ Z2

Pp
(
{x} ×K2

n is (θ − 2)-inert
)
∼ Pp

(
K2
n is (θ − 2)-II

)
∼ 2n−a

`/`!,

Pp
(
{x} ×K2

n is not (θ − 1)-inert
)
∼ Pp

(
K2
n is not (θ − 1)-II

)
∼ 2a`+1

(`+ 1)!
· (log n)1+1/`

n1/`
,

and Pp
(
{x} ×K2

n is not θ-inert
)
∼ Pp

(
K2
n is not θ-II

)
∼
(

a`+1

(`+ 1)!

)2

· (log n)2+2/`

n2/`
.

Proof. Fix an r = 0, 1, 2. Then the probability that any fixed copy of
K2
n has a site with exactly k ≥ 1 occupied Z2-neighbors and at least θ−r−k

occupied K2
n-neighbors is

O(n2pk(np)θ−r−k) = O(n−k−(2−r)/`(log n)(2`+2−r)/`).
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Therefore,

Pp
(
{x} ×K2

n is (θ − r)-II but not (θ − r)-inert
)

= n−1−(2−r)/`+o(1).

The rest follows from Lemma 2.1 parts 3, 4 and 5 and the assumptions put
on a and `.

We need a slightly more involved argument for ` = 1.

Lemma 2.3. Assume θ = 4 and p = a logn
n2 . We have,

Pp
(
{x} ×K2

n is 2-inert
)
≥ a log n

na
(1− o(1))

Proof. Let G1 be the event that {x}×K2
n contains at least two occupied

vertices, and G2 the event that a point in {x} ×K2
n has both an occupied

Z2-neighbor and an occupied Kn-neighbor. Note that these are increasing
events and that

{{x} ×K2
n is not 2-inert} ⊂ G1 ∪G2.

Therefore, by FKG inequality,

Pp
(
{x} ×K2

n is not 2-inert
)
≤ Pp (G1) + Pp (G2)− Pp (G1)Pp (G2) ,

and so

Pp
(
{x} ×K2

n is 2-inert
)
≥ Pp (Gc1)− Pp (Gc1)Pp (G2) .

Finally, we use that Pp (Gc1) ∼ a logn
na and Pp (G2) ≤ 8n3p2 = O(log n/n).

We proceed with the analogous results for odd θ, which mostly follow
from [GHPS], and we again omit the detailed proofs.

Lemma 2.4. Assume that p is given by (1.5).

1. If ` ≥ 1, then

Pp
(
K2
n is not (2`− 2)-IS

)
= O(n−L),

for any constant L > 0.
2. If ` ≥ 2, then

Pp
(
K2
n is not (2`− 1)-IS

)
∼ Pp

(
K2
n is (2`− 1)-II

)
∼ exp

[
−2a`

`!

]
.
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10 JANKO GRAVNER AND DAVID SIVAKOFF

3. If ` ≥ 2, then

Pp
(
K2
n is (2`)-IS

)
∼ Pp

(
K2
n is not (2`)-II

)
∼
(

1− e−a`/`!
)2
.

4. If ` ≥ 1, then

Pp
(
K2
n is not (2`+ 1)-II

)
∼ 2 · a`+1

(`+ 1)!
·
(

1− e−a`/`!
)
· 1

n1/`
,

and

Pp
(
K2
n is (2`+ 1)-IS

)
∼ 2 · a`+1

(`+ 1)!
·
(

1− e−a`/`!
)2
· 1

n1/`
.

Proof. Parts 2 and 3 follow from Theorem 2.1 in [GHPS]. Part 1 is
proved in the same fashion as Lemma 3.6 in [GS]. The proof of part 4 is
similar to the proof of parts 2 and 3 and is omitted; in fact, we only need in
our arguments in Section 5 that the two probabilities are positive for all n
and go to 0 as n→∞, which is very easy to show.

We conclude with an analogue of Lemma 2.2.

Lemma 2.5. Assume that θ = 2`+1, ` ≥ 1, and that p is given by (1.5).
Fix an x ∈ Z2. Then, for ` ≥ 2,

Pp
(
{x} ×K2

n is (θ − 2)-II but not (θ − 2)-inert
)

= O(n−1)

and, for ` ≥ 1,

Pp
(
{x} ×K2

n is (θ − 1)-II but not (θ − 1)-inert
)

= O(n−1),

Pp
(
{x} ×K2

n is θ-II but not θ-inert
)

= O(n−1−1/`).

Proof. Observe that, for r ∈ {0, 1, 2}, the probability that any fixed
copy of K2

n has a site with exactly k ≥ 1 occupied Z2-neighbors and at least
θ − r − k occupied K2

n-neighbors is

O(n2pk(np)θ−r−k) = O(n−k+(r−1)/`),

and the desired estimates follow.
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2.2. Heterogeneous bootstrap percolation. We now introduce a compari-
son bootstrap dynamics ξt on Z2, which is a generalization of polluted boot-
strap percolation introduced in [GM]. We assume that ξt ∈ {0, 1, 2, 3, 4, 5}Z

2
,

t ∈ Z+, and that ξ0 is given. The rules mandate that a state can only change
to 0 by contact with sufficient number of 0s. More precisely, if Zt(x) is the
cardinality of {y : y ∼ x and ξt(y) = 0}, where x ∼ y means that x and y
are nearest neighbors in Z2, then

ξt+1(x) =

{
0 Zt(x) ≥ ξt(x)

ξt(x) otherwise.

If ξ0 ∈ {0, 2}Z
2
, this is the usual threshold-2 bootstrap percolation. Adding

1s adds sites which need to be “switched on” by neighboring 0s. Finally, 3s,
4s and 5s act like “obstacles,” which prevent the spread of 0s at sufficient
density.

The next two lemmas establish upper and lower-bounding couplings be-
tween ξt and ωt. Their proofs are similar, so we only provide details for the
second one.

Lemma 2.6. Assume ξ0(x) = 0 whenever the Hamming plane {x} ×K2
n

is θ-IS; ξ0(x) = k ∈ {1, 2, 3, 4} whenever {x} ×K2
n is (θ − k)-IS, but is not

(θ − k + 1)-IS; and that ξ0(x) = 5 if {x} ×K2
n is not (θ − 4)-IS. Then⋃

{{x} ×K2
n : ξ∞(x) = 0} ⊂ ω∞.

Lemma 2.7. Assume ξ0(x) = 0 whenever the Hamming plane {x} ×K2
n

is not θ-inert; that ξ0(x) = k ∈ {1, 2, 3, 4} whenever {x}×K2
n is not (θ−k)-

inert, but is (θ−k+1)-inert; and that ξ0(x) = 5 if {x}×K2
n is (θ−4)-inert.

Then
ω∞ ⊂

⋃
{{x} ×K2

n : ξ∞(x) = 0} ∪ ω0.

Proof. We will prove the following stronger statement by induction. We
claim that for every t ≥ 0,

(2.1) ωt ⊂
⋃
{{x} ×K2

n : ξt(x) = 0} ∪ ω0.

Suppose that (2.1) holds through time t − 1 ≥ 0, and let x ∈ Z2 be a
point such that ξt(x) 6= 0. Suppose x has exactly k neighbors y ∈ Z2 with
ξt−1(y) = 0. Therefore, ξ0(x) ≥ k + 1, so {x} ×K2

n is (θ − k)-inert. Every
vertex in ({x} ×K2

n) \ ω0 has at most θ − k − 1 neighbors in ω0, so every
vertex in ({x} ×K2

n) \ ω0 has at most θ − 1 neighbors in⋃
{{x} ×K2

n : ξt−1(x) = 0} ∪ ω0.
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12 JANKO GRAVNER AND DAVID SIVAKOFF

Therefore, by the induction hypothesis, every vertex in ({x} ×K2
n) \ ω0 has

at most θ− 1 neighbors in ωt−1, so no vertex in {x}×K2
n becomes occupied

at time t.

3. The subcritical regime for even threshold. This section con-
tains the proof of (1.2). Our argument is a suitable modification of the
methods from [GHS], which are in turn based on duality-based construction
of random surfaces [DDG+, GH1, GH2]. We cannot immediately apply the
result from [GM], as we need to handle short-range dependence in the initial
state.

3.1. Bootstrap percolation with obstacles. Our focus will be the hetero-
geneous bootstrap percolation ξt, with a random initial set ξ0. We will call
such initial set a positively correlated random field if increasing events are
positively correlated (that is, the FKG inequality holds), and 1-dependent
if ξ0(x) and ξ0(y) are independent for ||x− y||1 ≥ 2.

