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Abstract. Patient-specific left ventricle (LV) myocardial models have
the potential to be used in a variety of clinical scenarios for improved
diagnosis and treatment plans. Cine cardiac magnetic resonance (MR)
imaging provides high resolution images to reconstruct patient-specific
geometric models of the LV myocardium. With the advent of deep learn-
ing, accurate segmentation of cardiac chambers from cine cardiac MR im-
ages and unsupervised learning for image registration for cardiac motion
estimation on a large number of image datasets is attainable. Here, we
propose a deep leaning-based framework for the development of patient-
specific geometric models of LV myocardium from cine cardiac MR im-
ages, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset.
We use the deformation field estimated from the VoxelMorph-based con-
volutional neural network (CNN) to propagate the isosurface mesh and
volume mesh of the end-diastole (ED) frame to the subsequent frames of
the cardiac cycle. We assess the CNN-based propagated models against
segmented models at each cardiac phase, as well as models propagated
using another traditional nonrigid image registration technique. Addi-
tionally, we generate dynamic LV myocardial volume meshes at all phases
of the cardiac cycle using the log barrier-based mesh warping (LBWARP)
method and compare them with the CNN-propagated volume meshes.
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tration · Cine Cardiac MRI · Mesh Warping

1 Introduction

To reduce the morbidity and mortality associated with cardiovascular diseases
(CVDs) [3], and to improve their treatment, it is crucial to detect and predict the
progression of the diseases at an early stage. In a clinical set-up, population-based
metrics, including measurements of cardiac wall motion, ventricular volumes,
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cardiac chamber flow patterns, etc., derived from cardiac imaging are used for
diagnosis, prognosis and therapy planning.

In recent years, image-based computational models have been increasingly
used to study ventricular mechanics associated with various cardiac conditions. A
comprehensive review of patient-specific cardiovascular modeling and its applica-
tions is described in [17]. Cardiovascular patient-specific modeling includes a ge-
ometric representation of some or all cardiac chambers of the patient’s anatomy
and is derived from different imaging modalities [8].

The construction of patient-specific geometric models entails several steps:
clinical imaging, segmentation and geometry reconstruction, and spatial dis-
cretization (i.e., mesh generation) [12]. For example, Bello et al. [2] presented
a deep learning based framework for human survival prediction for patients di-
agnosed with pulmonary hypertension using cine cardiac MR images. Here, the
authors employ a 4D spatio-temporal B-spline image registration method to es-
timate the deformation field at each voxel and at each timeframe. The estimated
deformation field was used to propagate the ED surface mesh of the right ventri-
cle (RV), reconstructed from the segmentation map, to the rest of the timeframes
of a particular subject. Cardiac MRI is a current gold standard to assess global
(ventricle volume and ejection fraction) and regional (kinematics and contrac-
tility) function of the heart under various diseases. In particular, cardiac MRI
enables the generation of high quality myocardial models, which can, in turn, be
used to identify reduced function.

In this work, we propose a deep learning-based pipeline to develop patient-
specific geometric models of the LV myocardium from cine cardiac MR im-
ages (Fig. 1). These models may be used to conduct various simulations, such
as assessing myocardial viability. In our previous work [19], we introduced a
preliminary, proof of concept, CNN-based 4D deformable registration method
for cardiac motion estimation from cine cardiac MR images, using the ACDC
dataset [4]. Here, we demonstrate the use of the CNN-based 4D deformable
registration technique to build dynamic patient-specific LV myocardial models
across subjects with different pathologies, namely normal, dilated cardiomyopa-
thy (DCM), hypertrophic cardiomyopathy (HCM) and subjects with prior my-
ocardial infarctions (MINF). Following segmentation of the ED cardiac frame,
we generate both isosurface and volume LV meshes, which we then propagate
through the cardiac cycle using the CNN-based registration fields. In addition,
we demonstrate the generation of dynamic LV volume meshes depicting the
heart at various cardiac phases by warping a patient-specific ED volume mesh
based on the registration-based propagated surface meshes, using the LBWARP
method [15]. Lastly, we compare these meshes to those obtained by directly
propagating the ED volume mesh using the CNN-based deformation fields.

