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Abstract. In this paper the authors investigate the ¢-Schur algebras of type B that
were constructed earlier using coideal subalgebras for the quantum group of type A. The
authors present a coordinate algebra type construction that allows us to realize these
g-Schur algebras as the duals of the dth graded components of certain graded coalgebras.
Under suitable conditions an isomorphism theorem is proved that demonstrates that
the representation theory reduces to the g-Schur algebra of type A. This enables the
authors to address the questions of cellularity, quasi-hereditariness and representation
type of these algebras. Later it is shown that these algebras realize the 1-faithful quasi
hereditary covers of the Hecke algebras of type B. As a further consequence, the authors
demonstrate that these algebras are Morita equivalent to the category O for rational
Cherednik algebras for the Weyl group of type B. In particular, we have introduced a
Schur-type functor that identifies the type B Knizhnik—Zamolodchikov functor.

1. Introduction

1.1.

Schur-Weyl duality has played a prominent role in the representation theory of
groups and algebras. The duality first appeared as a method to connect the
representation theory of the general linear group GL, and the symmetric group
4. This duality carries over naturally to the quantum setting by connecting
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the representation theory of quantum GL,, and the Hecke algebra #,(X4) of the
symmetric group 4.

Let Uy(gl,,) be the Drinfeld-Jimbo quantum group. Jimbo showed in [Ji86] that
there is a Schur duality between U,(gl,,) and #H,(34) on the d-fold tensor space of
the natural representation V' of Uy(gl,,). The g-Schur algebra of type A , S2(n, d),
is the centralizer algebra of the H,(34)-action on V&4,

It is well known that the representation theory for U,(gl,) is closely related
to the representation theory for the quantum linear group GL,. The polynomial
representations GLy, coincide with modules of S (n,d) with d > 0. The relation-
ship between objects is depicted as below:

KIMAM))* + Uy(al,)
1 3 :
K[MAn)]5 ~ S0 (n,d) ~ VO A H(Sq)
The algebra Ug(gl,,) embeds in the dual of the quantum coordinate algebra K [MA];
while Sﬁ(n, d) can be realized as its dth degree component. The reader is referred
to [PW91] for a thorough treatment of the subject.
The Schur algebra S7(n,d) and the Hecke algebra H,(X4) are structurally
related when n > d.
e There exists an idempotent e € S~ (n,d) such that €S2 (n, d)e ~ Hq(Zq).
e An idempotent yields the existence of Schur functor

Mod (84 (n, d)) = Mod(Hq(Ea))-

o S2(n,d) is a (1-faithful) quasi-hereditary cover® of H,(Xq).
1.2.
Our paper aims to investigate the representation theory of the g-Schur algebras of
type B that arises from the coideal subalgebras for the quantum group of type A.

We construct, for type B = C, the following objects in the sense that all favorable
properties mentioned in the previous section hold:

K[ME (n)]* < U ,(n)
1 J .
K[M§ ()] = S8 (n,d) ~ V&' ~AHE (d)

For our purposes it will be advantageous to work in a more general setting with
two parameters ¢ and ), and construct the analogs K [MS ,(n)] of the quantum
coordinate algebras. Then we prove that the dth degree component of K [MCE;’ ()
is isomorphic to the type B ¢-Schur algebras. The coordinate approach provides
tools to study the representation theory for the algebra K [MS ,(n)]" and for the ¢-
Schur algebras simultaneously. The algebra Ugy 4(n), unlike Uy(gl,,), does not have

I The algebra SqA(n, d) is 1-faithful under the conditions that ¢ is not a root of unity,
or if q2 is a primitive ¢th root of unity, then £ > 4.
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an obvious comultiplication. Therefore, its dual object, K [Ms’q(n)], should be
constructed as a coalgebra; while in the earlier situation K[Mj'(n)] is a bialgebra.
Our approach here differs from prior approaches to the subject for type B Hecke
algebras in that we can employ the action on the tensor space to realize the ¢g-Schur
algebra as a subcoalgebra of K[, 57 ,(n)]*. Other earlier investigations have defined
the algebra as an endomorphism algebra on a direct sum of permutation modules.
The relations necessary to realize K [Mg ,(n)] as a quotient of the coordinate
algebra on quantum matrix space naturally arise from the coideal relations. As far
as the authors know, this is the first paper to make this important connection.
In the second part of the paper an isomorphism theorem between the ¢-Schur
algebras of type B and type A (under an invertibility condition) is established:

d
@Sﬁ(r,i)@Sﬁ(r,d—i) if n = 2r;
SG.q(n,d) = =0
P sir+1,i)@ SN (rd—i) ifn=2r+1.

