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ABSTRACT While rare-earth borides represent a class of important materials in modern industries, there are

few fundamental researches on their electronic structures and physicochemical properties. Recently, we have

performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled

complexes, revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and

chemical bonding patterns. In this overview article, we summarize recent progresses in this area and provide a

perspective view on the future development of rare-earth boride clusters. Understanding the electronic structures

of these clusters helps to design materials of f-element (lanthanide and actinide) borides with critical

physiochemical properties.

Keyword: rare-earth boron clusters, inverse sandwich cluster compounds, f-element boride,
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1 INTRODUCTION

Boron, the left neighbor of carbon in the periodic table, is

well-known for its electron efficiency. While extensive

investigations were performed on carbon-based clusters and

materials such as fullerenes, carbon-nanotubes, graphene and

graphdiyne, pure boron clusters have been relatively less

studied until about two decades ago[1]. We found in 2003 that

boron clusters display analogous geometric and electronic

structures (e.g. planarity, aromaticity and anti-aromaticity)

with hydrocarbon rings[2]. A series of new boron clusters have

been characterized by joint photoelectron spectroscopy (PES)

and theoretical studies in the past decade. Fascinating

electronic structures are found for these electron-deficient

clusters featuring multi-center delocalized bonding as well as

σ and π aromaticity[3-11]. The discovery of planar or quasi-

planar B36- and B35- clusters provides the first experimental

viability of two-dimensional boron monolayers[12, 13], which

we named as borophene akin to graphene. Borophene

materials have been recently synthesized experimentally by

several groups[14, 15]. The recent experimental observation and

computational confirmation of cage-like B40- and B39- clusters

also represent a milestone of boron clusters, which leads to

the identification of a new class of boron structures that we

named as borospherene akin to fullerenes[16, 17].

Among various structures of boron clusters, the ring

structures are especially unique. The size of the boron

monocyclic rings increases from B3 to B10 (Fig. 1), which

makes B7, B8 and B9 particularly fit for forming inverse

sandwich compounds with large size metal ions[18-23].

Inasmuch as the much higher orbital energies of boron 2s and

2p orbitals than those of carbon, nitrogen, oxygen and fluorine,

boron clusters are especially interesting for binding

electropositive metals with high-lying orbitals. As a result,

rare-earth borides are ubiquitous as stable solid state

compounds[24-29].
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Fig. 1. Size of monocyclic Bn rings with perfect Dnh symmetry. Structures are optimized by PBE/TZ2P with ADF program

Among the rare earth elements, lanthanide elements (Ln =

La, Lu) feature high-energy 5d orbitals for weak yet non-

negligible covalent orbital overlap with ligands, while the

highly radially contracted 4f orbitals (Fig. 2) are available for

preserving electrons that are often key for magnetic, optical

and catalytic applications[30-33]. This peculiarity of extremely

contracted 4f orbitals (~0.4 Å for La and 0.25 Å for Lu) arises

from the quantum primogenic effect[34-36], which refers to the

fact that the first-shell, nodeless atomic orbitals of each

angular quantum number (i.e., 1s, 2p, 3d, 4f, 5g, ...) tend to

be rather contracted in radial distribution due to lack of Pauli

repulsion from any inner orbitals with the same angular

momentum. These features make lanthanide borides a class of

highly intriguing materials for practical applications[27-29].

Fig. 2. Radial density distribution function D(r) = r2R2 of rare earth metals[37]

Rare-earth borides are important materials with unique

magnetic, thermoelectric, and superhard properties[38].

However, relatively less attention was paid to the rare-earth

boron clusters. In order to explore their chemical bonding,

electronic structures and spectroscopic properties, we have

performed a series of joint PES and quantum chemical

theoretical studies on lanthanide boride clusters, which

reveals interesting geometric structures such as planar[39, 40],

half-sandwich[41], and inverse sandwich complexes[42-44]. The

inverse sandwich structures, adopting the M···L···M motif (M

is the metal and L represents the ligand), have been widely

known for the transition metals and actinide elements

protected by organic hydrocarbon ring ligands[45-50]. The

interlayer ligands are mostly aromatic rings, which can form

stable chemical bonds to metals on both faces via its

delocalized ligand group orbitals. However, such structures

have seldom been observed in boride clusters before. In this

paper, we provide an overview on the recent results of

lanthanide-boron inverse-sandwich compounds that feature a

new class of clusters with unprecedented structures and

chemical bonding patterns.