Theorem 3.1. Let p, q > 0 be such that p + q < 1. Suppose ξ0 has the
following properties: for every x ∈ Z2

(3.1)

P (ξ0(x) = 0) = p

P (ξ0(x) = 2) = 1− p− q

P (ξ0(x) = 3) = q,

and ξ0 is a 1-dependent, positively correlated random field. Let C > 0, and
suppose that q > Cp2. Then for C sufficiently large, we have that with
probability at least 1 − Cp3 either ξ∞(0) ≥ 2, or else 0 is contained in a
cluster (maximal connected set) of sites x ∈ Z2 with ξ∞(x) = 0 that has
`∞-diameter at most 1000.

We first explain how Theorem 3.1 accomplishes the goal of this section.

Proof of Theorem 1.1 equation (1.2). Initialize ξ0 using inertness
as in Lemma 2.7, then convert all 1s to 0s, and all 4s and 5s to 3s. Suppose
v0 ∈ 0 × K2

n. If v0 ∈ ω∞, then either v0 ∈ ω0, or some Hamming square
in {{x} × K2

n : x ∈ [−1000, 1000]2} is not θ-inert, or else 0 is in a cluster
of state-0 sites in ξ∞ that has diameter larger than 1000. Therefore, by
Theorem 3.1 and Lemma 2.2

Pp (v0 ∈ ω∞)

≤ Pp (v0 ∈ ω0) + 107Pp
(
0×K2

n is not θ-inert
)

+ CPp
(
0×K2

n is not (θ − 1)-inert
)3

= n−2/`+o(1).
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The lower bound is easy: by Lemma 2.1 part 5,

Pp (v0 ∈ ω∞) ≥ Pp
(
0×K2

n is θ-IS
)

= n−2/`+o(1),

and (1.2) is thus proved.

We will complete the proof of Theorem 3.1 in Section 3.4. Throughout this
section, we will assume that p is sufficiently small to make certain estimates
work.

For a set A ⊂ Z2, a configuration ξ0 ∈ {0, . . . , 5}Z
2
, and k ∈ {0, . . . , 5},

define ξ
(A,k)
0 by

ξ
(A,k)
0 (x) =

{
ξ0(x) for x ∈ A
k for x ∈ Ac.

The resulting bootstrap dynamics, with initial configuration ξ
(A,k)
0 , is de-

noted by (ξ
(A,k)
t )t≥0. Observe that (ξ

(A,5)
t )t≥0 is the heterogeneous bootstrap

dynamics restricted to A, that is, run on the subgraph of Z2 induced by A.
Also, for an x ∈ Z2, let Nbrs(x,A) denote the number of neighbors of x that
lie in A. The next proposition gives a sufficient condition under which the
configuration outside a set Z does not to influence the final set of 0s inside
Z.

Proposition 3.2. Assume that ξ0 ∈ {0, 2, 3}Z
2
. Fix an integer m ≥

1. Fix a finite set Z ⊂ Z2 with Nbrs(x, Zc) ≤ 2 for every x ∈ Z, and
run two heterogeneous bootstrap percolation dynamics: the first with initial

configuration ξ
(Z,0)
0 ; the second with initial configuration ξ

(Z,5)
0 . Assume that

the configuration ξ0 on Z satisfies the following conditions.

(i) Any x ∈ Z with Nbrs(x, Zc) = 2 has ξ0(x) = 3.
(ii) For any x ∈ Z with Nbrs(x, Zc) ≥ 1, there is no vertex y with ξ0(y) = 0

within `∞-distance m of x.
(iii) The final configuration in the dynamics started from the initial con-

figuration ξ
(Z,5)
0 has no connected set of vertices in state 0 with `∞-

diameter larger than m/2.

Then, for all t ≥ 0, we have

{x ∈ Z : ξ
(Z,0)
t (x) = 0} = {x ∈ Z : ξ

(Z,5)
t (x) = 0}.

Proof. Assume the conclusion does not hold, and consider the first time

t at which there exists a vertex x ∈ Z such that ξ
(Z,0)
t (x) = 0 but ξ

(Z,5)
t (x) >

0. As the two dynamics have the same initial configuration on Z, we have
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14 JANKO GRAVNER AND DAVID SIVAKOFF

t > 0. By minimality of t, and properties (ii) and (iii), at time t − 1 every
y ∈ Z such that Nbrs(y, Zc) ≥ 1 has no neighbors in Z with state 0 in either

dynamics. So, we cannot have Nbrs(x, Zc) = 2, since by (i), ξ
(Z,0)
0 (x) = 3,

and x has at most two neighbors in state 0 through time t− 1, so the state
of x could not change at time t. We cannot have Nbrs(x, Zc) = 1 either,

since ξ
(Z,0)
t−1 (x) ≥ 2. Thus Nbrs(x, Zc) = 0, but then x sees the same states

among its neighbors in both dynamics at time t−1, and therefore x has the
same state in both dynamics at time t, a contradiction.

We now present a number of lemmas that all assume the conditions in
the statement of Theorem 3.1, and are followed by the proof of this theorem
in Section 3.4.

We will search for a set Z satisfying Proposition 3.2 within a square of
size polynomial in p−1. The following lemma will guarantee that Z satisfies
condition (iii) of Proposition 3.2 with high probability.

Lemma 3.3. Fix an integer s > 0, and let N = bp−sc. Let A = [−N,N ]2.
With probability at least 1 − Cps, where C = C(s) is a constant, all con-

nected clusters (maximal connected sets) of state 0 vertices in ξ
(A,5)
∞ have

`∞-diameter at most 24s.

Proof. First, replace all 3s by 2s in the initial configuration ξ
(A,5)
0 ; then,

all connected clusters of 0s in ξ
(A,5)
∞ are rectangles. Fix an integer k > 0,

and let Ek be the event that the final configuration contains a rectangle
of 0s whose longest side has length at least k. If Ek occurs, A contains an
internally spanned rectangle R whose longest side length is in the interval
[k/2, k] [AL]. Then, any pair of neighboring lines, each perpendicular to the
longest side of R, and such that both intersect R, must contain a state 0
vertex within R initially. Moreover, two pairs of neighboring lines that are at
distance at least 2 from one another satisfy this requirement independently
(since ξ0 is 1-dependent). There are at most (2N + 1)2k2 possible selections
of the rectangle R. Therefore,

(3.2) P(Ek) ≤ 5N2k2(2kp)k/6−1 ≤ p(k−12s)/6−1(2k)k/6+2,

and the claim follows by choosing k = 24s.

Let
L = bδ/(mp)c,

where δ > 0 is a small constant to be fixed later. Also let M = 12L. Define
the set

(3.3) J = ([−m,m]× [−M,M ]) ∪ ([−M,M ]× [−m,m]).
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Call a vertex x ∈ Z2 nice if ξ0(x) = 3 and every vertex y ∈ x + J has
ξ0(y) ≥ 2. For each u ∈ Z2, define the rescaled box at u to be

Qu := (2L+ 1)u+ [−L,L]2.

We call a box Qu good if it contains a nice vertex. We will give a lower
bound on the probability that a box is good. Call a vertex x ∈ Z2 viable if
every vertex y ∈ x + J has ξ0(y) ≥ 2, and note that a viable vertex x with
ξ0(x) = 3 is nice.

Lemma 3.4. Fix a vertex x ∈ Z2 and an ε > 0. Assume δ ≤ ε/103.
Then,

(3.4) P(x is viable) ≥ 1− ε.

Proof. The argument is a simple estimate, where the first inequality
below follows from the positive correlation assumption on ξ0,

(3.5)

P
(
ξ0(y) ≥ 2 for all y ∈ x+ J

)
≥ [1− p]2(2M+1)(2m+1)

≥ exp
[
−36mMp

]
≥ exp (−500 δ),

provided p is small enough. Thus we can choose any δ < ε/500 to make the
probability in (3.5) larger than 1− ε.

Lemma 3.5. Fix any ε > 0, and assume δ ≤ 1/(4·103). Then there exists
a constant C = C(m, ε, δ), such that q ≥ Cp2 implies that the probability
that the box Q0 is good is at least 1− ε.

Proof. For k = 1, . . . ,
⌊

2L+1
3m

⌋
− 1, let

Rowk =
(
(−M + 3km) + [−m,m]

)
× [−M,M ]

and
Colk = [−M,M ]×

(
(−M + 3km) + [−m,m]

)
.

Define events

Gr = {For at least L/2m values of k, every y ∈ Rowk has ξ0(y) ≥ 2},
and Gc = {For at least L/2m values of k, every y ∈ Colk has ξ0(y) ≥ 2}

The probability that Rowk has no 0s is at least 3/4, which can be proved by
applying Lemma 3.4 with ε ≤ 1/4. By large deviations for binomial random
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16 JANKO GRAVNER AND DAVID SIVAKOFF

variables (noting that Rowk and Rowk+1 are at least distance 2 apart), we
have

P(Gr) = P(Gc) ≥ 1− ε/4,
for small enough p. By the assumed positive correlations in ξ0, we have

P(Gr ∩Gc) ≥ P(Gr)P(Gc) ≥ 1− ε/2,

and

P(Q0 is good | Gr ∩Gc) ≥ P

(
Binomial

[(
L

2m

)2

, q

]
≥ 1

)
≥ 1− exp(−q(L/2m)2)

≥ 1− exp(−Cp2(δ/(4m2p))2)

≥ 1− ε/2

provided C is large enough. The claim follows from the last two estimates.

