
Remote Tracking of Dynamic Sources under
Sublinear Communication Costs

Jihyeon Yun
Computer Science and Engineering

Korea University, Korea
Email: jihyeonyun@korea.ac.kr

Atilla Eryilmaz
Electrical and Computer Engineering

The Ohio State University, USA
Email: eryilmaz.2@osu.edu

Changhee Joo
Computer Science and Engineering

Korea University, Korea
Email: changhee@korea.ac.kr

Abstract—We study the remote monitoring of multiple sen-
sors with evolving states following a Wiener Process under
communication cost. We assume that the communication cost
is sublinear such that the cost decreases with the number of
simultaneous state updates. Such sublinear structures emerge
in various settings, such as frame aggregation, and give rise
to interesting unexplored tradeoffs between: updating a smaller
subset of the processes earlier at a higher cost-per-process; and
updating a larger subset of them later at a lower cost-per-process.
We attack this problem by first providing two competitive
benchmark strategies of All-at-once and Multi-threshold policies.
Then, we propose a novel strategy of MAX-k policy that not
only includes the two benchmark threshold-based policies as
special cases, but also improves over them by better exploiting
the aforementioned tradeoff. Further, we develop the GPSO
optimization technique to develop an online learning algorithm
that adaptively optimizes the parameters of MAX-k policy. We
demonstrate that the proposed scheme outperforms the well-
known online learning algorithm based on UCB index.

I. INTRODUCTION

In increasingly many domains of growing importance, we
encounter the need for keeping track of many independently
evolving processes at a remote location. A common theme
in such environment is the need for efficiently transferring
multiple different evolving states from a transmitter to a
receiver over a communication channel so that their states
can be closely tracked at the receiver, while at the same time
maintaining low communication costs. In this paper, we attack
this generic problem in the key case of N independent Wiener
Processes describing the source dynamics.

This problem is closely related to the Age of Information
(AoI) optimization, which schedules transmissions to optimize
information freshness between transmitters and receivers. The
information freshness can be measured by AoI metric which
indicates the elapsed time from the latest transmission. For
one transmitter-receiver pair, a scheduling policy that manages
arrived samples and decides which packet is transmitted to

C. Joo is the corresponding author.
The work of J. Yun and C. Joo is supported in part by the NRF grant

funded by the Korea government (MSIT) (No. NRF-2017K1A3A1A19070720
and No. NRF-2017R1E1A1A03070524), and in part by a Korea University
Grant.

The work of A. Eryilmaz is supported by the ONR Grant N00014-19-
1-2621; NSF grants: CNS-NeTS-1717045, CNS-ICN-WEN-1719371, CNS-
SpecEES-1824337, CNS-NeTS-2007231; and the DTRA grant: HDTRA1-
18-1-0050.

the receiver has been studied to minimize AoI in [1]. For
multiple transmitter-receiver pairs, overall information age
is minimized considering set of links that share a common
channel in [2]. In [3], optimal scheduling policy to minimize
AoI in multi-source system with random delay has been
investigated under a constraint that only one source can be
updated at a time.

In related works in this domain, a remote estimation sys-
tem that considers average Mean Square Error (MSE) over
stochastic process is analyzed with different constraints in [4]–
[11]. A joint optimization problem of scheduling and remote
estimation with a communication cost is formulated in [4] over
finite time horizon. An energy harvesting sensor is considered
in [5] and the number of transmissions is constrained in [6].
It is further extended to the case of noise channel in [7].
Over an infinite time horizon, the cost minimization in remote
estimation system is considered under a packet drop channel
in [8], and under a communication cost in [9]. Specifically,
in [10], one-dimensional Wiener Process is considered to
minimize MSE under a sampling frequency constraint over an
infinite-time horizon. Further, cost minimization over multi-
dimensional Wiener Processes is considered in [11] with
constraint on frequency of communication.

