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Abstract 

Recent trends in autonomy have emphasized end-to-end deep-
learning-based methods that have shown a lot of promise in 
overcoming the requirements and limitations of feature-engineering. 
However, while promising, the black-box nature of deep-learning 
frameworks now exacerbates the need for testing with end-to-end 
deployments.  Further, as exemplars of systems-of-systems, 
autonomous vehicles (AVs) engender numerous interconnected 
component-, subsystem and system-level interactions. The ensuing 
complexity creates challenges for verification and validation at the 
various component, subsystem- and system-levels as well as end-to-
end testing.  While simulation-based testing is one promising avenue, 
oftentimes the lack of adequate fidelity of AV and environmental 
modeling limits the generalizability. In contrast, full-scale AV testing 
presents the usual limitations of time-, space-, and cost. Hence in this 
paper, we explore the opportunity for using experiential learning 
possible with a scaled vehicle-based deployment to overcome the 
limitations(e.g. simulation fidelity or experimentation costs) of scaled 
vehicles to lower the barriers especially at the early stages of testing of 
autonomy algorithms.  

In recent times, several efforts have emerged for testing deep-learning-
based autonomy algorithms on scaled vehicles – the Nvidia Jet racer, 
Amazon Deep racer, and Donkey car are being widely used. In this 
paper, we examine a deployment of the Donkey car Behavior Cloning 
software stack on a 1/10th scaled vehicle (F1tenth) and the issues faced 
while deploying the other software stacks. In particular, we explored 
the effectiveness of: (i) mixing and matching frameworks; and (ii) use 
of scaled vehicles in an academic set up to support testing and 
deployment of supervised learning (behavior cloning) technique to 
achieve lane-keeping and obstacle-avoidance. We showcase that the 
use of this scaled-vehicle framework permitted the rapid exploration 
of many different test tracks (challenging with full-scale vehicle tests) 
while retaining realistic environmental conditions (challenging with 
simulation-alone testing). 

Introduction 

Sim2Real inefficiency  

SAE classifies Level 3 as conditional automation where a vehicle can 
autonomously accelerate, brake, steer and switch lanes in a constrained 
environment In recent times, DL-based approaches take advantage of 
flexibility created by DbW (drive-by-wire) to create an end to end 
deployments. However, the DL approach needs good data. A small 
amount of high-quality data can result in a comparatively well-

performing agent [1]. However, variability analysis and verification 
are needed to explore the limits of any deep-learning-based approach 
either through simulation or real-world experiments. Driving requires 
reacting to a wide variety of complex environmental conditions and 
agent behaviors. Explicitly modeling each possible scenario is 
unrealistic. This is an advantage of using a simulated environment [2].  
However, there exists a Sim2real gap while transitioning into a real-
world deployment. Exploring the real-world visual challenges beyond 
what can be achieved in simulation requires physical experimental 
testing that can be expensive.   

 Imitation learning has some advantages over supervised and 
reinforced learning [3] because we depend on an expert (human) to 
demonstrate the desired behavior rather than encoding a reward 
function. To ground our work, we focus our attention in this paper on 
the implementation, evaluation, and comparative analysis of a specific 
model i.e. the end-to-end imitation learning (behavioral cloning) 
model based on the paper by Bojarski et al [4]. We test this 
implementation with scaled autonomous vehicles, performing 
relatively complex level 4 tasks such as autonomous lane-keeping and 
obstacle avoidance. To fully exercise the variability, testing is done 
end-to-end on the system as a whole and not component-wise to the 
level of the model architecture.  
 
Use of scaled vehicles 

Gaining experience with real-world deployments is also important for 
training the next generation of students. The use of scaled vehicles 
offers a powerful platform for testing and validation of a large class of 
problems [5] as they sufficiently capture the dynamics, sensing 
modalities, decision making, and risks of real autonomous vehicles, 
but are a safe, cost-friendly, and accessible platform to teach the 
foundations of autonomous systems[6]. Due to these above advantages 
Scaled vehicles have become a cardinal platform to prove the 
robustness of the algorithms developed for an Autonomous vehicle [7] 
[8] [5] principle for the safety of a vehicle.  
 