3.2. Construction of a shell of good boxes. Let B ⊂ Z2. A site u ∈ Z2 off
the coordinate axes is called protected by B provided that:

• if u ∈ [1,∞)2∪(−∞,−1]2 then both u+[−2,−1]×[1, 2] and u+[1, 2]×
[−2,−1] intersect B; and
• if u ∈ (−∞,−1]× [1,∞)∪ [1,∞)× (−∞,−1], then both u+[−2,−1]×

[−2,−1] and u+ [1, 2]× [1, 2] intersect B.

If u lies on one of the coordinate axes, we will not need to refer to u as being
protected.

A shell S of radius r ∈ N is defined to be a subset of Z2 that satisfies the
following properties.

(S1) The shell S contains all sites u such that ‖u‖1 = r and ‖u‖∞ ≥ r− 3.
(This implies that S contains portions of the ‖ · ‖1-sphere of radius r
in neighborhoods of each of the four sites (±r, 0) and (0,±r).)

(S2) For each u ∈ S, we have r ≤ ‖u‖1 ≤ r +
√
r and ‖u‖∞ ≤ r.

(S3) For each of the four directions ϕ ∈ {(±1,±1)}, there exists an integer
k = k(ϕ) ≥ r/2 such that kϕ ∈ S.

(S4) If u = (u1, u2) ∈ S, and |u1| ≥ 3 and |u2| ≥ 3, then u is protected by
S.

Let sites in the lattice Z2 be independently marked black with probability
b and white otherwise. We wish to consider paths of a certain type, and we
start by defining two types of steps. An ordered pair u� v of distinct sites
u, v ∈ Z2 is called:
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1. a taxed step if each non-zero coordinate of u increases in absolute
value by 1 to obtain the corresponding coordinate of v, while each
zero coordinate of u changes to −1, 0 or 1 to obtain the corresponding
coordinate of v;

2. a free step if ‖v‖1 < ‖u‖1 and v − u ∈ F , where F is the set of all
vectors obtained by permuting coordinates and flipping signs from any
of

(1, 0), and (2, 1).

(For example, (−1, 2) ∈ F .)

Observe that, in a taxed step u � v, we have ‖v‖1 > ‖u‖1. We call v − u
the direction of either type of step.

A permissible path from u0 to uk is a finite sequence of distinct sites
u0, u1, . . . , uk such that for every i = 1, . . . , k, ui−1 � ui is either a free step
or a taxed step, and in the latter case, ui is white.

To obtain a (random) shell S of radius r, we let
(3.6)
A = {v ∈ Z2 : ∃u ∈ Z2 with ‖u‖1 < r and a permissible path from u to v},

and we define

(3.7) S = {v ∈ Z2 \A : ∃u ∈ A such that u� v is a taxed step}.

Note that if S is non-empty, then all sites in S must be black, since there
are no permissible paths from A to Ac. For a picture of a realization of A
and S, see Figure 1. This oriented surface construction, which was originally
devised in [GH1], is the key to proving the next result.

Proposition 3.6. Let Er be the event that there exists a shell of radius
r consisting of black sites. There exists b1 ∈ (0, 1) such that for any b > b1
and r ≥ 1, we have P(Er) ≥ 1/2.

Note that the event Er depends only on the colors of sites in {u ∈ Z2 :
r ≤ ‖u‖1 ≤ r+

√
r}. However, in proving Proposition 3.6, we show that the

set S defined in (3.7) is, in fact, the desired shell with large probability. The
proof of the first lemma below, based on path counting, is nearly identical
to the proofs of Lemmas 8, 9 and 10 in [GHS], so we omit the details.

Lemma 3.7. There exists b2 < 1 such that if b > b2, then for each r ≥ 1,
the set S defined by (3.6) and (3.7) satisfies properties (S1), (S2) and (S3)
with probability at least 1/2.
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18 JANKO GRAVNER AND DAVID SIVAKOFF

Fig 1. A shell of radius 21. Sites in the shell S are highlighted in green, while sites in A
are shades of blue. The random field of black and white sites are shown in grey and white
for those sites outside of A ∪ S. The darkest blue sites are in the ‖ · ‖1-ball of radius 20;
the lightest blue sites are the initially white sites outside of this ball, to which there exist
permissible paths originating from dark blue sites; the remaining blue sites are initially
black sites outside of this ball, to which there exist permissible paths originating from dark
blue sites. Note that the sites highlighted in green are black in the random field, and they
form a circuit that takes at most two consecutive steps in the same direction.

Lemma 3.8. The set S defined by (3.6) and (3.7) satisfies property (S4).

Proof. Without loss of generality, suppose u = (u1, u2) ∈ S is such that
ui ≥ 3 for i = 1, 2, and by symmetry it suffices to show that u + [1, 2] ×
[−2,−1] intersects S. By the definition of S in (3.7), u must be reachable
from A by a taxed step. Since u is not on a coordinate axis, the only site from
which we can reach u via a taxed step is u+ (−1,−1), so u+ (−1,−1) ∈ A.
Taking a free step in the direction (1,−2) implies u + (0,−3) ∈ A (this is
where we require |u1| ≥ 3 and |u2| ≥ 3, to guarantee that direction (1,−2)
is, in fact, a free step). Observe that u + (2,−1) ∈ Ac, otherwise we would
have u ∈ A, since it is reachable from this point by the free step in the
direction (−2, 1).
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Now there are two cases. If u + (1,−2) ∈ A, then u + (2,−1) ∈ S, since
it is reachable from u+ (1,−2) along the taxed step in the direction (1, 1).
Otherwise, if u + (1,−2) ∈ Ac, then u + (1,−2) ∈ S, since it is reachable
from u + (0,−3) ∈ A along the taxed step in the direction (1, 1). In either
case, we have found a site in (u+ [1, 2]× [−2,−1]) ∩ S.

Proof of Proposition 3.6. The claim follows from Lemmas 3.7 and 3.8.

3.3. Construction of a protected set Z. In this section we construct a set
Z ⊂ Z2, which is our candidate for the set satisfying the assumptions of
Proposition 3.2.

Suppose that there exists a shell S of radius r so that Qu is a good box
for every u ∈ S. For every u ∈ S with both coordinates at least 3 in absolute
value, select a nice vertex from Qu and gather the selected vertices into the
set U . (No nice vertices are chosen from Qu if at least one coordinate of
u ∈ S is less than 3 in absolute value.)

A fortress is a square of side length 12L + 1 (this is the reason for our
choice of M = 12L in the definition of J at (3.3)), all four of whose corners
are nice. Suppose that there is a fortress centered at each of the four vertices
(±r(2L + 1), 0), (0,±r(2L + 1)). Let K be the set of all corner vertices of
all fortresses (16 in all). For x ∈ Z2, define Rect(x) to be the rectangle with
opposite corners at x and 0 (for example, if x = (x1, x2) with x1 ≥ 0 and
x2 ≤ 0, then Rect(x) = [0, x1]× [x2, 0]). Now define Z by

(3.8) Z =
⋃

x∈U∪K
Rect(x).

Note that by construction, all convex corners of Z are nice vertices, and near
each of the coordinate axes, there are two nice vertices on the line orthogonal
to the nearby axis that are at distance 12L+1. In addition, the fact that the
slope of S is locally bounded above and below (by property (S4)) makes the
following proposition geometrically transparent. The formal proof is very
similar to the proofs of Lemmas 20 through 26 in [GHS], though it is much
simpler, and is omitted. See Figure 2 for a realization of Z.

Lemma 3.9. Suppose Z is defined as in (3.8). If p is sufficiently small
(depending on δ and m) to make L sufficiently large, then Z satisfies as-
sumptions (i) and (ii) of Proposition 3.2.
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Fig 2. The top portion of the protected set Z consists of the dark magenta region, with the
part belonging only to the fortress made transparent. Green boxes are good boxes, which
correspond to sites in the shell S from Figure 1. Black dots are the nice vertices, which
are selected from each good box corresponding to a site in the shell S with both coordinates
at least 3 in absolute value. The top two black dots correspond to the nice vertices in the
fortress. Some of the selected nice vertices are hidden within the magenta region, as they
are not extremal. Note that due to the slope condition on the shell S (essentially, no two
consecutive steps are in the same direction), a similar slope condition holds for the nice
vertices, which easily implies the set Z satisfies assumptions (i) and (ii) in Proposition 3.2.

