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Adhesive interactions between elastic structures such as graphene sheets, carbon nanotubes, and

microtubules have been shown to exhibit hysteresis due to irrecoverable energy loss associated with

bond breakage, even in static (rate-independent) experiments. To understand this phenomenon, we start

with a minimal theory for the peeling of a thin sheet from a substrate, coupling the local event of bond

breaking to the nonlocal elastic relaxation of the sheet and show that this can drive static adhesion

hysteresis over a bonding/debonding cycle. Using this model we quantify hysteresis in terms of the

adhesion and elasticity parameters of the system. This allows us to derive a scaling relation that

preserves hysteresis at different levels of granularity while resolving a seeming paradox of lattice

trapping in the continuum limit of a discrete fracture process. Finally, to verify our theory, we use new

experiments to demonstrate and measure adhesion hysteresis in bundled microtubules.

1 Introduction

The ubiquity of hysteretic behavior in peeling, fracture, or
adhesion processes has long been known in systems spanning
many orders of magnitude including graphene and carbon
nanotubes,1,2 gecko adhesion, actin bundling and dissolution,3

DNA melting and denaturation,4–7 adhering vesicles,8 partially
frayed dynamic axonemes,9 extensile microtubule bundles that
generate autonomous flows,10 and elastic contact in soft materials
and structures.11–15 Although it has been nearly a century since
Obreimoff measured the energy required to split a multilayer mica
sheet,16–18 and interpreted it in terms of an adhesion energy, the
microscopic mechanisms behind hysteresis often remain poorly
understood.1 While hysteresis is often attributed to velocity-
dependent processes,17,19–22 numerous observations of static hys-
teresis have been reported23–26 such as in the peeling of a thin
graphene sheet from a substrate.1 Accordingly, theoretical frame-
works for static hysteresis have been developed in the context of
membrane adhesion,26–28 lattice trapping,29 Griffith cracks,30 adhe-
sive contact,31–33 and composite materials.34,35

In this paper we develop a general theoretical framework for
rate-independent adhesion hysteresis in elastic structures.

In particular, our model is grounded in experimental observa-
tions of this phenomenon in two specific systems with distinct
geometries: (i) old experiments involving the peeling of a
graphene sheet from a fixed, flat substrate (Fig. 1A, top left)1

and (ii) new experimental measurement of hysteresis in the
buckling-induced fraying of a pair of bundled microtubules, in
which one of the microtubules acts as a curved substrate with a
variable shape as a function of strain (Fig. 2A).

2 Hysteresis in peeling off a
flat surface
2.1 Equations of motion

We start by considering two elastic chains interacting with each
other adhesively through reversibly breakable, non-hysteretic
springs (Fig. 1A). Each chain has n particles spaced apart by
Dl E L/n, where L is the length of a chain. The adhesive
interaction is associated with breakable elastic links of stiffness
K, rest length y0, and cutoff y0 + yc that connect corresponding
particles on the two chains. One chain is fixed, acting as a rigid
foundation, while the other one initially starts in equilibrium
and is quasi-statically loaded and unloaded at one end. The
potential energy of such a system is

F ¼ 1

2

Xn�1

i¼2

B

Dl
yi � pð Þ2 þ

Xn�1

k¼1

k jrkþ1 � rkj � Dlð Þ2
" #

þ 1

2

Xn
k¼1

min K jr0k � rkj
� �2

;Kyc
2

� �
;

(1)

where the first term represents filament bending energy
defined in terms of the angle yi formed by triplets of
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neighboring particles (I � 1, i, i + 1) along the mobile chain, the
second term corresponds to filament stretching, where rk =
(xi,yi), rk0 = (xj,yj) are position vectors for the mobile and fixed
chains, respectively, and k is the intrachain stifness, while the
third term – modeling interfilament adhesion – corresponds to
stretching the links between chains. In the limit of thin
filaments or sheets, the geometric scale separation implies that
stretching is very expensive relative to bending (i.e. the material
is effectively inextensible), so that we may take the springs
connecting particles on the same chain to have a large stiffness,
in dimensionless units, this implies that k(Dl)2/B - N.