Conventional Control vs Deep Learning 
 
In a conventional autonomous driving pipeline, the model must 
undergo a series of steps before it can output the steering or throttle 
values. This generally takes the form of a five-step process [9]as 
shown in Figure 1 which entails: (i) Sensor input processing (from 
cameras, LIDAR, radars, etc.)  as a low-level perception to extract 
the relevant features (e.g., object/feature detection); (ii) Multimodal 
sensor-data fusion for localization to create a map and simultaneously 
localize the system; (iii) High-level motion-plans/behavior generation 
and down-selection of the best, typically applying some optimization 
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criteria, to achieve mission-level objectives; (iv) Motion-plan 
translation into a series of vehicle-maneuvers to be executed to 
satisfy the chosen behavior and finally (v) Control actions execution 
via the low-level actuator interface modules. 
 

 

Figure 1: Conventional autonomous driving model pipeline includes 
multi-stage feature-engineering as a crucial element. 

In contrast to the above discussed conventional autonomous driving 
technique, the end-to-end deployment framework maps the input 
video-stream to the lower-level throttle- and steering-outputs used to 
control the vehicle through a weighted non-linear model that is defined 
by deep neural networks. In the implementation by Bojarski [4] this is 
achieved via an end-to-end supervised learning framework with the 
video stream as an input and steering angle as a training signal.  

With the advancement of machine learning, end-to-end learning 
methods to process bulk visual data to perform these ADAS tasks [4, 
10-13] have begun to gain popularity not only in academic domains 
but also as a growing niche in autonomous vehicle startups [14, 15]. 
Deep learning frameworks when applied to ADAS applications can 
learn directly from large streams of data, with strong predictive models 
developed offline and updated systematically through online 
reinforcement. Unsupervised networks can develop these predictions 
without the need for extensive labeling [16]. Despite the success and 
popularity of deep learning methodologies in academic domains and 
research projects, they have not gained broad popularity in commercial 
ADAS deployment with any of the top automakers. This is largely due 
to the challenges inherent to any deployment of deep learning – the 
size of the dataset required to cover a large spectrum of visual cues and 
driver behaviors can be prohibitively large. Further, overfitting and 
underfitting of networks can affect the generalization of driving 
behavior. While helping eliminate/merge multiple stages of explicit 
intermediate feature detections (e.g. road features, obstacles) such 
deep-learning frameworks have been unable to account for the rare but 
safety-critical edge-case scenarios by design and in practice [2]. 
Statistical methods have determined that an autonomous vehicle must 
be driven hundreds of millions of miles to demonstrate its reliability in 
terms of failure modes that lead to fatalities or injuries [17]. Thus, there 
is a need to properly benchmark these performances to generate 
reliable criteria that need to be met before a deep learning-based ADAS 
system can be considered a safe alternative.  

Deployment benchmarking - Requirements & specifications 

The primary step in testing the limitations of any end-to-end learning 
network is to develop a benchmarking set up under which the 
algorithm should be tested. Machine learning, and in particular, 
imitation learning like behavior cloning can be highly susceptible to 
dataset bias. A given pre-trained network can demonstrate diverse 

driving behaviors based on time of day (lighting conditions), weather 
(clarity of vision), environment (colors and textures in data), and 
camera angle (point of view) due to bias in the training data.  

The selection of test criteria follows the five challenges in verifying AI 
and assumptions to be accounted for, as described by Seshia et al. [18]: 

1. Environment modeling: Accounting for all environmental 
variables is an impossible task. Often, the non-deterministic 
nature of the output in training data can be challenging to account 
for, especially in behaviors like obstacle avoidance where similar 
scenarios may result in different outcomes with different drivers. 
Thus any benchmarking experiment must allow for generalization 
in environment variables. This is done by selecting five test 
scenarios from diverse environments to collect training data – (i) 
indoor lab, fluorescent lighting (ii) pedestrian track, bridged by 
grass, daytime (iii) on-road, night-time,  (iv) scaled racetrack, 
outdoor, daytime and (v) simulation environment (smooth 
textures, shadow-less lighting).  

