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How can we manipulate the topological connectivity
of a three-dimensional prismatic assembly to control
the number of internal degrees of freedom and the
number of connected components in it? To answer this
question in a deterministic setting, we use ideas from
elementary number theory to provide a hierarchical
deterministic protocol for the control of rigidity and
connectivity. We then show that it is possible to
also use a stochastic protocol to achieve the same
results via a percolation transition. Together, these
approaches provide scale-independent algorithms for
the cutting or gluing of three-dimensional prismatic
assemblies to control their overall connectivity and
rigidity.

1. Introduction
Given a three-dimensional solid, how can we introduce
cuts in it that convert it to a prismatic assembly that
is either partially or fully connected, and can be either
partially or completely rigid? Said differently, how does
the topology of the underlying network of connectivity
in such an assembly control the degrees of freedom
(DoF) and the number of connected components (NCC),
i.e. the number of distinct clusters? And how can we
use either deterministic or stochastic approaches to
control both these properties? Here, we explore and
answer these questions using a combination of analysis
and computation. In addition to being of intrinsic
interest, the questions are of technological relevance
for understanding the assembly of polyhedral building
blocks into ordered structures in atomic systems [1]
as well as the design of molecular materials [2] and
nanocrystals [3].

2020 The Author(s) Published by the Royal Society. All rights reserved.
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(a) (b)

Figure 1. Topological control of prismatic assemblies is analogous to controlling a linkage. (a) An example of how a solid can
be decomposed into an L × M × N three-dimensional prismatic assembly (here L= M= N = 2). (b) All possible links for
connecting neighbouring cubes in a 2 × 2 × 2 prismatic assembly. A subset of these can be used to control the number of
connected components, while another can be used to control the number of internal degrees of freedom in the assembly. Note
that thewide separations between the cubes employed in this figure and all followingfigures in this paper are just for illustrative
purposes. All links considered are infinitesimal and only used for representing the connectivity of the cubes. (Online version in
colour.)

In the context of the problem raised above, the transition from a floppy phase to a rigid phase
has been extensively studied within the framework of amorphous jamming induced by adding
or removing linkages (constraints) in the network model [4–10]. More recently, it has also been
shown that it is possible to tune the mechanical properties of the network near isostaticity (close
to jamming) [11–15] by pruning links according to different algorithms. However, most of these
studies focus on the problem of controlling the mechanical properties of a network by abstracting
the nodes as point masses.

Here, we deviate from this perspective in a fundamental way. By considering structural
assemblies with building blocks made of three-dimensional objects with shapes, we allow
for the separation of the total DoF from internal DoF (defined as the DoF associated with
the relative rotational motion among the assemblies rather than the rigid body motion). By
randomly adding or removing links and thus changing the linkage pattern, we find non-
monotonic changes in the internal DoF, as well as the existence of percolation transitions
associated with the onset of connectivity and rigidity. The use of prismatic assemblies with high
translational symmetry enables us to control the rigidity and connectivity in a deterministic
way with minimal redundancy. Inspired by ideas from elementary number theory, we design
algorithms to control the rigidity and connectivity of prismatic structures by designing minimal-
redundancy link patterns in a hierarchical manner. (Minimal-redundancy means that no links can
be removed while keeping the overall rigidity properties.) This efficient design might shed light
on the subject of structural assemblies, with connection to the classical rigidity theory [16] and
self-assembly [17–19].

To simplify our discussion, we start with a rectangular solid D in R
3 with parallel cuts

introduced along equally spaced grid lines in the x-, y- and z-directions. Assuming that the length,
width and height of D are all integer multiples of a positive number l, the cuts decompose D
into L × M × N identical solid cubes with side length l (figure 1a). Then, we consider placing
a number of infinitesimal links either deterministically or stochastically to connect some of the
cubes with their neighbours (figure 1b), thereby forming a three-dimensional solid assembly.
Here, the infinitesimal links are considered to be of zero length. Every link added between
two vertices of two cubes indicates that the two vertices are connected and occupy exactly the
same point. We remark that in practice, the infinitesimal links considered in this work can be
easily realized by physical hinges, ball joints, short ligaments, or other ways of connecting two
objects, but do not change our qualitative results. The infinitesimal links control the topology of
the assembly and hence affect its rigidity and connectivity in terms of DoF and NCC. We can
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transform the cutting problem into a linkage problem that is similar in spirit to the set-up in the
planar analogue: a kirigami structure [20].

2. Deterministic control of rectangular prismatic assemblies
We first explore the deterministic control of prismatic assemblies, and establish algorithmic
protocols for determining the minimum number of links that can (i) rigidify a prismatic assembly
so that it has no internal modes of motion (i.e. control the DoF) or (ii) connect a prismatic assembly
(i.e. control the NCC).

