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Abstract 

 
Over the past few decades, enabling self-driving vehicles with the 
capacity to navigate a collision-free path efficiently and autonomously 
through an obstacle-filled environment has been of paramount interest. 
Motion-planning frameworks, encapsulating both path and trajectory- 
planning, have played a dominant role in realizing the deployment of 
a “sense-think-act” intelligence for autonomous vehicles. However, 
verification and validation of such intelligence on actual self-driving 
autonomous vehicles has been limited. Simulation-based verification 
and validation has the advantage of permitting diverse scenario-based 
testing and comprehensive “what-if” analyses – but is ultimately 
limited by the simulation fidelity and realism. In contrast, testing on 
full-scale real-world systems is constrained by the usual challenges of 
time, space and cost engendered in reproducing diverse scenarios in 
practice. Further, motion-planning frameworks often engender a 
mixture of global-planning (typically performed offline) coupled with 
a sensor-based local-planning (typically done online) which requires 
both simulation and physical testing. 

 
Thus, scaled vehicle experimentation provides researchers with an 
interesting via-media to evaluate the performance and robustness of 
motion-planning algorithms on actual physical hardware – especially 
in real-time sensor-based motion planning setting. In this paper, we 
analyze the performance of a 1/10th scale RC vehicle in simulation 
environment as part of software in loop testing for motion planning. A 
global planning algorithm is used to provide the waypoints for a 
feasible collision-free path between the start and goal configurations 
in the environment. We explored the deployment of Rapidly exploring 
Random Tree (RRT) and Rapidly exploring Random Tree* (RRT*). 
The Time Elastic Band local trajectory planner in ROS is then used for 
the realization of smooth, feasible paths between the waypoints. A 
comparison of validation in simulation has been provided with a 
detailed discussion of the parametric tuning for improving the 
performance in each case. 

 
Introduction 

 
Since the late 1990s, the automotive industry has observed growing 
interest and effort in developing technology to empower self-driving 
cars with the ability to operate efficiently on the streets in a collision- 
free manner. Computationally efficient, reliable, and robust motion 
planning techniques, as well as sophisticated validation 
methodologies, are crucial for achieving this goal. 
The motion planning challenge is addressed from 2 principal 
perspectives: 1) Path planning and 2) Trajectory planning. In path 

 
planning (often treated in a global setting) the objective is to generate 
a set of feasible (and optimal) waypoints from the start to the goal 
configuration without causing a collision with objects in the 
environment. These waypoints are then sequentially tracked by the 
autonomous vehicle to navigate through/in the environment and 
traverse the desired path. Several methods for global planning has been 
explored in the literature including cell decomposition (Roadmap 
Methods vs. Cell Decomposition in Robot Motion Planning 2007), 
potential field method (Roadmap Methods vs. Cell Decomposition in 
Robot Motion Planning 2007), adaptations of graph search methods 
like A* [10] and Dijkstra’s [4], variants of Rapidly-exploring Random 
Tree algorithms [5]. 

 
Global planning methods typically require a pre-computed map of the 
environment where objects and obstacles are typically static. The 
desired path from start to goal is computed offline considering only the 
static environment. Consequently, the effectiveness of global path 
planners is typically only measured based on their computational 
complexity and the major drawback is their inability to efficiently 
tackle dynamic objects in the environment. Some modifications to 
global planners exist which permit global map update based on sensory 
inputs. However, this results in slow processing due to the large 
computational complexity of the entire map being updated in real-time. 
On the contrary, the task performed by the trajectory planning or local 
planning algorithm is to ensure a physically realizable path from 
waypoint to waypoint. 

 
Local planning approaches like the Dynamic-Window Approach [2] or 
Time-Elastic Band [1] consider the proximity of the robot in the world 
to compute velocity profiles. This myopic view of the world leads 
faster and simpler computation at the expense of subpar optimization 
with the local minima. Frequently, motion-planning frameworks often 
engender a mixture of global-planning (typically performed offline) 
coupled with a sensor-based local (re-)planning (typically done online) 
which requires physical testing. 

