20XX-01-XXXX

Fusing offline and online trajectory optimization techniques for goal-to-goal

navigation of a scaled autonomous vehicle

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

Over the past few decades, enabling self-driving vehicles with the
capacity to navigate a collision-free path efficiently and autonomously
through an obstacle-filled environment has been of paramount interest.
Motion-planning frameworks, encapsulating both path and trajectory-
planning, have played a dominant role in realizing the deployment of
a “sense-think-act” intelligence for autonomous vehicles. However,
verification and validation of such intelligence on actual self-driving
autonomous vehicles has been limited. Simulation-based verification
and validation has the advantage of permitting diverse scenario-based
testing and comprehensive “what-if” analyses — but is ultimately
limited by the simulation fidelity and realism. In contrast, testing on
full-scale real-world systems is constrained by the usual challenges of
time, space and cost engendered in reproducing diverse scenarios in
practice. Further, motion-planning frameworks often engender a
mixture of global-planning (typically performed offline) coupled with
a sensor-based local-planning (typically done online) which requires
both simulation and physical testing.

Thus, scaled vehicle experimentation provides researchers with an
interesting via-media to evaluate the performance and robustness of
motion-planning algorithms on actual physical hardware — especially
in real-time sensor-based motion planning setting. In this paper, we
analyze the performance of a 1/10" scale RC vehicle in simulation
environment as part of software in loop testing for motion planning. A
global planning algorithm is used to provide the waypoints for a
feasible collision-free path between the start and goal configurations
in the environment. We explored the deployment of Rapidly exploring
Random Tree (RRT) and Rapidly exploring Random Tree* (RRT*).
The Time Elastic Band local trajectory planner in ROS is then used for
the realization of smooth, feasible paths between the waypoints. A
comparison of validation in simulation has been provided with a
detailed discussion of the parametric tuning for improving the
performance in each case.

Introduction

Since the late 1990s, the automotive industry has observed growing
interest and effort in developing technology to empower self-driving
cars with the ability to operate efficiently on the streets in a collision-
free manner. Computationally efficient, reliable, and robust motion
planning techniques, as well as sophisticated validation
methodologies, are crucial for achieving this goal.

The motion planning challenge is addressed from 2 principal
perspectives: 1) Path planning and 2) Trajectory planning. In path

Page 1 of 8

planning (often treated in a global setting) the objective is to generate
a set of feasible (and optimal) waypoints from the start to the goal
configuration without causing a collision with objects in the
environment. These waypoints are then sequentially tracked by the
autonomous vehicle to navigate through/in the environment and
traverse the desired path. Several methods for global planning has been
explored in the literature including cell decomposition (Roadmap
Methods vs. Cell Decomposition in Robot Motion Planning 2007),
potential field method (Roadmap Methods vs. Cell Decomposition in
Robot Motion Planning 2007), adaptations of graph search methods
like A* [10] and Dijkstra’s [4], variants of Rapidly-exploring Random
Tree algorithms [5].

Global planning methods typically require a pre-computed map of the
environment where objects and obstacles are typically static. The
desired path from start to goal is computed offline considering only the
static environment. Consequently, the effectiveness of global path
planners is typically only measured based on their computational
complexity and the major drawback is their inability to efficiently
tackle dynamic objects in the environment. Some modifications to
global planners exist which permit global map update based on sensory
inputs. However, this results in slow processing due to the large
computational complexity of the entire map being updated in real-time.
On the contrary, the task performed by the trajectory planning or local
planning algorithm is to ensure a physically realizable path from
waypoint to waypoint.

Local planning approaches like the Dynamic-Window Approach [2] or
Time-Elastic Band [1] consider the proximity of the robot in the world
to compute velocity profiles. This myopic view of the world leads
faster and simpler computation at the expense of subpar optimization
with the local minima. Frequently, motion-planning frameworks often
engender a mixture of global-planning (typically performed offline)
coupled with a sensor-based local (re-)planning (typically done online)
which requires physical testing.