2 Methodology

2.1 Cardiac MRI Data

We use the 2017 ACDC dataset that was acquired from real clinical exams. The
dataset is composed of cine cardiac MR images from 150 subjects, divided into
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Fig. 1: Overview of the proposed CNN-based workflow to generate patient-
specific LV myocardial geometric model.

five equally-distributed subgroups: normal, MINF, DCM, HCM and abnormal
RV. The MR image acquisitions were obtained using two different MR scanners
of 1.5 T and 3.0 T magnetic strength. These series of short axis slices cover the
LV from base to apex such that one image is captured every 5 mm to 10 mm
with a spatial resolution of 1.37 mm2/pixel to 1.68 mm2/pixel.

2.2 Image Preprocessing

We first correct for the inherent slice misalignments that occur during the cine
cardiac MR image acquisition. We train a modified version of the U-Net model
[13] to segment the cardiac chambers, namely LV blood-pool, LV myocardium
and RV blood-pool, from 2D cardiac MR images. We identify the LV blood-
pool center, i.e., the centroid of the predicted segmentation mask and stack
the 2D cardiac MR slices collinearly to obtain slice misalignment corrected 3D
images [7, 19].

2.3 Deformable Image Registration

CNN-based Image Registration. We leverage our 4D deformable registra-
tion method described in [19] which employs the VoxelMorph [1] framework to
determine the optical flow representation between the slice misalignment cor-
rected 3D images. The CNN is trained using the following loss function:

L = Lsimilarity + λLsmooth, (1)

where Lsimilarity is the mean squared error (MSE) between the target frame and
the warped frame, Lsmooth is the smoothing loss function to spatially smooth
the registration field, and λ is the regularization parameter, which is set to 10−3

in our experiments. Inspired by Zhu et al. [20], we use the Laplacian operator in
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the smoothing loss function as it considers both global and local properties of
the objective function y = x2 instead of the traditional gradient operator which
considers only the local properties of the function y = x2. A detailed comparison
of both these smoothing loss functions with respect to cardiac motion estimation
from cine MR images is found in [19].

The 4D cine cardiac MRI datasets are composed of 28 to 40 3D image frames
that cover the complete cardiac cycle. For this discussion, we shall refer to the
3D images as IED, IED+1,...,IED+NT−1 where IED is the ED image frame, and
NT is the total number of 3D images. We employ the fixed reference frame
registration method, wherein the task is to find an optical flow representation
between the image pairs {(IED, IED+t)}t=1,2,3,...,NT−1.

During training, we use 110 of the total 150 MR image dataset for train-
ing, 10 for validation and the remaining 30 for testing. The CNN for cardiac
motion estimation is trained using an Adam optimizer with a learning rate of
10−4, halved at every 10th epoch for 50 epochs. Both the U-Net model used for
segmentation and slice misalignment correction, and the VoxelMorph network
trained to estimate cardiac motion were trained on NVIDIA RTX 2080 Ti GPU.

Conventional Image Registration. We compare the performance of the Vox-
elMorph framework with that of the B-spline free form deformation (FFD) non-
rigid image registration algorithm [14]. This iterative intensity-based image reg-
istration method was implemented using SimpleElastix [9, 11], which enables
a variety of image-registration algorithms in different programming languages.
The FFD algorithm was set to use the adaptive stochastic gradient descent
method as the optimizer, MSE as the similarity measure and binding energy as
the regularization function. The FFD-based image registration was optimized in
500 iterations, while sampling 2048 random points per iteration, on an Intel(R)
Core(TM) i9-9900K CPU.

2.4 Mesh Generation and Propagation

We use the manual segmentation map of the ED frame to generate isosurface
meshes. The slice thickness of each MRI image slice is 5 mm to 10 mm; however,
in order to obtain good quality meshes, the segmentation maps were resampled
to a slice thickness of 1 mm. We use the Lewiner marching cubes [10] algorithm to
generate the meshes from the resampled segmentation maps of the ED frames, on
an Intel(R) Core(TM) i9-9900K CPU, and then simplification techniques, such as
r-refinement and edge collapse, were performed using MeshLab 2020.07 [5]. The
simplification techniques are repeated multiple times to reduce the number of
vertices until the mesh has been fully decimated while preserving the anatomical
integrity and aspect ratio of the isosurface meshes.