 
Verification and validation of the motion-planning algorithms are 
essential for the successful deployment of intelligent autonomous 
vehicles – which requires either physical testing or simulation. 
Currently, challenges ranging from lack of sophisticated computation 
platform/sensors/infrastructure etc. to the usual limitations of 
time/space/cost limit physical testing and validation on actual 
autonomous vehicles. In such situations, simulation-based testing 
environments offer the opportunity to exploit comprehensive “what- 
if” analyses and scenario-based coverage. Ultimately, the scale and 
scope of verification and validation is limited solely by simulation- 
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fidelity – nonetheless this fundamental inability to bridge the sim-to- 
real gap offers a real barrier and limits deployments. With the recent 
development of scaled vehicles offer a fair alternative to physically 
validate the algorithms while retaining the benefits of low-cost and 
(relative) ease of testing. They offer an opportunity of verifying the 
behavior and performance of blended global/local motion-planning 
while also examining the tradeoffs of simulation vs physical testing 
(and bridging the sim-to-real gap in the context of these scaled 
autonomous vehicles). 

 
For example, Marin-Plaza et al [6] analyzed the performance of an 
Ackermann steered non-holonomic wheeled vehicle blending 
Dijkstra’s global planning with a Time Elastic Band (TEB) local 
planner. In our work paper, we explore this dimension even further by 
using a 1/10th scale RC vehicle, operated through Robot Operating 
System (ROS), in a Gazebo-based simulation as well as on the actual 
F1/10 hardware vehicle. The path planning algorithms developed for 
this analysis were Rapidly Exploring Random Tree (RRT) and Rapidly 
Exploring Random Tree* (RRT*) which is developed in Python and 
provides the collision-free, kinematically feasible waypoints between 
the start and goal configurations in the environment. The robot 
navigation through the environment has been performed using the TEB 
local planner. We compare and contrast the differences in the 
performance of the simulated system against the actual system with 
both motion-planning techniques. 

 
Literature Review 

 
Over the years, there has been a tremendous amount of research and 
experimentation for applying different techniques and strategies for 
motion planning for mobile robots. These implementations can range 
from offline/online trajectory optimization, or fusion of both the 
techniques to tackle dynamic obstacles in the environment. The 
paradigm put forward by global planning alone is to facilitate offline 
trajectory generation from one point to another in static environments 
which are highly map dependent. This is well highlighted by E. G. 
Tsardoulias et.al [11] in their study exploring global planners for 
motion planning ranging from Occupancy Grid Maps (OGMs): 
Probabilistic Roadmaps (PRMs), Visibility Graphs (VGs), Rapidly 
exploring Random Trees (RRTs) and Space Skeletonization. 

 
However, in the real world, unless for a specific controlled 
environment, it is not feasible for a motion planning application to 
strictly rely on offline optimization methods and not consider dynamic 
obstacles in its path. This is where the paradigm of local planning made 
massive strides enabling robot motion in dynamic and highly uncertain 
environment. Development of local planners started from simple 
methods like edge detection to generated contour path around the 
obstacles and potential field methods simulating repulsive forces from 
the obstacles while the goal position entails an attractive force [6]. Post 
these earlier approaches and with the increase in onboard computing 
power, newer instantaneous methods like Vector Field Histogram and 
Dynamic Window approach started becoming more popular. [7] 

 
As an alternative to the Dynamic Window approach, the Time-Elastic 
Band approach enabled local planning for car-like robots while 
providing with computational benefits and much more optimal 
trajectory as highlighted by the observations put forward by 
Christopher et al. [1] in their study and comparative analysis of the two 
motion planners. On top of that, a ROS based library specifically 
designed to implement TEB local planner on car-like robots made it 

the obvious choice for local planning on our scaled autonomous 
vehicle. 

 
Offline Trajectory Optimization with RRT and RRT* 

 
Unlike traditional approaches to motion planning like grid-based or 
interval-based search, the RRT and RRT* algorithms do not have 
existing nodes between the start and endpoints. Thus, these algorithms 
have to create both the graph and path for navigation. RRT and RRT* 
are one of the most popular sampling-based probabilistic algorithms 
for motion planning [3]. 