2. Modeling the Learning Systems: The high dimensional and 
“black box” nature of deep learning models make the model 
specification for a particular task partly a form of art and intuition. 
There are many evaluation methods in literature to compare the 
predicted output behavior with respect to training input to modify 
the model accordingly. In this paper, we implemented a CNN 
model without changing its inherent model structure but evaluate 
it's Model Mean Square Error, Histogram Prediction Error, R 
Squared value,  Scatter Plot Error, and R-squared value. The 
accuracy of the prediction for training data is alone not a good 
enough metric for performance as it does not easily account for 
generalizability under untested conditions (as seen in the paper) – 
hence there is a need for a more generalizable metric.  

3. Formal Specification: Specification of desired behavior is often 
a challenging task to accomplish objectively in the absence of 
ground truth data during road tests. A common metric used to 
evaluate ADAS systems in real-world observations [17] counts 
the number of human interventions per meter. This metric is 
based on the number of times the human safety driver feels the 
need to take over control in the event of a possibly dangerous 
scenario. Analogous to this, the most objective metric to evaluate 
the real performance of the model is based on the number of 
mistakes per meter during road tests. The mistakes counted during 
testing include jerky wheel motion, vehicle drift from the 
centerline, and touching or crashing into obstacles.  

4. Scalability: Models designed to work in a subset of conditions 
may not be scalable outside of this subset. The behavior cloning 
model is applied on a scaled RC vehicle with only throttle and 
steering commands for vehicle control. The model predictions (or 
even the model itself) are not linearizable to full-scale vehicles as 
they do not account for the non-linear vehicle dynamics, wheel 
slip, and unmodelled vibrations. Generalized training data that 
applies to diverse conditions may cause an over-approximated 
model that performs poorly in complex scenarios. Addressing this 
is beyond the scope of this paper, which seeks to verify the 
algorithm only in a scaled vehicle context. 

5. Standards for training data: Given the challenges in scalability 
and environmental modeling, performance is suitably improved 
by trimming the training data for a given scenario. For instance, 
if the vehicle is expected to be driving past 7 pm in the winter 
months, it may be suitable for the model to draw its weights from 
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create a map and 

localize the system

Selecting the 
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training data accumulated in those months at night-time. This 
selection is demonstrated in the paper, where the model retrained 
with training data for that specific environment is chosen for 
testing in that same environment. 

This exploration of behavior cloning was done in an academic context, 
to promote the application-based understanding of the value and 
limitations of deep learning frameworks. In some of our group’s past 
efforts, we have examined the use of end-to-end learning for achieving 
limited sets of autonomy assists (e.g. parallel parking). Based on the 
input images from a rear camera on the vehicle, a convolutional neural 
network (CNN) is trained to automatically output the steering and 
velocity commands for controlling the vehicle.  These efforts were also 
carried out with F1tenth cars[19].  

Much of the work in this paper builds on the efforts of the open-source 
robotics community and popular implementations designed and 
deployed by NVIDIA (Jetracer), Amazon (Deepracer), and DIY 
Robotics (Donkeycar). The makers of the Donkeycar, in particular, 
provide an easy-to-use deep learning software stack that provides GUI 
based software encapsulation for deploying the behavior cloning CNN. 
This GUI was used to run most of the experiments in this paper, but 
the software encapsulation became cumbersome when attempting to 
perform model evaluations. The same model was later implemented in 
Keras/TensorFlow and used to complete the experiments, especially in 
simulation. However, explicit cross-comparisons of the two model 
implementations were not performed given they possess the same 
underlying model structure.  

Implementation Framework 

Behavior cloning is a form of supervised imitation learning whose 
main motivation is to build a neural-network model of the behavior of 
a human when performing a complex skill. The human’s actions are 
recorded along with synchronized video-feeds as the skilled activity is 
being performed. A log of these records is used as input to a learning 
program that outputs a set of rules that reproduce the skilled behavior. 
In particular, the emphasis in the training is on the usage of machine 
learning which minimizes the dependence on prior knowledge of the 
environment (e.g. features such as lanes, etc.) relying instead on end-
to-end learning. 

