
Page 1 of 9

10/30/2020

2020-01-1017

 Implementation and Validation of Behavior Cloning using Scaled Vehicles

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in
MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

Recent trends in autonomy have emphasized end-to-end deep-
learning-based methods that have shown a lot of promise in
overcoming the requirements and limitations of feature-engineering.
However, while promising, the black-box nature of deep-learning
frameworks now exacerbates the need for testing with end-to-end
deployments. Further, as exemplars of systems-of-systems,
autonomous vehicles (AVs) engender numerous interconnected
component-, subsystem and system-level interactions. The ensuing
complexity creates challenges for verification and validation at the
various component, subsystem- and system-levels as well as end-to-
end testing. While simulation-based testing is one promising avenue,
oftentimes the lack of adequate fidelity of AV and environmental
modeling limits the generalizability. In contrast, full-scale AV testing
presents the usual limitations of time-, space-, and cost. Hence in this
paper, we explore the opportunity for using experiential learning
possible with a scaled vehicle-based deployment to overcome the
limitations(e.g. simulation fidelity or experimentation costs) of scaled
vehicles to lower the barriers especially at the early stages of testing of
autonomy algorithms.

In recent times, several efforts have emerged for testing deep-learning-
based autonomy algorithms on scaled vehicles – the Nvidia Jet racer,
Amazon Deep racer, and Donkey car are being widely used. In this
paper, we examine a deployment of the Donkey car Behavior Cloning
software stack on a 1/10th scaled vehicle (F1tenth) and the issues faced
while deploying the other software stacks. In particular, we explored
the effectiveness of: (i) mixing and matching frameworks; and (ii) use
of scaled vehicles in an academic set up to support testing and
deployment of supervised learning (behavior cloning) technique to
achieve lane-keeping and obstacle-avoidance. We showcase that the
use of this scaled-vehicle framework permitted the rapid exploration
of many different test tracks (challenging with full-scale vehicle tests)
while retaining realistic environmental conditions (challenging with
simulation-alone testing).

Introduction

Sim2Real inefficiency

SAE classifies Level 3 as conditional automation where a vehicle can
autonomously accelerate, brake, steer and switch lanes in a constrained
environment In recent times, DL-based approaches take advantage of
flexibility created by DbW (drive-by-wire) to create an end to end
deployments. However, the DL approach needs good data. A small
amount of high-quality data can result in a comparatively well-

performing agent [1]. However, variability analysis and verification
are needed to explore the limits of any deep-learning-based approach
either through simulation or real-world experiments. Driving requires
reacting to a wide variety of complex environmental conditions and
agent behaviors. Explicitly modeling each possible scenario is
unrealistic. This is an advantage of using a simulated environment [2].
However, there exists a Sim2real gap while transitioning into a real-
world deployment. Exploring the real-world visual challenges beyond
what can be achieved in simulation requires physical experimental
testing that can be expensive.

 Imitation learning has some advantages over supervised and
reinforced learning [3] because we depend on an expert (human) to
demonstrate the desired behavior rather than encoding a reward
function. To ground our work, we focus our attention in this paper on
the implementation, evaluation, and comparative analysis of a specific
model i.e. the end-to-end imitation learning (behavioral cloning)
model based on the paper by Bojarski et al [4]. We test this
implementation with scaled autonomous vehicles, performing
relatively complex level 4 tasks such as autonomous lane-keeping and
obstacle avoidance. To fully exercise the variability, testing is done
end-to-end on the system as a whole and not component-wise to the
level of the model architecture.

Use of scaled vehicles

Gaining experience with real-world deployments is also important for
training the next generation of students. The use of scaled vehicles
offers a powerful platform for testing and validation of a large class of
problems [5] as they sufficiently capture the dynamics, sensing
modalities, decision making, and risks of real autonomous vehicles,
but are a safe, cost-friendly, and accessible platform to teach the
foundations of autonomous systems[6]. Due to these above advantages
Scaled vehicles have become a cardinal platform to prove the
robustness of the algorithms developed for an Autonomous vehicle [7]
[8] [5] principle for the safety of a vehicle.