Volume meshes of the initial surface meshes at the ED phases for four pa-
tients with various heart conditions were generated based on the decimated
patient-specific surface meshes using Tetgen 1.6 [16]. In particular, a constrained
Delaunay mesh generation algorithm was used to generate tetrahedral meshes
based on the triangulated surface meshes. Steiner points were added within the
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boundary of the surface mesh so that the tetrahedra maintained a radius-edge
ratio of 1.01 and a maximum volume of 9 mm3 as needed for generation of valid
meshes [16]. Volume mesh quality improvement was performed using the fea-
sible Newton method in Mesquite [18]. This method iteratively minimizes the
quadratic approximation of a nonlinear function and converges linearly toward
a local minimum while performing an Armijo line search to ensure feasibility
of the elements; feasibility in this case refers to a valid, non-inverted element.
The volume mesh converged to the highest quality indicated by the minimum
average scaled Jacobian of the elements in the mesh.

To demonstrate the VoxelMorph-based motion extraction and propagation
to build patient-specific LV myocardial models, we generate two sets of volume
meshes at each cardiac frame for each patient in each pathology group (Fig. 2).

Fig. 2: Pipeline to generate dynamic volume meshes (at cardiac frames (ED +
k)) by direct CNN-based propagation, as well as volume mesh warping based on
dynamic boundary meshes.

The first set is produced by propagating the volume meshes at the ED frame
to all the subsequent frames of the cardiac cycle using the deformation field esti-
mated by the VoxelMorph-based registration method. For the second set, the ED
volume mesh generated with Tetgen was used to generate the volume meshes cor-
responding to the other cardiac phases. We employed the LBWARP method [15]
to deform the ED volume mesh onto the target surface mesh for the new cardiac
phase (Fig. 3). The method computes new positions for the interior vertices in
the ED volume mesh, while maintaining the mesh topology and point-to-point
correspondence [15]. The simplification of the ED isosurface meshes, generation
of the ED volume meshes and generation of the volume meshes corresponding
to the other cardiac phases using the LBWARP method were performed on a
machine equipped with AMD FX(tm)-6300 Six-Cores processor and a NVIDIA
GeForce GTX 1050 Ti graphics card.

Briefly, LBWARP first calculates a set of local weights for each interior vertex
in the initial ED volume mesh based on the relative inverse distances from each of
its neighbors. The projected Newton method is used to solve the strictly convex
optimization problems. For each set of local weights, a sparse system of linear
equations is formed specifying the representation of each interior vertex in terms
of its neighbors. Next, the boundary vertices in the ED surface mesh are mapped
onto the new surface boundary. Finally, the interior vertices in the ED volume
mesh are repositioned by solving the original system of linear equations with
new right-hand side vectors to reflect the updated positions of the boundary
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Fig. 3: Warped volume meshes for a patient with a healthy heart generated using
LBWARP at three cardiac phases (a) end-diastole; (b) end-systole; and (c) mid-
diastole; (d-f) Long axis cutaway view of volume meshes at the three cardiac
phases, respectively; (g-i) short-axis cutaway view of volume meshes at the three
cardiac phases, respectively.

nodes, while maintaining edge connectivity and point-to-point correspondence,
and ultimately yielding the volume meshes that correspond to each new cardiac
phase.

3 Results and Discussion

To evaluate the registration performance, the LV isosurface (generated from
the ED image segmentation map) is propagated to all the subsequent cardiac
frames using the deformation field estimated by FFD and VoxelMorph. We then
compare these isosurfaces to those directly generated by segmenting all cardiac
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Table 1: Mean Dice score (%) and mean absolute distance (MAD) (mm) between
FFD and segmentation (FFD-SEG), CNN and segmentation (CNN-SEG), and
FFD and CNN (FFD-CNN) results. Statistically significant differences were eval-
uated using the t-test (* for p < 0.1 and ** for p < 0.05).