In our work, we focus on the remote tracking of multi-
dimensional Wiener Processes when the communication cost
function takes a sublinear form. Such a sublinear structure
necessitates the balancing of interesting new tradeoffs be-
tween: updating the current subset of the processes now but
at a higher cost per process; and updating a larger subset
of the processes later but at a lower cost per process. We
attack this problem by first discussing competing benchmark
strategies (All-at-once and Multi-threshold). Then we propose
a novel strategy, called MAX-k policy that aims to optimize
the aforementioned tradeoff, and discuss its gains over the
benchmarks. The basic MAX-k policy design requires the
availability of the time-averaged mean-squared-error and the
communication cost functions, which are often unknown (and
intractable to obtain analytically). This motivates us next to
study a variation to MAX-k that releases this assumption so
that the policy can solve for its optimal parameter selection
by learning and adapting to its observations. To that end, we
develop a learning mechanism, called MAX-k-GPSO policy,
which evaluates potential solutions and updates them toward

the optimal solution. We demonstrate that this new policy can
converge significantly faster than its UCB-based counterpart.

The remainder of the paper is organized as follows. The
system model is described in Section II. We describe two
different threshold-based policies and develop a generalized
policy, MAX-k, and empirically observe their performance
in Section III. Then, the algorithm to optimize parameters in
MAX-k policy, MAX-k-GPSO, is developed in Section IV. In
Section V, we evaluate the performance of MAX-k-GPSO and
compare it with its UCB-based counterpart through simula-
tions. Finally, in Section VI, we summarize our contributions.

II. SYSTEM MODEL

We consider a remote estimation system with N sensors
with randomly evolving states at a node that a remote receiver
wants to track. The value of each sensor follows an i.i.d Wiener
Process. The transmitter has access to sensor state values and
sends them to the receiver through a communication channel
at a cost(defined below).

The transmitter can decide when and of which sensors it
sends the state value to the receiver. Using the most recently
received value for each sensor i, the receiver tracks all N
states. Associated with the updates, there are two different
types of system cost. One is the estimation cost due to
stale sensor values, and the other is the update cost due to
transmissions. Our goal is to minimize the total average system
cost given that the transmission cost is a nonlinear function
of the number of simultaneous updates, which is the case for
many scenarios (as will be discussed).

We now formally describe our problem in the following.
Let X1(t), X2(t), · · · , XN (t) be independent standard Wiener
Processes evolving in continuous time, where Xi(t) is the true
state value of sensor i at time t. Let uit ∈ {0, 1} denote the
decision variable for the transmitter to update the receiver with
the state of sensor i at time t: if uit = 1, the transmitter sends
Xi(t) to the receiver, and if uit = 0, it does not. Multiple
sensor values can be updated simultaneously. Let nt denote
the number of sensor values transmitted at time t, i.e., nt =∑N
i=1 u

i
t. Let X̂i(t) denote an estimated value for Xi(t) at the

receiver, which evolves as

X̂i(t) =

{
Xi(t), if uit = 1,
Xi(t

′), if uit = 0,

where t′ be the time of the latest update for sensor i. We
assume X̂i(0) = 0. The estimation cost reflects information
staleness through the estimation error, which is defined as
Ei(t) = Xi(t)− X̂i(t). We use the squared error sum for the
estimation cost at time t as

∑
i E2
i (t). It can be reduced by

frequently updating the sensor values, which, however, incurs
a competing cost of transmission. In particular, we consider a
transmission cost function that is sublinear in the number of
transmitted sensor values. Theoretically, this is supported by
the information theoretic foundation that encoding more infor-
mation into the transmission increases the coding rate (since
the codeblock length increases). Practically, this is supported
by the fact that sending multiple updates at once allow the

use of less overhead in each transmission (for synchronization,
probing, channel estimation, etc.). Accordingly, we model the
sublinear transmission cost as

f(nt) = c̄ · (nt)α · δ(t), (1)

where c̄ > 0 and 0 < α ≤ 1 are some constants, and δ(t) is
the impulse function. We set zero cost for no update f(0) = 0.