Figure 2 gives an overview of how the end-to-end learning framework 
in Bojarski et al [4] collects the data from three different cameras along 
with steering inputs given by a human (our implementation uses a 
single camera). The training data maps every image with vehicle 
steering input during that frame. These training images were also 
augmented to diversify the data set.  

 

Figure 2: Nvidia's end-to-end learning framework[4] 

Our work focused on implementing and categorically evaluating 
behavior cloning for predicting steering angle by giving a single-color 
camera image input to enable a scaled F1tenth vehicle to perform lane-
keeping and obstacle avoidance. The model was tested within the ROS 
framework with software-in-the-loop (in GazeboSim) and with 
hardware in the loop on five test scenarios in the real world.  

Platform:  

We initially investigated available software stacks on scaled vehicles 
and came across the three most popular platforms viz. Amazon Deep 
Racer, Donkeycar, and Nvidia Jetracer[20]. A comparative analysis 
was made based on the hardware integration and software 
compatibility with the F1tenth scaled vehicle. The Donkeycar 
framework offered many advantages including the ability to 
implement end-to-end learning on a single board computer (Raspberry 
Pi), training neural-nets using GPU server, and trading off simulated 
vs real-data. To this end, we chose the Donkey car framework as a 
viable platform for our implementation.  

 Donkey Car Jet racer Deep racer 
Supported by DIY Robotics NVIDIA Amazon 

Project started 2016 2019 2006 

SBC hardware 
RPi, Nvidia 

Nano 
Nvidia Nano Intel Atom  

Deep learning 
software 

TensorFlow Pytorch 
TensorFlow, 

Pytorch 

UI 
UNIX Shell, 

python 
Jupyter 

Notebook 
AWS CLI 

Training GPU server On car GPU server 
Vehicle 

platform 
support 

Many 
Tamiya TT02 

and Latrax 
Rally 

AWS deep 
racer 

Simulation 
platform 
available 

Yes No Yes 

Cost $200 $600 $400 

Table 1: Platform selection 

The F1/10th platform created by O’Kelly [21] from the University of 
Pennsylvania serves as our primary experimental platform. The main 
chassis of the vehicle is a 1/10th scale TRAXXAS Ford Fiesta ST. 
Digital wheel velocity command inputs are provided to a stock 
Electronic Speed Controls (ESC) which provides the requisite current 
to power a high RPM DC motor driving the rear wheels through a 
differential. The second motor is a servo motor at the front for steering. 
The main computational board is the Nvidia Jetson TX2 running 
Ubuntu 18.04 installed with ROS Melodic along with the orbitty 
carrier board and an active cooling installed.  

The Donkey Car software stack deployment serves on either of the two 
CPUs a) Jetson Nano b) Raspberry Pi. We used Raspberry pi 4b as a 
CPU to drive the car while the Jetson TX2 was used for CNN training 
onboard the vehicle.  The vehicle is additionally equipped with PCA 
9685 Servo driver to control the steering motor. Figure 3 shows the 
mounting of different hardware components on the F1/10th vehicle. 
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Figure 3: F1/10th scaled vehicle hardware  

Model:  

The Donkeycar and Jetracer implement variations of the machine 
learning model described by Bojarski et al [4]. This model has a track 
record of proven performance[22, 23]. The network architecture 
consists of 9 layers, including a normalization layer, 5 convolutional 
layers, and 3 fully connected layers. The system was trained using real-
world data collected in five different test tracks and also on the 
simulator. Figure 4 shows the CNN architecture. Since the Raspberry 
Pi is not computationally very powerful, the augmented data was 
transferred to an Nvidia Jetson TX2 to train the convolutional neural 
networks. As seen in figure 4, the images are inputted into the CNN to 
produce a predicted steering output which is compared with the desired 
steering command, and the difference is minimized by adjusting 
weights through backpropagation. Training the model encounters the 
issue of overfitting and underfitting depending on the sample’s ratio 
chosen for testing and validation of our training process. We halted the 
training process when there is not much significant change in the 
validation accuracy from epoch to epoch. This way, we made sure our 
model is not overfitting the samples chosen both in the simulator and 
also while training on the five different tracks 

 

Figure 4: CNN Architecture[4] 

Workflow 

In this project, we mapped the single front-facing camera of the 
F1tenth car to the steering input and throttle values while driving the 
vehicle. This information was captured using the onboard 
camera/electronics of the F1tenth car and training was done offline. 
Finally, a trained network was deployed for mapping inferences 
throttle and steering values based on camera inputs on the hardware.  
A YouTube Video of the key steps in this process is uploaded here 
(https://www.youtube.com/watch?v=4NuUonLs3Bs). 