2 PROGRESS OF RESEARCH

As mentioned above, B7, B8 and B9 rings have the suitable

size to stably match with two lanthanide atoms. Recently,

joint theoretical and PES studies have verified the existence of
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these Ln2Bn
- (n = 7,8,9) species[42, 43]. Local coordinate system

(LCS) analysis is an effective tool to analyze the orbital

interactions between metal atom and ligands, especially for

molecules with high symmetry[24, 51]. Fig. 3 presents the LCS

analyses of Bn (n = 7, 8, 9) clusters to investigate how they

interact with the two lanthanide elements. These rings have 4n

2s/2p valence orbitals which can be divided into four

categories according to the different spatial orientation of the

orbitals, classified into σs, σ(t)p, σ(r)p, and πp orbitals, where “t”

and “r” represent “tangential” and “radial” interaction, and s

and p denote the B 2s and 2p orbitals, respectively. Number in

the subscript corresponds to the number of the nodal plane

(Fig. 3).

The BB bonds in the boron rings are found to arise from the

occupied σs and σ(t)p orbitals that are bonding or non-bonding

on the basis of a tight-binding Hückel-type consideration. The

covalent interaction between BB atoms of the ring is rather

strong so that the splitting of the occupied and unoccupied

regions in σs and σ(t)p groups are much larger than that in the

delocalized σ(r)p, and πp orbitals, which dominantly constitute

the interaction between lanthanide metals and boron rings.

When forming the Ln2Bn inverse sandwich complexes, two

Ln atoms donate four electrons to the boron ring, giving rise

to the fully occupied σr1 orbitals that are doubly degenerate. It

is interesting to note that similar to the CnHn rings that fulfill

the (4n + 2)  -electron rule for forming ring ligands with

different charges, C3H3+, C4H42-, C5H5-, C6H6 (or C6H64-),

C7H73- (C7H7+), and C8H82-[52], the boron ring ligands B66- ,

B75-, B84-, B93- and B102- are perfect for closed shells. In other

words, one can view these pure boron ring ligands as

hexavalent, pentavalent, tetravalent, trivalent, and divalent,

respectively. These Bn
x- ligands often have high-lying valence

bonding orbitals because of the low electronegativity of boron,

which make them suitable for matching energetically with

lanthanide 5d orbitals. Besides, they can force metal atoms to

form uncommon oxidation states, as in the case of Pr(I) and

Pr(II)[39].

Fig. 3. Molecular orbital (MO) energy level of Bn (n = 7, 8, 9) in local coordinate system (LCS).

“t” and “r” represent “tangential” and “radial” orbitals, respectively[43]
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We performed canonical molecular orbital (CMO) analysis

for La2B8 inverse sandwich clusters as an example to figure

out the interactions between two La atoms and the B8 ring, as

shown in Fig. 4. The unoccupied π2 orbital from Bn is

significantly stabilized by a symmetry-matching La···La d-δu

type of orbital, which leads to the formation of the unique

(d-p)δ chemical bonding. This (d-p)δ interaction has an

enormous contribution (La2B7-: 6.9%, La2B8-: 16.9%, La2B9-:

42.4%) to the total orbital interaction. The only difference

between the neutral and anion species originates from the

occupation number of electrons on such (d-p)δ molecular

orbital, where there is slight Jahn-Teller effect in the La2B8-

system due to degeneracy. In the Ln2Bn sandwich clusters,

LUMOs are primarily composed of Ln 6s orbital displaying a

huge gap from the HOMOs with (d-p)δ bonding, indicating

the overwhelming stability of the rare-earth inverse sandwich

compounds.