3.4. Existence of a protected set Z. Assume N0 = 3bp−36c, n0 = bp−19c,
T = bp−17c, and ∆ = bp−19c. Define the sequence of separated annuli

Ai = {x ∈ Z2 : n0 + (2i− 1)∆ ≤ ‖x‖1 ≤ n0 + 2i∆},

for i = 1, . . . , T .

Lemma 3.10. Fix an m. For a small enough ε > 0 and δ > 0, and q ≥
Cp2, where C is given in Lemma 3.5, the following holds. With probability at
least 1− exp(−1/(4p)), there exists a protected set Z satisfying assumptions
(i) and (ii) of Proposition 3.2, and such that Z contains the origin and is
contained in {x ∈ Z2 : ‖x‖1 ≤ N0}.

Proof. Note that n0 + 2T∆ ≤ N0.
Paint each site x ∈ Z2 black if the box Qx is good. Let

ri = b(n0 + (2i− 1)∆)/(2L+ 1)c+ 11,

so (2L + 1)ri − 20L ≥ n0 + (2i − 1)∆, and observe that
√
ri ≤

√
N0/L �

∆/(2L+1) for p small. Therefore, existence of a shell of good boxes of radius
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ri depends only on the states of vertices within the annulus Ai. Moreover, we
have that sites x1 and x2 with ‖x1 − x2‖∞ ≥ 30 are painted independently,
and so by [LSS] the configuration of black sites dominates a product measure
of density b1 (chosen from Proposition 3.6) provided ε > 0 in Lemma 3.5
is small enough, and δ is chosen appropriately. It follows that, when p is
small enough, by Proposition 3.6, a shell of good boxes of radius ri exists
with probability at least 1/2. The existence of a shell of good boxes of
radius ri is an increasing event (in ξ0), and so it is positively correlated
with existence of nice vertices at the 16 locations comprising the set K
(⊂ Ai) in (3.8). Therefore, the set Z given by (3.8) exists with convex
corners U ∪K ⊂ Ai with probability at least p16/2. Due to the separation of
shells, the probability that such a Z does not exist in Ai for all i = 1, . . . , T
is then at most (1 − p16/2)p

−17/2 ≤ exp(−1/(4p)). By Lemma 3.9, if Z
constructed in this manner exists, then it satisfies assumptions (i) and (ii)
of Proposition 3.2.

Proof of Theorem 3.1. Choose s = 37 in Lemma 3.3. That deter-
mines m = 48s < 2000. The proof is concluded by Lemma 3.10, Lemma 3.3,
and Proposition 3.2.

4. The supercritical regime for even threshold. In this section,
we prove the claims of Theorem 1.1 when a` ≥ 2(` − 1)!. In the following
subsections, we prove, in order: (1.3), upper bound on the rate (1.4) for
` ≥ 2, lower bound on the same rate for ` ≥ 2, and the asymptotics for the
exceptional case ` = 1.

4.1. Comparison process and rescaling. Initialize the comparison pro-
cess, ξt, as follows. For x ∈ Z2, let
(4.1)

ξ0(x) =


0 if {x} ×K2

n is θ-IS

k if k ∈ {1, 2} and {x} ×K2
n is (θ − k)-IS but not (θ − k + 1)-IS

5 if {x} ×K2
n is not (θ − 2)-IS.

In other words, initialize ξt as in Lemma 2.6, but replace all 3s and 4s with
5s.

To apply Lemma 2.6, we need a method to show that Pp (ξ∞(0) = 0) is
close to 1, and for that, we adapt the rescaling from [GM] to our purposes;
in particular, we need to account for the existence of 1s, which require ac-
tivation from 0s, and to prove high final density at the critical value (when
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a` = 2(`− 1)!). We let

(4.2) N =

{⌊
n1/`(log n)−1/2`

⌋
` ≥ 2⌊

n(log n)−3/4
⌋

` = 1

and, for x ∈ Z2, let Λx = N · x + [0, N − 1]2 be the N ×N box in Z2 with
lower-left corner at Nx. Call the box Λx good if ξ0(y) ≤ 2 for every y ∈ Λx
and, in addition, every row and column of Λx contains at least one y such
that ξ0(y) ≤ 1. Call a box very good if ξ0(y) ≤ 1 for every y ∈ Λx and
ξ0(y) = 0 for some y ∈ Λx.

Lemma 4.1. For ` ≥ 1 and large enough n,

Pp (Λx is not good) ≤ 6n(2/`)−(a`/`!) · (log n)−(1/`∧1/2).

Proof. By Lemma 2.1, for ` ≥ 2,

Pp (Λx is not good) ≤ N2Pp (ξ0(0) = 5) + 2N · (1− Pp (ξ0(0) ≤ 1))N

≤ 3N2n−a
`/`!

+ 2N exp

[
−N · 2a`+1

(`+ 1)!
· (log n)1+1/`

n1/`
(1 + o(1))

]
≤ 3n(2/`)−(a`/`!) · (log n)−1/`

+ n1/` exp
[
−C(log n)1+1/2`

]
.

When ` = 1, repeat the above computation using the bound Pp (ξ0(0) = 5) ≤
3an−a log n.

Proof of (1.3). It follows from Lemma 2.6 that⋃
{{x} ×K2

n : ξ∞(x) = 0} ⊂ ω∞,

so we need only to show that Pp (ξ∞(0) = 0) → 1 when a` ≥ 2(` − 1)!. Let
C0 denote the cluster of good boxes containing the box Λ0. Observe that

Pp (|C0| =∞) = Pp ({|C0| =∞} ∩ {C0 contains a very good box})
≤ Pp (ξ∞(0) = 0) .

The last inequality follows from the fact that a very good box in C0 sets
off a cascade resulting in all vertices in C0 eventually flipping to 0. Now,
Lemma 4.1 implies Pp (|C0| =∞)→ 1.
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4.2. Upper bound in (1.4) for ` ≥ 2. Throughout this subsection, assume
that ` ≥ 2, a`/`! > 2/` and that ξ0 is built by internal spanning properties,
as in Lemma 2.6.

We will prove first the upper bound on the rate.

Lemma 4.2. The probability that the Hamming square based at the origin
is not completely filled satisfies the following bound:

(4.3) Pp
(
{0} ×K2

n 6⊂ ω∞
)
≤ n4/`−4a`/`!+o(1).

For a deterministic or random set A ⊂ Z2, we say that the event
Blocking In A occurs if there exists a rectangle R = [a1, a2] × [b1, b2] so
that: 0 ∈ R; R is non degenerate, i.e., a1 < a2 and b1 < b2; and each
of the four sides of R, {a1} × [b1, b2], {a2} × [b1, b2], [a1, a2] × {b1}, and
[a1, a2]×{b2}, either contains two distinct sites in A with ξ0-state 3 or a site
in A with ξ0-state 4.

Lemma 4.3. Suppose that ξ∞(0) 6= 0. Assume that there is circuit of 0s
around 0 in ξt, for some t. Denote by A the set of sites in the strict interior
of this circuit. Assume that there are no sites in A with ξ0-state 5, and there
is at most one site in A with ξ0-state 4. Then the event Blocking In A
happens.

Proof. We may assume that all sites in Ac are 0s in ξ0. Let A′ be the set
of sites which are non-zero in ξ∞. Then the leftmost and the rightmost site
on the top line of A′ must either be the same site with ξ0-state 4, or be two
distinct sites which both have ξ0-state at least 3. To check nondegeneracy,
assume that, say, b1 = b2. As there are no sites in ξ0-state 5 in A, there then
must be two sites at ξ0-state 4 on either side of 0 on the x-axis, but by the
assumption there can be at most one such site.

Now we pick N as in (4.2) and also keep the definition of good boxes from
the previous subsection. For a constant D, let G1(D) be the event that there
is a circuit of good boxes that encircles 0, is contained in [−DN,DN ]2, and
is connected to the infinite cluster of good boxes.

Lemma 4.4. For any L there is a constant D = D(a, L) so that

(4.4) Pp (G1(D)c) ≤ n−L

Proof. This follows from Lemma 4.1, together with a standard percola-
tion argument (see, for example, Chapter 11 of [Gri]).
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Lemma 4.5. The probability that [−DN,DN ]2 contains at least one site

with ξ0-state 5 or at least two sites in A with ξ0-state 4 is n4/`−4a`/`!+o(1)

Proof. This follows from Lemma 2.1.

Lemma 4.6. Assume D is a fixed constant. Then

Pp
(
Blocking In [−DN,DN ]2

)
≤ n4/`−4a`/`!+o(1).

Proof. Define λ so that DN = nλ, so that λ = 1/` + o(1), and let
α = a`/`!. Note that 2λ < α. We will restrict all our sites to the region
[−DN,DN ]2.