Training data:  

The Donkey car package has an Interactive UI that made the initial 
data collection data easy and hassle-free. Upon migration to 
Keras/TensorFlow implementation (simulator), the training data was 
collected as rosbags by teleoperating the vehicle around the chosen 
environment to collect the image, steering, and throttle inputs. CNN 
maps the input image to output by detecting important features from 
the image (outline/border of lanes).  

The data was gathered by teleoperating the RC car using a Bluetooth 
joystick around the track for about 10 to 15 laps for different cases. 
The dataset for training needed at least 10000 images, generated by 
dividing the training session into four parts:  

i) Driving slowly and precisely at the center of the lane. This 
consists of 30% of the data which gives the neural networks 
chance to observe the track from different angles.  

ii) Driving slowly with small oscillations about the centerline. This 
consists of 30% of the data. This teaches neural networks how to 
correct back to the center. 

iii) Driving like we normally drive – with a little bit of speeding. This 
consists of 20% of the data.  

iv) Driving with oscillations by bouncing back and forth at the lane 
extremes to help neural networks to understand the lane extremes. 
This consists of about 20% of the data. 

Figure 5 gives an overview of how the original system collects the 
training data. Our model slightly modifies the input layer to account 
for data from only one camera.  

 

Figure 5: Training data collection with Donkey car software 

The procedure of training the data even in a simulator is no different 
to the hardware data collection. The ROS based framework stores and 
collects the data in rosbags along with images and steering and throttle 
inputs were given by the human. 

Data Preparation: The collected datasets were split into 1GB tubs and 
each tub contains the timestamped JSON files with the path of the 
images collected along with the steering and throttle inputs provided. 
A sample of how the data is stored from our data collected can be seen 
in Table 2 

https://www.youtube.com/watch?v=4NuUonLs3Bs
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Camera Steering Throttle 
2020_4_20_18_24_281 0.0 12 
2020_4_20_18_24_340 0.0 12 
2020_4_20_18_24_478 0.0 12 
2020_4_20_18_24_513 0.0 12 
2020_4_20_18_24_632 0.0 12 

Table 2: Data Preparation 

Data augmentation techniques (crop, resize, and flip the image) were 
used to multiply the input in a similar approach to the one used in the  
Donkey car backbone to desensitize the neural network to lighting and 
image-formation parameters. Figure 6 shows an original image and 
augmented image which is achieved by flipping the image 
horizontally. For such cases, we also flipped the steering input. 

 

Figure 6: Data Augmentation 

The collected images and the augmented images were processed from 
RGB to YUV using the OpenCV library as the YUV color-spaces are 
more efficient with CNN and reduces the bandwidth of processing. 
Figure 7 shows an original RGB image and its converted YUV image 

  

 

Figure 7: Data Processing RGB to YUV 

 

Figure 8: Inferencing Deployment Architecture 

Test Scenarios 

We sought to validate the performance and limitation of the Nvidia 
CNN by testing it on several test scenarios with wide-ranging 
environmental conditions.   

Indoor, fluorescent lighting: 
This test scenario consisted of 
a circular track made of white 
lanes inside our OpenCAV lab 
space at the International 
Center for Automotive 
Research (ICAR). This 
setup was to ensure that the 
model is working as 
expected with all the hardware 
and software working in 
sync. The training consisted of 
driving it for 10 laps with 

varying steering input. i.e. not a constant steering input. As this test 
was our preliminary test to ensure our implementation and deploy it on 
outdoor environments, we ran this with constant velocity.  

Simulation: The simulation 
worlds were created in Gazebo 
by modifying an open-source 
Ackerman-steered scaled 
vehicle model[24]. The 
training and testing algorithms 
were taken from the 
implementation of [4] by Wil 
Selby[25]. 