Verification and validation of the motion-planning algorithms are
essential for the successful deployment of intelligent autonomous
vehicles — which requires either physical testing or simulation.
Currently, challenges ranging from lack of sophisticated computation
platform/sensors/infrastructure etc. to the usual limitations of
time/space/cost limit physical testing and validation on actual
autonomous vehicles. In such situations, simulation-based testing
environments offer the opportunity to exploit comprehensive “what-
if” analyses and scenario-based coverage. Ultimately, the scale and
scope of verification and validation is limited solely by simulation-

fidelity — nonetheless this fundamental inability to bridge the sim-to-
real gap offers a real barrier and limits deployments. With the recent
development of scaled vehicles offer a fair alternative to physically
validate the algorithms while retaining the benefits of low-cost and
(relative) ease of testing. They offer an opportunity of verifying the
behavior and performance of blended global/local motion-planning
while also examining the tradeoffs of simulation vs physical testing
(and bridging the sim-to-real gap in the context of these scaled
autonomous vehicles).

For example, Marin-Plaza et al [6] analyzed the performance of an
Ackermann steered non-holonomic wheeled vehicle blending
Dijkstra’s global planning with a Time Elastic Band (TEB) local
planner. In our work paper, we explore this dimension even furtherby
using a 1/10% scale RC vehicle, operated through Robot Operating
System (ROS), in a Gazebo-based simulation as well as on the actual
F1/10 hardware vehicle. The path planning algorithms developed for
this analysis were Rapidly Exploring Random Tree (RRT) and Rapidly
Exploring Random Tree* (RRT*) which is developed in Python and
provides the collision-free, kinematically feasible waypoints between
the start and goal configurations in the environment. The robot
navigation through the environment has been performed using the TEB
local planner. We compare and contrast the differences in the
performance of the simulated system against the actual system with
both motion-planning techniques.

Literature Review

Over the years, there has been a tremendous amount of research and
experimentation for applying different techniques and strategies for
motion planning for mobile robots. These implementations can range
from offline/online trajectory optimization, or fusion of both the
techniques to tackle dynamic obstacles in the environment. The
paradigm put forward by global planning alone is to facilitate offline
trajectory generation from one point to another in static environments
which are highly map dependent. This is well highlighted by E. G.
Tsardoulias et.al [11] in their study exploring global planners for
motion planning ranging from Occupancy Grid Maps (OGMs):
Probabilistic Roadmaps (PRMs), Visibility Graphs (VGs), Rapidly
exploring Random Trees (RRTs) and Space Skeletonization.

However, in the real world, unless for a specific controlled
environment, it is not feasible for a motion planning application to
strictly rely on offline optimization methods and not consider dynamic
obstacles in its path. This is where the paradigm of local planning made
massive strides enabling robot motion in dynamic and highly uncertain
environment. Development of local planners started from simple
methods like edge detection to generated contour path around the
obstacles and potential field methods simulating repulsive forces from
the obstacles while the goal position entails an attractive force [6]. Post
these earlier approaches and with the increase in onboard computing
power, newer instantaneous methods like Vector Field Histogram and
Dynamic Window approach started becoming more popular. [7]

As an alternative to the Dynamic Window approach, the Time-Elastic
Band approach enabled local planning for car-like robots while
providing with computational benefits and much more optimal
trajectory as highlighted by the observations put forward by
Christopher et al. [1] in their study and comparative analysis of the two
motion planners. On top of that, a ROS based library specifically
designed to implement TEB local planner on car-like robots made it

Page 2 of 8

the obvious choice for local planning on our scaled autonomous
vehicle.

Offline Trajectory Optimization with RRT and RRT*

Unlike traditional approaches to motion planning like grid-based or
interval-based search, the RRT and RRT* algorithms do not have
existing nodes between the start and endpoints. Thus, these algorithms
have to create both the graph and path for navigation. RRT and RRT*
are one of the most popular sampling-based probabilistic algorithms
for motion planning [3].