Conventional Control vs Deep Learning

In a conventional autonomous driving pipeline, the model must
undergo a series of steps before it can output the steering or throttle
values. This generally takes the form of a five-step process [9]as
shown in Figure 1 which entails: (i) Sensor input processing (from
cameras, LIDAR, radars, etc.) as a low-level perception to extract
the relevant features (e.g., object/feature detection); (ii) Multimodal
sensor-data fusion for localization to create a map and simultaneously
localize the system; (iii) High-level motion-plans/behavior generation
and down-selection of the best, typically applying some optimization

Page 2 of 9

10/30/2020

criteria, to achieve mission-level objectives; (iv) Motion-plan
translation into a series of vehicle-maneuvers to be executed to
satisfy the chosen behavior and finally (v) Control actions execution
via the low-level actuator interface modules.

Figure 1: Conventional autonomous driving model pipeline includes
multi-stage feature-engineering as a crucial element.

In contrast to the above discussed conventional autonomous driving
technique, the end-to-end deployment framework maps the input
video-stream to the lower-level throttle- and steering-outputs used to
control the vehicle through a weighted non-linear model that is defined
by deep neural networks. In the implementation by Bojarski [4] this is
achieved via an end-to-end supervised learning framework with the
video stream as an input and steering angle as a training signal.

With the advancement of machine learning, end-to-end learning
methods to process bulk visual data to perform these ADAS tasks [4,
10-13] have begun to gain popularity not only in academic domains
but also as a growing niche in autonomous vehicle startups [14, 15].
Deep learning frameworks when applied to ADAS applications can
learn directly from large streams of data, with strong predictive models
developed offline and updated systematically through online
reinforcement. Unsupervised networks can develop these predictions
without the need for extensive labeling [16]. Despite the success and
popularity of deep learning methodologies in academic domains and
research projects, they have not gained broad popularity in commercial
ADAS deployment with any of the top automakers. This is largely due
to the challenges inherent to any deployment of deep learning – the
size of the dataset required to cover a large spectrum of visual cues and
driver behaviors can be prohibitively large. Further, overfitting and
underfitting of networks can affect the generalization of driving
behavior. While helping eliminate/merge multiple stages of explicit
intermediate feature detections (e.g. road features, obstacles) such
deep-learning frameworks have been unable to account for the rare but
safety-critical edge-case scenarios by design and in practice [2].
Statistical methods have determined that an autonomous vehicle must
be driven hundreds of millions of miles to demonstrate its reliability in
terms of failure modes that lead to fatalities or injuries [17]. Thus, there
is a need to properly benchmark these performances to generate
reliable criteria that need to be met before a deep learning-based ADAS
system can be considered a safe alternative.

Deployment benchmarking - Requirements & specifications

The primary step in testing the limitations of any end-to-end learning
network is to develop a benchmarking set up under which the
algorithm should be tested. Machine learning, and in particular,
imitation learning like behavior cloning can be highly susceptible to
dataset bias. A given pre-trained network can demonstrate diverse

driving behaviors based on time of day (lighting conditions), weather
(clarity of vision), environment (colors and textures in data), and
camera angle (point of view) due to bias in the training data.

The selection of test criteria follows the five challenges in verifying AI
and assumptions to be accounted for, as described by Seshia et al. [18]:

1. Environment modeling: Accounting for all environmental
variables is an impossible task. Often, the non-deterministic
nature of the output in training data can be challenging to account
for, especially in behaviors like obstacle avoidance where similar
scenarios may result in different outcomes with different drivers.
Thus any benchmarking experiment must allow for generalization
in environment variables. This is done by selecting five test
scenarios from diverse environments to collect training data – (i)
indoor lab, fluorescent lighting (ii) pedestrian track, bridged by
grass, daytime (iii) on-road, night-time, (iv) scaled racetrack,
outdoor, daytime and (v) simulation environment (smooth
textures, shadow-less lighting).

2. Modeling the Learning Systems: The high dimensional and
“black box” nature of deep learning models make the model
specification for a particular task partly a form of art and intuition.
There are many evaluation methods in literature to compare the
predicted output behavior with respect to training input to modify
the model accordingly. In this paper, we implemented a CNN
model without changing its inherent model structure but evaluate
it's Model Mean Square Error, Histogram Prediction Error, R
Squared value, Scatter Plot Error, and R-squared value. The
accuracy of the prediction for training data is alone not a good
enough metric for performance as it does not easily account for
generalizability under untested conditions (as seen in the paper) –
hence there is a need for a more generalizable metric.