Starting from the energy (1), we can write the overdamped
equations of motion for the system as �dF/drk = gt

:
rk and �dF/

dyi = gr _yi, where gt and gr are translational and rotational
damping coefficients. We note that a similar model was used

by Thomson to study the lattice trapping of fracture cracks.29

However, Thomson’s classic theory only works in the discrete
limit, with the trapping effect vanishing in the continuum limit.
As we will show, our framework provides a self-consistent way of
taking the continuum limit while maintaining constant lattice
trapping/hysteresis.

2.2 Length scales and dimensionless parameters

Our system is characterized by three independent length scales:
a lattice (discrete) length scale Dl, a maximum displacement
associated with adhesive bond breakage yc, and the radius
of curvature at the peeling boundary 1/kc. Geometrically, the
critical curvature can be expressed in terms of the ‘‘rise’’ yc and
‘‘run’’ lH: kc B yc/lH

2. The latter, lH, is called the healing length
and determines how far the perturbation effectively extends

Fig. 1 (A) Top: Representation of peeling graphene sheet (left) and experimental image of peeling a pressure sensitive adhesive (right). Images
reproduced from ref. 1 and 22, respectively. Bottom: Discrete elastic chain peeling away from a flat adherent substrate. Zoomed in region illustrates chain
and bond rearrangement after bond breakage: as the rightmost bond breaks and moves away from the substrate, remaining bonds stretch more to
accomodate the increased stress. (B) Plot of scaled bending energy Êb = Eb/E

0
b versus scaled endpoint displacement y/yc from simulation (E0b = Bkc

2lH =
Byc

2/lH
3 is the natural scale for bending energy). Arrows indicate the sequence of motion of the free end displacement: first increasing (upper part), then

decreasing back to zero (lower part). Filament configurations are represented visually at pairs of points indicated by red and orange symbols, respectively.
(Inset): Sawtooth pattern accompanies bond breakage or re-forming. dEb (red) is the energy loss following single bond breakage, while dUb (green) is the
net bending energy change that accompanies peeling of one segment.

Fig. 2 (A) Fraying of a composite MT bundle in response to a tensile force applied with optical tweezers (bottom) alongside corresponding schematics
(top, not to-scale). Red circles indicate trap positions. (B) Measured force-strain exhibited hysteresis associated with bundle fraying and rehealing.
Filament configurations corresponding to points (a) to (d) are shown in panel A. Arrows indicate the measured force as the optical trap applies buckling
forces and subsequently relaxes back towards the equilibrium. Strain e is defined as e = (d � L)/L, where d is the bead separation and L is the filament
length between the two attachment points.
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into the bonded region (eqn (3)). That is, to the right of the
peeling boundary (Fig. 1A) we have the perturbed (peeled)
domain, while far enough inside the bulk, to the left of the
boundary, the perturbation decays exponentially; lH sets the
scale of the transition zone between the perturbed domain and
the unperturbed bulk region.36,37 These three independent
length scales generate two independent dimensionless quan-
tities (besides n): Dl/lH, which characterizes the mechanical
response along the filament direction, and yc/lH, which relates
to the peeling angle (Section S.6, ESI†).

2.3 Continuum theory

A continuum theory for the height profile y(x) inside the
bonded region x 4 0 (Fig. 1A and eqn (2)) in the limit of small
slopes and deformations provides a quantitative value of the
healing length lH. Indeed, by coarse-graining the discrete
energy (1) over length scales large compared to the spacing Dl
between bonds, replacing differences by derivatives (p� y- y0;
rk0 � rk - y(x)), we find that the Euler-Lagrange equation
associated with the continuum version of the functional (1) is
given by36

By0000 þ K

Dl
y� y0ð Þ ¼ 0: (2)

