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Abstract—A novel Physically Unclonable Functions
(PUF)-based Kkeyless encapsulation protocol was recently
proposed by our team that does not rely on cryptographic
keys and directly encrypts the messages using the unique
responses extracted from embedded ReRAM PUFs in
the devices. Therefore, this method avoids challenges and
security threats due to key storage and distribution. Since
this protocol uses analog resistance values from ReRAM
PUFs for message encryption, the protocol is sensitive
to variations in PUF responses due to environmental
conditions. Therefore, it requires schemes to minimize the
impact of such variations to guarantee the integrity of the
decryption of the message. In this paper, we develop proto-
cols to utilize Error Correction Coding (ECC) mechanisms
to stabilize the cipher text encrypted with this protocol.
The ECC-based key encapsulation protocol was evaluated
using Reed-Solomon and BCH codes. The results show the
effectiveness of the proposed protocol in offering noise-
free messages under common ranges of environmental
variations in ReRAM PUF responses.

Keywords— Key encapsulation, Keyless Encryption,
Physically Unclonable Functions, memristor PUFs, error
correction.

I. INTRODUCTION

Most cryptography schemes use cryptographic keys to en-
crypt the messages. These schemes rely on reliable mechanisms
for key generation, key distribution, and storage of these keys,
which lead to increased complexity in power-constrained net-
works. These requirements would be particularly challenging
for IoT networks which consists of billions of nodes, some with
very low power. Keyless Encryption is an attractive choice for
low-power IoT devices with limited memory, as it eliminated
the need to store the keys, as well as the need for the generation
and distribution of billions of secret keys among these devices.
Moreover, the proposed keyless encryption is not vulnerable
against physical attacks attempting to extract the secret keys
stored in non-volatile memory of IoT devices. As we eliminate
the need for keys to encrypt messages, the problems related
to scalability of keys in key-based methods are automatically
mitigated.

Recently, a keyless encryption protocol using memristor as
Physically Unclonable Functions (PUF) was developed based
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on the idea that the injection of low currents in cells of
memristor arrays can result in ephemeral conductive paths, and
stochastic resistances [1]. In this protocol, the plain-text (PT)
is integrated as a part of resistance values obtained from the
memristor PUF at a particular cell address, where a certain
current is injected to create a cipher text. However, the mem-
ristor PUFs are subject to variations in resistance measurements
due to the natural drifts of physical parameters with time and
environmental conditions (e.g. temperature, humidity, aging,
background noise) which make the keyless encryption protocol
challenging.

In this paper, we propose utilization of Error Correction
Codes (ECC) to facilitate the operation of such keyless encryp-
tion in practical settings by correcting a portion of errors caused
by the noise in PUF responses. There has been a rise in attacks
by analyzing the differential power dissipated in cryptography
to extract keys. This type of attack is very practical and non-
invasive, where the hackers are able to extract the keys by
analyzing the differential power [2], [3]. As the IoT devices
have a limitation on power and memory for most devices [4]—
[6], it is harder to implement complex schemes using long-
secret keys and strong cryptographic schemes. Therefore, the
proposed keyless encryption has the potential to be a safer
encryption method for IoTs.

The rest of this paper is organized as follows: In Section II,
we present background information about the PUFs, resistive
RAMs, ECC and the recently developed keyless protocol. In
Section III, we introduce the ECC-based keyless encryption
method. In Section IV, we present the experimental results
followed by the conclusions.

II. BACKGROUND

Recently several research works focused on the use of
error correction code with PUFs [7]-[11]. The authors in [8],
proposed a new index based syndrome coding scheme to ensure
the stability of PUF keys while limiting the information leakage
of helper data. Several Fuzzy Extractor (FE) based PUF-based
key generation mechanisms where helper data string consisting
of code-offset and syndrome based FE were discussed and
compared them to existing methods [12], [13]. The generated
helper data is later used for reliable reconstruction of the initial
key. [12] discusses the current FE schemes and compares
their performance on Xilinx FPGAs. [13] proposes masking
of linear ECCs while ensuring their correction capability is
not compromised when utilized in PUFs. To the best of our
knowledge, all these works focused on encryption of data using
cryptographic keys generated from PUFs. We concentrate on
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how to utilize ECCs for keyless encryption of messages using a
PUF. In this section we provide a brief description of memory-
based PUF technologies followed by an introduction to the
keyless encryption protocol and some common ECC schemes.