1=0
One can view this as a “lifting” of the Morita equivalence (via the Schur functor)

d
MG (d) = []Ho(S) @ Hy(Sas), (1)

Mor im0
between Hecke algebras proved by Dipper—James [DJ92].

There are many cases when the Morita equivalence will hold. The condition for
invertibility entails the non-vanishing of a polynomial (which is an open condition)
so the equivalence will hold in most cases, in particular, when (i) ¢ is generic, (ii)
q is an odd root of unity, or (iii) ¢ is an (even) £th root of unity if ¢ > 4d.

As a corollary of our isomorphism theorem, we obtain favorable properties
for our coideal Schur algebras, see Section 5-8. In particular, with the Morita
equivalence we are able to show that SCB?’ ,(n,d) is a cellular algebra and quasi-
hereditary. Moreover, in Section 7, we are able give a complete classification of the
representation type of Sg,q(n, d).

In the following section (Section 8), we are able to demonstrate that under
suitable conditions, the Schur algebra Sg} ,(n,d) gives a concrete realization of the
quasi-hereditary one-cover for HC%, ,(d) (as defined by Rouquier). The problem of
concretely realizing these one-covers is in general an open problem for arbitrary
Hecke algebras. Our result, Theorem 8.3.3), exhibits under favorable conditions,
a Morita equivalence between the representation theory of Squ(n, d) and the
category O for rational Cherednik algebras. In the process, we have introduced
a Schur-type functor thd : Mod(Sg’q(n, d)) — Mod(?—[aq(d)) which is roughly
defined by hitting an idempotent, and then identifies Frl’l 4 With the type B Knizh-
nik—Zamolodchikov functor, which is defined via monodfomy.

1.3.

In the one-parameter case (i.e., ¢ = @), the algebra U, E(n) is the coideal subalgebra
U* or U7 of Uy,(gl,,) in [BW18] as a part of a double centralizer property (see also
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[ES18] for a skew Howe duality viewpoint). The corresponding Schur algebras
therein are denoted by S* or S’ to emphasize the fact that they arise from certain
quantum symmetric pairs of type A III/TV associated with involutions 2 or 7 on a
Dynkin diagram of type A,,. Namely, we have the identification below:

U, ifn=2r, S*(r,d) if n=2r.

Note that the algebras S7 and its Schur duality are introduced first by Green in
[Gr97]. In [BKLW 18] is also developed a canonical basis theory for both Schur and
coideal algebras. For two parameters, a Schur duality for US q( n) is established in
[BWW18]; while the canonical basis theory can be found in [LL18]

To our knowledge, there is no general theory for finite-dimensional representa-
tions for the coideal subalgebras (see [Wal7] for a classification for type A III;
also see [Lel9] for establishing their Cartan subalgebras for arbitrary type), and in
some way our paper aims to establish results about “polynomial” representations
for UZ(n).

There are other generalizations of the ¢g-Schur duality for type B in the literature.
A comparison of the algebras regarding the aforementioned favorable properties
will be given in Section 9. Since all these algebras are the centralizing partners of
certain Hecke algebra actions, they are different from the ones appearing in the
Schur duality (see [Hull]) for type B/C quantum groups, and are different from
the coordinate algebras studied by Doty [Do98].

Acknowledgements. We thank Huanchen Bao, Valentin Buciumas, Jie Du, Han-
kyung Ko, Andrew Mathas, Stefan Kolb, Heibing Rui, Leonard Scott, Weigiang
Wang and Jieru Zhu for useful discussions. We thank Ben Webster for pointing out
several corrections needed in an earlier version, and for his useful feedback. The
first author thanks the Academia Sinica for the support and hospitality during the
completion of this project.