Our objective is to minimize the expected average system
cost R that combines both the estimation cost and the trans-
mission cost, defined as

R = lim
T→∞

E

[
1

T

∫ T

t=0

(
N∑
i=1

E2
i (t) + f(nt)

)
dt

]
. (2)

Similar, but different, problems have been addressed in the
literature. It is shown that a threshold policy achieves the
optimal performance in different one-dimensional stochastic
processes [4]–[10]. In the multi-dimensional case, a threshold
policy is shown to be optimal when it samples multiple
Wiener Processes all together [11]. From earlier results, we are
motivated to define and optimize our solution in a broader class
of threshold policies that accommodates the above cases but
also extends them to improve the performance in our generic
setting. Our formulation differs from the previous works in
that we consider the unexplored case of sublinear form of the
transmission cost, which is of important in practice and also
generates interesting new characteristics in the design.

III. BENCHMARK THRESHOLD-BASED POLICIES

We first consider two threshold policies that appeared in the
literature. Then, we generalize them with a parameter, which
makes the two policies are extreme cases. We show that neither
extreme policy is optimal with transmission cost (1). For ease
of explanation, we introduce a notion of predicted estimation
error Ẽi(t), which is the predicted error before the transmitter
makes a decision, assuming that it does not update the value
of sensor i at time t, i.e., Ẽi(t) = Xi(t)−Xi(t

′).

A. All-at-once policy [11]
All-at-once policy that appeared in [11] updates all sen-

sor values simultaneously when the transmitter updates the
receiver, i.e., it has the restriction of nt ∈ {0, N}. It has been
shown in [11] that an optimal policy makes an update decision

only if
√∑

i Ẽi(t)2 ≥ γall with γall = 4
√

2(N + 2)f(N).
Under the policy, the optimal average cost denoted by Rall

can be obtained as Rall =
√

2N2f(N)
N+2 .

B. Multi-threshold policy
Another natural extreme policy that we consider is Multi-

threshold policy, under which an update decision for each
sensor is determined independently of the others. In Multi-
threshold policy, uit = 1 when |Ẽi(t)| ≥ γmul. Otherwise,
uit = 0. In this case, clearly the optimal policy for the single
sensor is of threshold type, and its behavior has been well
studied in [10]. We have the optimal average cost under Multi-
threshold policy, which is denoted by Rmul, as Rmul =√

6
3

∑N
i=1

√
f(1) with optimal threshold γmul = 4

√
6f(1).

Comparing the two costs of Rall and Rmul along with (1),
All-at-once policy has a lower cost when α < logN

N+2
3 . Note

that All-at-once policy is restricted in its updates and thus it
would have higher estimation cost than Multi-threshold policy.
Despite the handicap, it can achieve overall better performance
if the benefit of simultaneous updates is large (i.e., when
α is small). This observation motivates us to investigate the
trade-off between the estimation cost and the transmission cost
through a generalized version of the two policies.

C. A generalized threshold-based policy: MAX-k policy

We generalize All-at-once policy and Multi-threshold policy
as follows. At time t, let {πit}Ni=1 denote the permutation of
sources in the order of the largest predicted estimation error
first, which means Ẽπi

t
≥ Ẽπi+1

t
. Also, let At(k) denote the first

k elements of the permutation, i.e., At(k) = {π1
t , π

2
t , . . . , π

k
t }.

Definition 1. MAX-k policy is a threshold-based policy that
updates k out of N sensor values as

uit =

{
1, if

√∑
j∈At(k) Ẽj(t)2 ≥ γ and i ∈ At(k),

0, otherwise.

The optimal threshold γ(k) is defined as the value of γ, with
which MAX-k policy achieves the minimum average cost.

We note that MAX-k policy becomes All-at-once policy
when k = N , and Multi-threshold policy when k = 1,
i.e., γ(N) = γall and γ(1) = γmul. An interesting ques-
tion is whether this generalization can improve the average
cost performance of the other two policies, and if so under
what circumstances. It is also of interest to develop methods
that can find the optimal k and γ(k) without knowledge of
sensor dynamics or transmission cost functions. While we
will investigate these questions in the rest of the paper, we
first numerically evaluate the performance of MAX-k policy
with different transmission cost functions. Interestingly, with
a certain cost function, we can minimize the total cost by
selecting an appropriate k ∈ {2, · · · , N − 1}.