A. Physically Unclonable Functions (PUFs)

Different PUF technologies have been utilized to generate
several cryptographic primitives including cryptographic keys
and random numbers in various security applications such
as identification, authentication, generation of cryptographic
keys and generation of random numbers [14]. The PUFs need
to be unclonable with high levels of entropy making them
statistically unique. Various types of PUF have been recently
utilized in security applications including ring oscillators, and
memory structures such as SRAM, DRAM, Flash, ReRAM,
and MRAM [15]. The output of PUF in response to a specific
input-challenge, is called as the response. The response gener-
ated upfront from the PUF during the enrolment is called the
‘original response’, whereas the responses generated during the
access control rounds or authentication rounds are referred to as
‘regenerated or noisy responses’ or simply called as responses.
As a PUF is based on physical characteristics of a device,
the responses can be sensitive to aging, and environmental
conditions such as temperature, voltage drifts or electrostatic
interference. These variations hamper the performance of the
PUF-based key generation and keyless encryption methods.

1) Memristor PUF: The concept of the memristor was
introduced by Chua [16] in 1971, a missing circuit element
which operates as both a memory and a transistor. It was then
proposed that the flux of charge injected through the device
during a fixed period of time can minimize the value of the
resistance. In 2017 according to [17], it was observed that
the injection of low currents in cells of memristor arrays can
result in dissolvable conductive paths of variable resistances,
and can be exploited to design PUFs. An example of the
memristor is the Resistive Random-Access Memory (ReRAM).
The ReRAM has shown a great potential as one of the most
efficient memory technologies, with its unique features such
as high density, low-power, and non-volatility. In [18], the
randomness and stability of the ReRAM PUF have been
measured, where the results show that the robustness of the
ReRAM PUF against spatio-temporal variations was significant
(close to 50%). Hence, in this study, the ReRAM has been
selected as the PUF, where the challenge is implemented by
injecting different low current values into different ReRAM
cells and the resistance of these cells is considered as the
response.

2) Addressable PUF generators (APG) : We utilize the
concept of Addressable PUF generator (APG) proposed in [19]
to extract a response from memory-based PUFs based on an
address. The original responses are stored in the server as a
reference. This mechanism allows us to arrive at a particular
cell address by using a password and a random number where
the random number is shared between the server and client
using handshake mechanisms and the password is already
known to both the client and server. Therefore, allowing both
parties to arrive at the same PUF address.

B. Memristors PUF-based Keyless Encryption

The keyless protocol is based on encrypting messages using
memristor arrays of cells; where a set of cells located at
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Fig. 2: Flowchart detailing the encryption process using
the memristor PUF [20].

different addresses are driven at various levels of currents. This
protocol uses multi-factor authentication, and approaches like
APGs to extract the PUF response which is integrated with the
plain text to generate a cipher text.

Figure 2 details all the protocol steps in memristor PUF-
based keyless encryption. In this protocol, a password (PW)
and a random number (RN) are XORed and then hashed to get
a message digest (MD). The MD is then sent to an eXtended
Output Function (XOF) which allows us to extend our MD to
a desired length in order to extract a Long Message Digest
(LMD). This LMD is divided into the address, current and
ordered arrays as shown in Figure 1. During the encryption,
the plain text in ASCII format is divided into 4-bit symbols,
whose decimal equivalent ranges from O to 15. Each symbol is
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combined with a resistance value extracted from the original
response at a particular cell when a certain current is injected.
The address and current values are extracted from the LMDs.
The order array is used to shuffle the cipher obtained from
different symbols, in order to add another layer of confusion
for the hacker [1], [20]. The memristor PUF which have been
used for implementing the protocol are the Re-RAM PUF.

Figure 3 shows the extraction of plain text from the cipher
in the decryption phase utilizing the handshake between the
sender and receiver. The receiver can have the same blocks
for addresses, orders, and currents, thereby extracting the
resistances at the same cells addresses when the same current is
injected as the encryption phase. These resistances will be used
to retrieve the blocks of plain text from the cipher. However,
according to [1], the challenges that this protocol faces using
ReRAM PUFs are the cell-to-cell and array-to-array variations
of the resistance, and current values due to the changes in the
temperature other environmental factors.