RRT algorithm 
 

The rapidly exploring random tree algorithm is a motion planning 
algorithm which primarily satisfies the single query applications [11]. 
While the versions of this algorithm are available for 2D and 3D 
motion planning both, for our purpose we will use the 2D and single 
query algorithm for our experimentation purposes. This algorithm uses 
an existing map, generates sample nodes, and starts building the tree 
(from a single branch to a fully developed tree), which eventually 
reaches our query configuration. A query configuration is usually a 
user-defined point in the map where we want our vehicle to reach, also 
known as goal configuration. At each iteration of building the tree, a 
random sample is generated anywhere in the map and a new 
connection is added to the nearest tree node in direction of the new 
sample by a pre-defined length. This can be seen in the following 
pseudo-code. 

As proved in previous experimentations [3], the path generated by 
RRT as seen in Figure[1] is cubic in nature as newly generated nodes 
are attached to the nearest neighbor. But the benefit of this algorithm 
is its high speed (in sampling-based planner category) and easy 
implementation. The path generated is not necessarily a traversable 
path by an Ackermann steered vehicle, some further smoothening is 
needed so that the path can be traversed by a vehicle in motion. 

 

 
Figure 1: RRT algorithm [3] 

 
RRT* algorithm 

 
RRT* is an optimized version of the RRT algorithm [5]. While 
iterating to sample through new nodes, the samples are not simply 
added to the nearest node in the tree, but a comparison is made among 
nearby tree nodes to calculate which tree node is connected to the start 
node more closely. An edge is created 
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between the new node and the existing node which reduces the overall 
cost of reaching the new node. For doing this a cost to reach a certain 
node must be maintained along with the node location. This extra 
calculation increases the space complexity and searching through the 
nearby nodes to find the most optimal node to connect to increases the 
computational complexity of the algorithm at each iteration. Hence this 
implementation is relatively computationally complex than simple 
RRT [3]. But as expected through this additional step, it creates the 
shortest possible path to the goal configuration. If we tune this 
algorithm well considering vehicle space, it is also able to give us a 
smooth path which can be traversed by an Ackermann steered vehicle, 
but this is not necessarily true in all cases. 

 

 
Figure 2: RRT* algorithm [3] 

 
TEB local planner 

 
The concept of elastic band deals with deforming the path generated 
by global planners as discussed previously in section II. This allows 
the vehicle to generate a path which avoids an obstacle in its path. The 
deformed path takes this obstacle into account and creates a safe 
trajectory around the path. Although it is clearly stated in [1] and [9], 
this does not consider vehicle dynamics, but this process shows great 
reliability for Ackermann vehicles which are navigating into the 
unexplored areas. This entire process, when visualized, can be 
compared to an elastic band. This problem is formulated in a weighted 
multi-objective optimization framework. The objectives for this 
framework are locally formed and deployed, which makes this system 
highly modular [10]. This makes Timed Elastic Band (also known as 
TEB) approach flexible as seen in Figure[3] and hence it is chosen as a 
local planner in our experimentation. The simulations and results of 
this planner have shown that it is a computationally efficient and robust 
approach for online obstacle avoidance [1]. From our previous 
experiments with this algorithm, we can proceed and rely on this 
algorithm for local trajectory planning as it shows good confidence in 
real hardware and can successfully avoid obstacles. 

 

 
Figure 3: TEB local planner 

 
Methodology and Implementation 

 
F 1/10th scaled autonomous vehicle hardware 

 
The F 1/10th scaled vehicle platform is conceptualized and developed 
by University of Pennsylvania F1tenth.org enabling students to 
develop and deploy autonomous driving functionalities simply and 
cost-effectively. We have used the second generation of the F1/10th 
platform car which is a modified remote-controlled TRAXXAS Ford 
Fiesta ST equipped with a lower-level chassis (refer Figure 4). This 
houses the brushless DC motor for powering the four wheels using a 
differential and propeller shaft along with a servo motor to enable 
steering. A platform is mounted on the base chassis with the help of 
M3 standoff screws which house all the autonomy components of the 
car including the Hokuyo 10LX LiDAR, the VESC MK3 speed 
controller, providing PWM signals based on the digital wheel velocity 
command inputs and the Nvidia TX2. The Nvidia TX2 SOC is the 
main brain of the entire system. It gives commands to the VESC which 
controls the Servo and the Brushless Motor. The TX2 is essentially a 
supercomputer on a module. We attach it to the Orbitty Carrier board 
so that we can access the TX2’s peripheral. An array of size 1x1080 
over an arc of 270° is obtained from the Hokuyo LiDAR which is used 
for Localization and Mapping. The system design is illustrated in 
Figure[5]. 