Fig. 4. Chemical bonding interactions between the La···La and B8 fragments in D8h La2B8 at the level of PBE0/TZP[42]

The semi-localized natural bonding orbital approach, AdNDP (Adaptive Natural Density Partitioning method), is another

powerful tool to understand the chemical bonding in Ln2Bn
- inverse sandwich clusters[53]. The AdNDP analyses yield both

localized and semi-localized multi-center bonds, providing a chemically intuitive bonding picture for complicated molecular

systems that cannot be described with the two-electron, two center (2c-2e) bonding formalism. As shown in Fig. 5, the n 2c-2e σ

bonds constitute the frame of Bn- rings, and all other bonds are more or less delocalized due to the electron deficiency of boron.

The delocalized n-center two-electron (nc-2e) σ and π bonds give rise to double aromaticity features for the inverse sandwich

clusters, each satisfying the (4n + 2) Hückel rule. The (d-p)δ bonding in Ln2Bn
- (n = 7～9) are different. The Ln2B9- inverse

sandwich has two full (d-p)δ bonds, whereas the Ln2B7- and Ln2B8- inverse sandwich clusters only possess partial (d-p)δ bonds,

which renders extraordinary stability for the Ln2B9- cluster.
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Fig. 5. Localized and semi-localized MOs from AdNDP analysis of MBxM (x = 7, 8, 9)[43]

The La2Bn species demonstrates magnetic properties

because of the partially occupied (d-p)δ orbitals. Other Ln2Bn

inverse sandwich clusters with 4f electrons have more

complicated magnetic coupling character due to more local 4f

electrons on each Ln center, such as the Pr2B8 complex[54].

The multi-configurational wavefunction dominantly comes

from different 4f-shell occupancy, but the general bonding

pattern in Pr2B8 remains the same as that in La2B8. Theoretical

calculations obtained from ab initio CASPT2 method found

that electronic state with ferromagnetic coupling is at least

8.73 kcal/mol lower in energy than that of the

antiferromagnetic case. Due to the similar patterns of

photoelectron spectra and chemical bonding for La2B8-, Pr2B8-

and Tb2B8-, all Ln2B8 complexes are assumed to have similar

structures and bonding, providing opportunities to design

highly magnetic Ln2B8 sandwich complexes, as well as one-

dimensional (1D) magnetic nanowires.



1014 LI W. L. et al.: Recent Progresses in the Investigation of Rare-earth Boron Inverse Sandwich Clusters No. 6

Fig. 6. Schematic illustration of the transformation from a perfect linear inverse triple-decker,

La···B8···La···B8···La, the bent triple-decker of La3B14
-, with two conjoined B8 rings by sharing a B2 unit

As shown in Fig. 6, combined PES and theoretical studies

have revealed that the global-minimum-energy structure of

La3B14- anion cluster[44] has closed-shell configuration with a

C2v symmetry, which can be viewed as an “inverse triple-

decker” with two conjoined B8 rings sharing a BB unit due to

strong inter-layer BB bonding. Theoretically, the oligomers

formed by elongation of such deformed inverse triple-decker

are also found to be stable. Presumably, infini-tely long 1D

lanthanide-boron nanostructures consisting of conjoint B8

rings are viable or could be found in crystalline lattices of new

lanthanide boride materials.

Fig. 7. Connection of Ln2B8 sandwich cluster with structural unit of solid LnB6 material.