RRT algorithm

The rapidly exploring random tree algorithm is a motion planning
algorithm which primarily satisfies the single query applications [11].
While the versions of this algorithm are available for 2D and 3D
motion planning both, for our purpose we will use the 2D and single
query algorithm for our experimentation purposes. This algorithm uses
an existing map, generates sample nodes, and starts building the tree
(from a single branch to a fully developed tree), which eventually
reaches our query configuration. A query configuration is usually a
user-defined point in the map where we want our vehicle to reach, also
known as goal configuration. At each iteration of building the tree, a
random sample is generated anywhere in the map and a new
connection is added to the nearest tree node in direction of the new
sample by a pre-defined length. This can be seen in the following
pseudo-code.

As proved in previous experimentations [3], the path generated by
RRT as seen in Figure[1] is cubic in nature as newly generated nodes
are attached to the nearest neighbor. But the benefit of this algorithm
is its high speed (in sampling-based planner category) and easy
implementation. The path generated is not necessarily a traversable
path by an Ackermann steered vehicle, some further smoothening is
needed so that the path can be traversed by a vehicle in motion.

-4

Figure 1: RRT algorithm [3]
RRT* algorithm

RRT* is an optimized version of the RRT algorithm [5]. While
iterating to sample through new nodes, the samples are not simply
added to the nearest node in the tree, but a comparison is made among
nearby tree nodes to calculate which tree node is connected to the start
node more closely. An edge is created

between the new node and the existing node which reduces the overall
cost of reaching the new node. For doing this a cost to reach a certain
node must be maintained along with the node location. This extra
calculation increases the space complexity and searching through the
nearby nodes to find the most optimal node to connect to increases the
computational complexity of the algorithm at each iteration. Hence this
implementation is relatively computationally complex than simple
RRT [3]. But as expected through this additional step, it creates the
shortest possible path to the goal configuration. If we tune this
algorithm well considering vehicle space, it is also able to give us a
smooth path which can be traversed by an Ackermann steered vehicle,
but this is not necessarily true in all cases.

i

-4

-6

T -5 0 5 10

Figure 2: RRT* algorithm [3]
TEB local planner

The concept of elastic band deals with deforming the path generated
by global planners as discussed previously in section II. This allows
the vehicle to generate a path which avoids an obstacle in its path. The
deformed path takes this obstacle into account and creates a safe
trajectory around the path. Although it is clearly stated in [1] and [9],
this does not consider vehicle dynamics, but this process shows great
reliability for Ackermann vehicles which are navigating into the
unexplored areas. This entire process, when visualized, can be
compared to an elastic band. This problem is formulated in a weighted
multi-objective optimization framework. The objectives for this
framework are locally formed and deployed, which makes this system
highly modular [10]. This makes Timed Elastic Band (also known as
TEB) approach flexible as seen in Figure[3] and hence it is chosen as a
local planner in our experimentation. The simulations and results of
this planner have shown that it is a computationally efficient and robust
approach for online obstacle avoidance [1]. From our previous
experiments with this algorithm, we can proceed and rely on this
algorithm for local trajectory planning as it shows good confidence in
real hardware and can successfully avoid obstacles.

Page 3 of 8

Ctstachs

Figure 3: TEB local planner
Methodology and Implementation
F 1/10th scaled autonomous vehicle hardware

The F 1/10th scaled vehicle platform is conceptualized and developed
by University of Pennsylvania Fltenth.org enabling students to
develop and deploy autonomous driving functionalities simply and
cost-effectively. We have used the second generation of the F1/10th
platform car which is a modified remote-controlled TRAXXAS Ford
Fiesta ST equipped with a lower-level chassis (refer Figure 4). This
houses the brushless DC motor for powering the four wheels using a
differential and propeller shaft along with a servo motor to enable
steering. A platform is mounted on the base chassis with the help of
M3 standoff screws which house all the autonomy components of the
car including the Hokuyo 10LX LiDAR, the VESC MK3 speed
controller, providing PWM signals based on the digital wheel velocity
command inputs and the Nvidia TX2. The Nvidia TX2 SOC is the
main brain of the entire system. It gives commands to the VESC which
controls the Servo and the Brushless Motor. The TX2 is essentially a
supercomputer on a module. We attach it to the Orbitty Carrier board
so that we can access the TX2’s peripheral. An array of size 1x1080
over an arc of 270° is obtained from the Hokuyo LiDAR which is used
for Localization and Mapping. The system design is illustrated in
Figure[5].