 

Figure 4: TRAXXAS f1/10th scaled vehicle 
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Figure 5: System Integration 

 
Gazebo simulator environment 

 
The environment selected for this project was a Gazebo simulation 
environment (refer Figure [6]) provided by the F1/10 research group 
from the University of Virginia that was customized to provide 
users with a realistic simulation environment for 
experimentation in the domains of perception, motion planning 
and control with a scaled Ackerman-steered vehicle. 
 

     
  Figure 6: UVA F 1/0th simulator 

 
The F1/10 Gazebo Simulator complements the hardware by emulating 
its modular properties and was created to help the user get started with 
the simulator out-of-the box. It builds on the MIT-Racecar gazebo 
simulation baseline implementation but also contains additional 
features like a world map, and Gazebo plugins that provide better 
odometry and control. The F1/10 console package provides you with 
the option of using either keyboard control or joystick control (built in 
compliance with Logitech F710 game controller). In particular, the 
F1/10 platform is based on  a  1/10  scale  Ackermann  steered  RC car 
whose kinematics need to be captured and used as part of the 
simulation – this is facilitated through the use of the TEB local planner. 
At this stage, we exploit the simulator support for Basic Navigation 
(Wall following with tunable PID control), Simultaneous Localization 
and Mapping (SLAM using Hector Mapping) to build occupancy grid 
RVIZ maps, as well paving the way for advanced navigation (using the 
TEB local planner) 

 

 
Global Planning with RRT and RRT* 
To develop a road map using the RRT or RRT* algorithm, it is essential 
to obtain a detailed map of the environment. The F1/10 autonomous 
vehicles come with an onboard LiDAR sensor. The car was manually 
teleoperated around the simulated environment with the help of keyboard 
control and at the same time, the LiDAR scans were processed through a 
ROS package for Hector SLAM (Simultaneous Localization and 
Mapping) algorithm. The figure shows the Gazebo environment used and 
the original map generated from SLAM (dimensions: 2048x2048 pixel). 
In order to represent the map in tkinter GUI library in Python for sampling-
based planning approaches using a road map, it was necessary to represent 
the occupancy grid map obtained from SLAM. To do that, a .PNG image 
file representing the SLAM map was first loaded onto MATLAB and 
cropped from 2048x2048 size to 300x200 dimension to represent the 
bounded region/environment. The coordinates of the corners of the walls 
were recorded approximately using the data-tip feature in MATLAB. The 
coordinates were then saved in a .CSV file and loaded in the tkinter GUI 
to represent the walls as rectangular obstacles. 
 

    
Figure 7: Hector SLAM of simulation environment  
 

   
Figure 8: SLAM Map --> Grid map (Python) 

 
Methodology for RRT and RRT * 

 
We implemented a Vanilla RRT algorithm since the controller used to 
drive the F1/10 car incorporates the steering action, meaning no 
explicit   consideration   for    vehicle    motion    is    necessary. Using 
the following algorithms from start configuration, where the vehicle is 
spawned in the environment, we generate the path using RRT and 
RRT* algorithms, respectively. 

https://en.wikipedia.org/wiki/Ackermann_steering_geometry
http://wiki.ros.org/teb_local_planner
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Figure 9: RRT algorithm Pseudo code [3] 

 

Figure 10: RRT* algorithm Pseudo code [3] 