We conduct simulations for a system with N sensors. For
All-at-once policy and Multi-threshold policy, we use their op-
timal threshold levels γall and γmul, respectively. For MAX-
k policy, we empirically find the best-performing integer
threshold γ for each k ∈ [N] where [N] := {1, 2, · · · , N}.

Fig. 1 shows the average cost of MAX-k policy with
different α when N = 7. For each α, the best-performing
k value of MAX-k policy is marked by a cross. Recall that
Multi-threshold policy and All-at-once policy is the same as
MAX-1 policy and MAX-7 policy, respectively. We highlight
that in general, neither Multi-threshold policy nor All-at-
once policy is optimal, and MAX-k policy depends on α,
i.e., k = 2 when α = 0.75, k = 4 when α = 0.5, and
k = 5 when α = 0.25: best-performing k increases to N
as α decreases to 0. All-at-once policy would be the best
policy if the transmission cost is irrelevant to the number of
simultaneous transmissions, i.e., when α = 0.

Figure 1. Average cost of MAX-k
policy.

Figure 2. Average cost of three
policies with α = 0.5.

We further compare the performance of the policies with
a larger number of sensors. Fig. 2 shows that as the num-
ber of sensors increases, the average cost linearly increases
under Multi-threshold policy. In contrast, the cost increases
sublinearly under All-at-once policy and MAX-k policy. It
is expected that MAX-k policy achieves the lowest average
cost, since MAX-k policy is a generalization of the others.
Nevertheless, we highlight that the performance gap enlarges
as the number of sensors increases.

IV. OPTIMIZING MAX-k POLICY

For the generalized MAX-k policy, it is essential to find
the best-performing k and the corresponding threshold level
γ(k) for the optimal performance. Let k∗ and γ(k∗) denote the
best-performing k and the corresponding optimal threshold,
respectively. Unfortunately, it is not tractable to find an ana-
lytical solution to this problem due to the complex and highly
coupled dynamics that exist in the system evolution. Moreover,
we are interested in finding the solution without knowledge of
the transmission cost function or the statistics of the Wiener
Processes. This motivates us to approach the problem as an
online learning problem for (k∗, γ(k∗)), where k∗ ∈ [N].

In our scenarios, there is a certain structure of average cost
function. For example, we empirically observed that for a fixed
k, if γ′ < γ′′ ≤ γ(k), then the average cost of (k, γ′) is higher
than the average cost of (k, γ′′). This implies that we may
develop learning mechanisms faster if we use the underlying
structure of the cost function. In our setup, however, the struc-
ture of the cost function is not explicitly known. Moreover, the
space (k, γ) over which we must find the optimal parameter
is a mixed (discrete, continuous) space. These characteristics
prevent us from using existing approaches. In the next section,
we investigate a novel learning strategy that employs multiple
points to search the space.

A. MAX-k policy optimization with GPSO

Assuming that the underlying average cost function is
smooth, we employ the Particle Swarm Optimization (PSO)
technique [12]. The PSO method is a population-based opti-
mization method. It maintains a population of particles which
are constitutive of a swarm where each particle represents
a potential solution. Each particle moves around the search
space, guided by two positions: the best position among the
visits of the particle itself, and the best position among the

visits of all particles. Repeating the guided movements in this
manner allows the swarm of particles to pursue an optimal
solution as a group. PSO has several attractive features: (i) it
is easy to implement, (ii) it needs no gradient information of
the objective function, and (iii) it allows real-value parameters.
Despite these advantages, the original PSO method cannot be
directly applied to our problem of finding (k∗, γ(k∗)), since
PSO is designed for deterministic objective functions. In our
problem, the average cost function is stochastic, in the sense
that for given (k, γ), the cost is randomly drawn from some
unknown fixed distribution. To this end, we modify the PSO
algorithm to incorporate it with MAX-k policy.