With boundary conditions y(N) - y0, y0(N) - 0, and
y(0) = y0 + yc, By0 0 0(0) = F (the vertical applied peeling force),
the solutions for y(x) and k(x) = y00(x) are

y(x) = y0 + yce
�x/lHcos(x/lH), (3)

k xð Þ ¼ 2yc

lH2
e�x=lH sin x=lHð Þ; (4)

where the healing length

lH ¼
ffiffiffi
2

p BDl
K

� �1=4

: (5)

and the peeling force F = 2Byc/lH
3. From eqn (4), the curvature at

the peeling boundary is kc = k(0) = 2yc/lH
2 (as predicted

geometrically in terms of the ‘‘rise’’ and ‘‘run’’), which can be
rewritten in a more familiar form ref. 38 and 39 in terms of the
adhesion energy per unit length J = nKyc

2/(2L):

kc ¼ kð0Þ ¼ 2yc

lH2
¼

ffiffiffiffiffiffi
2J

B

r
(6)

2.4 Simulations

To compare our results of the simple continuum model with
those obtained from our discrete model for the energy given by
(eqn (1)), we simulate the dynamics of the adhesive interaction
via an overdamped viscous relaxation numerical method40

(see SM for details). We find that, as we quasi-statically raise
one end of the mobile chain, corresponding to the loading
phase, bonded segments successively peel from the substrate,
as the boundary that separates the bonded and debonded
phases advances (Fig. 1A). In the unloading phase, we reverse

the displacement direction of the free end, which causes
debonded segments to successively re-enter the interaction
range and thus re-adhere to the substrate, leading to healing.
The healing pathway is mechanically and thermodynamically
different from the peeling pathway, a hallmark of hysteresis.
Hysteresis is apparent, for example, in a plot of scaled bending
energy versus strain (Fig. 1B). The same plot also reveals a
characteristic pinning-depinning ‘‘sawtooth’’ pattern, which
arises from alternating cycles of bending energy accumulation
and sudden bond breakage.25,26

2.5 Quantification of hysteresis

When a bond breaks, stress redistribution causes it (and the
rest of the free chain) to move further away from the range of
the adhesive potential (Fig. 1A, inset) such that on the way back
it needs to travel more in order to re-form. Thus, even if
individual bonds are not intrinsically hysteretic, macroscopic
hysteresis will still emerge via the coupling of a local event
(bond breaking) to a nonlocal event (overall elastic relaxation).
Indeed, simulations show that the decrease in bending energy
dEb upon bond breakage (Fig. 1B, inset) is only partially
balanced by an increased load on the remaining springs, i.e.
an increase in the adhesion energy dEs. This imbalance results
in a net energy loss for the filament dE = dEb + dEs o 0.
Meanwhile, when a bond reforms, dEb 4 0 and dEs o 0 such
that we still have net energy dissipation dE o 0.

We expect bending and adhesion energy jumps (dEb and dEs)
to scale as the energy of a single bond Kyc

2: dEb, dEs B Kyc
2.

This can also be written in terms of the natural bending energy
scale Eb

0 of the entire filament, Eb
0 � Bkc

2lH (since lH rather
than L is the scale of the deformed region):

dEb; dEs � Kyc
2 � Eb

0Dl
lH

(7)

The same scaling also applies to dUb, the bending energy
change across a single pinning-depinning cycle (Fig. 1B, inset).
Indeed, since the end result of the cyle is the peeling of a single
segment of size Dl, we might expect dUb B Bkc

2Dl B Bkc
2lH �

(Dl/lH) BEb
0Dl/lH.