The path obtained from these algorithms is in pixel coordinates and is 
multiplied by the resolution of the map (0.05m/pixel) to obtain the 
waypoints of the trajectory in meters. This is because the local 
coordinate frame of the F1/10 cars is in meters. 
The generated map has a co-ordinate frame originated from the spawn 
location of the vehicle in the environment. This co-ordinate frame is 
set to match the coordinate frame of the starting location of the vehicle. 
It further aids in generating waypoints from vehicle’s start 
configuration to the goal configuration. In case of Vanilla RRT, the 
path generated is cubic in nature, resulting into a non-feasible vehicle 
traversal. Such paths need to be smoothened for non-holonomic car 
like vehicles in order for trivial controllers to adapt to the cubic shaped 
nature of the path. To solve this problem, one of the solutions is to 
incorporate vehicle kinematics into path generation. Alternatively, a 
robust controller can also take care of the non-traversable paths by  
smoothening out vehicle motion while going over cubic path 
waypoints. A path generation algorithm like RRT* naturally generates 
a traversable path in most of the simple start and goal configurations. 
With large number of nodes, the path tends to get even smoother. 
Robust local planners like TEB can react to such path aberrations and 
make vehicle traversal easy. It has been observed that the path obtained 
from the RRT algorithm is not optimal and requires further smoothing 
while RRT* provides us with an optimal path. 

 

Figure [11] and [12] show a python-based map visualization, which 
converts the existing map into a 𝐶𝑓𝑟𝑒𝑒 space. The boundaries are bloated 
considering the vehicle width in real world, so that a vehicle would not 
select a RRT / RRT* node in the red region, when in reality these will act 
as a virtual obstacle which are too close to any boundary or obstacle. The 
white space in the figure is the traversable map by the vehicle. The nodes 
are getting populated only in the white region of the map. Figure [11] and 
[12] also shows the start and the end points of the vehicle in green and 
blue respectively. The branches connecting each point in the map is the 
generated RRT/ RRT* tree as a result of the respective algorithms. 
Figures [11] and [12] also highlight the path generated by the RRT and 
RRT* algorithms when different goal locations are provided to the 
vehicle. The path generated by RRT* varies in Figure [12] due to the 
nature of the RRT* algorithm enabling more optimized path from start to 
goal location. 
 

 
Figure 11: The trajectory between start → (0,0) and goal → (75,215) from RRT and 
RRT* (r) with 400 nodes 

Figure 12: The trajectory between start → (0,0) and goal → (-75,215) from RRT (l) 
and RRT* (r) with 400 nodes 

Local Planning with ROS Navigation Stack  

ROS Navigation Stack  

A ROS Navigation stack is a meta-package which is developed for 
navigating any custom robot to a given goal point by taking into 
consideration multiple sensor data inputs. It reduces the cumbersome task 
of the user to write their own codes of navigation elements (localization, 
mapping, control and planning). The basic functionality provided by the 
navigation stack is similar to a framework which perceives the sensor data 
(odometry, LiDAR data etc.) as input, provides a platform for the control 

RRT Pseudo code 
Qgoal //region that identifies success 
Counter = 0 //keeps track of iterations 
lim = n //number of iterations algorithm should run for 
G(V,E) //Graph containing edges and vertices, initialized as empty 
While counter < lim: 
    Xnew = RandomPosition() 
    if IsInObstacle(Xnew) == True: 
        continue 
    Xnearest = Nearest(G(V,E),Xnew) //find nearest vertex 
    Link = Chain(Xnew,Xnearest) 
    G.append(Link) 
    if Xnew in Qgoal:  
        Return G 
Return G 

RRT* Pseudo code 
Rad = r 
G(V,E) //Graph containing edges and vertices 
For itr in range(0…n) 
    Xnew = RandomPosition() 
    If Obstacle(Xnew) == True, try again 
    Xnearest = Nearest(G(V,E),Xnew) 
    Cost(Xnew) = Distance(Xnew,Xnearest) 
    Xbest,Xneighbors = findNeighbors(G(V,E),Xnew,Rad)  
    Link = Chain(Xnew,Xbest) 
    For x’ in Xneighbors 
        If Cost(Xnew) + Distance(Xnew,x’) < Cost(x’) 
            Cost(x’) = Cost(Xnew)+Distance(Xnew,x’) 
            Parent(x’) = Xnew 
            G += {Xnew,x’} 
    G += Link 
Return G 
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algorithm to make use of this sensor data, and outputs a velocity to the 
mobile base. In order to run the ROS navigation stack on our robot, a 
certain set of prerequisites need to be met. These range from having 
onboard compute capable of running ROS on Ubuntu, the knowledge 
pertaining to the frame transformations on the robot and publishing the 
sensor data using the appropriate ROS topics.  