Under different temperatures, the same cells operating under
the same currents will generate noisy resistances. Having any
error in reading the memristors causes failing to retrieve the
blocks of plaintext. To avoid this, we propose using ECCs such
as Reed Solomon (RS) or BCH codes in this protocol.

C. Error Correction Codes (ECC)

A variety of options are available today in the communi-
cation industry to detect and correct different errors that may
appear while transmitting a message depending on their need.
ECC are traditionally used to correct a received message which
travels through a communication channel. For this purpose,
parity bits are added as extra information to the message bits
and then transmitted along the communication channel. With
the advancement of time, many ECC have been introduced
which are able to correct long messages with greater efficiency.
These schemes are generally complex end require more power
and advanced hardware. These mechanisms are also efficient
when they are utilized with a larger number of message bits.

When used for short blocks of message they tend to not deliver
desirable results. Therefore, we propose to use simpler ECC
mechanisms such as Reed Solomon and BCH codes for our
protocol. These simple mechanisms are easier to implement
on the hardware and will require low power.

D. Reed Solomon (RS) Error Correction

Reed Solomon codes are a group of ECC that operate on
a block of data treated as a set of finite field elements called
symbols. Therefore, RS codes are able to detect and correct
multiple symbol errors. By adding ¢ check symbols to the data,
a RS code can detect (but not correct) any combination of up
to and including ¢ erroneous symbols, or locate and correct up
to and including L%J erroneous symbols at unknown locations.
As an erasure code, it can correct up to and including ¢ erasures
at locations that are known and provided to the algorithm, or
it can detect and correct combinations of errors and erasures.
RS codes are also suitable as multiple-burst bit-ECC, since a
sequence of b+ 1 consecutive bit errors can affect at most two
symbols of size b. The choice of ¢ is up to the designer of the
code and may be selected within wide limits. There are two
basic types of RS codes, original view and Bose Chaudhuri
Hocquenghem codes (BCH) view, with BCH view being the
most common as BCH view decoders are faster and require
less working storage than original view decoders. The BCH
codes form a class of cyclic ECC that are constructed using
polynomials over a Galois field. Cyclic ECC means that a block
code, where the circular shifts of each codeword gives another
word that belongs to the code [21]-[24].

III. PROPOSED PROTOCOL

In this work, we propose to implement known ECCs to
correct the errors induced during the decryption phase when a
noisy response of the memristor PUF is used. The message or
plain text is encrypted using its ASCII equivalent divided into
4-bit symbols ;. Initially, these values were directly used in
equation (1) to extract a cipher text.

Ci: =R;(1+ KQ;) (1)

As discussed before, the PUF responses are noisy, thereby
leading to a noisy decrypted message. We will utilize ECCs
to detect and correct the erroneous message. The detailed
description of the protocol is presented below:

A. Detailed description of the Improved keyless encryp-
tion with ECC

Using the concepts of APG, we initially calculate the MD
and LMD as shown in Figure 1. The number of bits required
for each of these arrays depends on the number of ReRAM
cells and the number of currents these cells are measured.

The PT is first divided into 4-bit symbols @; from its ASCII
equivalent. These message symbols can be converted into
the Gray code format before encoding them using the ECC.
The message symbols are encrypted using block encoding
techniques of the ECC encoder to add parity message bits
to each message block (Collection of symbols). The ECC
block will allow the extraction of the message when noise
is introduced in the decryption phase of the protocol. This
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encoded message S; acts like the plaintext and is encrypted
using equation 2

C:=Ri(1+KS,) (2)

Figure 4a shows the encapsulation of the message using the
PUF in order to generate a cipher text. Here, S; refers to each
encoded message symbol whereas R; refers to the resistance
extracted from a cell address (A;) at a current (Cr;), C; is
the Transit Cipher and K is a constant. After extracting Transit
Ciphers from each message block, they are reordered based on
the order of the block in an ascending order and sent to the
client as Final Ciphers C;.