A frame is a nondegenerate rectangle whose four corners are all in ξ0-state
3. Let Frame be the event that a frame exists (which thus by definition means
existence in [−DN,DN ]2). Then Pp

(
Frame) = Θ(n4λ−4α

)
. We will show be-

low that all other possibilities for the event Blocking In [−DN,DN ]2 to
happen have much smaller probabilities. We group these possibilities accord-
ing to whether the rectangle required by this event does not have, or does
have, a boundary site with ξ0-state 4.

The event that there exists a nondegenerate rectangle R that has at least
two sites with ξ0-state 3 on all sides can be split into the following events,
according to additional properties of the configuration on R:

• R is a frame;
• R has no 3s at the corners (i.e., there is no sharing), which happens

with probability at most a constant times

n4λ(n2λn−2α)4 = n12λ−8α = o(Pp (Frame))

(we give these probabilities as products, reflecting successive choices:
four lines determining R, pairs of points on the same line away from
corners; single points on lines away from corners, states at corners);
• R has exactly one 3 at a corner, with probability at most a constant

times

n4λ(n2λn−2α)2(nλn−α)2n−α = n10λn−7α = o(Pp (Frame));

• R has exactly two corner 3s on the same line, with probability at most
a constant times

n4λ(n2λn−2α)(nλn−α)2n−2α = n8λn−6α = o(Pp (Frame));
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• R has exactly two corner 3s not on the same line, with probability at
most a constant times

n4λ(nλn−α)4n−2α = n8λn−6α = o(Pp (Frame));

• R has exactly three corner 3s, with probability at most a constant
times

n4λ(nλn−α)2n−3α = n6λn−5α = o(Pp (Frame)).

Next we consider the event that a rectangle R has exactly one 4 on its
boundary, and either two 3s or a 4 on each of its sides. Again, we split this
event according to additional properties:

• 4 is not at a corner of R and neither are 3s, with probability at most
a constant times

n4λ(n2λn−2α)3nλn−2α = n11λn−8α = o(Pp (Frame));

• the 4 is at a corner of R, but no 3s are at corners, with probability at
most a constant times

n4λ(n2λn−2α)2n−2α = n8λn−6α = o(P(Frame));

• the 4 is at a corner of R, and a 3 is at the opposite corner, with
probability at most a constant times

n4λ(nλn−α)2n−2αn−α = n6λn−5α = o(Pp (Frame)).

Together with Lemma 4.5, these calculations end the proof.

Proof of Lemma 4.2. Choose the constant D in Lemma 4.4 so that L
in (4.4) satisfies L > 4a`/`! − 4/`. Then (4.3) follows from Lemmas 4.3–
4.6.

4.3. Lower bound in (1.4) for ` ≥ 2. In this subsection also, we assume
that a`/`! > 2/` but now ξ0 is built by inertness properties, as in Lemma 2.7.
In this section, we prove the lower bound on the rate.

Lemma 4.7. The probability that the configuration on the Hamming
square based at the origin never changes satisfies the following bound:

(4.5) Pp
(
ω∞ = ω0 on {0} ×K2

n

)
≥ n4/`−4a`/`!+o(1).
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Fix a non-degenerate rectangle R. Let ξ0
0 be obtained from ξ0 by con-

verting all 4s and 5s to 3s on R, and changing all sites to 0 off R. Let ξ0
t

be the bootstrap dynamics started from this initial state. We say that R is
protected if R has its four corners in ξ0

0-state 3, no site in R has ξ0
0-state 0

and no site on the boundary of R has ξ0
0-state 1.

Lemma 4.8. Assume a nondegenerate rectangle R is protected. Then no
site ever changes state in ξ0

t , and therefore ξt never changes any state in R.

Proof. The first site to change state would have to be on the boundary
of R, which is clearly impossible.

Assume now N = bn1/`/ log5 nc. Define the following two events:

G1 = {there exists a rectangle R with 0 ∈ R ⊂ [−N,N ]2, four corners in

ξ0
0-state 3, and no site on the boundary of R is in ξ0

0-state 0 or 1},
G2 = {there is no x ∈ [−N,N ]2 with ξ0(x) = 0}.

Lemma 4.9. With our choice of N ,

Pp (G1) ≥ n4/`−4a`/`!+o(1).

Proof. This follows from an argument that is very similar to the one for
Lemma 3.5.

Lemma 4.10. With our choice of N ,

Pp (Gc2)→ 0,

as n→∞.

Proof. This follows from Lemma 2.1 and Lemma 2.2.

Proof of Lemma 4.7. Observe that G1 and G2 are increasing events,
therefore by FKG and Lemmas 4.9 and 4.10,

Pp (G1 ∩G2) ≥ n4/`−4a`/`!+o(1),

and the result follows from Lemma 4.8.
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4.4. The exceptional case: θ = 4. We assume that θ = 4 throughout this
section, and that, in accordance with (1.1),

p = a
log n

n2
,

with a > 2. We first prove an analogue of Lemma 4.2. We will again assume
that ξ0 is built by internal spanning properties, as in Lemma 2.6, and observe
that the sites with ξ0-state 4 and ξ0-state 3, both of which we call 4-obstacles,
are comparably improbable at our precision level. (Also note that there are
no sites with ξ0-state 5.) As a result, the convergence rate changes.

Lemma 4.11. The probability that the Hamming square based at the ori-
gin is not completely filled satisfies the following bound:

(4.6) Pp
(
{0} ×K2

n 6⊂ ω∞
)
≤ n−2a+o(1).

If R = [a1, a2]×[b1, b2] is a nondegenerate rectangle (i.e., a1 < a2 and b1 <
b2), then its two-layer boundary rectangles are denoted by R` = [a1, a1 +
1] × [b1, b2], Rr = [a2 − 1, a2] × [b1, b2], Rb = [a1, a2] × [b1, b1 + 1], and
Rt = [a1, a2]× [b2 − 1, b2].

For a set A ⊂ Z2, we say that the event 4 Blocking In A happens if
there exists a rectangle R = [a1, a2]× [b1, b2] so that 0 ∈ R and either:

• a2 − a1 ≥ 3 and b2 − b1 ≥ 3, and each of the four rectangles R`, Rr,
Rb, Rt contains at least two 4-obstacles in A;
• 0 ≤ a2 − a1 ≤ 2, b2 − b1 ≥ 3, and R contains 4 or more 4-obstacles in
A;
• a2 − a1 ≥ 3, 0 ≤ b2 − b1 ≤ 2, and R contains 4 or more 4-obstacles in
A; or
• 0 ≤ a2−a1 ≤ 2, 0 ≤ b2− b1 ≤ 2, and R contains 2 or more 4-obstacles

in A.

Lemma 4.12. Suppose that ξ∞(0) 6= 0. Assume that there is circuit of 0s
around 0 in ξt, for some t. Denote by A the set of sites in the strict interior
of this circuit. Then the event 4 Blocking In A happens.

Proof. As before, we may assume that all sites in Ac are 0s in ξ0 and let
A′ be the set of sites which are non-zero in ξ∞. If the top line of A′ consists
of a single 4-obstacle, then the next line from the top must also contain
a 4-obstacle. (Otherwise, the next line from the top would eventually turn
into all 0s, causing the solitary 4-obstacle on the top line to be surrounded
by 0s.) Finally, if there is a single 4-obstacle within R, then all sites in R
eventually turn into 0s.
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We next note that Lemma 4.4 still holds, with N given by (4.2) with
` = 1, and proceed with our final lemma.

Lemma 4.13. Assume D is a fixed constant. Then
Pp
(
4 Blocking In [−DN,DN ]2

)
≤ n−2a+o(1).

Proof. For the event {4 Blocking In [−DN,DN ]2} to happen, one of
the four events, corresponding to the four items in its definition, must hap-
pen. The event in the first item happens with probability at most n4−4a+o(1),
as in the proof of Lemma 4.6. The events in the second and third item also
happen with probability at most n4−4a+o(1). The event in the last item hap-
pens with probability n−2a+o(1), and this last probability is the largest, as
a > 2.

Proof of Lemma 4.11. Analogously to the case of even θ ≥ 6, choose
the constant D in Lemma 4.4 so that L in (4.4) satisfies L > 2a, and use
Lemmas 4.12 and 4.13 to conclude (4.6).

We conclude this section by the simple observation that gives the match-
ing lower bound.

Lemma 4.14. The Hamming square based at the origin remains unoccu-
pied forever with probability bounded below as follows:

(4.7) Pp
(
ω∞ ≡ 0 on {0} ×K2

n

)
≥ n−2a(1 + o(1)).

Proof. The inclusion

{ω0 ≡ 0 on {0, (0, 1)} ×K2
n} ⊂ {ω∞ ≡ 0 on {0} ×K2

n}.

gives the desired bound.