 
Figure 13: ROS Navigation Stack 

 
 

Implementing the TEB local planner for online trajectory 
optimization in ROS 
This package implements an online optimal local trajectory planner for 
navigation and control of mobile robots as a plugin for the ROS 
navigation package. The initial trajectory generated by a global planner 
is optimized during runtime w.r.t. minimizing the trajectory execution 
time (time-optimal objective), separation from obstacles and 
compliance with kino-dynamic constraints such as satisfying 
maximum velocities and accelerations. The current implementation 
complies with the kinematics of non-holonomic robots (differential 
drive and car-like robots). Support of holonomic robots is included 
since ROS Kinetic version. The optimal trajectory is efficiently 
obtained by solving a sparse scalarized multi-objective optimization 
problem. The user can provide weights to the optimization problem in 
order to specify the behavior in case of conflicting objectives. 
 
Topics published by TEB local planner: 
 

~/global_plan (nav_msgs/Path) 

~/local_plan (nav_msgs/Path) 

~/teb_poses (geometry_msgs/PoseArray) 

~/teb_markers (visualization_msgs/Marker) 

~/teb_feedback (teb_local_planner/FeedbackMsg) 

 
 
 
 
 
 
 

Topics subscribed by TEB local planner: 

 
~/obstacles (costmap_converter/ObstacleArrayMsg) 

~/via_points (nav_msgs/Path) 

~/odom (nav_msgs/Odometry) 
 
 

Timed Elastic Band approaches the planning problem using a hyper- 
graph based nonlinear optimization technique and the implementation 
with an open-source C++ framework called general (hyper-)graph 
optimization (g2o) which solves graph based nonlinear optimization 
problems. 
 
Implementation of Navigation Stack/TEB local planner on UVA     
simulator: 

 
The implementation detail involves creating a SLAM map of the 
environment. For this purpose, a simple ROS based Hector Mapping 
approach has been used. This map is saved in PNG and YAML 
extensions which saves map grid data as well as meta data. A map node 
is created using ROS tools which is then used further for localization 
purpose. An advanced Monte Carlo localization technique has been 
used to locate the vehicle based on laser scan and odometry data. 
ROSLAUNCH based execution makes it easy to simultaneously open 
all the related nodes in ROS and making it a smooth process for 
implementing all these ROS based packages simultaneously. A TEB 
planner node is also executed using this ROS based tool. 

 

Figure 14: Process of Motion Planning 
 
Results and Discussion 

 
The results section shows the actual implementation of codes created 
by the team members to generate RRT/RRT* global planner and 
simulate the path-following in a Gazebo custom environment. To 
conclude the entire project, we can say that this mechanism can be 
deployed straight up on any environment given the dependencies are 
installed in a correct manner. The RRT and RRT* algorithms 
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generated based on given SLAM map result into the paths denoted 
by colored dots in the Figure [14].  

 
Figure 15: RRT and RRT* comparison 

 
These points are then translated into relevant coordinates in the 
SLAM map and a local TEB planner is used to navigate using this 
global plan as can be seen in the Figures [16] and [17]. Figure [16] 
and Figure [17] are a combined imagery of Gazebo simulator (left) 
and RVIZ simulator (right). The blue region in the left figure is the 
lidar scan originating from vehicle’s simulated lidar (It can be 
referred as scan region of the vehicle.) The color gradient image on 
the right in both figures is a potential gradient field spread out 
throughout the map to describing areas with least resistance (blue 
shaded region) and areas with high resistance or areas close to 
boundaries and obstacles (orange shaded region). This potential 
field is generated using the TEB local planner’s artificial potential 
field algorithm, which is an inbuilt tool which helps the local 
planner to avoid obstacles in the given map.  