Figure 4: TRAXXAS f1/10th scaled vehicle

&= — I\

Mator VESC ™2 Pit

|
N7

Servo

Figure 5: System Integration
Gazebo simulator environment

The environment selected for this project was a Gazebo simulation
environment (refer Figure [6]) provided by the F1/10 research group
from the University of Virginia that was customized to provide
users with a realistic simulation environment for
experimentation in the domains of perception, motion planning
and control with a scaled Ackerman-steered vehicle.

Figure 6: UVA F 1/0th simulator

The F1/10 Gazebo Simulator complements the hardware by emulating
its modular properties and was created to help the user get started with
the simulator out-of-the box. It builds on the MIT-Racecar gazebo
simulation baseline implementation but also contains additional
features like a world map, and Gazebo plugins that provide better
odometry and control. The F1/10 console package provides you with
the option of using either keyboard control or joystick control (built in
compliance with Logitech F710 game controller). In particular, the
F1/10 platform is based on a 1/10 scale Ackermann steered RC car
whose kinematics need to be captured and used as part of the
simulation — this is facilitated through the use of the TEB local planner.
At this stage, we exploit the simulator support for Basic Navigation
(Wall following with tunable PID control), SimultaneousLocalization
and Mapping (SLAM using Hector Mapping) to build occupancy grid
RVIZ maps, as well paving the way for advanced navigation (using the
TEB local planner)

Page 4 of 8

Global Planning with RRT and RRT*

To develop a road map using the RRT or RRT* algorithm, it is essential
to obtain a detailed map of the environment. The F1/10 autonomous
vehicles come with an onboard LiDAR sensor. The car was manually
teleoperated around the simulated environment with the help of keyboard
control and at the same time, the LiDAR scans were processed through a
ROS package for Hector SLAM (Simultaneous Localization and
Mapping) algorithm. The figure shows the Gazebo environment used and
the original map generated from SLAM (dimensions: 2048x2048 pixel).
In order to represent the map in tkinter GUI library in Python for sampling-
based planning approaches using a road map, it was necessary to represent
the occupancy grid map obtained from SLAM. To do that, a .PNG image
file representing the SLAM map was first loaded onto MATLAB and
cropped from 2048x2048 size to 300x200 dimension to represent the
bounded region/environment. The coordinates of the corners of the walls
were recorded approximately using the data-tip feature in MATLAB. The
coordinates were then saved in a .CSV file and loaded in the tkinter GUI
to represent the walls as rectangular obstacles.

Figure 7: Hector SLAM of simulation environment

+e¥

Simulation environment in
Gazebo Hector SLAM

The occupancy grid map from Representation of the

occupancy grid map in Python

Figure 8: SLAM Map --> Grid map (Python)
Methodology for RRT and RRT *

We implemented a Vanilla RRT algorithm since the controller used to
drive the F1/10 car incorporates the steering action, meaning no
explicit consideration for vehicle motion is necessary. Using
the following algorithms from start configuration, where the vehicle is
spawned in the environment, we generate the path using RRT and
RRT* algorithms, respectively.

https://en.wikipedia.org/wiki/Ackermann_steering_geometry
http://wiki.ros.org/teb_local_planner

RRT Pseudo code
Qgoal //region that identifies success
Counter = 0 //keeps track of iterations
lim = n //number of iterations algorithm should run for
G(V,E) //Graph containing edges and vertices, initialized as empty
While counter < lim:
Xnew = RandomPosition()
if IsInObstacle(Xnew) == True:
continue
Xnearest = Nearest(G(V,E),Xnew) //find nearest vertex
Link = Chain(Xnew, Xnearest)
G.append(Link)
if Xnew in Qgoal:
Return G
Return G

Figure 9: RRT algorithm Pseudo code [3]