We consider a bounded search space of integer k and real
value γ, where particles move around. We partition the search
space into a grid of small pieces called cells, and collect the
statistics for each cell according to the particles’ visits to the
cell. This cell level integration intends to approximate the
statistical value of our stochastic objective function with the
real-number search space. The particles’ movement that incurs
their visits to a cell (except the cell level integration) is the
same as that of the original PSO. We denote this modified PSO
as Grid-PSO (GPSO), and combine it with MAX-k policy,
denoted by MAX-k-GPSO. Detailed operations are shown in
Algorithm 1 and described as follows.

We divide the time horizon into rounds, where a round
is the time interval in which total U sensor updates occur
under MAX-k policy. At the end of each round, we update all
the sensors and reset the estimation error to 0, which incurs
additional communication cost by replacing update cost f(k)
with f(N) for the last update in the round. For MAX-k policy,
this additional cost is unavoidable for practical online learning
algorithm. However, it becomes negligible for a reasonably
long round, e.g., U = N2, which roughly corresponds to
N updates for each sensor. Let ∆ be the length of a round
(random variable) and r̂ be the average cost during the round,
i.e.,

r̂ = 1
∆

∫
∆

(∑N
i=1 E2

i (t) + f(nt)
)

dt. (3)

We consider the two-dimensional search space (k, γ) with
k ∈ [N] and real-valued γ ∈ [γmul, γall]. Note that we have a
bounded range [γmul, γall] for γ(k∗) since γ(k∗) increases as
k∗ increases. We divide it into a grid with cells, by partitioning
the range of γ into M intervals denoted by I = {Im}Mm=1,
each of which centered at {γm}Mm=1 with M <∞. There are
total N ×M cells, where each cell c includes an integer kc
(for k) and a range [γ

c
, γc) ∈ I (for γ). Let C be the set

of cells. We define function h : [N] × R → C that maps a
position (k, γ) to cell c with k = kc and γ ∈ [γ

c
, γc). Also, we

define function g : C → R that maps cell c to the average cost
over the cell, i.e., g(c) = Ec[R], where the expectation is over
γ ∈ [γ

c
, γc). Our goal is to identify the cell c∗ that minimizes

g(c), assuming that g(c∗) is close to the average cost under
MAX-k policy with (k∗, γ(k∗)). For a given c, the function
g(c) is unknown. Thus, we use empirical mean incurred by
particles’ visits to a cell. Let g̃(c) denote the empirical mean
of average costs, each of which is generated by a particle’s

Algorithm 1 MAX-k-GPSO policy
Input: p1, p2, w, U , swarm size |S|, set of cells C

1: Create a swarm of size |S|
2: For all s ∈ S, initialize xs and vs ← 0
3: while stopping condition is not true do
4: for each s ∈ S do
5: xs ← xs + vs
6: xs1 ← b0.5 + xs1c
7: Update sensors under MAX-k policy with xs by U

times, and obtain r̂
8: V h(xs)← V h(xs) + 1
9: g̃h(xs)← g̃h(xs)(1− 1

V h(xs)
) + r̂

V h(xs)

10: if g̃h(xs) < g̃h(ys) then
11: ys ← xs
12: end if
13: end for
14: s∗ ← argmins{g̃h(ys)}, and ŷ← ys∗
15: Calculate ρ using (5)
16: for d ∈ {1, 2} do
17: Draw e3 uniformly at random in range (0, 1)
18: vs∗d ← −xs∗d + ŷd + wvs∗d + ρ(1− 2e3)
19: end for
20: for all s ∈ S \ {s∗} and d ∈ {1, 2} do
21: Draw e1, e2 uniformly at random in range (0, 1)
22: vsd ← wvsd + p1e1[ysd − xsd] + p2e2[ŷd − xsd]
23: end for
24: end while
25: return ŷ

visit to cell c.
Let S be the set of particles in the swarm. Each particle

s ∈ S has position xs = (xs1, xs2) with xs1 ∈ [N] and
xs2 ∈ [γmul, γall]. Suppose that the initial location of each
particle is determined. For a particle s located at xs, we set
(k, γ) = (xs1, xs2), and run one round of U updates under
MAX-k policy starting from Ei(t) = 0 for all sensor i’s. This
procedure is called as the evaluation of position xs. For the
round, an average cost can be computed as (3). We repeat the
evaluation of each particle’s position xs for all s ∈ S.