Red and grey atoms correspond to B and La, respectively[55]

Another interesting aspect is that the D8h-[LnB8Ln] gaseous

inverse sandwich cluster is reminiscent of the structural motif

in the popular material of LnB6, as shown in Fig. 7. This

structural connection is interesting as it well establishes a

relationship between gaseous clusters and solid phase

materials[55]. And in fact, the bulk crystal structure can be

viewed through a different angle using the Ln2B8 clusters. The

crystal structure of LnB6 has simple cubic space group: Pm-

3m, with B6-octahedra in body-centered positions and La

atoms at the corners of the unit cell. From another perspective,

we can take Ln2B8 as a repeat unit extending indefinitely in

the three-dimensional(3D) space in three perpendicular

directions, as shown in Fig. 6. Each B atom in Ln2B8 region

belongs to eight vertexes in four B6-octahedra in the same

plane. Taking PrB6 solid material as an example, the bond

lengths between two neighboring B atoms are measured to be

1.708 and 1.706 Å for internal and external octahedral

respectively, and the distance between two Pr atoms in one

unit is 4.121 Å, which are longer than those in the Pr2B8

cluster because of different bonding conditions in periodic

constructions[56].
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Fig. 8. a) and b) Density of states (DOS) for both solid LaB6 and gaseous La2B8

with majority (right) and minority (left) spins. c) MO levels and the 3D orbital contours of La2B8

In addition, the two systems resemble each other in terms

of electronic structure, as shown in Fig. 8. The orbital

interaction between La 5d and B 2p is the primary

contribution to the La-B bonding, but Ln2B8 inverse sandwich

clusters demonstrate increased covalent character despite the

major bonding between Ln and B8 cluster is ionic in nature.

The curves in proximity to the Fermi level look spiky or even

discrete for isolated La2B8 but continuous or broadened for

solid-state LaB6.

The Ln2B8 clusters provide a new perspective to view the

bulk LnB6 crystal structures as repeating units of clusters in

three perpendicular directions. The similarity between clusters

and crystals is unrecognized in such compounds. Since the

bulk LnB6 represents a series of important magnetic, electric

and superconducting materials, exploring the bonding and

electronic structures of clusters provides us a new avenue to

understand the bonding and physical mechanisms for these

unique properties via establishing a link by repetitions of

cluster structures.

3 CONCLUSION AND PERSPECTIVE

In this article, we have summarized our recent research

progresses on a series of rare-earth boron inverse-sandwich

clusters Ln2Bn (n = 7～ 9), which provide a new class of

cluster complexes with unique geometric structures,

interesting bonding mechanism, and magnetic properties. Two

lanthanide elements interact with the boron rings via

lanthanide 5d orbitals and 2s/2p delocalized group orbitals

from Bn, giving rise to multi-center bonding and aromaticity

to cause the structures to be stable. Especially noteworthy is

the rare (d-p)δ type bonding in this kind of clusters, which

renders extraordinary stability and contributes unexpectedly

to the whole orbital interactions. The electron-deficiency

features of boron elements and the more extended 2s/2p

valence orbitals make the Bn rings better ligands for interac-

ting with lanthanides than the CnHn hydrocarbon rings[4].

Especially noteworthy is the finding that the highly

symmetric Ln2B8 clusters can be viewed as a structural unit to

build well-known LnB6 solid materials. The concept of

structural unit assembly into cluster compounds has been in

place for a long time, as was initially proposed by Jia-Xi Lu et

al. in the unit construction approach to the rational synthesis

of transition-metal cubane-like clusters[57]. The connection of

rare-earth boride clusters and the relevant solid materials

provides a new insight in establishing relationships between

gaseous phase clusters and cluster-assembled solid phase

materials. Further study of the relationship of cluster

structural unit and cluster-assembled materials of rare-earth

borides would be interesting for further research in this area.

Since lanthanides have different unpaired 4f-electrons and

high spins, these Ln-B clusters and solids with a variety of

possible spin couplings can form a basis for exploring

innovated materials for applications in electronic, magnetic,

optical, and thermoelectric fields. The multifaceted and novel

magnetic features of these compounds may find future

applications in electronics. Because of the high-lying yet

radially extended 5d orbitals and low-lying but core-like 4f

orbitals, the lanthanides are unique in the periodic table[58].

The unusual behavior of lanthanides in forming borides with

significantly different properties from those of transition

metals can be utilized to discover new cluster molecules and

innovative materials in f-element chemistry. We are working

on further exploring the solid-state materials of rare-earth

metal boron clusters to provide understanding of such novel

properties of the solid materials.
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