RRT* Pseudo code
Rad=r
G(V,E) //Graph containing edges and vertices
For itr in range(0...n)
Xnew = RandomPosition()
If Obstacle(Xnew) == True, try again
Xnearest = Nearest(G(V,E),Xnew)
Cost(Xnew) = Distance(Xnew, Xnearest)
Xbest,Xneighbors = findNeighbors(G(V,E),Xnew,Rad)
Link = Chain(Xnew,Xbest)
For x’ in Xneighbors
If Cost(Xnew) + Distance(Xnew,x”) < Cost(x”)
Cost(x’) = Cost(Xnew)+Distance(Xnew,x”)
Parent(x’) = Xnew
G += {Xnew,x’}
G += Link
Return G

Figure 10: RRT* algorithm Pseudo code [3]

The path obtained from these algorithms is in pixel coordinates and is
multiplied by the resolution of the map (0.05m/pixel) to obtain the
waypoints of the trajectory in meters. This is because the local
coordinate frame of the F1/10 cars is in meters.

The generated map has a co-ordinate frame originated from thespawn
location of the vehicle in the environment. This co-ordinate frame is
set to match the coordinate frame of the starting location of the vehicle.
It further aids in generating waypoints from vehicle’s start
configuration to the goal configuration. In case of Vanilla RRT, the
path generated is cubic in nature, resulting into a non-feasible vehicle
traversal. Such paths need to be smoothened for non-holonomic car
like vehicles in order for trivial controllers to adapt to the cubic shaped
nature of the path. To solve this problem, one of the solutions is to
incorporate vehicle kinematics into path generation. Alternatively, a
robust controller can also take care of the non-traversable paths by
smoothening out vehicle motion while going over cubic path
waypoints. A path generation algorithm like RRT* naturally generates
a traversable path in most of the simple start and goal configurations.
With large number of nodes, the path tends to get even smoother.
Robust local planners like TEB can react to such path aberrations and
make vehicle traversal easy. It has been observed that the path obtained
from the RRT algorithm is notoptimal and requires further smoothing
while RRT* provides us with an optimal path.

Page 5 of 8

Figure [11] and [12] show a python-based map visualization, which
converts the existing map into a Cyre. space. The boundaries are bloated
considering the vehicle width in real world, so that a vehicle would not
select a RRT / RRT* node in the red region, when in reality these will act
as a virtual obstacle which are too close to any boundary or obstacle. The
white space in the figure is the traversable map by the vehicle. The nodes
are getting populated only in the white region of the map. Figure [11] and
[12] also shows the start and the end points of the vehicle in green and
blue respectively. The branches connecting each point in the map is the
generated RRT/ RRT* tree as a result of the respective algorithms.
Figures [11] and [12] also highlight the path generated by the RRT and
RRT* algorithms when different goal locations are provided to the
vehicle. The path generated by RRT* varies in Figure [12] due to the
nature of the RRT* algorithm enabling more optimized path from start to
goal location.

Farvin Gy | Defmidt Dy | G Pt o st o s G Dol Dy e s b

Figure 11: The trajectory between start — (0,0) and goal — (75,215) from RRT and
RRT#* (r) with 400 nodes

P Gy | Derwdn ey | e e st Ponli

|| Prwien Dy | SoFwils Gy | G e Garvvas Foatu

Figure 12: The trajectory between start — (0,0) and goal — (-75,215) from RRT (1)
and RRT* (r) with 400 nodes

Local Planning with ROS Navigation Stack

ROS Navigation Stack

A ROS Navigation stack is a meta-package which is developed for
navigating any custom robot to a given goal point by taking into
consideration multiple sensor data inputs. It reduces the cumbersome task
of the user to write their own codes of navigation elements (localization,
mapping, control and planning). The basic functionality provided by the
navigation stack is similar to a framework which perceives the sensor data
(odometry, LiDAR data etc.) as input, provides a platform for the control

algorithm to make use of this sensor data, and outputs a velocity to the
mobile base. In order to run the ROS navigation stack on our robot, a
certain set of prerequisites need to be met. These range from having
onboard compute capable of running ROS on Ubuntu, the knowledge
pertaining to the frame transformations on the robot and publishing the
sensor data using the appropriate ROS topics.