Outdoor, daytime, pedestrian track: The major 
intention of this testing scenario was to 
evaluate our training data standards. This test 
includes collecting and training our data on a 
pedestrian track with green grass on both sides 
in moderate lighting conditions (after sunset) 
and testing on a different pedestrian track with 
similar to slightly varying features. 

Outdoor, night-time, 
on-road: To perform this test, the camera height 
had to be modified to mimic the viewpoint of a 
full-scale vehicle. The camera was positioned 
at 1.2m high from the ground to capture full 
lane width images as the lane markings on the 
road are wide compared with the scaled vehicle. 
The vehicle was equipped with the LEDs and 
for caution. The training was conducted on a 1-
mile long road in the night light while going 
uphill and tested uphill and downhill.  

Outdoor, daytime, scaled racetrack: This serves as our final testing 
scenario to perform lane-keeping and obstacle avoidance. To perform 
our desired tasks, we created a scaled version of the Melbourne F1 
racing track with yellow markings at the center to define the center of 
the track. We arranged cones on the racing track to serve as obstacles. 
While training the cones were stationary however while testing the 
position of the cones was constantly changed 
 

Figure 11: Pedestrian 
track 

Figure 12: On-road 

Figure 9: Indoor, fluorescent 
lighting 

Figure 10:  Simulation track 
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Figure 13: Racetrack 

Evaluation Metrics 
 
Model Mean Squared Error: Model Mean Square Error (MMSE) is the 
most commonly used regression loss function. MMSE is the sum of 
squared distances between our target variable and predicted values. 
The larger the MMSE more the data values are widely spread around 
its central moment (mean). It is the preferred and/or desired choice for 
model evaluation as it shows if data values are closely dispersed 
around its central moment (mean). It reflects on the distribution of the 
data values - if is centralized, not skewed, and most of all, that it has 
small errors. 
 
Histogram of Predicted Error: To view the prediction statistics, we 
have plotted the Histogram of Predicted error. Using this one can load 
a subset of the dataset and predict steering values for each of the 
images in the subset of data. By plotting such a graph, we can compare 
the predicted values to the known true values and visualize the error. 
If the error seems to be evenly distributed with the majority of the 
errors near 0 then the model can be presumed to be functioning well. 

Predicted vs Actual Errors: This is represented as a scatter plot of the 
errors. In an ideally trained model, this scatter plot should coincide 
closely with the line along the diagonal. The quality of this fit is 
described by the R squared value: 

𝑅2 = 1 −
∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̅)2
 

Where 𝑦 is the actual value of the steering angle, 𝑦̂ is the predicted 
value from the model and 𝑦̅ is the mean of the 𝑦 values. An 𝑅2 value 
of 1 signifies a good fit, and 0 shows a poor fit. 

Mistakes-per-meter metric: Each of these metrics relies on the 
availability of some ground truth data with which to compare the 
training model. They are, at best, preliminary checks on quality. Good 
performance may only be a signifier of how close the validation data 
is to training data. This more objective mistake per meter metric 
requires manual testing to measure vehicle performance. This metric 
was calculated by measuring the number of mistakes made by the 
vehicle for every kilometer of physical test data available. 

Results: 

MMSE loss depicts the training loss and validation accuracy and how 
the validation data fit our training dataset. Overfitting or underfitting 
of the model is caused by various reasons such as the increased or 

decreased amount of data for training, the complexity of the model 
[26]. Overfitting is observed when a model trained on one track cannot 
be effectively used on another track as the model learns minute track 
details of the training track. Whereas underfitting means that the model 
learns track inadequately which results in low generalization. For our 
model to reduce overfitting we have added multiple dropout layers 
[27].  

In most test cases except for Figures 17 and 18, the MMSE loss is 
constantly decreasing for both training and validation showing that the 
models are training well without overfitting. However, the validation 
loss seems to trend upwards for the outdoor racetrack and simulation 
test case indicating that the model might be overfitting.  

The model training process provides some insight into the model’s 
performance via some of the machine learning output performance 
parameters such as R-square and mean square error [28, 29].   
However, to better understand how the model will perform, we can use 
the trained model to make predictions on some of our sample data and 
view the results. We can compare the predicted values to the known 
true values and visualize the error. These results are plotted as 
Histogram of Predicted Error and as scatter plots and are discussed 
below. 