5. The odd threshold. In this section we prove Theorem 1.2. In the
first three subsections, we handle the case ` ≥ 2: first we define, and give
bounds for, the critical value ac, then we prove (1.7), and then (1.6). In the
last, fourth subsection, we sketch the argument for the case ` = 1 in lesser
detail.

5.1. The critical value of a for ` ≥ 2. Pick an a > 0 and an ε ∈
(0, 2 exp

[
−a`

`!

]
− 2 exp

[
−2a`

`!

]
). Consider the initial state ξ

(a,ε)
0 given by the
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product measure with

P(ξ
(a,ε)
0 (x) = 0) = ε,

P(ξ
(a,ε)
0 (x) = 1) =

(
1− e−a`/`!

)2
,

P(ξ
(a,ε)
0 (x) = 3) = exp

[
−2a`

`!

]
,

P(ξ
(a,ε)
0 (x) = 2) = 1− P (ξ

(a,ε)
0 (x) = 0)− P (ξ

(a,ε)
0 (x) = 1)− P (ξ

(a,ε)
0 (x) = 3)

for every x ∈ Z2. We will call this an (a, ε)-initialization and denote the

resulting bootstrap dynamics by ξ
(a,ε)
t .

Define ac ∈ [0,∞] as follows:

ac = inf{a > 0 : lim
ε→0

P(ξ(a,ε)
∞ (0) = 0) > 0}.

Observe that P(ξ
(a,ε)
∞ (0) = 0) is a nonincreasing function of ε and therefore

its limit as ε→ 0 exists. Furthermore, this limit is a nondecreasing function
of a, and therefore it vanishes on [0, ac) and is strictly positive on (ac,∞).

The next two lemmas establish that ac is nontrivial, that is, ac ∈ (0,∞),
by comparison to the critical value psite

c of site percolation on Z2, and to the
critical value of the site percolation on the triangular lattice. Non-strict in-
equalities in both lemmas have much simpler proofs, but we prefer the strict
versions as they indicate that this percolation problem is not a standard
one.

Lemma 5.1. The following strict inequality holds:

(5.1) (1− e−a`c/`!)2 < psite
c .

In particular, ac <∞. Furthermore, limε→0 P(ξ
(a,ε)
∞ (0) = 0)→ 1 as a→∞.

Proof. Given a configuration ξ0 = ξ
(a,ε)
0 , form the following set of green

sites. Any site x with ξ0(x) ≤ 1 is green. Also make green any site x such
that ξ0(x) = 2 and ξ0(y) ≤ 1 for all sites y among the 8 nearest neighbors
of x, except possibly for two diagonally opposite neighbors. That is, if the
local configuration in ξ0 around a site x is

(5.2)
1 1 ∗
1 2 1
∗ 1 1

or
∗ 1 1
1 2 1
1 1 ∗

,
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where ∗ denotes an arbitrary state, then x is green, and it is also green
if its local configuration has 0s in place of any of the 1s in (5.2). Let
Green Percolation be the event that 0 is in an infinite connected set of
green sites, and Green Connection the event that 0 is green and connected
to a vertex with state 0 in ξ0 through green sites. Then

(5.3) P(Green Percolation \ Green Connection) = 0.

Moreover, we claim that

(5.4) Green Connection ⊂ {ξ∞(0) = 0}.

To see this, consider the set of all sites in a connected cluster C of 0 of green
sites that includes a 0 in ξ0. Let C0 be the set of all sites in C that eventually
assume state 0. If C0 $ C, then there exist neighbors x and y with x ∈ C0

and y ∈ C \ C0. But then ξ0(y) = 2, and by inspection of the configurations
in (5.2), we see that y must have at least 2 neighbors in C0, a contradiction.
Therefore C0 = C and (5.4) holds.

Finally, it follows from [AG] (see also [BBR]) that there exists an a with

(1−e−a`/`!)2 < psite
c , so that P(Green Percolation) > 0. This, together with

(5.2–5.4), establishes (5.1). Moreover, it follows from standard percolation
arguments that P(Green Percolation) → 1 as a → ∞, and then (5.3)
implies the last claim.

Lemma 5.2. The critical value ac satisfies the following strict inequality:

exp[−2a`c/`!] < 1/2.

In particular, ac > 0.

Proof. Pick an α > 0. Given a configuration ξ0 = ξ
(a,ε)
0 , declare a site x

red if ξ0(x) = 3, or ξ0(x) = 2 and the local configuration in ξ0 around x is:

(5.5)
3 3 ∗
3 2 3
∗ 3 3

where ∗ denotes an arbitrary state.
The triangular lattice T is obtained by adding SW-NE edges to the nearest

neighbor edges in Z2. (When we say that x, y ∈ Z2 are neighbors without
specifying the lattice, we still mean nearest neighbors.) Recall that T is
(site-)self-dual and so the site percolation on T has critical density 1/2. We
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call a T-circuit ζ a sequence of distinct points y0, y1, . . . , yn = y0 such that
yi and yi−1 are T-neighbors for i = 1, . . . , n. We will also assume that ζ is
a boundary of its connected interior, i.e., its sites are all points, which are
outside some nonempty T-connected set S, but have a T-neighbor in S (this
is possible, again, because T is site-self-dual); we call S the interior of ζ.
Observe that every site on ζ has at least two neighbors in the set obtained
as the union of sites on ζ and its interior.

Let Red CircuitN be the event that there exists a T-circuit of red sites,
with the origin in its interior, and inside [−N,N ]2. Moreover, let No ZeroN
be the event that no site x ∈ [−N,N ]2 has ξ0(x) = 0. It follows from [AG,
BBR], and standard arguments from percolation theory (see Chapter 11 of
[Gri]), that there exists an a with exp[−2a`/`!] < 1/2, with the following
property. For every α > 0, there exists an N = N(α) so that

(5.6) P(Red CircuitN ) > 1− α.

Pick any T-circuit ζ of red states. Form the set of sites R that consists
of: all sites of ζ; all sites in the interior of ζ; and all sites required to be in
ξ0-state 3 in (5.5) around any site with state 2 on ζ. Assume that there is
no site in ξ0-state 0 in R. Then we claim that no site in R ever changes its
state to 0. Indeed, to get a contradiction, let x ∈ R be the first such site to
change its state to 0 (chosen arbitrarily in case of a tie). Clearly x cannot be
in the interior of ζ, as then x has no neighbor outside R. The site x cannot
have ξ0-state 3 and be on ζ, as x then has at least two neighbors in R, and
hence at most two outside R. Furthermore, x cannot be a site with ξ0-state
2 on ζ, as x must then have all neighbors in R in accordance with (5.5). The
final possibility is that x is one of the sites with ξ0-state 3 in (5.5). But each
of those sites clearly also has two neighbors in R.

So we have, for every N ,

(5.7) Red CircuitN ∩ No ZeroN ⊂ {ξ∞(0) = 0}c.

It follows from (5.6) and (5.7) that there exists an N = N(α) so that

(5.8) P(ξ∞(0) = 0) ≤ α+ (2N + 1)2ε.

Now in (5.8), we send ε → 0 first, and then send α → 0 to conclude that
P(ξ∞(0) = 0)→ 0 as ε→ 0, and therefore a ≤ ac.

5.2. The supercritical regime for ` ≥ 2.

Lemma 5.3. Assume ~X = (X1, X2, X3, X4) and ~Y = (Y1, Y2, Y3, Y4)
are 4-tuples of i.i.d. Bernoulli random variables with P(Xi = 1) = α1 and
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P (Yi = 1) = α2 for all i. If 1− (1−α1)4 ≤ α4
2, then ~X and ~Y can be coupled

so that {∃i : Xi = 1} ⊂ {∀i : Yi = 1}.

Proof. This follows from an elementary argument and we omit the de-
tails.

Lemma 5.4. If a > ac, then (1.7) holds. Moreover, (1.8) holds.

Proof. Fix an a′ ∈ (ac, a). Fix also a small δ > 0, to be chosen later

dependent on a′. For i = 0, . . . , 5, we define probabilities p
(n)
i as follows. For

i = 1, 2, 3, 4, let

p
(n)
i = Pp

(
K2
n is (θ − i)-IS but not (θ − i+ 1)-IS

)
,

and
p

(n)
0 = Pp

(
K2
n is θ-IS

)
, p

(n)
5 = Pp

(
K2
n is not (θ − 4)-IS

)
.

Denote by π(α) the Bernoulli product measure of active and inactive sites
with density α of active sites. Build the initial state ξ0 in four steps as follows.