3. Formal Specification: Specification of desired behavior is often
a challenging task to accomplish objectively in the absence of
ground truth data during road tests. A common metric used to
evaluate ADAS systems in real-world observations [17] counts
the number of human interventions per meter. This metric is
based on the number of times the human safety driver feels the
need to take over control in the event of a possibly dangerous
scenario. Analogous to this, the most objective metric to evaluate
the real performance of the model is based on the number of
mistakes per meter during road tests. The mistakes counted during
testing include jerky wheel motion, vehicle drift from the
centerline, and touching or crashing into obstacles.

4. Scalability: Models designed to work in a subset of conditions
may not be scalable outside of this subset. The behavior cloning
model is applied on a scaled RC vehicle with only throttle and
steering commands for vehicle control. The model predictions (or
even the model itself) are not linearizable to full-scale vehicles as
they do not account for the non-linear vehicle dynamics, wheel
slip, and unmodelled vibrations. Generalized training data that
applies to diverse conditions may cause an over-approximated
model that performs poorly in complex scenarios. Addressing this
is beyond the scope of this paper, which seeks to verify the
algorithm only in a scaled vehicle context.

5. Standards for training data: Given the challenges in scalability
and environmental modeling, performance is suitably improved
by trimming the training data for a given scenario. For instance,
if the vehicle is expected to be driving past 7 pm in the winter
months, it may be suitable for the model to draw its weights from

Sensor inputs
(Cameras, LIDAR,

RADAR)

Sensor fusion,
create a map and

localize the system

Selecting the
optimized planning

trajectory

Translate the
motion plans into
vehicle maneuvers

Execute the control
action via low level
actuator interface

modules

Autonomous Driving

Page 3 of 9

10/30/2020

training data accumulated in those months at night-time. This
selection is demonstrated in the paper, where the model retrained
with training data for that specific environment is chosen for
testing in that same environment.

This exploration of behavior cloning was done in an academic context,
to promote the application-based understanding of the value and
limitations of deep learning frameworks. In some of our group’s past
efforts, we have examined the use of end-to-end learning for achieving
limited sets of autonomy assists (e.g. parallel parking). Based on the
input images from a rear camera on the vehicle, a convolutional neural
network (CNN) is trained to automatically output the steering and
velocity commands for controlling the vehicle. These efforts were also
carried out with F1tenth cars[19].

Much of the work in this paper builds on the efforts of the open-source
robotics community and popular implementations designed and
deployed by NVIDIA (Jetracer), Amazon (Deepracer), and DIY
Robotics (Donkeycar). The makers of the Donkeycar, in particular,
provide an easy-to-use deep learning software stack that provides GUI
based software encapsulation for deploying the behavior cloning CNN.
This GUI was used to run most of the experiments in this paper, but
the software encapsulation became cumbersome when attempting to
perform model evaluations. The same model was later implemented in
Keras/TensorFlow and used to complete the experiments, especially in
simulation. However, explicit cross-comparisons of the two model
implementations were not performed given they possess the same
underlying model structure.

Implementation Framework

Behavior cloning is a form of supervised imitation learning whose
main motivation is to build a neural-network model of the behavior of
a human when performing a complex skill. The human’s actions are
recorded along with synchronized video-feeds as the skilled activity is
being performed. A log of these records is used as input to a learning
program that outputs a set of rules that reproduce the skilled behavior.
In particular, the emphasis in the training is on the usage of machine
learning which minimizes the dependence on prior knowledge of the
environment (e.g. features such as lanes, etc.) relying instead on end-
to-end learning.

Figure 2 gives an overview of how the end-to-end learning framework
in Bojarski et al [4] collects the data from three different cameras along
with steering inputs given by a human (our implementation uses a
single camera). The training data maps every image with vehicle
steering input during that frame. These training images were also
augmented to diversify the data set.

Figure 2: Nvidia's end-to-end learning framework[4]

Our work focused on implementing and categorically evaluating
behavior cloning for predicting steering angle by giving a single-color
camera image input to enable a scaled F1tenth vehicle to perform lane-
keeping and obstacle avoidance. The model was tested within the ROS
framework with software-in-the-loop (in GazeboSim) and with
hardware in the loop on five test scenarios in the real world.