(a) Minimum rigidifying link patterns
Since each cube has three translational DoF and three rotational DoF, the maximum total DoF
of any L × M × N prismatic assembly is d= 6LMN. If all links are added, the entire prismatic
assembly is rigid and hence the minimum DoF is d= 6. This suggests that as links are gradually
added to the system, the total DoF decreases and eventually the entire system becomes rigid.
Therefore, it is natural to consider the minimum number of links needed to make the system
rigid. This requires analysing the effect of each link on the DoF of the system. As the links are
vertex-based, it is more convenient to assess the total DoF by considering each cube as eight
vertices, with constraints given by the geometry of the cubes and the infinitesimal links.

By Dehn’s rigidity theorem [16], any closed convex polyhedron with infinitesimally rigid faces
is infinitesimally rigid. Therefore, for each solid cube with side length l, there are exactly 12 edge
length constraints in the form of

gedge(vi, vj) = ‖vi − vj‖2 − l2 = 0, (2.1)

where vi and vj are two adjacent vertices in a cube, and six diagonal length constraints for all faces
of the cube

gdiagonal(vi, vj) = ‖vi − vj‖2 − 2l2 = 0, (2.2)

where vi and vj are a pair of opposite vertices in a face. As an example, a rigid cube has 8 nodes
(24 DoF), 12 edges (12 edge length constraints) and 6 faces (6 diagonal length constraints). The
remaining number of DoF is 24 − 12 − 6 = 6, which corresponds to the three translational and the
three rotational DoF.

Note that there are in total 24LMN variables for the coordinates of all vertices, and
we denote them as x1, x2, x3, . . . , x24LMN , with (x3i−2, x3i−1, x3i) being the coordinates of the
vertex vi, i= 1, 2, . . . , 8LMN. Now, adding a link between two vertices vi = (x3i−2, x3i−1, x3i) and
vj = (x3j−2, x3j−1, x3j) in two neighbouring cubes imposes three link constraints

glinkx (vi, vj) = x3i−2 − x3j−2 = 0,

glinky (vi, vj) = x3i−1 − x3j−1 = 0

and glinkz (vi, vj) = x3i − x3j = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

We note that the decrease in DoF by adding a link can either be 0, 1, 2 or 3. If n links are added
to the L × M × N prismatic assembly, there will be in total 18LMN + 3n constraints (18LMN
length constraints and 3n link constraints). To determine the infinitesimal DoF d of the prismatic
assembly, it is necessary to count the number of independent constraints. This can be done by the
rigidity matrix rank computation [21,22]

d= 24LMN − rank(A), (2.4)

where A is a rigidity matrix with the dimension (18LMN + 3n) × 24LMN, and Aij = ∂gi/∂xj for all
i, j storing the partial derivatives of all above-mentioned constraints. We remark that this approach
of calculating DoF is analogous to the application of the Calladine index theorem for connecting
the number of zero modes to the rank of the compatibility matrix in an elastic network [23]. In
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particular, the states of self-stress therein are equivalent to the zero energy states in our problem,
which form the null space of the rigidity matrix A.

To determine the optimal lower bound of links needed to rigidify the assembly, we denote
δ3D(L,M,N) as the minimum number of links for rigidifying an L × M × N prismatic assembly.
Then we have

6LMN − 3δ3D(L,M,N) ≤ 6. (2.5)

This implies that

δ3D(L,M,N) ≥ 6LMN − 6
3

= 2LMN − 2. (2.6)

Therefore, link patterns with less than 2LMN − 2 links can never rigidify an L × M × N prismatic
assembly. It is natural to ask whether the above lower bound is optimal (tight) for any
combination of positive integers L,M,N. Denote a link pattern with exactly 2LMN − 2 links that
can rigidify an L × M × N prismatic assembly as a minimum rigidifying link pattern (MRP) for
L × M × N. Below, we devise a hierarchical construction method for creating MRPs for infinitely
many L,M,N.