Normal MINF DCM HCM
Dice MAD Dice MAD Dice MAD Dice MAD

FFD-Segmentation 74.80 1.53 77.69 1.09 80.41 0.91 77.39 1.97
CNN-Segmentation 80.41** 1.15 81.21* 0.87 83.39* 0.91 82.46* 1.09

FFD-CNN 77.81 1.13 82.12 0.75 81.67 0.97 77.34 1.77

image frames using a modified U-Net model [13] (Section 2.2), which we refer to
as the “silver standard”.

Table 1 summarizes the performance of the FFD and VoxelMorph registration
by assessing the Dice score and mean absolute distance (MAD) between the
propagated and directly segmented (i.e., “silver standard”) isosurfaces.

Fig. 4 illustrates the distance between the three sets of isosurfaces (seg-
mented, CNN-propagated and FFD-propagated) for one patient randomly se-
lected from each pathology. The MAD between the surfaces is less than 2 mm
at all frames, with the CNN-propagated isosurfaces being closest to the “sil-
ver standard” segmented surfaces. Fig. 5 illustrates the model-to-model distance
between the FFD-propagated and CNN-propagated isosurface meshes at end-
systole (ES) and mid-diastole frames for subjects from all four pathologies.

Since the CNN-propagated isosurfaces are in closer agreement to the “silver
standard” segmented surfaces when compared to the FFD-propagated isosur-
faces, we use the CNN-propagation method to generate the volume meshes at
each phase of the cardiac cycle. As mentioned in Section 2.4 and shown in Fig.
2, we generate two sets of volume meshes at each frame of the cardiac cycle.
Fig. 6 shows the mean node distance between the two sets of volume meshes
across all cardiac frames for one subject in each of the four pathologies. Fig. 6
also shows the mean node distance between the two sets of volume meshes at
each frame of the cardiac cycle for the four subjects. It can be observed that the
two sets of volume meshes are in close agreement with each other, exhibiting a
mesh-to-mesh distance within 0.5 mm.

We also briefly investigated the effect of using initial-to-final frame vs. ad-
jacent frame-to-frame registration to extract the cardiac motion throughout the
cycle. Although the sequential registration method estimates smaller deforma-
tion between two consecutive, adjacent image frames compared to the larger
deformations estimated by the initial-to-final frame registration, their concate-
nation across several frames accumulates considerable registration errors. As
such, when using these concatenated registration-predicted deformation fields
to propagate the ED isosurfaces and volume meshes to the subsequent cardiac
phases, the Dice score and MAD between the propagated and segmented geome-
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Fig. 4: MAD between FFD- and CNN-propagated, and segmented (i.e., “silver
standard”) isosurfaces at all cardiac frames for all patient pathologies.

Fig. 5: Model-to-model distance between the isosurface meshes generated from
FFD- and the CNN-propagation method for all patient pathologies at end-systole
and mid-diastole frames.

tries rapidly deteriorate, along with the quality of the propagated surface and
volume meshes.

Following the generation of the dynamic, multi-phase meshes, we also as-
sessed the quality of the ES meshes. One set of ES meshes was generated by
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Fig. 6: Mean node-to-node distance at each cardiac frame between the CNN-
propagated and LBWARP-generated volume meshes (left); mean (std-dev) node
distance across all frames for each patient pathology (right).

propagating the ED mesh using the CNN-based extracted motion, while the
other set of ES meshes was generated by warping the ED volume mesh based on
the dynamic boundary meshes via the LBWARP approach. Unlike the starting
ED phase meshes, the ES phase meshes contain some lower quality elements
indicated by the lower minimum scaled Jacobian values, but are still suitable for
use in simulations.

Moreover, although the proposed VoxelMorph-based cardiac motion extrac-
tion method can capture the frame-to-frame motion with sufficient accuracy,
as shown in this work, our ongoing and future efforts are focused on further
improving the algorithm by imposing diffeomorphic deformations [6]. This im-
provement will help maintain high mesh quality and prevent mesh tangling and
element degeneration, especially for the systolic phases.

4 Conclusion

In this work, we show that the proposed deep learning framework can be used to
build LV myocardial geometric models. The proposed framework is not limited
to any pathology and can be extended to LV and RV blood-pool geometry.
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