Platform:

We initially investigated available software stacks on scaled vehicles
and came across the three most popular platforms viz. Amazon Deep
Racer, Donkeycar, and Nvidia Jetracer[20]. A comparative analysis
was made based on the hardware integration and software
compatibility with the F1tenth scaled vehicle. The Donkeycar
framework offered many advantages including the ability to
implement end-to-end learning on a single board computer (Raspberry
Pi), training neural-nets using GPU server, and trading off simulated
vs real-data. To this end, we chose the Donkey car framework as a
viable platform for our implementation.

 Donkey Car Jet racer Deep racer
Supported by DIY Robotics NVIDIA Amazon

Project started 2016 2019 2006

SBC hardware
RPi, Nvidia

Nano
Nvidia Nano Intel Atom

Deep learning
software

TensorFlow Pytorch
TensorFlow,

Pytorch

UI
UNIX Shell,

python
Jupyter

Notebook
AWS CLI

Training GPU server On car GPU server
Vehicle

platform
support

Many
Tamiya TT02

and Latrax
Rally

AWS deep
racer

Simulation
platform
available

Yes No Yes

Cost $200 $600 $400

Table 1: Platform selection

The F1/10th platform created by O’Kelly [21] from the University of
Pennsylvania serves as our primary experimental platform. The main
chassis of the vehicle is a 1/10th scale TRAXXAS Ford Fiesta ST.
Digital wheel velocity command inputs are provided to a stock
Electronic Speed Controls (ESC) which provides the requisite current
to power a high RPM DC motor driving the rear wheels through a
differential. The second motor is a servo motor at the front for steering.
The main computational board is the Nvidia Jetson TX2 running
Ubuntu 18.04 installed with ROS Melodic along with the orbitty
carrier board and an active cooling installed.

The Donkey Car software stack deployment serves on either of the two
CPUs a) Jetson Nano b) Raspberry Pi. We used Raspberry pi 4b as a
CPU to drive the car while the Jetson TX2 was used for CNN training
onboard the vehicle. The vehicle is additionally equipped with PCA
9685 Servo driver to control the steering motor. Figure 3 shows the
mounting of different hardware components on the F1/10th vehicle.

Page 4 of 9

10/30/2020

Figure 3: F1/10th scaled vehicle hardware

Model:

The Donkeycar and Jetracer implement variations of the machine
learning model described by Bojarski et al [4]. This model has a track
record of proven performance[22, 23]. The network architecture
consists of 9 layers, including a normalization layer, 5 convolutional
layers, and 3 fully connected layers. The system was trained using real-
world data collected in five different test tracks and also on the
simulator. Figure 4 shows the CNN architecture. Since the Raspberry
Pi is not computationally very powerful, the augmented data was
transferred to an Nvidia Jetson TX2 to train the convolutional neural
networks. As seen in figure 4, the images are inputted into the CNN to
produce a predicted steering output which is compared with the desired
steering command, and the difference is minimized by adjusting
weights through backpropagation. Training the model encounters the
issue of overfitting and underfitting depending on the sample’s ratio
chosen for testing and validation of our training process. We halted the
training process when there is not much significant change in the
validation accuracy from epoch to epoch. This way, we made sure our
model is not overfitting the samples chosen both in the simulator and
also while training on the five different tracks

Figure 4: CNN Architecture[4]

Workflow

In this project, we mapped the single front-facing camera of the
F1tenth car to the steering input and throttle values while driving the
vehicle. This information was captured using the onboard
camera/electronics of the F1tenth car and training was done offline.
Finally, a trained network was deployed for mapping inferences
throttle and steering values based on camera inputs on the hardware.
A YouTube Video of the key steps in this process is uploaded here
(https://www.youtube.com/watch?v=4NuUonLs3Bs).

Training data:

The Donkey car package has an Interactive UI that made the initial
data collection data easy and hassle-free. Upon migration to
Keras/TensorFlow implementation (simulator), the training data was
collected as rosbags by teleoperating the vehicle around the chosen
environment to collect the image, steering, and throttle inputs. CNN
maps the input image to output by detecting important features from
the image (outline/border of lanes).