v ase_ Spgr” :
o, oS Navigation Stack Setup
move base gy —
y i T rovmspsaip | Mpsever
- global planner «— global costmap
|] ,
1
’
sensor transfoms 4 s internal '-—-ﬂ% S6nsor S0urEes
HiMessage | may msguah | - recovery behavirs m."ﬂ!’ﬂ-“ i,
. egefPoineCloud
‘ 1 L |
odametry source [" oo’ local planner «— local costmap
CMd Ver qeometry Mege/Twist
provided nade
tional provided nod
My optional provided node

platform specific node

Figure 13: ROS Navigation Stack

Implementing the TEB local planner for online trajectory
optimization in ROS

This package implements an online optimal local trajectory planner for
navigation and control of mobile robots as a plugin for the ROS
navigation package. The initial trajectory generated by a global planner
is optimized during runtime w.r.t. minimizing the trajectory execution
time (time-optimal objective), separation from obstacles and
compliance with kino-dynamic constraints such as satisfying
maximum velocities and accelerations. The current implementation
complies with the kinematics of non-holonomic robots (differential
drive and car-like robots). Support of holonomic robots is included
since ROS Kinetic version. The optimal trajectory is efficiently
obtained by solving a sparse scalarized multi-objective optimization
problem. The user can provide weights to the optimization problem in
order to specify the behavior in case of conflicting objectives.

Topics published by TEB local planner:

~/global_plan (nav_msgs/Path)

~/local_plan (nav_msgs/Path)

~/teb_poses (geometry msgs/PoseArray)

~/teb_markers (visualization_msgs/Marker)

~/teb_feedback (teb_local planner/FeedbackMsg)

Topics subscribed by TEB local planner:
Page 6 of 8

~/obstacles (costmap_converter/ObstacleArrayMsg)

~/via_points (nav_msgs/Path)

~/odom (nav_msgs/Odometry)

Timed Elastic Band approaches the planning problem using a hyper-
graph based nonlinear optimization technique and the implementation
with an open-source C++ framework called general (hyper-)graph
optimization (g20) which solves graph based nonlinear optimization
problems.

Implementation of Navigation Stack/TEB local planner on UVA
simulator:

The implementation detail involves creating a SLAM map of the
environment. For this purpose, a simple ROS based Hector Mapping
approach has been used. This map is saved in PNG and YAML
extensions which saves map grid data as well as meta data. A map node
is created using ROS tools which is then used further for localization
purpose. An advanced Monte Carlo localization technique has been
used to locate the vehicle based on laser scan and odometry data.
ROSLAUNCH based execution makes it easy to simultaneously open
all the related nodes in ROS and making it a smooth process for
implementing all these ROS based packages simultaneously. A TEB
planner node is also executed using this ROS based tool.

Figure 14: Process of Motion Planning

Results and Discussion

The results section shows the actual implementation of codes created
by the team members to generate RRT/RRT* global planner and
simulate the path-following in a Gazebo custom environment. To
conclude the entire project, we can say that this mechanism can be
deployed straight up on any environment given the dependencies are
installed in a correct manner. The RRT and RRT* algorithms

generated based on given SLAM map result into the paths denoted
by colored dots in the Figure [14].

Figure 15: RRT and RRT* comparison
These points are then translated into relevant coordinates in the
SLAM map and a local TEB planner is used to navigate using this
global plan as can be seen in the Figures [16] and [17]. Figure [16]
and Figure [17] are a combined imagery of Gazebo simulator (left)
and RVIZ simulator (right). The blue region in the left figure is the
lidar scan originating from vehicle’s simulated lidar (It can be
referred as scan region of the vehicle.) The color gradient image on
the right in both figures is a potential gradient field spread out
throughout the map to describing areas with least resistance (blue
shaded region) and areas with high resistance or areas close to
boundaries and obstacles (orange shaded region). This potential
field is generated using the TEB local planner’s artificial potential
field algorithm, which is an inbuilt tool which helps the local
planner to avoid obstacles in the given map.