In the first step, choose active sites according to π(p
(n)
4 + p

(n)
5 ) and fill them

with 5s. In the second step, choose active sites according to π(p
(n)
0 /(1−p(n)

4 −
p

(n)
5 )) and fill them with 0s, provided they are not already filled. Continue

in the third step with π(p
(n)
3 /(1−p(n)

0 −p
(n)
4 −p

(n)
5 )) to fill some unfilled sites

with 3s, and then in the fourth step analogously with 2s, and then finally
1s fill all the remaining unfilled sites.

Divide Z2 into 2 × 2 boxes and couple product measures π(p
(n)
4 + p

(n)
5 )

and π(δ) on the space of pairs (η1, η2) ∈ 2Z
2 × 2Z

2
so that any box with at

least one active site in η1 is fully activated in η2. This coupling is possible,
for large enough n, by Lemmas 2.4 and 5.3.

Use this to couple ξ0 with another initial state ξ̂0. To build this configu-
ration, keep all selected product measures used to define ξ0, but change the

first step above as follows: replace π(p
(n)
4 +p

(n)
5 ) by π(δ) (coupled as above),

and fill the active sites by 3s (instead of 5s). Note that we now fill by 3s
twice, and that some 0s, 1s, and 2s in ξ0 are converted to 3s in ξ̂0.

Denote the resulting bootstrap dynamics by ξt and ξ̂t. The important
observation is that no site that is 5 in ξ0 can ever turn to 0 in ξ̂t, as it is
covered by a 2× 2 block of 3s that cannot change. Therefore, by Lemma 2.6
and the coupling between ξt and ξ̂t,

(5.9) Pp
(
{0} ×K2

n ⊂ ω∞
)
≥ P(ξ∞(0) = 0) ≥ P(ξ̂∞(0) = 0).
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Now if δ = δ(a′) is small enough, then for large enough n,

(5.10)

εn = P(ξ̂0(0) = 0) > 0,

P(ξ̂0(0) = 1) ≥ P(ξ(a′,εn)(0) = 1),

P(ξ̂0(0) = 3) ≤ P(ξ(a′,εn)(0) = 3).

As a′ > ac, the inequalities (5.10) guarantee that lim infn P(ξ̂∞(0) = 0) > 0.
Therefore, by (5.9), the leftmost inequality in (1.7) holds. When a→∞, we
can send a′ →∞ as well, and then Lemma 5.1 gives (1.8).

Finally, we prove the rightmost inequality in (1.7), which states that
Pp (v0 ∈ ω∞) is bounded away from 1 for any finite a. Let Obstacle Box

be the event that {x}×K2
n is (θ−2)-inert for all x ∈ {0, (0, 1), (1, 0), (1, 1)}.

Then
Obstacle Box ⊂ {ω∞ = ω0 on {0} ×K2

n},

and therefore, for any a > 0, by Lemmas 2.4 and 2.5,

lim sup
n→∞

Pp (v0 ∈ ω∞) ≤ lim
n→∞

Pp (Obstacle Boxc) = 1− exp(−8a`/`!) < 1,

which ends the proof of (1.7).

5.3. The subcritical regime for ` ≥ 2.

Lemma 5.5. Assume that a < ac and ` ≥ 2. Then (1.6) holds.

Proof. Pick now an a′ ∈ (a, ac) and α > 0, and again also fix δ > 0, to
be chosen later to be appropriately dependent on a′ and α. We will redefine

p
(n)
i , ξ0 and ξ̂0 from the previous proof. Let

p
(n)
0 = Pp

(
K2
n is not θ-II

)
p

(n)
1 = Pp

(
K2
n is not (θ − 1)-II but is θ-II

)
,

p
(n)
2 = Pp

(
K2
n is not (θ − 2)-II but is (θ − 1)-II

)
,

p
(n)
3 = Pp

(
K2
n is (θ − 2)-II

)
.

Next, we will build the initial state ξ0. We emphasize that ξ0 is not a product
measure, as we need to take account of the possibility that some copies of
the Hamming plane are internally inert but not inert. However, such copies
are rare, and the bounded range of dependence allows for the coupling with
a low-density product measure.
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The construction of ξ0 proceeds in three steps. In the first step, choose ac-

tive sites according to π(p
(n)
3 ) and fill them by 3s. In the second step, choose

active sites according to π(p
(n)
2 /(1−p(n)

3 )) and fill them by 2s, provided they
are not already filled. In the third step, choose the configuration of bad sites:
those are sites that

• are not θ-II; or
• are internally inert but not inert for some threshold in [θ − 2, θ].

Observe that the conditional distribution of bad sites given the configuration
of 3s and 2s has finite range of dependence: if ||x − y||1 ≥ 3, then x and y
are bad independently. Furthermore, by Lemma 2.5, the conditional proba-
bility that any site is bad is, uniformly over the configurations of 2s and 3s,
n−1+1/`+o(1) and thus goes to 0 if ` ≥ 2. Finally, finish the construction of
ξ0 by filling all bad sites with 0’s and the remaining unfilled sites with 1s.

By [LSS], the configuration of bad sites can be coupled with a product
measure π(δ) that dominates it, and is independent of the configuration of
2s and 3s. As in the previous proof, we now couple ξ0 with another initial
state ξ̂0. To build ξ̂0, keep the selected product measures used in the first
two steps. The third step is changed by using the π(δ), obtained from the
domination coupling, as active sites, all of which are filled by 0s, possibly
replacing some 2s and 3s. This way, some of the 1s, 2s and 3s in ξ0 are
changed to 0s in ξ̂0.

Denote again the resulting bootstrap dynamics by ξt and ξ̂t. The con-
struction of ξ0 results in a 0 at the location of every non-inert internally
inert copy of the Hamming plane, for all relevant thresholds. Therefore ξ∞
provides an upper bound for the comparison configuration ξ∞ in Lemma 2.7,
and this lemma then implies that

(5.11) Pp
(
ω∞ 6= ω0 on {0} ×K2

n

)
≤ P(ξ∞(0) = 0).

Next, by the properties of the coupling we constructed,

(5.12) P(ξ∞(0) = 0) ≤ P(ξ̂∞(0) = 0).

Now if δ = δ(a′) is small enough, then for large enough n,

(5.13)

P(ξ̂0(0) = 0) ≤ δ,

P(ξ̂0(0) = 1) ≤ P(ξ(a′,ε)(0) = 1),

P(ξ̂0(0) = 3) ≥ P(ξ(a′,ε)(0) = 3).

As a′ < ac, the inequalities (5.13) guarantee that P(ξ̂∞(0) = 0) < α if
δ = δ(a′, α) is small enough. Therefore, by (5.11) and (5.12), (1.6) holds.
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5.4. The exceptional case: θ = 3. We assume here that p = a/n2, in
accordance with (1.5). In this case, we need another version of the hetero-
geneous bootstrap dynamics, somewhere between ξt used when ` ≥ 2 and ζt
used later for the graph Z2×Kn. Indeed, observe that the obstacles are now
empty Hamming planes, but they become completely occupied by contact
with two fully occupied neighboring planes and another neighboring plane
that is merely non-empty. Clearly, the probability of having a non-empty
neighboring plane does not go to 0, and so this possibility now cannot be
handled by a coupling with a low-density measure.

We denote the new rule by χt ∈ {0, 1, 2, 3}Z
2
, t ∈ Z+. Assume that χ0 is

given. For a given t ≥ 0, let as before Zt(x) be the cardinality of {y : y ∼
x and χt(y) = 0} and let Wt(x) = 1({y : y ∼ x and 0 < χt(y) < 3} 6= ∅)
then

χt+1(x) =

{
0 Zt(x) ≥ χt(x) or (χt(x) = 3, Zt(x) = 2, and Wt(x) = 1)

χt(x) otherwise.

For a small ε > 0, we consider the initial state χ
(a,ε)
0 given by the product

measure with

P(χ
(a,ε)
0 (x) = 0) = ε,

P(χ
(a,ε)
0 (x) = 1) = 1− (a+ 1)e−a,

P(χ
(a,ε)
0 (x) = 3) = e−a,

P(χ
(a,ε)
0 (x) = 2) = 1− P (χ

(a,ε)
0 (x) = 0)− P (χ

(a,ε)
0 (x) = 1)− P (χ

(a,ε)
0 (x) = 3)

for every x ∈ Z2, denote the resulting bootstrap dynamics by χ
(a,ε)
t , and for

θ = 3 define ac ∈ [0,∞] by

ac = inf{a > 0 : lim
ε→0

P(χ(a,ε)
∞ (0) = 0) > 0}.

We will not provide complete proofs of the next three lemmas, but only
point to previous arguments that apply with simplifications and minor mod-
ifications.

Lemma 5.6. The following strict inequalities hold:

1− (ac + 1)e−ac < psite
c , e−ac < psite

c .

In particular, ac ∈ (0,∞). Also, limε→0 P(χ
(a,ε)
∞ (0) = 0)→ 1 as a→∞.