To illustrate the idea of the hierarchical construction, here we first consider the case where
L=M=N and simplify the notation δ3D(L,M,N) as δ3D(L). Suppose MRPs exist for l1 × l1 × l1
and l2 × l2 × l2, i.e. δ3D(l1) = 2l31 − 2 and δ3D(l2) = 2l32 − 2. If we treat an l1l2 × l1l2 × l1l2 prismatic
assembly as l2 × l2 × l2 large blocks with size l1 × l1 × l1, we can rigidify each large block using an
MRP for l1 × l1 × l1 (which consists of exactly δ3D(l1) links) and then rigidify the entire structure
using an MRP for l2 × l2 × l2 (which consists of exactly δ3D(l2) links). Thus, the whole l1l2 × l1l2 ×
l1l2 prismatic assembly is rigidified, with the total number of links

l32δ3D(l1) + δ3D(l2) = l32(2l31 − 2) + (2l32 − 2) = 2(l1l2)3 − 2. (2.7)

This suggests that the link pattern constructed this way is an MRP for l1l2 × l1l2 × l1l2, i.e.
δ3D(l1l2) = 2(l1l2)3 − 2. Using this idea of constructing larger MRPs via a hierarchical combination
of smaller MRPs, we can prove that MRPs exist for all L × L × L prismatic assembly with L≥ 2:

Theorem 2.1. For all positive integer L≥ 2, we have

δ3D(L) = 2L3 − 2. (2.8)

Proof. We first explicitly construct MRPs for L × M × N = 2 × 2 × 2, 3 × 3 × 3, 2 × 2 × 3,
2 × 3 × 3, each with exactly 2LMN − 2 links (figure 2a–d), with the DoF of these assemblies
verified computationally using equation (2.4). The existence of such patterns shows that the
statement is true for L= 2, 3.

For L≥ 4, we prove the statement by induction. Suppose the statement is true for all positive
integers less than L. Note that for L≥ 4, there always exists non-negative integers a, b with
a + b≥ 2 such that L= 2a + 3b: If L≡ 0 (mod 3), we have L= 2 × 0 + 3 × L

3 . If L≡ 1 (mod 3), we
have L= 2 × 2 + 3 × (L − 4)/3. If L≡ 2 (mod 3), we have L= 2 × 1 + 3 × (L − 2)/3.

Now, we decompose the L × L × L prismatic assembly into (a + b) × (a + b) × (a + b) blocks
with size 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3 and 3 × 3 × 3 (figure 2e). Since 2 ≤ a + b< L, by the
induction hypothesis, the number of links connecting these blocks is

δ3D(a + b) = 2(a + b)3 − 2. (2.9)

Therefore, if we first rigidify each block by the corresponding MRP in figure 2a–d and then
rigidify the entire structure by an MRP for (a + b) × (a + b) × (a + b), we obtain a rigidifying link
pattern for the L × L × L prismatic assembly, with the total number of links

a3δ3D(2) + b3δ3D(3) + 3a2bδ3D(2, 2, 3) + 3ab2δ3D(2, 3, 3) + δ3D(a + b)

= 14a3 + 52b3 + 66a2b + 102ab2 + 2(a + b)3 − 2

= 16a3 + 54b3 + 72a2b + 108ab2 − 2
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(a) (b)

(c) (d)

(e)

Figure 2. Minimum rigidifying link patterns (MRPs) and the hierarchical construction protocol for prismatic assemblies. (a) An
MRP with exactly 2 × 23 − 2= 14 links for a 2 × 2 × 2 prismatic assembly. (b) An MRP with exactly 2 × 2 × 3 × 3 −
2= 34 links for a 2 × 3 × 3 prismatic assembly. (c) An MRP with exactly 2 × 2 × 2 × 3 − 2= 22 links for a 2 × 2 × 3
prismatic assembly. (d) An MRP with exactly 2 × 3 × 3 × 3 − 2= 52 links for a 3 × 3 × 3 prismatic assembly. For all four
examples, we have checked that DoF= 6 using the rigidity matrix rank computation. (e) To construct an MRP for a 5 × 5 × 5
prismatic assembly, we treat the 5 × 5 × 5 cubes as eight large rectangular blocks with size 2 × 2 × 2, 2 × 2 × 3, 2 ×
3 × 3 and 3 × 3 × 3 (each type is shown in a different colour). We rigidify each block using an MRP in (a–d) (the red links),
and then connect and rigidify the entire structure using an MRP for 2 × 2 × 2 (the green links), thereby obtaining an MRP for
5 × 5 × 5 (see text for details). (Online version in colour.)

= 2(2a + 3b)3 − 2

= 2L3 − 2. (2.10)

This implies that δ3D(L) = 2L3 − 2. By induction, the statement is true for all L≥ 2. �

Here, we remark that MRPs for a specific system size are not unique. One reason is that it is
possible to rotate the MRPs shown in figure 2 during the hierarchical construction, which can
lead to distinct MRPs. There may also be MRPs that are not covered by the proof of theorem 2.1
(i.e. not in the form of MRPs of MRPs of the intermediate blocks). Nevertheless, the hierarchical
construction provides a systematic approach for creating MRPs for any system size L.