When the Histogram of Predicted Error is evenly distributed with the 
majority of the errors near to 0 value shows that the model is evenly 
trained for steering. This is seen in figures 14, 17, and 18, for the 
indoor, outdoor, daytime, and simulation test cases.  

The scatter plots however visually show proper spreads for only the 
indoor and simulation test cases and this is verified by their 𝑅2 values.  

Given the slightly conflicting results from the evaluation metrics, it is 
apparent that only the indoor and simulation environment might be 
expected to perform well. This is confirmed by the mistakes-per-meter 
metric which was 0 for both test cases.  

In the pedestrian track test case although the 𝑅2 0.7499 and the 
histogram spread was not even, the vehicle did not make mistakes 
when there was green grass on the sides of the walkway (which were 
represented in the training data) however on the sections where the 
grass was brown, or no grass was present, the mistakes-per-meter was 
2.  

In the on-road, night test, the MMSE showed a small degree of 
overfitting possibly due to the unchanging nature of the road (curves 
were small compared to the size of the vehicle). The HPS spread was 
even and 𝑅2  0.6842. The mistakes-per-meter metric was 1 in this test 
case.   

On the outdoor-daytime test case, the MMSE showed some overfitting 
and HPE has a good spread. On testing the vehicle collided with an 
obstacle placed at a particular location every time. This was identified 
due to the sun being at 180o to the obstacle increased the object-
reflectivity and difficult to be read in the camera frame. The complete 
demonstration of our final efforts can be seen in this link: 
https://youtu.be/KiZOjB10wDU  

 

https://www.youtube.com/watch?v=KiZOjB10wDU&feature=youtu.be
https://youtu.be/KiZOjB10wDU
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Environment 
No of 

Samples 
collected 

Epoch Loss Mistakes per Meter 

Indoor lab 12566 34 0.025 Nil 

Pedestrian 
track 22324 41 0.0075 

Nil (Green grass on 
side) 

2 (Brown grass on 
sides) 

On-road 
(night) 24232 50 0.0042 1 

Scaled 
racetrack 22445 35 0.0024 Nil 

Simulation 14562 42 0.072 Nil 

Figure 15: MMSE, HPE & SPE for test 2: Outdoor, pedestrian walk, 
daytime 

 

Figure 16: MMSE, HPE & SPE for test 3: Outdoor, on-road, 
nighttime 

 

Figure 17: MMSE, HPE & SPE for test 4: Outdoor, race 
track, daytime 

 

Table 3: Evaluating different test tracks 

Figure 14: MMSE, HPE & SPE for test 1: Indoor 

 

Figure 18: MMSE, HPE & SPE for test 5: simulation 
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Discussion   

In this paper, we explored the best available metrics to validate a 
popular algorithm (first proposed by Nvidia) that uses end-to-end 
learning for lane-keeping and static obstacle avoidance in different 
settings and conditions on a scaled Ackermann vehicle platform. We 
explored the Donkey car software platform and found that it provides 
a robust and versatile implementation that can be easily deployed on 
any scaled vehicle with small modifications. The deployment on a 
scaled F1tenth vehicle was intended to serve as an alternative for 
testing algorithms on full-scale vehicles.  In doing so, the scaled 
vehicle deployment gives us a hardware-in-the-loop experience which 
is preferable to software-in-the-loop deployments (only simulation)  
while maintaining a safe and repeatable environment for an academic 
setting. Future work with considers upgrades by using the Nvidia 
Jetson Tx2 as the on-board computer for driving as well as training on 
the real track for faster frame rates. This is so that we can eventually 
implement an unsupervised (reinforcement) model to achieve the same 
task. As the application is restricted to lane-keeping and static obstacle 
avoidance in this project, future work can be training the model 
to avoid dynamic obstacles and detect the traffic signs. Future work 
can also include using a more capable scaled vehicle to mimic the 
dynamics of a full-scale vehicle like using a VESC to obtain motor 
performance graphs and enhanced mode transition like braking and 
ABS. 
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