Figure 4b shows the decryption phase of the message from
cipher by the client device. As the password and random
number are shared information and the client has access to the
PUF device, the LMD is obtained. The address, current and
order arrays are derived from the LMD. The Final Ciphers C;
is de-shuffled to obtain back the transit cipher C; using the
order array.

The resistance value R; from the PUF device is extracted
at a certain cell address (A;) when a particular current (Cr;)
is applied for the ReRAM cell “i”. These extracted resistance
values are the noisier versions of the resistances extracted on
the server end from where the message was transmitted. Using

Cl—R;
R, *, the encoded message S;

the decryption formula S; =
will be extracted.

The extracted encoded block is a noisy version of the
encoded message as it is similar to a message sent through

a communication channel. This noisy encoded block S; is
applied to an ECC decoder to extract (); which is used to
obtain PT.

IV. IMPLEMENTATION AND RESULTS

The protocol has been implemented using real data set of
resistances measured from 128 cells of a ReRAM array at 8
different currents (100nA, 200n A . ..800n A), which are aug-
mented with induced Additive White Gaussian Noise (AWGN)
with different power resulting in different Signal to Noise
Ratios (SNRs) to simulate different responses of ReRAM PUF
under various environmental conditions. This experiment was
repeated 1000 times and the noise was randomly selected each
time based on the SNR.

We follow the proposed protocol described in Section III
to encrypt our messages. The MD is sent to a circular shift
mechanism used as eXtended Output Function (XOF) in this
protocol and is employed on the MD n times and the circular
shifted output is hashed with an SHA-512 to extract 512*n =
N bits of the LMD. Once we extract an LMD, we divided
it into current, address and order arrays of 3, 7, and 6 bits,
respectively. We used 3 bits to address the 8 different current
values and 7 bits to address the 128 different cells. To allow
an equal number of bits for every block without padding, we
used 6 bits to get an order number to shuffle the bits.

We initially utilized RS codes for our testing. We encoded a
21 symbol message using block coding techniques and added
parity symbols for every block of symbols. We used a RS
(15, 7), which has the capability to correct 4 symbols as our
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ECC block. Therefore, for every 7 message symbols ); in a
block, we extracted 15 symbols of encoded message block .S;.
Thereby, totaling 45 S;’s for 21 @Q;. These 45 S; were then
encrypted using equation (2). The cipher consisting of 45 C}
is sent to the receiver. On the receiver end, we use the 45
C; in the Keyless decryption protocol. The decrypted 45 C;
will give us 45 S;. These decrypted S; is sent to RS (15, 7)
decoder, where each 15 (); symbols will extract 7 message
symbols, thereby extracting 21 (); in total from the 45 S;.

The RS codes were able to correct all the message errors
when they were in the correction capability of the RS codes.
When the number of errors is higher than the codes capability,
the Symbol Error Ratio (SER) follows the trend where the SER
decreases with increase in SNR (Noise injected decreases as
SNR increases). With the inclusion of Gray codes, we expected
a considerable improvement in the Bit Error rate, but there was
very subtle change in the result.

We also implemented the same protocol using BCH (63bits/

16 Symbols, 30 bits/ 7 symbols) code to test the performance of
BCH in a Keyless Protocol setting. We had to pad the message
bits in order to match the BCH message length logistics. The
comparison between RS and BCH in conjunction with Keyless
protocol proposed in [1] is shown in Figures 5 and 6.

V. CONCLUSION AND FUTURE WORK

The improved protocol for Keyless Encryption using ECC
has allowed decryption of the messages from a Noisy PUF re-
sponse. The noisy PUF response is analogous to noise injected
through the communication channel, which in this context
is generated due to the impact of aging and environmental
changes on the PUF behavior. The results show that, without
the inclusion of ECC block, the decrypted message contains
errors. The proposed protocol has allowed proper decryption
of the message when the noise is in the range of its correction
capability. Even when the noise injected is more than the ECC
block can correct, the resulting message contains less errors
than the one resulting from the noisy PUF. This improved
protocol with ECC will allow the IoT devices to use the keyless
encryption protocol in order to allow practical implementation
of this protocol. Keyless encryption protocol proposed does not
come with too much complexity overhead, thereby allowing
low power devices to use it in encrypting their sensitive
information shared.
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