Furthermore, we can explicitly construct MRPs for infinitely many L,M,N:

Theorem 2.2. For infinitely many positive integers L, M, N that are not all identical, we have

δ3D(L,M,N) = 2LMN − 2. (2.11)

Proof. Take any set of non-negative integers al, bl, am, bm, an, bn such that al + bl = am + bm =
an + bn ≥ 2 and

L= 2al + 3bl,

M= 2am + 3bm

and N = 2an + 3bn

⎫⎪⎪⎬
⎪⎪⎭

(2.12)

are not all identical (e.g. (al, bl, am, bm, an, bn) = (1, 6, 2, 5, 3, 4), with (L,M,N) = (20, 19, 18)). Then,
we can decompose an L × M × N prismatic assembly into (al + bl) × (am + bm) × (an + bn) small
blocks of size 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3 and 3 × 3 × 3. Since al + bl = am + bm = an + bn,
following the proof of theorem 2.1, we rigidify each small block and then the entire structure
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(a) (b)

2 2 2 2 2 3

2
2

2
3

3

4

6

5

3

3

3

2

Figure 3. More examples of minimum rigidifying link patterns (MRPs) for rectangular prismatic assemblies. (a) An MRP for a
4 × 5 × 6 rectangular prismatic assembly, consisting of fourMRPs for 2 × 3 × 3 (theblue cubes and the associated red links),
four MRPs for 2 × 2 × 3 (the yellow cubes and the associated red links) and anMRP for 2 × 2 × 2 connecting the eight large
blocks (the green links). (b) AnMRP for an 11 × 12 × 13 rectangular prismatic assembly can be constructed hierarchically using
the MRP for 4 × 5 × 6 in (a), with each cube replaced with a 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3 or 3 × 3 × 3 rectangular
prismatic assembly with an associated MRP. For instance, the bottom left cube is to be replaced with a 2 × 2 × 3 rectangular
prismatic assembly with an MRP as shown in figure 2c. (Online version in colour.)

using MRPs for different sizes. The total number of links of such a rigidifying link pattern for
L × M × N is

alamanδ3D(2) + blbmbnδ3D(3) + (alambn + alanbm + amanbl)δ3D(2, 2, 3)

+ (albmbn + amblbn + anblbm)δ3D(2, 3, 3) + δ3D(al + bl)

= 14alaman + 52blbmbn + 22(alambn + alanbm + amanbl)

+ 34(albmbn + amblbn + anblbm) + 2(al + bl)(am + bm)(an + bn) − 2

= 2(2al + 3bl)(2am + 3bm)(2an + 3bn) − 2

= 2LMN − 2. (2.13)

This implies that MRPs exist for L × M × N and we have δ3D(L,M,N) = 2LMN − 2. �

We remark that the technique in the proof above can be used recursively for constructing
more MRPs. For instance, as 2 + 0 = 1 + 1 = 0 + 2 = 2, by considering (al, bl, am, bm, an, bn) =
(2, 0, 1, 1, 0, 2), we can construct an MRP for 4 × 5 × 6 (figure 3a). Then, for any al, bl, am, bm, an, bn ≥
0 with al + bl = 4, am + bm = 5, an + bn = 6, we can use the same technique to construct an MRP
for a (2al + 3bl) × (2am + 3bm) × (2an + 3bn) prismatic assembly. For instance, since 1 + 3 = 4,
3 + 2 = 5 and 5 + 1 = 6, we can extend the construction in theorem 2.2 and create an MRP for a
(2 × 1 + 3 × 3) × (2 × 3 + 3 × 2) × (2 × 5 + 3 × 1) = 11 × 12 × 13 rectangular prismatic assembly
hierarchically (figure 3b). This shows the flexibility of our hierarchical construction framework
for generating MRPs, which can be further used for creating rectangular prismatic assemblies
with prescribed rigidity and connectivity.

As we can see in the proofs of theorem 2.1 and theorem 2.2, the two major components
in the hierarchical construction of MRPs are: (i) the computation of the rigidity matrix for
explicitly constructing small MRPs as the building blocks, and (ii) the integer partitioning of
L,M,N in the form of 2m + 3n for recursively simplifying the problem. This combination of
discrete mechanics and number theory provides a simple and useful framework for the design
of prismatic assemblies.
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(a) (b) (b) (d)

Figure 4. Examples of minimum connecting link patterns (MCPs) for rectangular prismatic assemblies. (a) An MCP for a
2 × 2 × 2 rectangular prismatic assembly, with 2 × 2 × 2 − 1= 7 links. (b) AnMCP for a 2 × 3 × 3 rectangular prismatic
assembly, with 2 × 3 × 3 − 1= 17 links. (c) An MCP for a 2 × 2 × 3 rectangular prismatic assembly, with 2 × 2 × 3 −
1= 11 links. (d) An MCP for a 3 × 3 × 3 rectangular prismatic assembly, with 3 × 3 × 3 − 1= 26 links. (Online version in
colour.)