The data was gathered by teleoperating the RC car using a Bluetooth
joystick around the track for about 10 to 15 laps for different cases.
The dataset for training needed at least 10000 images, generated by
dividing the training session into four parts:

i) Driving slowly and precisely at the center of the lane. This
consists of 30% of the data which gives the neural networks
chance to observe the track from different angles.

ii) Driving slowly with small oscillations about the centerline. This
consists of 30% of the data. This teaches neural networks how to
correct back to the center.

iii) Driving like we normally drive – with a little bit of speeding. This
consists of 20% of the data.

iv) Driving with oscillations by bouncing back and forth at the lane
extremes to help neural networks to understand the lane extremes.
This consists of about 20% of the data.

Figure 5 gives an overview of how the original system collects the
training data. Our model slightly modifies the input layer to account
for data from only one camera.

Figure 5: Training data collection with Donkey car software

The procedure of training the data even in a simulator is no different
to the hardware data collection. The ROS based framework stores and
collects the data in rosbags along with images and steering and throttle
inputs were given by the human.

Data Preparation: The collected datasets were split into 1GB tubs and
each tub contains the timestamped JSON files with the path of the
images collected along with the steering and throttle inputs provided.
A sample of how the data is stored from our data collected can be seen
in Table 2

https://www.youtube.com/watch?v=4NuUonLs3Bs

Page 5 of 9

10/30/2020

Camera Steering Throttle
2020_4_20_18_24_281 0.0 12
2020_4_20_18_24_340 0.0 12
2020_4_20_18_24_478 0.0 12
2020_4_20_18_24_513 0.0 12
2020_4_20_18_24_632 0.0 12

Table 2: Data Preparation

Data augmentation techniques (crop, resize, and flip the image) were
used to multiply the input in a similar approach to the one used in the
Donkey car backbone to desensitize the neural network to lighting and
image-formation parameters. Figure 6 shows an original image and
augmented image which is achieved by flipping the image
horizontally. For such cases, we also flipped the steering input.

Figure 6: Data Augmentation

The collected images and the augmented images were processed from
RGB to YUV using the OpenCV library as the YUV color-spaces are
more efficient with CNN and reduces the bandwidth of processing.
Figure 7 shows an original RGB image and its converted YUV image

Figure 7: Data Processing RGB to YUV

Figure 8: Inferencing Deployment Architecture

Test Scenarios

We sought to validate the performance and limitation of the Nvidia
CNN by testing it on several test scenarios with wide-ranging
environmental conditions.

Indoor, fluorescent lighting:
This test scenario consisted of
a circular track made of white
lanes inside our OpenCAV lab
space at the International
Center for Automotive
Research (ICAR). This
setup was to ensure that the
model is working as
expected with all the hardware
and software working in
sync. The training consisted of
driving it for 10 laps with

varying steering input. i.e. not a constant steering input. As this test
was our preliminary test to ensure our implementation and deploy it on
outdoor environments, we ran this with constant velocity.

Simulation: The simulation
worlds were created in Gazebo
by modifying an open-source
Ackerman-steered scaled
vehicle model[24]. The
training and testing algorithms
were taken from the
implementation of [4] by Wil
Selby[25].

Outdoor, daytime, pedestrian track: The major
intention of this testing scenario was to
evaluate our training data standards. This test
includes collecting and training our data on a
pedestrian track with green grass on both sides
in moderate lighting conditions (after sunset)
and testing on a different pedestrian track with
similar to slightly varying features.

Outdoor, night-time,
on-road: To perform this test, the camera height
had to be modified to mimic the viewpoint of a
full-scale vehicle. The camera was positioned
at 1.2m high from the ground to capture full
lane width images as the lane markings on the
road are wide compared with the scaled vehicle.
The vehicle was equipped with the LEDs and
for caution. The training was conducted on a 1-
mile long road in the night light while going
uphill and tested uphill and downhill.

Outdoor, daytime, scaled racetrack: This serves as our final testing
scenario to perform lane-keeping and obstacle avoidance. To perform
our desired tasks, we created a scaled version of the Melbourne F1
racing track with yellow markings at the center to define the center of
the track. We arranged cones on the racing track to serve as obstacles.
While training the cones were stationary however while testing the
position of the cones was constantly changed

Figure 11: Pedestrian
track

Figure 12: On-road

Figure 9: Indoor, fluorescent
lighting

Figure 10: Simulation track

Page 6 of 9

10/30/2020

Figure 13: Racetrack

Evaluation Metrics

Model Mean Squared Error: Model Mean Square Error (MMSE) is the
most commonly used regression loss function. MMSE is the sum of
squared distances between our target variable and predicted values.
The larger the MMSE more the data values are widely spread around
its central moment (mean). It is the preferred and/or desired choice for
model evaluation as it shows if data values are closely dispersed
around its central moment (mean). It reflects on the distribution of the
data values - if is centralized, not skewed, and most of all, that it has
small errors.