However, it should be apparent that the net energy loss
dE = dEb + dEs should scale differently from dEb and dEs. For
example, as Dl/lH - 0 we expect the breaking of a single bond
to have a negligible effect on the shape of the peeled filament
and on the stress distribution, meaning that we must have
dE - 0 as Dl/lH - 0. The simplest scaling satisfying this
requirement is dE B Kyc

2 � (Dl/lH) B Eb
0 � (Dl/lH)

2, which is
confirmed by simulations (Fig. S2B, ESI†). In order to obtain
the dimensionless energy loss due to the breakage of a single
bond we divide dE by the bending energy scale Eb

0:

de = dE/Eb
0 B (Dl/lH)

2. (8)

2.6 Parameter scalings that preserve hysteresis

As we change the discretization n, hysteresis size will change if we
naively scale the spring stiffness K inversely with n (Fig. S4, ESI†).
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Therefore, in order to find the scaling that will render hyster-
esis independent of n, we require the invariance of several
quantities: (i) the dimensionless energy loss summed across all
segments, which we approximate as nde, (ii) the adhesion
energy per unit length J = nKyc

2/(2L), and (iii) the curvature at
the scaling boundary kc (eqn (6)). Substituting K = 2JL/(nyc

2) and
lH (eqn (5)) in the expression for de (eqn (8)) we get

nde � kcL2

nyc
: (9)

Considering L to be fixed, invariance of the energy loss nde
in the continuum limit implies yc B 1/n, while invariance of J

then requires K B n. As a result, lH � ðnKÞ�1=4 � 1=
ffiffiffi
n

p
; which

means that in the continuum limit the transition between the
bonded and debonded regions occurs instantly (lH - 0), with-
out a weakly bound intermediate region.

2.7 Graphene peeling experiments

To test our theory on real data, we start with observations1 of
substantial hysteresis in peeling a graphene sheet from a flat
surface, with the energy required for delamination reported to
be 100 times larger than the energy recovered upon readhesion,
and no mechanism provided for this disparity. Using the
experimental parameters for the graphene sheet of length L =
60 mm, bending rigidity B E3 � 109 pN � mm2, and effective
adhesion energy per unit length J E 106 pN, and choosing a
discretization size n = 80, our simulations approximately match
the experimentally observed factor of B10 difference between
curvature kc in the peeling regime compared to that in the
healing regime (Fig. S6B, ESI†) as well as the observed peeling
front displacement (Fig. S6A, inset, ESI†).

3 Hysteresis in buckled microtubule
bundles: peeling from a curved
substrate
3.1 Microtubule experiments

To further test our theory in a completely different setting, we
chose to consider the adhesion between stiff cytoskeletal poly-
mers, microtubules (MTs). We designed and conducted experi-
ments involving a pair of microtubules held together by the
depletion interaction, induced by addition of non-adsorbing
polymers. The range and strength of the tunable depletion
attraction between the filaments is determined respectively by
the size and the concentration of the polymer.41,42

To obtain our bundled MT system, we start by using optical
tweezers to attach micron-sized silica beads at two points along
a single MT as described elsewhere.43 Next, we attach a shorter
MT to the longer filament by the depletion interaction and we
link it to one bead by the biotin–streptavidin linkage (Fig. 2A).
The mobile optical traps are displaced quasi-statically, subject-
ing the composite bundle to buckling forces that are measured
using conventional techniques.43 While the adhering MTs
initially buckle together, above a critical strain the free end of

the shorter MT begins to detach (‘‘fray’’). Further increasing
strain leads to almost complete peeling of the shorter MT
(Fig. 2A). From this point on, only the longer MT contributes
to the buckling force, which is roughly independent of strain
due to the effective softening induced by cross-sectional
flattening.43,44 Reversing optical trap displacement reduces
strain, eventually leading to re-adhesion, albeit at smaller
curvatures/strains than for peeling. Hysteresis is apparent in
the force-strain curves associated with this measurement,
where strain e = (d � L)/L (Fig. 2B).

Compared to peeling from a flat substrate, the microtubule
system exhibits added complexity, as both microtubules are
allowed to bend. Consequently, we need to revisit the theory,
generalizing it for flexible substrates. Towards that end, we
examine an elastic chain model in which both filaments are
mobile and we can apply a buckling force at one end, through a
bead attached to the longer filament (Fig. 3A). Letting functions
k(s) and k0(s) characterize the curvatures of the two filaments,
our previous results still hold (e.g. eqn (4)), but for relative
curvature kr(s) = |k(s) � k0(s)|, whose maximal value kc deter-
mines the onset of fraying. Previously, k0 = 0, kr = k and the
bending energy scale could be expressed in terms of kc: Eb

0 B
Bkc

2lH. Here, the proper bending energy scale Eb
0 is not related

to the relative curvature, but can be instead expressed as Eb
0 =

B/L (force B/L2 times length L). Meanwhile, we denote by Ẽb
0 the

energy scale Bkc
2lH and deem it the ‘‘relative’’ bending energy,

since kc now refers to the relative curvature kr.