Figure 16: RRT + TEB fusion on simulator

Figure 17: RRT* + TEB fusion on simulator

The path generated by RRT is observed to be more cubic and in
contrast the path generated by RRT* appears to be smoother and more
traversable. A cost function generated by TEB local planner is shown
to be spread out throughout the map which gives the local planner an
estimate of vehicle and obstacle poses.

Due to the nature of the tree, it is observed that RRT* yield optimal

Page 7 of 8

yet computationally intensive paths. Furthermore, increasing the number
of nodes also impacts the runtime. However, it has been observed that
since the target configuration has been sampled at a probability of 10%
around the actual goal configuration, the algorithms can ensure a feasible
path with as low as 100 nodes. This would not be possible if the goal
configuration is unknown and the algorithm is expected to explore the
environment in all directions. Another reason why RRT* takes
significantly longer to run is that, during rewiring, the algorithm compares
against all the nodes in the tree to look for the optimal path cost [3]. This
can be overcome if the rewiring approach is modified to look for only K-
nearest-neighbors to determine the optimal cost to reach the newly added
vertex:

Serial No. No. of nodes Time in sec (RRT) | Time in sec (RRT*)
1 500 233.76 678.11
2 400 7245 2977
3 300 25.73 22691
4 200 10.73 919
5 100 2.83 3439

Figure 18: Time taken by RRT and RRT* to compute path based on different
nodes

Facim Gy | dafudt Gary | run wala St ek Qe | Tt Dy | Gt P Eovmrsn Bmlam

Figure 20: RRT and RRT* with 400 nodes

From the paths from RRT and RRT*, it is observed that although a
feasible path is always generated by both algorithms, RRT may
generate different waypoints due to the probabilistic nature of the
algorithm. Also, RRT generated paths are not always optimal. The path
generated may not optimize even though the nodes are increased, once
the goal is reached at a given number of nodes. In contrast, the path
generated by RRT* is always optimal and due to its rewiring nature,
as the number of nodes increase, the optimality of path also increases.

Future work scope

By fusing the global and local path planning techniques over the
simulation environment, the vehicle can attain goal-to-goal
navigation. As a continuation of our work, we would be
implementing the test in real world under lab conditions and
presenting our findings in the final manuscript. The following
picture highlights the experimental setup for our real-world test.
The MoCap cameras shown in the Figure [21] will be used for
tracking the actual position in world frame and it will be used to
compare the accuracy in path tracking by TEB local planner.

Ego Vehicle

ey _‘5_\“

Figure 21: Lab setup for experimentation
References

1. C.Résmann, W. Feiten, T. Wésch, F. Hoffmann and T.
Bertram. 2012. "Trajectory modification considering
dynamic constraints of autonomous robots." 7th German
Conference on Robotics, Germany, Munich.

2. D.Fox, W. Burgard and S. Thrun. 1997. "The dynamic
window approach to collision avoidance." IEEE Robotics
& Automation Magazine 4: 22-23.

3. Tim Chin, “Robotic Path Planning, RRT and RRT*”

4. Javaid, Adeel. 2013. "Understanding Dijkstra Algorithm."
SSRN Electronic Journal.

5. Naderi, Kourosh & Rajaméki, Joose & Haméldinen, Perttu.

2015. "RT-RRT*: a real-time path planning algorithm
based on RRT*."

6. Pablo Marin-Plaza, Ahmed Hussein, David Martin, and
Arturo de la Escalera. 2017. "Global and Local Path
Planning Study in a ROS-Based Research Platform for
Autonomous Vehicles." Hindawi Journal of Advanced
Transportation 10.

7. Portugal, David Bina Siassipour. n.d. "A study on local
planning techniques."

Page 8 of 8

10.

11.

12.

2007. "Roadmap Methods vs. Cell Decomposition in Robot
Motion Planning." Proceedings of the 6th WSEAS
International Conference on Signal Processing, Robotics and
Automation.

Rosmann, Christoph, Frank Hoffmann, and Torsten
Bertram. n.d. "Planning of Multiple Robot Trajectories in
Distinctive Topologies."