Histogram of Predicted Error: To view the prediction statistics, we
have plotted the Histogram of Predicted error. Using this one can load
a subset of the dataset and predict steering values for each of the
images in the subset of data. By plotting such a graph, we can compare
the predicted values to the known true values and visualize the error.
If the error seems to be evenly distributed with the majority of the
errors near 0 then the model can be presumed to be functioning well.

Predicted vs Actual Errors: This is represented as a scatter plot of the
errors. In an ideally trained model, this scatter plot should coincide
closely with the line along the diagonal. The quality of this fit is
described by the R squared value:

𝑅2 = 1 −
∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̅)2

Where 𝑦 is the actual value of the steering angle, 𝑦̂ is the predicted
value from the model and 𝑦̅ is the mean of the 𝑦 values. An 𝑅2 value
of 1 signifies a good fit, and 0 shows a poor fit.

Mistakes-per-meter metric: Each of these metrics relies on the
availability of some ground truth data with which to compare the
training model. They are, at best, preliminary checks on quality. Good
performance may only be a signifier of how close the validation data
is to training data. This more objective mistake per meter metric
requires manual testing to measure vehicle performance. This metric
was calculated by measuring the number of mistakes made by the
vehicle for every kilometer of physical test data available.

Results:

MMSE loss depicts the training loss and validation accuracy and how
the validation data fit our training dataset. Overfitting or underfitting
of the model is caused by various reasons such as the increased or

decreased amount of data for training, the complexity of the model
[26]. Overfitting is observed when a model trained on one track cannot
be effectively used on another track as the model learns minute track
details of the training track. Whereas underfitting means that the model
learns track inadequately which results in low generalization. For our
model to reduce overfitting we have added multiple dropout layers
[27].

In most test cases except for Figures 17 and 18, the MMSE loss is
constantly decreasing for both training and validation showing that the
models are training well without overfitting. However, the validation
loss seems to trend upwards for the outdoor racetrack and simulation
test case indicating that the model might be overfitting.

The model training process provides some insight into the model’s
performance via some of the machine learning output performance
parameters such as R-square and mean square error [28, 29].
However, to better understand how the model will perform, we can use
the trained model to make predictions on some of our sample data and
view the results. We can compare the predicted values to the known
true values and visualize the error. These results are plotted as
Histogram of Predicted Error and as scatter plots and are discussed
below.

When the Histogram of Predicted Error is evenly distributed with the
majority of the errors near to 0 value shows that the model is evenly
trained for steering. This is seen in figures 14, 17, and 18, for the
indoor, outdoor, daytime, and simulation test cases.

The scatter plots however visually show proper spreads for only the
indoor and simulation test cases and this is verified by their 𝑅2 values.

Given the slightly conflicting results from the evaluation metrics, it is
apparent that only the indoor and simulation environment might be
expected to perform well. This is confirmed by the mistakes-per-meter
metric which was 0 for both test cases.

In the pedestrian track test case although the 𝑅2 0.7499 and the
histogram spread was not even, the vehicle did not make mistakes
when there was green grass on the sides of the walkway (which were
represented in the training data) however on the sections where the
grass was brown, or no grass was present, the mistakes-per-meter was
2.

In the on-road, night test, the MMSE showed a small degree of
overfitting possibly due to the unchanging nature of the road (curves
were small compared to the size of the vehicle). The HPS spread was
even and 𝑅2 0.6842. The mistakes-per-meter metric was 1 in this test
case.