3.2 Quantification of hysteresis and parameter scalings

If we assume, in analogy with results from our first model, that
the net energy loss dE B Bkc

2lH � (Dl/lH)
2 and express the

dimensionless energy loss nde = ndE/Eb
0 in terms of adhesion

energy per unit length J, we get

nde � L3kc5=2

nyc1=2
; (10)

where kc and L are invariants. Therefore, invariance of nde
requires that yc B 1/n2. Furthermore, we also need K B n3 to
keep J invariant. Simulations (using the same molecular
dynamics setup as in the 1D model in43 and adding a second
filament and a breakable adhesive interaction between corres-
ponding beads on each filament – see SM for details) confirm
that the scaling forms K - n3K and yc - yc/n

2 preserve
hysteresis‡ (Fig. 3B and C). Moreover, plugging in the pre-
viously measured value J B 0.1 pN for MT depletion-induced
cohesion42 allows us to reproduce both the onset of fraying and
approximate hysteresis size (Fig. 4, green). Notably, we ignored
factors such as the cross-sectional flattening of MTs43 and the
hysteresis-narrowing effect of thermal fluctuations (Fig. S7,
ESI†), which would likely further improve the fit.

‡ Provided we adjust the length of the shorter filament to account for the
changing healing length lH B 1/n, since the filaments are weakly bonded over
this length scale.
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4 Comparison between theory and
experiments

Eqn (9) and (10) express hysteresis for the flat and curved
substrate cases in terms of system parameters such as length
L, interaction range yc, adhesion strength J, and flexural rigidity

B (the latter two entering through kc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2J=B

p
). This allows us

to predict, control, or compare the hysteresis of different
systems. For instance, we notice that there is significantly less
hysteresis in our microtubule experiments than in the gra-
phene peeling experiments.1 This observation can be under-
stood in the context of our model by examining eqn (9) and (10)
for hysteresis in the graphene sheet (flat) and microtubule
bundle (curved), respectively. Hysteresis in both cases is pro-

portional to the adhesive length L and with kc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2J=B

p
but

inversely proportional to yc. While the factor of
ffiffiffiffiffiffiffiffiffi
J=B

p
is

comparable between the two experiments (see SM), the other
two length scales are not. The length of the graphene sheet is

slightly larger (Lgr = 60 mm 4 LMT B10 mm) and, most
importantly, the interaction in the graphene experiments is
much shorter-range: ygrc B 0.1 nm { yMT

c B 15 nm. Thus, the
much larger hysteresis observed in graphene peeling experi-
ments is primarily due to the much shorter interaction range in
graphene versus microtubules.

Physically, we can understand the inverse dependence of
hysteresis on yc by noting that, everything else being constant
(i.e. L, B, and J), reducing yc results in stiffer springs K (since J =
nKyc

2/L is constant). When one of these springs break, it will
have a relatively large effect on the stress redistribution which
will cause the newly broken bond to ‘‘jump’’ significantly (as in
the inset of the schematic in Fig. 1A). We can see how such a
jump relates to hysteresis by noting that if the direction of the
free end displacement is reversed, the newly broken bond will
have to travel extra distance (due to the jump) in order to re-
enter the interaction range. In contrast, larger yc means weaker
springs, less effect of bond breakage, and thus less of a jump in
the position of the broken bond (and consequently, smaller
hysteresis).