2. Quantum coordinate (co)algebras

2.1. Quantum matrix spaces

Let K be a field containing elements ¢, Q). Denote the (quantum) commutators by
[A,B], = AB—xBA (z€K), [A, B]=][A, Bl.

We define the (type A ) quantum matrix spaces following [PW91, §3.5] but with
a shift on the index set as below:

)N Z ifn=2r+1,
I(n)_{[—r,r]ﬂZ—{O} if n = 2r. @

Let M, A= M A( ) be the quantum analog of the space of n x n matrices indexed
by I(n ) and let K[M}) = Klz;j;i,7 € 1(n)]/J5(n) be the associative K-algebra
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where J2(n) is the two-sided ideal of K[z;;] generated by

[l'khmkzj]q—l, 1> 7,
[mkhmli]q—lu k> l7
['rkhmlj]? k>lul<.]7
[

Tri, v — (@71 — iz, k> 10> 4.

The comultiplication on K [M}] is given by

A:K[M)] = KM @K[M)], zij— Y 2p® o
kel(n)

Let V' = V(n) be the n-dimensional vector space over K with basis {v; | ¢ € I(n)}.
As a comodule V' has a structure map

TAV—)V@)K[M(IA], viHZvj@)xji.
J
For pu = (p1,...,pnq) € I(n)?, set
V=V, ® ... Qv,, € VO

It is easy to see that the set {v, | p € I(n)?} forms a K-basis of the tensor space
V®4_ The structure map 7a induces a structure map

Tt yed o yed ®K[M$], vy Z Uy @ Tyypy - Lugpuy-
vel(n)d
In other words, the tensor space V&% admits a K[M, ?]*—action defined by
KM x VO 5 Ve (Fo) = Y F(@uy - Togpa) Vo
vel(n)d
2.2. Hecke algebras of type B

Let HB = 7—[%, (@) be the two-parameter Hecke algebra of type B over K generated
by Ty, T4, ..., Ty_1 subject to the following relations:

LT T = T TiT g1, 1<i<d—-2,
(ToTh)? = (W'Ty)?, TiT; =TT, i —j > 1,
T2=Q'—Q)To+1, TP=(gt—qTi+1, 1<i<d-—1.

That is, the corresponding Coxeter diagram is given as:

0 1 d—1

Let WB(d) be the Weyl group of type B generated by S = {sq,...,54_1}. It
is known that #g ,(d) has a K-basis {T,, | w € W®(d)}, where T, = T}, --- Tj,
for any reduced expression w = s;, - -- S;, . The subalgebra of 'H%, ,(d) generated
by T1,T5,...,Tq—1 is isomorphic to the Hecke algebra H,(34) of the symmetric

group Yg. Let Hs(d) be the specialization of Hqu(d) at Q = q.
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2.3. Type B Schur duality
It is well known that V®¢ admits an Haq(d)—action (and hence an H,(X4)-action)
defined as follows. For = (u;); € I(n)?, 0 <t <d—1, let

LS = (Ml?'-'a,ut—lnut-l—lvlutvlut-f—%"'7ﬂd) 1ft7£0,
C 8¢ = )

(=1, 2y - oy fhd) if t =0.
For 1 <t <d— 1, the right H%’q(d)—action on V®4 ig defined:

(

Up-sy if pe < prega;
UuTt = q_lvu-st if py = peg;
(Vps, + (@7 = @up i gy > peya, )
(vu,so if 0 < py;
v To = ¢ Q v, if 0= py;

(Vpeso + (@71 — Qv i 0> puy.
The g-Schur algebras of type A (and B, resp.) are denoted by
SA = SM(n,d) = Endy ) (V®?), S® =55 ,(n,d)= Endye }q(d)(v@)d). (4)

We denote by SP(n,d) the specialization of ngq(n, d) at @ = q. It is known that

SP(n,d) admits a geometric realization (cf. [BKLW18]) as well as a Schur duality,
which is compatible with the type A duality as follows:

K[M;\(n)]*—»K[MqA(n)]jl:Sé\(n, d) ~ A Hy(d)
U Y @d n .
SE(n,d)y~ AHE(d)
2.4. A coordinate coalgebra approach

In this section, we aim to construct a coideal JS’ (1, d) of the coordinate bialgebra
K[M}}(n)]a such that S§ (n,d) can be realized as the dual of the coordinate
coalgebra
KM 4(n)]a = K[Mg (n)]a/J5q(n, d). (5)

Remark 2.4.1. When it comes to comparing Squ(n,d) with variants of g-Schur
algebras of type B (see Section 9), we call Sg,q(n, d) a coideal g-Schur algebra due
to this nature.