Then, we compute the empirical mean of average cost of
each cell as follows. Let xj be the position of the particle that
is chosen at round j and r̂j be the corresponding empirical
average cost obtained at the end of round. Let VJ(c) denote
the number of visits of any particles to cell c up to round J ,
i.e.,

VJ(c) =
∑J
j=1 I{h(xj)=c},

where I{A} is an indicator function of event A; I{A} = 1 if
A is true and 0 otherwise. Initially, V0(c) = 0 for all c. The
empirical mean g̃J(c) for cell c after round J is given as

g̃J(c) = 1
VJ (c)

∑J
j=1 I{h(xj)=c} · r̂j .

We set g̃J(c) = 0 if VJ(c) = 0. We also define composite
functions V hJ (x) = VJ(h(x)) and g̃hJ(x) = g̃J(h(x)), that
maps location x to the number of visits and the empirical mean

of average cost of the cell that x belongs to, respectively. For
brevity, we omit subscript J .

We denote a group of |S| rounds as a phase, in which the
position of each particle s ∈ S has been evaluated for exactly
one round of updates. After phase l, we now make the particles
move. Let ys denote the local best position of particle s based
on its visit history, and also let ŷ denote global best position of
all particles based on all the visit history. They can be formally
defined as

ys(l) = (ys1, ys2) = argmin
x∈{xs(l),ys(l−1)}

g̃h(x),

ŷ(l) = (ŷ1, ŷ2) = argmin
x∈{ys(l)}s∈S

g̃h(x),

where xs(l) is the location of particle s in phase l. These
two variables are used to compute the velocity vs(l + 1) =
(vs1(l+ 1), vs2(l+ 1)) of particle s at phase l+ 1, which will
be used to calculate new position of particle s as

xs1(l + 1) = nint(xs1(l) + vs1(l + 1)),

xs2(l + 1) = xs2(l) + vs2(l + 1),

where nint(a) returns the integer closest to a. The velocity is
computed separately for each dimension. In our case, for each
d ∈ {1, 2}, we have

vsd(l + 1) = w · vsd(l) + p1 · e1 · [ysd(l)− xsd(l)]
+ p2 · e2 · [ŷd(l)− xsd(l)],

(4)

where inertia weight w and acceleration coefficients p1, p2 are
constants, and e1 and e2 are an independent random variable
drawn uniformly in range (0, 1). Once new position xs(l+ 1)
is determined for all particle s’s, then new phase l + 1 starts
from the evaluation of the position for each particle.

The above description is based on the original PSO algo-
rithm, which can be possibly stuck at a suboptimal solution.
A remedy has been developed by modifying the movement
of the best-performing particle in [13]. We also incorporate
it. At each phase l, let s∗ denote the best-performing par-
ticle satisfying ys∗(l) = ŷ(l), and we call s∗ the global
best particle. The velocity of particle s∗ is computed as
vs∗d(l+1) = −xs∗d(l)+ŷd(l)+wvs∗d(l)+ρ(l)(1−2e3), where
e3 is another independent random variable drawn uniformly in
range (0, 1), and ρ(l) is determined as

ρ(l + 1) =

 2ρ(l), if Nsucc > λs,
0.5ρ(l), if Nfail > λf and ρ(l) > ρmin,
ρ(l), otherwise,

(5)
where ρmin, λs, λf are pre-determined parameters. Letting a
‘success’ denote the case when g̃h(ŷ(l + 1)) < g̃h(ŷ(l))
and a ‘failure’ for the other case, Nsucc is the number
of phase-consecutive successes and Nfail is the number of
phase-consecutive failures. The new velocity makes particle
s∗ moves to a point that is uniformly sampled from a square
region with side lengths 2ρ(l) centered around ŷ(l)+wvs∗(l),
where the region size depends on the event history of successes
and failures. This behavior contributes to the convergence of
the algorithm.