We note that in the two-dimensional case presented in [20], proving that the theoretical lower
bound of the links for rigidification can be achieved requires multiple steps for handling different
problem sizes (even number, odd primes, odd prime powers etc.). By contrast, as shown in
the proof of theorem 2.1, the optimal lower bound for the three-dimensional case considered
in this work can be achieved more directly without involving the complicated cases. Also, the
two-dimensional approach presented in [20] focuses on the problem with L × L tiles. In the
present work, in addition to solving the L × L × L problem (theorem 2.1), we have shown how
the hierarchical construction can be extended more broadly for tackling the L × M × N problem
with distinct L,M,N (theorem 2.2).

(b) Minimum connecting link patterns
Next, we consider the minimum connecting link patterns (MCPs), i.e. link patterns with the
minimum number of links that can connect all cubes in a prismatic assembly. Denote γ3D(L,M,N)
as the minimum number of links needed for connecting an L × M × N prismatic assembly.
Since NCC = LMN when there is no link, and each link reduces the NCC by at most one, the
minimum number of links is γ3D(L,M,N) = LMN − 1. To construct MCPs, one may make use of
the hierarchical construction with the building blocks being four MCPs for 2 × 2 × 2, 2 × 2 × 3,
2 × 3 × 3 and 3 × 3 × 3, which can be easily constructed (figure 4). For instance, we can obtain an
MCP for a 5 × 5 × 5 rectangular prismatic assembly using the decomposition shown in figure 2e,
with each block connected by an MCP for 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3 and 3 × 3 × 3, and all
eight blocks connected by an MCP for 2 × 2 × 2. Interestingly, δ3D(L) and γ3D(L) are related by a
simple formula

δ3D(L) = 2L3 − 2 = 2(L3 − 1) = 2γ3D(L). (2.14)

In other words, the minimum number of links needed for rigidifying any L × L × L prismatic
assembly is exactly twice that for connecting it.

(c) Simultaneous control of rigidity and connectivity using prescribed links
Denote the DoF in a prismatic assembly by d and the NCC by c. Using MRPs and MCPs, we can
easily control the rigidity and connectivity of prismatic assembly and achieve different values of
d and c simultaneously.

For any L × M × N prismatic assembly with an MRP, there will be exactly six global modes
(three translational and three rotational) without any overlaps and hence we have d= 6 and c= 1.
Further adding links to it will not change either n or c. As links are removed, the dimension of
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the nullspace of the rigidity matrix increases. More specifically, removing any k links from it will
lead to an increase in d, making d= 6 + 3k. c will remain unchanged until δ3D(L,M,N) − k reaches
a certain threshold. We may also obtain a prismatic assembly with d= 6pqr and c= pqr, where
p|L, q|M and r|N. This is achieved by reversing the process of the hierarchical construction and
removing links at the coarsest level from an MRP.

For any L × M × N prismatic assembly with an MCP, it is clear that c= 1 and d= 6LMN −
3γ3D(L,M,N) = 3LMN + 3. Removing any k links from it will lead to an increase in c by k and
an increase in d by 3k, making c= k + 1 and d= 3LMN + 3k + 3. We remark that the maximum
internal DoF of an L × M × N prismatic assembly is 3LMN − 3, which is achieved if the link
pattern is an MCP. More specifically, the internal DoF is the total DoF less the six global DoF
(three translational and three rotational) of each connected component in the assembly. As all
cubes are connected by an MCP, there are only six global translational and rotational DoF in
the entire system, and all the remaining DoF are internal DoF. Therefore, the internal DoF is
3LMN + 3 − 6 = 3LMN − 3.

We remark that in our approach, the rigidity matrix computation yields infinitesimal floppy
modes, and in general there are some floppy modes that violate the steric constraints that make
it physically impossible once we go beyond the infinitesimal regime. The modes that do not
violate the steric constraints indicate how the structure can be deployed rigidly, while those that
do involve overlapping of assembly units provide us with information about the nature of the
energetic cost of deforming the solids. For example, for each mode that involves overlapping,
one can calculate the total energy cost associated with deforming the assembly and that with
rotating around hinges, hence identifying the hierarchical energy/frequency spectrum of the
whole assembly. Therefore, our approach can help in the design of structural assemblies of both
rigid and soft objects.