Sharma, Shrawan Kr. 2015. "Shortest Path Searching for
Road Network using A* algorithm." International Journal
of Computer Science and Mobile Computing.

Tsardoulias, E. G. 2016. "A Review of Global Path
Planning Methods for Occupancy." J Intell Robot Syst.

Karaman, Frazzoli. 2011 “Sampling-based Algorithms
for Optimal Motion Planning”

Contact Information

Ajinkya Joglekar

Mailing Address: 112 Folkstone St, Greenville, 29605
Email Address: ajoglek@clemson.edu

Phone: +1 8645531798

Acknowledgements

The authors would like to acknowledge support of their colleagues
from ARM Lab at the Clemson University International Center for
Automotive Research. We also acknowledge partial support for this
work from the National Science Foundation via the Computing
Community Research Infrastructure grant (CNS-1925500).

Definitions/Abbreviations

RRT

RRT*

ROS

TEB

GUI

SLAM

LiDAR

PRM

Rapidly Exploring Random
Tree

Rapidly Exploring Random
Tree RRT

Robot Operating System
Timed Elastic Band
Graphical User Interface

Simultaneous Localization
and Mapping

Light Detecting and Ranging

Probabilistic Road Mapping

mailto:ajoglek@clemson.edu

Updates in response to comments on MyTechZone portal

—

Comments by Reviewer #275489

In Abstract, the reader is expecting the presentation of full-
scale real-world testing on the scaled vehicle. However, at
the end of the paper it is presented only as a future work
topic:

Resolution: Abstract updated based on project progress.

In page 5, pseudo codes for both RRT and RRT* algorithms
seem identical:

Resolution: This has been addressed in the form of Figures
[9] & [10]

Figure 9 and Figure 10 legends are identical. The number of
nodes should be added:

Resolution: The number of nodes have now been added to
these figures. Refer Figures [11] and [12].

In Figure 10 there is a remarkable change of trajectory from
RRT* algorithm, at the left of the center wall, which is not
commented:

Resolution: A paragraph above the figures now explains the
reason for different paths. A further explanation is also
provided in the results section.

In References, the author of Reference 3 is suggested be
added, as well as the date of page access:

Resolution: Reference fixed according to the required
format.

Comments by Reviewer #275493

The paper should reflect scientific papers quality. For
example, please refrain from using snapshots/screenshots for
figures in scientific / technical papers:

Resolution: Screenshots were removed, and figures were
cleaned up. Many of the images are however essential for
illustration of the concepts as this is primarily a simulation-
based implementation of motion planning.

Pseudocodes of RRTs in page 5 - this should be written in
either proper pseudocodes or flowcharts:

Resolution: Changes made.

Figure 11 should be enlarged:

Resolution: Changes made, now Figure [12]

Figure 14-18 - what is what in these figures? Where is the
legend? Proper plotting should be done:

Resolution: Paragraph before Figure [15] explains the details
in the simulator (Figure [15]) along with detailed explanation
of the process.

Page 9 of 8

	Fusing offline and online trajectory optimization techniques for goal-to-goal
	Author, co-author (Do NOT enter this information. It will be pulled from participant tab in
	Introduction
	Literature Review
	Offline Trajectory Optimization with RRT and RRT*
	RRT algorithm
	RRT* algorithm
	RRT* is an optimized version of the RRT algorithm [5]. While iterating to sample through new nodes, the samples are not simply added to the nearest node in the tree, but a comparison is made among nearby tree nodes to calculate which tree node is conn...

	TEB local planner

	Methodology and Implementation
	F 1/10th scaled autonomous vehicle hardware
	Gazebo simulator environment
	Global Planning with RRT and RRT*
	To develop a road map using the RRT or RRT* algorithm, it is essential to obtain a detailed map of the environment. The F1/10 autonomous vehicles come with an onboard LiDAR sensor. The car was manually teleoperated around the simulated environment wit...
	Methodology for RRT and RRT *
	Implementing the TEB local planner for online trajectory optimization in ROS

	Results and Discussion
	Future work scope
	References
	Contact Information
	Acknowledgements
	Definitions/Abbreviations