On the outdoor-daytime test case, the MMSE showed some overfitting
and HPE has a good spread. On testing the vehicle collided with an
obstacle placed at a particular location every time. This was identified
due to the sun being at 180o to the obstacle increased the object-
reflectivity and difficult to be read in the camera frame. The complete
demonstration of our final efforts can be seen in this link:
https://youtu.be/KiZOjB10wDU

https://www.youtube.com/watch?v=KiZOjB10wDU&feature=youtu.be
https://youtu.be/KiZOjB10wDU

Page 7 of 9

10/30/2020

Environment
No of

Samples
collected

Epoch Loss Mistakes per Meter

Indoor lab 12566 34 0.025 Nil

Pedestrian
track 22324 41 0.0075

Nil (Green grass on
side)

2 (Brown grass on
sides)

On-road
(night) 24232 50 0.0042 1

Scaled
racetrack 22445 35 0.0024 Nil

Simulation 14562 42 0.072 Nil

Figure 15: MMSE, HPE & SPE for test 2: Outdoor, pedestrian walk,
daytime

Figure 16: MMSE, HPE & SPE for test 3: Outdoor, on-road,
nighttime

Figure 17: MMSE, HPE & SPE for test 4: Outdoor, race
track, daytime

Table 3: Evaluating different test tracks

Figure 14: MMSE, HPE & SPE for test 1: Indoor

Figure 18: MMSE, HPE & SPE for test 5: simulation

Page 8 of 9

10/30/2020

Discussion

In this paper, we explored the best available metrics to validate a
popular algorithm (first proposed by Nvidia) that uses end-to-end
learning for lane-keeping and static obstacle avoidance in different
settings and conditions on a scaled Ackermann vehicle platform. We
explored the Donkey car software platform and found that it provides
a robust and versatile implementation that can be easily deployed on
any scaled vehicle with small modifications. The deployment on a
scaled F1tenth vehicle was intended to serve as an alternative for
testing algorithms on full-scale vehicles. In doing so, the scaled
vehicle deployment gives us a hardware-in-the-loop experience which
is preferable to software-in-the-loop deployments (only simulation)
while maintaining a safe and repeatable environment for an academic
setting. Future work with considers upgrades by using the Nvidia
Jetson Tx2 as the on-board computer for driving as well as training on
the real track for faster frame rates. This is so that we can eventually
implement an unsupervised (reinforcement) model to achieve the same
task. As the application is restricted to lane-keeping and static obstacle
avoidance in this project, future work can be training the model
to avoid dynamic obstacles and detect the traffic signs. Future work
can also include using a more capable scaled vehicle to mimic the
dynamics of a full-scale vehicle like using a VESC to obtain motor
performance graphs and enhanced mode transition like braking and
ABS.

Contact Information

Ankit Rajendrakumar Verma

3434 Laurens Road, Apt 823, Greenville, SC, 29607

ankit.rverma.mec12@iitbhu.ac.in

+1 956-507-0707

Acknowledgments

The authors would like to acknowledge support of their colleagues
from ARMLab at the Clemson University International Center for
Automotive Research. We also acknowledge partial support for this
work from the National Science Foundation via the National Robotics
Initiative grant (CMMI- 1924721) and the Computing Community
Research Infrastructure grant (CNS-1925500).

References

[1] A. Kanervisto, J. Pussinen, and V. Hautamäki,
"Benchmarking End-to-End Behavioural Cloning on Video
Games," arXiv preprint arXiv:2004.00981, 2020.

[2] F. Codevilla, E. Santana, A. M. López, and A. Gaidon,
"Exploring the limitations of behavior cloning for
autonomous driving," in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp.
9329-9338.

[3] W. Du and Y. Ji, "An Empirical Comparison on Imitation
Learning and Reinforcement Learning for Paraphrase
Generation," arXiv preprint arXiv:1908.10835, 2019.

[4] M. Bojarski et al., "End to end learning for self-driving
cars," arXiv preprint arXiv:1604.07316, 2016.

[5] A. Bulsara, A. Raman, S. Kamarajugadda, M. Schmid, and
V. N. Krovi, "Obstacle Avoidance Using Model Predictive
Control: An Implementation and Validation Study Using
Scaled Vehicles," SAE Technical Paper, 0148-7191, 2020.

[6] A. Agnihotri, M. O'Kelly, R. Mangharam, and H. Abbas,
"Teaching Autonomous Systems at 1/10th-scale," 2020.

[7] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J.
Pappas, and I. Lee, "Case study: verifying the safety of an
autonomous racing car with a neural network controller," in
Proceedings of the 23rd International Conference on
Hybrid Systems: Computation and Control, 2020, pp. 1-7.