3. Stochastic control of rectangular prismatic assemblies
Having explored the deterministic control of rigidity and connectivity in a prismatic assembly, we
now explore controlling these quantities by adding or removing links randomly, a process that we
will see leads to percolation transitions in rigidity and connectivity.

(a) Counting the total number of links
We calculate the total number of possible links in an L × L × L rectangular prismatic assembly.
First, it is easy to see that in the two-dimensional case of L × L quads, there are 2L(L − 1) links
along the x-direction and 2L(L − 1) links along the y-direction. Therefore, the number of possible
vertical or horizontal links in the three-dimensional case (i.e. the links which are parallel to some
of the edges of the cubes) is given by

2L(L − 1) × 2 × L (along the x-direction) + 2L(L − 1) × 2 × L (along the y-direction)

+ 2L(L − 1) × 2 × L (along the z-direction)

= 12L2(L − 1). (3.1)

As for the number of possible cross links, note that each space surrounded by eight cubes
(like the centre of figure 1b) consists of 16 cross links, where 12 of them connect every pair of
neighbouring cubes that share an edge, and 4 of them connect every pair of diagonally opposite
cubes. More specifically, let v be the common vertex of the corners of eight neighbouring cubes,
and denote the eight corners as v−,−,−, v−,−,+, v−,+,−, v−,+,+, v+,−,−, v+,−,+, v+,+,−, v+,+,+ based
on the position of the centre of the cubes relative to v. Note that the vertical and horizontal links
(such as (v−,−,−, v−,−,+) and (v−,−,−, v+,−,−)) have already been counted earlier in §3a, and so
they are not included in the counting of cross links. The 16 possible cross links include the 12
links that connect vertices with exactly two opposite signs, i.e. (v±,−,−, v±,+,+), (v±,+,−, v±,−,+),
(v−,±,−, v+,±,+), (v+,±,−, v−,±,+), (v−,−,±, v+,+,±), (v−,+,±, v+,−,±), and the 4 links that connect
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vertices with exactly three opposite signs, i.e. (v−,−,−, v+,+,+), (v−,−,+, v+,+,−), (v−,+,−, v+,−,+),
(v−,+,+, v+,−,−). In an L × L × L system, there are (L − 1) × (L − 1) × (L − 1) such spaces. Also,
on each of the six sides of the rectangular prismatic assembly, there are 2(L − 1)2 cross links.
Therefore, the total number of cross links is

16(L − 1)3 + 6 × 2 × (L − 1)2 = 4(4L − 1)(L − 1)2. (3.2)

Hence, the total number of links nlinks in an L × L × L rectangular prismatic assembly is

nlinks = 12L2(L − 1) + 4(4L − 1)(L − 1)2 = 4(L − 1)(7L2 − 5L + 1). (3.3)

(b) Simulation set-up
Denote ρ ∈ [0, 1] as the link density, i.e. the ratio of links randomly selected among all nlinks
possible links in the prismatic assembly. We sample random links with different ρ and study the
DoF, NCC, and the size of the largest connected component T of the resulting prismatic assembly
as a function of the link density. The total DoF is calculated based on equation (2.4), the NCC is
calculated using a breadth-first search (BFS) algorithm in the prismatic assembly network and T
is calculated after the BFS algorithm finds all connected components in the network. The internal
rotational DoF is calculated as

dint = dtot − 6 × NCC. (3.4)

For each data point, 100 random link patterns with the same link density are generated, and
the average values of the quantities above are presented in the figures. The SuiteSparse package
(v. 5.7.1) is used for the rigidity matrix calculation (see [22] for the algorithmic details and
implementation), and the experiments are performed on a computational cluster with up to 100
parallel threads.

(c) Simulation results
Figure 5 shows the simulation results using a 20 × 20 × 20 prismatic assembly, which consists
of 64 000 nodes (192 000 coordinates). We observe that the total DoF decreases rapidly as ρ

increases, while the internal rotational DoF first increases and then decreases sharply (figure 5a).
By increasing both the sampling frequency in between ρ = 0 and ρ = 0.06 and the number of
repeats, we find that the peak of the internal DoF is at 0.036 (figure 5a, inset).