5 Summary and outlook

Our theory of rate-independent adhesion hysteresis provides a
quantitative mechanism for previously unexplained results
showcasing substantial static hysteresis in graphene peeling1

as well as in microtubule bundles. More generally, our results
are applicable to any adhesive elastic system driven either
quasi-statically and thus are relevant to diverse fields including
nanoscience (graphene), cellular biophysics (microtubules),
active matter (bundle disintegration), or material science (lat-
tice trapping). We have shown that adhesion hysteresis arises
due to energy lost at transitions between metastable states25,26

and quantified the manner in which hysteresis depends on
elastic and adhesion parameters of the system, both for the
case of a simple geometry in which the substrate is fixed and for
that of a complex geometry in which the substrate is allowed to
deform.

Fig. 3 (A) Generalized elastic chain model in which both filaments are free to deform. The longer filament (blue) is attached rigidly to two optical beads
(yellow), while the shorter, adhering filament (red) is attached to only one bead. The right optical bead is mobile, while the left one is fixed. (B) Scaled force
F̂ = F/(B/L2) plotted as a function of imposed strain e for three simulations with parameter scaling as K- n3K, yc - yc/n

2. (C) Energy loss per bond broken
or re-formed versus the cumulative number of bonds broken/re-formed for two of the simulations in panel B, with n = 100 (blue) and n = 200 (red). The
two profiles can be made to collapse (signifying equal scaled hysteresis size) by scaling the horizontal axis by a factor of Dl and the vertical axis by the
bending energy scale Eb

0.

Fig. 4 Measured force versus strain (blue) for a MT bundle composed of
two MTs (8.2 mm and 5.6 mm). The buckling curve of the longer micro-
tubule alone is shown in red. Simulation results are shown in green
(B = 19 pN mm2, n = 100, K = 40 pN mm�1, and yc = 0.02 mm) with filament
configurations shown at two points of equal strain (green symbols).
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Our manuscript also describes a new experimental approach
to the measurement of adhesion hysteresis in bundled fila-
mentous polymers. Since filamentous bundles are an essential
structural motif of the cellular cytoskeleton as well as the basic
building block of biosynthetic active matter, understanding
how they fray and disintegrate is relevant for the rich non-
equilibrium dynamics of one of the best understood experi-
mental systems in active matter, that of microtubules interact-
ing with motors.

Complementing the classic work of Thomson on lattice
trapping,29 we show how the size and strength of the adhesive
springs must be scaled with n in order to preserve hysteresis in
the continuum limit n - N, thus eliminating a long-standing
paradox by emphasizing the nature of distinguished limits
required. The practical significance of our hysteresis-
preserving scaling with n is that it enables the self-consistent
simulation of hysteretic systems at different levels of granular-
ity. For example, in the case of a system in which the adhesion
interaction is characterized by some finite spacing Dl as well as
known stiffness K and cutoff yc, the length scale may be too
small to simulate the system efficiently. In that case, we may
speed up the computational model by coarse-graining, starting
from the real adhesive parameters and scaling them with n
according to the hysteresis-preserving scaling laws.

Interestingly, the hysteresis mechanism we propose bears
some resemblance to a phenomenon in polymer fracture
known as the Lake-Thomas effect,45 which remains an active
area of research46 despite being proposed over 50 years ago. In
the Lake-Thomas effect the energy required to rupture an
elastomer is much larger than the energy to break the chains
crossing the fracture plane47 due to the energy loss when the
stretched chains away from the fracture zone relax as the crack
propagates.23,47–51 To some extent, this notion of stretching
(quasi-)globally while breaking locally also features in our
theory, wherein at any given moment adhesive bonds within
a region of size lH are stretched whereas upon peeling or
healing, energy is released from a single bond, spanning a
region of size Dl. Although we have focused on the case of
normal loading, in the context of shear loading of soft adhesive
bonds, such as might be relevant in sliding friction between
dissimilar materials, our proposed mechanismmight also serve
to explain energy loss even when the contact zone moves quasi-
statically.52 All together, our results should prove important in
facilitating the modeling and simulation of adhesive hysteresis
in many quasi-continuum elastic systems in both passive and
active settings.
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