 

Figure 16: RRT + TEB fusion on simulator 
 

Figure 17: RRT* + TEB fusion on simulator 
 

The path generated by RRT is observed to be more cubic and in 
contrast the path generated by RRT* appears to be smoother and more 
traversable. A cost function generated by TEB local planner is shown 
to be spread out throughout the map which gives the local planner an 
estimate of vehicle and obstacle poses. 
Due to the nature of the tree, it is observed that RRT* yield optimal 

yet computationally intensive paths. Furthermore, increasing the number 
of nodes also impacts the runtime. However, it has been observed that 
since the target configuration has been sampled at a probability of 10% 
around the actual goal configuration, the algorithms can ensure a feasible 
path with as low as 100 nodes. This would not be possible if the goal 
configuration is unknown and the algorithm is expected to explore the 
environment in all directions. Another reason why RRT* takes 
significantly longer to run is that, during rewiring, the algorithm compares 
against all the nodes in the tree to look for the optimal path cost [3]. This 
can be overcome if the rewiring approach is modified to look for only K-
nearest-neighbors to determine the optimal cost to reach the newly added 
vertex: 

 

 
 

Figure 19: RRT and RRT* with 300 nodes 
 

Figure 20: RRT and RRT* with 400 nodes 
 

From the paths from RRT and RRT*, it is observed that although a 
feasible path is always generated by both algorithms, RRT may 
generate different waypoints due to the probabilistic nature of the 
algorithm. Also, RRT generated paths are not always optimal. The path 
generated may not optimize even though the nodes are increased, once 
the goal is reached at a given number of nodes. In contrast, the path 
generated by RRT* is always optimal and due to its rewiring nature, 
as the number of nodes increase, the optimality of path also increases. 

Figure 18: Time taken by RRT and RRT* to compute path based on different 
nodes 
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Future work scope 
 

By fusing the global and local path planning techniques over the 
simulation environment, the vehicle can attain goal-to-goal 
navigation. As a continuation of our work, we would be 
implementing the test in real world under lab conditions and 
presenting our findings in the final manuscript. The following 
picture highlights the experimental setup for our real-world test. 
The MoCap cameras shown in the Figure [21] will be used for 
tracking the actual position in world frame and it will be used to 
compare the accuracy in path tracking by TEB local planner. 
 

 
 

Figure 21: Lab setup for experimentation 
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Definitions/Abbreviations 

 
RRT Rapidly Exploring Random 

Tree 

RRT* Rapidly Exploring Random 
Tree RRT 

ROS Robot Operating System 

TEB Timed Elastic Band 

GUI Graphical User Interface 

SLAM Simultaneous Localization 
and Mapping 

LiDAR Light Detecting and Ranging 

PRM Probabilistic Road Mapping 
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Updates in response to comments on MyTechZone portal 
 

 Comments by Reviewer #275489 
1. In Abstract, the reader is expecting the presentation of full-

scale real-world testing on the scaled vehicle. However, at 
the end of the paper it is presented only as a future work 
topic: 
Resolution: Abstract updated based on project progress. 

2. In page 5, pseudo codes for both RRT and RRT* algorithms 
seem identical: 
Resolution: This has been addressed in the form of Figures 
[9] & [10] 

3. Figure 9 and Figure 10 legends are identical. The number of 
nodes should be added: 
Resolution: The number of nodes have now been added to 
these figures. Refer Figures [11] and [12]. 

4. In Figure 10 there is a remarkable change of trajectory from 
RRT* algorithm, at the left of the center wall, which is not 
commented: 
Resolution: A paragraph above the figures now explains the 
reason for different paths. A further explanation is also 
provided in the results section. 

5. In References, the author of Reference 3 is suggested be 
added, as well as the date of page access: 
Resolution: Reference fixed according to the required 
format. 
 

  
 Comments by Reviewer #275493 

1. The paper should reflect scientific papers quality. For 
example, please refrain from using snapshots/screenshots for 
figures in scientific / technical papers: 
Resolution: Screenshots were removed, and figures were 
cleaned up. Many of the images are however essential for 
illustration of the concepts as this is primarily a simulation-
based implementation of motion planning. 

2. Pseudocodes of RRTs in page 5 - this should be written in 
either proper pseudocodes or flowcharts: 
Resolution: Changes made. 

3. Figure 11 should be enlarged: 
Resolution: Changes made, now Figure [12] 

4. Figure 14-18 - what is what in these figures? Where is the 
legend? Proper plotting should be done: 
Resolution: Paragraph before Figure [15] explains the details 
in the simulator (Figure [15]) along with detailed explanation 
of the process. 
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