[8] M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong, and
R. Mangharam, "TunerCar: A superoptimization toolchain
for autonomous racing," in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020:
IEEE, pp. 5356-5362.

[9] F. Roza, "End-to-end learning, the (almost) every purpose
ML method," March 30, 2019.

[10] Z. Chen and X. Huang, "End-to-end learning for lane
keeping of self-driving cars," in 2017 IEEE Intelligent
Vehicles Symposium (IV), 2017: IEEE, pp. 1856-1860.

[11] W. Schwarting, J. Alonso-Mora, and D. Rus, "Planning and
decision-making for autonomous vehicles," Annual Review
of Control, Robotics, and Autonomous Systems, 2018.

[12] H. J. Vishnukumar, B. Butting, C. Müller, and E. Sax,
"Machine learning and deep neural network—Artificial
intelligence core for lab and real-world test and validation
for ADAS and autonomous vehicles: AI for efficient and
quality test and validation," in 2017 Intelligent Systems
Conference (IntelliSys), 2017: IEEE, pp. 714-721.

[13] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and
A. Mouzakitis, "Deep Learning-Based Vehicle Behavior
Prediction for Autonomous Driving Applications: A
Review," IEEE Transactions on Intelligent Transportation
Systems, 2020.

[14] D. Shapiro, "Accelerating the race to autonomous cars," in
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2016, pp. 415-415.

[15] Wayve, "Learning to Drive like a Human," 2019, 3rd April.
[16] A. Moujahid et al., "Machine learning techniques in

ADAS: A review," in 2018 International Conference on
Advances in Computing and Communication Engineering
(ICACCE), 2018: IEEE, pp. 235-242.

[17] N. Kalra and S. M. Paddock, "Driving to safety: How many
miles of driving would it take to demonstrate autonomous
vehicle reliability?," Transportation Research Part A:
Policy and Practice, vol. 94, pp. 182-193, 2016.

Environment R2 Value
Indoor lab 0.7764

Pedestrian
track 0.7499

On-road
(night) 0.6842

Scaled
racetrack 0.7821

Simulation 0.8125

Table 4: R2 for different test tracks

mailto:ankit.rverma.mec12@iitbhu.ac.in

Page 9 of 9

10/30/2020

[18] S. A. Seshia, D. Sadigh, and S. S. Sastry, "Towards verified
artificial intelligence," arXiv preprint arXiv:1606.08514,
2016.

[19] R. Li, W. Wang, Y. Chen, S. Srinivasan, and V. N. Krovi,
"An end-to-end fully automatic bay parking approach for
autonomous vehicles," in Dynamic Systems and Control
Conference, 2018, vol. 51906: American Society of
Mechanical Engineers, p. V002T15A004.

[20] D. McCreary, "DonkeyCar vs. JetRacer," Jan 2.
[21] M. O'Kelly et al., "F1/10: An open-source autonomous

cyber-physical platform," arXiv preprint
arXiv:1901.08567, 2019.

[22] Q. Zhang, T. Du, and C. Tian, "Self-driving scale car
trained by deep reinforcement learning," arXiv preprint
arXiv:1909.03467, 2019.

[23] A. Intisar, M. K. B. Islam, and J. Rahman, "A Deep
Convolutional Neural Network Based Small Scale Test-bed
for Autonomous Car," in Proceedings of the International
Conference on Computing Advancements, 2020, pp. 1-5.

[24] A. CLEMSON, "F10_simulator," 2020.

[25] W. Selby, "RC Car End-to-end ML Model Development,"
Dec 9,2019.

[26] H. Jabbar and R. Z. Khan, "Methods to avoid over-fitting
and under-fitting in supervised machine learning
(comparative study)," Computer Science, Communication
and Instrumentation Devices, pp. 163-172, 2015.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, "Dropout: a simple way to prevent
neural networks from overfitting," The journal of machine
learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

[28] A. Swalin, "Choosing the right metric for evaluating
machine learning models," ed: Retrieved from Medium:
https://medium. com/usf-msds/choosing-the-rightmetric …,
2018.

[29] A. Mishra, "Metrics to evaluate your machine learning
algorithm," Towards Data Science, 2018.

https://medium/