In the deterministic case, the maximum internal DoF is achieved by MCPs at the link density

γ3D(L)
nlinks

= L3 − 1
4(L − 1)(7L2 − 5L + 1)

→ 1
28

≈ 0.0357, (3.5)

which is very close to the peak density in the stochastic case. This is because when there are very
few links, each newly added link is highly unlikely to be redundant, and thus most links reduce
the total DoF by 3 and the NCC by 1, and increase the internal DoF by 2, until the assembly
reaches the maximally floppy state. We note that the density at which the number of internal DoF
reaches a maximum is much smaller than that in the planar analogue L2 − 1/(4L(L − 1)) → 1/4 =
0.25 [20] as there are many more possible links in the three-dimensional case. Similar to the two-
dimensional case studied previously [20], there is an exponential decay of DoF from ρ = 0.04 to
0.14, with log10 DoF ∼ −15.5ρ. Furthermore, the rotational DoF is dominant among all the DoF,
the ratio of which attains its maximum at ρ ≈ 0.15 (figure 5b). Both the range of dominance and
its peak density are smaller than those in the two-dimensional case, because the NCC decreases
more quickly as a function of ρ in the three-dimensional case (figure 5c). More specifically, NCC
decays exponentially from ρ = 0.03 to 0.15, with log10 NCC ∼ −20.8ρ (figure 5c, inset). The above
maximum number of rotational DoF can also be understood in terms of the percolation transition
in connectivity; indeed the size of the largest of connected component T reaches 1/2 at a similar
link density (figure 5d).
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Figure 5. Stochastic control of prismatic assemblies. (a) The total DoF (yellow) and the internal rotational DoF (green) with
varying link densityρ , with a zoom-in of the behaviour fromρ = 0 to 0.06 (inset). (b) The ratio between the rotational DoF and
the total DoF. (c) The NCCwith varyingρ in linear scale and in log scale (inset). (d) The size of the largest connected component
(T) with varying ρ . The simulations are performed using a 20 × 20 × 20 rectangular prismatic assembly. (Online version in
colour.)

The stochastic control experiments were repeated for different system sizes (L= 5, 10, 15, 20).
We can see the finite size effect in the normalized total and rotational DoF (figure 6a), the ratio
between the rotational DoF and the total DoF (figure 6b), the NCC normalized by the system size
L3 (figure 6c) and the normalized size of the largest connected component T/L3 (figure 6d). The
finite size effect is clearer for L= 5, as the surface cubes take up 98/125 ≈ 78% of all the cubes. In
addition, the derivative of DoF with respect to ρ is continuous (figure 6a, inset), suggesting that
the rigidity percolation might be a second-order transition [10,24], consistent with most examples
in two dimensions [4,25].

4. Triangular prismatic assemblies
Our study on the topological control of rectangular prismatic assemblies can be extended to other
space-filling prisms, such as the triangular prisms.

(a) Minimum rigidifying link patterns
Note that each triangular prism consists of two triangular faces and three rectangular faces.
Hence, there are in total nine edge length constraints and three diagonal length constraints for
each prism. The DoF of an L × M × N triangular prismatic assembly is then given by

d= 18LMN − rank(A), (4.1)
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Figure 6. Stochastic control as a function of system size (L= 5, 10, 15, 20). (a) The normalized total and rotational DoF, with
the derivative of the total DoF shown in the inset. (b) The ratio between the rotational DoF and total DoF. (c) The normalized
NCC and the derivative of NCC with respect to ρ (inset). (d) The normalized size of the largest connected component T/L3 as a
function of the link densityρ . (Online version in colour.)

where A is a rigidity matrix with the dimension (12LMN + 3n) × 18LMN. The factor 18 stems
from the fact that each prism has six vertices, and each of them has three coordinates.

Let δ�(L,M,N) be the minimum number of links needed for rigidifying an L × M × N
triangular prismatic assembly. Using the same argument for the rectangular case, we have

δ�(L,M,N) ≥ 2LMN − 2. (4.2)

Again, we call a link pattern with exactly 2LMN − 2 links that can rigidify an L × M × N
triangular prismatic assembly an MRP. Using the hierarchical construction method, we can obtain
the same result as in theorem 2.1 and theorem 2.2. The key idea is to explicitly construct MRPs
for a set of small systems of size 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 2, 3 × 2 × 2, 2 × 3 × 3, 3 × 2 × 3,
3 × 3 × 2 and 3 × 3 × 3 as the building blocks (figure 7). By replacing the MRPs shown in figure 2
with these MRPs, we can prove that δ�(L) = 2L3 − 2 for all L≥ 2, and δ�(L,M,N) = 2LMN − 2 for
infinitely many L,M,N.