B. Convergence of Grid-PSO

We investigate the convergence of GPSO algorithm toward
an optimal solution under an assumption that g(c) is convex.
It has been shown in [14]–[16] that all particles converge to
a point ŷ in the search space with appropriate parameters of
w, p1, and p2, i.e., liml→∞ xs(l) = ŷ for all s ∈ S. We
show that if the converging point ŷ is not the optimal solution,
then the particles can move toward the optimal solution. For
given ε > 0, let G∗ε be the set of cells whose average cost
is ε-close to the minimum g∗ where g∗ := minc g(c), i.e.,
G∗ε = {c | g(c)− g∗ < ε}.

Theorem 1. If average cost function g(c) is convex, then for
any ε > 0, the particles converge to an optimal region under
the GPSO algorithm, i.e., with probability 1,

lim
l→∞

h(xs(l)) ∈ G∗ε , for all s ∈ S.

We omit the proof due to lack of space. The MAX-k-GPSO
policy can successfully find the cell in G∗ε for any ε > 0
under a convex average cost function g(c) from Theorem 1.
By using sufficiently small ε > 0, it can achieve near-optimal
solution. In the following section, we evaluate the performance
of MAX-k-GPSO policy and compare it with its UCB-based
counterpart.

V. SIMULATIONS

For the comparison, we introduce another approach of on-
line learning to find the best-performing (k, γ), which applies
a well-known algorithm of UCB [17] for all possible arms
(k, γ). We present this approach that combines MAX-k policy
with the UCB algorithm, denoted by MAX-k-UCB. We again
partition the range of γ into M intervals of I as before.
Otherwise, we have infinite number of arms due to real-valued
threshold level γ. We assume γ ∈ {γm}Mm=1 for MAX-k-UCB
policy. At the beginning of each round, MAX-k-UCB selects
an arm (k, γ) with smallest UCB index and we make U update
decisions using MAX-k policy with these parameters. Then,
UCB index for the arm is updated using the resulting average
cost. This process continues until a stopping condition is true.

We set up parameters for simulations as follows. For MAX-
k-GPSO policy, we create a swarm with |S| number of
particles, and set |S| = 10 + b2

√
Dc where D is the number

of dimensions in the search space, according to [18]. In our
case of D = 2, the size of swarm, |S|, becomes 12. We
also set inertia weight and acceleration coefficients in (4) as
w = 0.7298 and p1 = p2 = 1.49618 as in [19]. For the
velocity equation of global best particles s∗, we set ρmin = 4δ,
ρ(0) = 1, λs = 5, and λf = 5 in (5). We set parameters
U = N2 and N = 7, and use the transmission cost function
with α = 0.5, and c̄ = 100.

For MAX-k-GPSO policy, we first observe the convergence
of all particles to the optimal solution. Fig. 3 shows the
positions of all particles after l-th improvement phase when
J is set to be a million and M = 1000. Initially, the particles
are randomly located in the search space as shown in Fig. 3(a)
and move toward the optimal solution. Finally, the particles

(a) l = 0 (b) l = 2 (c) l = 8

(d) l = 128 (e) l = 2048 (f) l = 32768

Figure 3. Positions of particles (|S| = 12), after l-th phase.

converge to the (k∗ = 4, γ(k∗) = 6.8530) as shown in
Fig. 3(f).

We now compare the performance of MAX-k-GPSO policy
and MAX-k-UCB policy observing the regret of policies,
which is the performance metric widely used in the learning
area. We first empirically find the optimal average cost using
MAX-k-GPSO policy, then we draw (accumulated) regret and
per-round average regret with respect to the optimal average
cost. Fig. 4 shows the regret and average regret up to J = 106.
The orange lines represent the results under MAX-k-UCB
policy and the green lines for MAX-k-GPSO policy. The solid
lines are for the case when M = 1000, the dashed lines are
for M = 500, and the dotted lines are for M = 100. Since
the regret under MAX-k-GPSO policy compared with MAX-
k-UCB policy is too small to recognize, we magnify them
as shown in Fig. 4(c) and 4(d). We observe that the speed of
convergence toward the optimal solution under MAX-k-GPSO
policy is drastically faster than that under MAX-k-UCB policy.
Although UCB algorithm is known to achieve asymptotically
optimal performance in MAB problem [17], it does not exploit
the underlying structure of the objective function, which makes
the speed of convergence slow under MAX-k-UCB policy.