Proof. The argument is very similar to that for Lemmas 5.1 and 5.2.
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Lemma 5.7. If a > ac, then (1.7) holds. Also, (1.8) holds.

Proof. This follows from the proof of Lemma 5.4, simplified by the ab-
sence of states 4 and 5, which eliminates the need for a coupling domina-
tion.

Lemma 5.8. Assume that a < ac. Then (1.6) holds.

Proof. The difference from the proof of Lemma 5.5 is the definition of
bad sites, which in this case are those that are not 3-inert, and those that
are 2-II but not 2-inert. As the density of bad sites goes to 0 by Lemma 2.5,
the proof of Lemma 5.5 can be easily adapted.

6. Bootstrap percolation on Z2 × Kn. In this section, we prove
Theorem 1.3, which follows from Lemmas 6.3 and 6.4 below.

As already announced, we need yet another heterogeneous bootstrap rule
in which sites in Z2 receive more help from their neighbors than in ξt. In this
case we have a new state, labeled by θ and representing an empty site that
has no contribution to make. We denote this rule by ζt ∈ {0, 1, 2, 3, 4, 5, θ}Z

2
,

t ∈ Z+. Assume that ζ0 is given. For a given t ≥ 0, let as before Zt(x) be the
cardinality of {y : y ∼ x and ζt(y) = 0} and Wt(x) = 1({y : y ∼ x and 0 <
ζt(y) < θ} 6= ∅) then

ζt+1(x) =

{
0 Zt(x) +Wt(x) ≥ ζt(x)

ζt(x) otherwise.

For an initially occupied set ω0, we create two initial states ζ0 as follows.
For x ∈ Z2, let

Nx = |{y ∈ {x} ×Kn : ω0(y) = 1}|.

Call x a clash site if Nx < θ and ω0(y1, u) = ω0(y2, u) = 1 for some y1 6= y2

in {x} ∪ {y : y ∼ x} and some u ∈ Kn, such that Ny1 < θ and Ny2 < θ.
We define the favoring initialization ζfv0 (x) and the restricting initialization
ζrs0 (x) as follows. If x is a clash site, then ζfv0 (x) = 0, while ζrs0 (x) = θ. If x is
not a clash site, the two initializations are equal: ζfv0 (x) = ζrs0 (x) = nz(Nx),
where nz : Z+ → {0, . . . , 5, θ} is given by

(6.1) nz(m) =


0 m ≥ θ
k m = θ − k for some k ∈ {1, 2, 3, 4}
5 0 < m < θ − 4

θ m = 0
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These initializations determine their respective dynamics ζrst and ζfvt , 0 ≤
t ≤ ∞. We next state the comparison lemma whose simple proof is omitted.

Lemma 6.1. We have⋃
{{x} ×Kn : ζrs∞ (x) = 0} ⊂ ω∞ ⊂

⋃
{{x} ×Kn : ζfv∞ (x) = 0} ∪ ω0.

Consider Z2 × [0,∞) and equip each {x} × [0,∞), x ∈ Z2 with an in-
dependent Poisson point location of unit intensity. Then we define the a-

initialization ζ
(a)
0 obtained by ζ

(a)
0 (x) = nz(Na

x ), where now Na
x is the num-

ber of location points in {x} × [0, a] and the function nz is defined in (6.1).
For the rest of this section, we assume that ω0 is a product measure with

density p = a/n.

Lemma 6.2. Assume a′ > a. Then, for large enough n, ω0 and the a′-

initialization ζ
(a′)
0 can be coupled so that ζfv0 ≥ ζ

(a′)
0

Conversely, assume a′ < a. Then, for large enough n, ω0 and ζ
(a′)
0 can be

coupled so that ζrs0 ≤ ζ
(a′)
0 .

Proof. We will prove only the first statement; the second is proved sim-
ilarly. Observe that the random variables Nx are i.i.d. Binomial(n,p). Fix an
ε > 0 such that a+ ε < a′.

Assume that first the i.i.d. random field of truncated random variables
Nx ∧ θ, x ∈ Z2, is selected. Conditional on this selection, any site x ∈ Z2 is
a clash site with probability at most C/n, where C = C(θ) is a constant.
Furthermore, if ||x− x′||1 ≥ 3, then x and x′ are clash sites independently.
Therefore, by [LSS], there exists an i.i.d random field ηx, x ∈ Z2 of Bernoulli
random variables, independent also of the field Nx∧θ, x ∈ Z2, so that ηx = 1
whenever x is a clash site and P (ηx = 1) = ε.

If n is large enough, we can, for a fixed x, find a coupling between (Nx, ηx)
and a Poisson(a) random variable Mx so that (Nx∧θ)1(ηx = 0) ≥ (Mx∧θ).
Thus we can construct an independent field Mx, x ∈ Z2 with this property,
which concludes the proof.

Define now

(6.2) φ(a) = P(ζ(a)
∞ (0) = 0).

Observe that φ : (0,∞) → [0, 1] is a nondecreasing limit of nondecreasing

continuous functions φt given by φt(a) = P(ζ
(a)
t (0) = 0). Therefore, φ is

left-continuous and nondecreasing.
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Lemma 6.3. Assume θ ≥ 3. Fix any a ∈ (0,∞) and v ∈ Z2 × Kn. As
n→∞,

P(Poisson(a) ≥ θ) ≤ φ(a) ≤ lim inf
n

Pp (ω∞(v) = 1)

≤ lim sup
n

Pp (ω∞(v) = 1) ≤ φ(a+) ≤ 1− e−4a

Proof. We have,

{Na
0 ≥ θ} = {ζ(a)

0 (0) = 0} ⊂ {ζ(a)
∞ (0) = 0},

and, for any 2× 2 block B ⊂ Z2 including 0,

∩x∈B{Na
x = 0} = ∩x∈B{ζ(a)

0 (x) = θ} ⊂ {ζ(a)
∞ (0) = θ},

which gives the two extreme bounds. The remainder follows from Lem-
mas 6.1 and 6.2.

Lemma 6.4. For θ ≥ 14, φ is continuous on (0,∞).

Proof. Recall that by the construction, ζ
(a)
t are coupled for all a. Let

Ea =
⋂
a′>a

{ζ(a′)
∞ (0) = 0},

so that φ(a+) = P(Ea). Let also Fa be the event that there is an `∞-circuit
C around the origin, consisting of sites x with Na

x /∈ [θ− 5, θ− 1]. As no site

in C ever changes its state in the ζ
(a)
t dynamics,

Ea ∩ Fa ⊂ {ζ(a)
∞ (0) = 0}.

It remains to show that, for θ ≥ 14, P(Fa) = 1 for all a ∈ (0,∞), that is,

P(Poisson(a) ∈ [θ − 5, θ − 1]) ≤ psite
c .

Using the rigorous lower bound psite
c > 0.556 [vdBE], a numerical computa-

tion shows that the above bound indeed holds for θ ≥ 14.

7. Open problems. We conclude with a selection of a few natural
questions.

Question 7.1. Is the function φ defined in (6.2) continuous on (0,∞)
for all θ? Is it analytic for all, or at least large enough, θ?
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Question 7.2. Is the function a 7→ limε→0 P(ξ
(a,ε)
∞ (0) = 0), where ξ

(a,ε)
∞

is defined in Section 5.1, continuous for all a? A related question is whether
limn→∞ Pp(v0 ∈ ω∞) exists for odd θ and all a when p is given by (1.5)?

In both question above, arguments similar to that for Lemma 6.4 imply
continuity for large enough a and for small enough a.

Question 7.3. When a < ac in Theorem 1.2, what is the rate of con-
vergence in (1.6)?

Our last three questions are more open-ended, and their answers likely
require development of new techniques. We first propose a closer look into
the critical scaling in Theorem 1.1.

Question 7.4. Assume θ is even, as in Theorem 1.1. Assume that

p = (2(`− 1)!)1/` (log n)1/`

n1+1/`
+ bf(n)

Can the function f(n) be chosen so that the limit of the final density as
n→∞ exists and is neither a constant nor a step function of b ∈ R?

We conclude with two questions on larger dimensions of the lattice factor
or the Hamming torus factor (see also [GHPS, GS]).

Question 7.5. What are the analogues of our main theorems for boot-
strap percolation on Zd ×K2

n, for d ≥ 3?

To approach this question using the methods of our present paper would
require a much deeper understanding of heterogeneous bootstrap percolation
on Zd (see [GHS]).

Question 7.6. What are the analogues of our main theorems for boot-
strap percolation on Z2 ×Kd

n, d ≥ 3?

This question poses a significant challenge at present, as the bootstrap
percolation on Kd

n, d ≥ 3, alone is poorly understood [GHPS], except for
θ = 2 [Sli].
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