For any K-subspace J of K[M?(n)]a, the K[M}]s-comodule V®¢ admits a
K[M?]4/J-comodule structure with structure map

T?d:V®d%V®d®K[M$]d/J, v, Z Uy @ (Toy g - - - Toguy +J)-
v=(v1,...,vq)EI(n)4

We define a K-space Jg 4(n, d) to be the intersection of all K-subspaces .J satisfying
that

(9w, )T = 9%, Ty), for all p € I(n)? (6)
With ngq(n,d), the linear space K[Maq(n)]d is well defined as in (5). We see
from Proposition 2.4.2 that K [ngq(n)]d admits a coalgebra structure.
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Proposition 2.4.2. The K -space K[Maq(n)];“l admits a K -algebra structure, and
is isomorphic to the type B q-Schur algebra Sg’q(n, d).

Proof. Let ¥ be the K-algebra isomorphism S7'(n,d) — K[M?]*, and hence
V(85,4 d)) = {¢ € K[M}(n,d)]* | (¢v,)To = ¢(v,Tp) for all p € I(n)*}
is a K-subalgebra of K[MqA (n,d)]*. By the definition of Jg’q(n, d), as linear spaces,

K[M§ ,(n)]; ={¢ € K[M}n,d)]* | ¢(r) =0 for all r € J§ ,(n,d)}
= U(Sg,,(n, d)).

Hence, K[M(S”q(n)]z is isomorphic to qu(n, d) as K-subalgebras of K[Mg’q(n)]z.

*

As a consequence, the space Jg’q(n, d) is a coideal of K[ngq(n)]d. O

Let Jaq(n) be the union of the coideals Jaq(n, d) for all d € N, and let
KIMG ()] = KM ]/ TG, ()

Corollary 2.4.3. The space K[ngq(n)] of K[M}}(n)] is a quotient coalgebra.

Proof. Tt follows that JS’ ,(n) is a coideal of K'[M 2(n)] since its degree d component
JG.q(n,d) is a coideal of K[M'(n)]a. O

Below we give a concrete realization of ngq(n) as a right ideal. It is very
important to observe that in general Jg, q(n) is a right ideal and not a two-sided
ideal, so K[ng(n)] is a coalgebra but not an algebra.

Proposition 2.4.4. Jg’q(n) is the right ideal of K[Mtf(n)] generated by the fol-
lowing elements, for i,j € I(n).

Tij — Ti—j, <0<y, (7)
Tij—T—i—j— (@ = Q)x_ij, i,j <0, (8)
xo,; — Q 'xo,—j, J <0, (9)
Ti0—Q tr_ip. i <O0. (10)

We remark that I(2r) does not contain 0 and hence ngq(Zr, d) is generated only
by the elements of the form (7) — (8).

Proof. For a fixed d € N, let J be an arbitrary K-subspace of K [M(f(n)]d. For
simplicity we write Z,, = x,, + J. For i, j € I(n) we write

5 1 ife<y; S 1 ifi>y;
A otherwise, 7710 otherwise.
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We first consider the case d = 1. For i € I(n),
(75 (vi) To
= 2 vhem
jel(n)
= Z 5on_1v_j X xj; + 50<j’l)_j R Tj; + 50>j(v_j + (Q_l — Q)Uj) X xj;
J€I(n)
= Y (60;Q "0 + doc—juy + Gom—jv;) © T + 60>5(Q7 = Q)uy) ® T
jel(n)
= D 5 ® (B0;Q7 1T + 0y (T + (@7 = Q) + do<yT5)
Je€I(n)

On the other hand,
T (0iTh) = 791 (60:Q tv_i + So<iv_i + Sosi(v_i + (Q' — Q)vy))

= > 0 ® (00:Q7 T = + bo<iTi=i + do>iTj =i + (@71 — Q)T) -
j€I(n)

We then see that (6) holds if and only if J contains all the elements (7)—(10).
Now, Jaq(n, 1) is the linear space spanned by elements (7)—(10) since it is the
intersection of all the J’s satisfying (6).