(b) Minimum connecting link patterns
Let γ�(L,M,N) be the minimum number of links needed for connecting an L × M × N triangular
prismatic assembly. Analogous to the cubic case, it is easy to see that

γ�(L,M,N) = LMN − 1. (4.3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Minimum rigidifying link patterns (MRPs) for triangular prismatic assemblies. (a) An MRP for 2 × 2 × 2, with 2 ×
2 × 2 × 2 − 2= 14 links. (b) AnMRP for 2 × 2 × 3, with 2 × 2 × 2 × 3 − 2= 22 links. (c) AnMRP for 2 × 3 × 2, with
2 × 2 × 3 × 2 − 2= 22 links. (d) AnMRP for 3 × 2 × 2,with 2 × 3 × 2 × 2 − 2= 22 links. (e) AnMRP for 2 × 3 × 3,
with 2 × 2 × 3 × 3 − 2= 34 links. (f ) An MRP for 3 × 2 × 3, with 2 × 3 × 2 × 3 − 2= 34 links. (g) An MRP for 3 ×
3 × 2, with 2 × 3 × 3 × 2 − 2= 34 links. (h) An MRP for 3 × 3 × 3, with 2 × 3 × 3 × 3 − 2= 52 links. These eight
patterns are the building blocks for hierarchically constructing MRPs for larger systems. (Online version in colour.)

To find an MCP for an L × M × N triangular prismatic assembly, i.e. a link pattern with exactly
LMN − 1 links that connect the entire system, we can simply use the construction approach for
the rectangular case. The detail is omitted here.

Using the MRPs and MCPs, we can easily control the rigidity and connectivity of triangular
prismatic assemblies.

5. Discussion
Our study of the topological control of prismatic assemblies provides novel strategies for
achieving rigidity and connectivity via deterministic or stochastic cuts (corresponding to the
creation and destruction of infinitesimal links), thereby yielding new insights into the design of
structural assemblies. We note that the metric constraints associated with infinitesimal rigidity
for solid cubes can be naturally extended to any rectangular solids, and hence our results for
the deterministic and stochastic control hold for general rectangular prismatic assemblies. More
specifically, in case the constituent prisms are not part of a regular grid, the link constraints are not
affected. Thus although the scalar length constraints will be different, the rigidity matrix can be
constructed in a similar manner. Our results can therefore be extended for controlling the rigidity
and connectivity of other space-filling solids such as triangular prisms. A natural next step is
to explore the control of rigidity and connectivity in three-dimensional assemblies formed by a
tessellation of other polyhedra, including other space-filling polyhedra and their relatives such as
the octet truss [26] or a combination of tetrahedra and octahedra [27].

In addition to the mode classification, we can also treat the links as springs with finite stiffness,
thereby extending the infinitesimal rigidity theory to characterize the mechanical properties of the
structural assembly [28]. The square roots of the eigenvalues of ATΛA, with Λ being the stiffness
matrix, are the vibrational frequencies of such assemblies. In the absence of zero-frequency
modes, the assembly becomes stiffer when new links are added. Therefore, by increasing the link
density ρ, the peak of vibrational density of states shifts upwards. Additionally, the nature and
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number of MRPs can assist the fine tuning of the vibrational density. For the same number of links,
the distribution of links is more uniform in an MRP, i.e. the coefficient of variation in the frequency
spectrum is small, compared with a random pattern where there are locally over-constrained and
under-constrained areas, leading to a larger coefficient of variation in the spectrum. This suggests
a means to further tune the spectrum by randomly moving the links in an MRP while keeping the
total number of links the same, thus shifting the peak of the vibrational density of states towards
higher frequencies, while creating a new peak at zero frequency.

We conclude with a discussion of how our results relate to considerations of marginally stable
states, which have been important in the study of jamming in random networks [25,29–31]. The
MRPs presented in this paper provide a new way of achieving marginal stability. In jamming
networks and amorphous solids, systems achieve marginal stability near isostaticity [8]. Removal
of contacts between particles generates DoF [30,31]. Similarly, removal of any link in an MRP
increases the DoF. However, MRPs can be actively constructed using the hierarchical construction
method, while the marginal stability in the systems above can be achieved only through pruning,
either randomly or with certain protocols. This active construction is possible because of the
highly repetitive geometry of the prismatic assemblies. In addition, the number of links in
prismatic assemblies corresponding to the isostaticity state is 2dL3 = 6L3 (d is the dimension),
which is much larger than the number of links in an MRP (δ(L) ∼ 2L3). Therefore, for the prismatic
assemblies, the state of isostaticity and the constructed marginally stable state actually reside
at two different link densities. With the recent works on tuning mechanical properties near the
isostaticity state [11–15], another natural next step is to try tuning mechanical properties from
the constructed marginally stable state (MRP) by introducing the spring network framework
discussed above.
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prismatic-assemblies. The link patterns for the deterministic control presented in figures 2, 4 and 7 can
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