VI. CONCLUSIONS

We developed a novel strategy, MAX-k policy, which im-
proved the average system cost over All-at-once and Multi-
threshold policies as it exploits the sublinear structure of the
communication cost function. We then developed the GPSO
optimization technique for the online learning algorithm that
adaptively optimizes the parameters of MAX-k policy with
reasonable speed of convergence.

REFERENCES

[1] M. Costa, M. Codreanu, and A. Ephremides, “Age of information
with packet management,” in 2014 IEEE International Symposium on
Information Theory. IEEE, 2014, pp. 1583–1587.

[2] Q. He, D. Yuan, and A. Ephremides, “Optimizing freshness of infor-
mation: On minimum age link scheduling in wireless systems,” in 2016
14th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt). IEEE, 2016, pp. 1–8.

[3] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal
sampling and transmission scheduling in multi-source systems,” in
Proceedings of the Twentieth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, 2019, pp. 121–130.

(a) Regret (b) Average regret

(c) Regret (magnified) (d) Average regret (magnified)

Figure 4. Regret performance of MAX-k-GPSO & MAX-k-UCB.

[4] G. M. Lipsa and N. C. Martins, “Remote state estimation with communi-
cation costs for first-order lti systems,” IEEE Transactions on Automatic
Control, vol. 56, no. 9, pp. 2013–2025, 2011.

[5] A. Nayyar, T. Başar, D. Teneketzis, and V. V. Veeravalli, “Optimal
strategies for communication and remote estimation with an energy
harvesting sensor,” IEEE Transactions on Automatic Control, vol. 58,
no. 9, pp. 2246–2260, 2013.

[6] O. C. Imer and T. Basar, “Optimal estimation with limited measure-
ments,” in IEEE Conference on Decision and Control, 2005.

[7] X. Gao, E. Akyol, and T. Başar, “On remote estimation with multiple
communication channels,” in American Control Conference (ACC),
2016.

[8] J. Chakravorty, J. Subramanian, and A. Mahajan, “Stochastic approxima-
tion based methods for computing the optimal thresholds in remote-state
estimation with packet drops,” in American Control Conference (ACC),
2017.

[9] J. Yun, C. Joo, and A. Eryilmaz, “Optimal real-time monitoring of an
information source under communication costs,” in IEEE Conference on
Decision and Control (CDC), 2018.

[10] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Remote estimation
of the wiener process over a channel with random delay,” in IEEE
International Symposium on Information Theory (ISIT), 2017.

[11] K. Nar and T. Başar, “Sampling multidimensional wiener processes,” in
IEEE Conference on Decision and Control, 2014.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
ICNN, vol. 4, 1995.

[13] F. van den Bergh and A. P. Engelbrecht, “A new locally convergent
particle swarm optimiser,” in IEEE International conference on systems,
man and cybernetics, vol. 3, 2002.

[14] F. Van den Bergh and A. P. Engelbrecht, “A convergence proof for the
particle swarm optimiser,” Fundamenta Informaticae, vol. 105, no. 4,
pp. 341–374, 2010.

[15] R. Poli, “Mean and variance of the sampling distribution of particle
swarm optimizers during stagnation,” IEEE Transactions on Evolution-
ary Computation, vol. 13, no. 4, pp. 712–721, 2009.

[16] C. W. Cleghorn and A. P. Engelbrecht, “Particle swarm convergence:
Standardized analysis and topological influence,” in International Con-
ference on Swarm Intelligence. Springer, 2014, pp. 134–145.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3, May 2002.

[18] M. Clerc, Particle swarm optimization. John Wiley & Sons, 2010,
vol. 93.

[19] F. Van Den Bergh and A. P. Engelbrecht, “An analysis of particle swarm
optimizers,” Ph.D. dissertation, 2002.