For general d, since T only acts on the first factor of V®¢, the linear subspace
J5.q(n,d) of K[M}(n)]qis J§ ,(n,1) @ K[M}(n)]a—1. O

Let 75 = T%d,q(n,d)'
of degree d if all entries of its defining matrix lie in K[Maq(n)]d, i.e., for a fixed
basis {v;} of V, 15(vi) = >, vj ® a;; for some a;; € K[Mg ,(n)]a-

We say that a right K[M(S’q(n)]—comodule V' is homogeneous

Corollary 2.4.5. For d > 0, the category of homogeneous right K[ngq(n)]—
comodules of degree d is equivalent to the category of left Sg,q(n, d)-modules.
2.5. A combinatorial realization of Sg,q(n, d)

It is well known that the algebra Sg’ (n,d) with equal parameters admits a geometric
realization via isotropic partial flags (cf. [BKLW18]). This flag realization of the
algebra Sg' (n, d) admits a combinatorial /Hecke algebraic counterpart that genera-
lizes to a two-parameter upgrade (cf. [LL18]), i.e.,

SGqmd)= €D Homyp (2,35 0xHg,,), (11)
M LEAB(n,d)
where
A®B(n,d)

M €L1+2Z,N_; = —)\; .
A= (Micsom € N7 ’ '\ fn=2r 1 (12
{ (Ai)ier(n) S A =204 1 } if n r4 (12)

(A= N)icrm) EN" | Ai ==X, X, M =2d}  ifn=2r
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Note that in [LL18], the set AB(2r,d) is identified as a subset of AB(2r + 1,d)
through the embedding

(/\i)iej(n) — ()\_T, R ,)\_17 1, /\1, R )\T)

For any A € AB(n,d), let W be the parabolic subgroup of W8 generated by the
set

S — {S)\173)\1+)\27~"78)\1+...+)\T_1} ifn= 2’[“;
S —{81x0/20 5[ x0/2]4M15 > S[Xo/2)+ A+ dAr_1 }  f P =2r 4+ 1

For any finite subset X C W, A\, u € AB(n,d) and a Weyl group element g, set

Tx = Z Tw, Ty, =Twgw,)s @ =Ty = Tw,. (13)
weX

The right HC%, ,-linear map below is well defined:
ﬁ’\u : qug,q — am?-[g’q, T, Tfu. (14)

The maps ¢ L With A p € AB(n,d), g a minimal length double coset representative
for Wy\WB /W, form a linear basis for the algebra Sg’ 4(n;d). The multiplication

rule for 557 4(n,d) is given in [LL18], and it is rather involved in general. Here we
only need the following facts:

Lemma 2.5.1. Let \, N, pu, 1’ € AB(n,d), and let g, g’ be minimal length double
coset representatives for Wx\W®/W,. Then

(a) g\u(,/)il,u, =0 unless p = N;
(b) ¢}\u¢iu’ - g\u = 95 (bllm

2.6. Dimension of g-Schur algebras
It is well known that Sé\(n, d) has several K-bases indexed by the set

Z a; 5 = d},

{(%)z’j e N/
(i,5)€l(n)?

and hence the dimension is given by

(15)

24d-1
dimKSqA(n,d) = (n * )

d

In [LL18, Lem. 2.2.1] a dimension formula is obtained via several bases of Sg’ .(n,d)
with the following index set:

[—r, —1] x I(n) if n = 2r;

> any=df 1= (=r 1 x 1) (16)
(i,5)€l- U0} x [-r,—1]) ifn=2r+1.

{(aw )ij €N
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That is, I_ C I(n)? corresponds to the shaded region below:

Oy ; A—pr ' -
| Q_p,—r | | Ay r
| | |
| |
,,,,,,,, a-1,-1_@-11 B e
ar_1 , a1 | g a== :, 90,: ,,,,,,,
! | |
: l Qp, —y ! ! Ary |
Qp —rp ‘ Qry | ' '
ifn=2r ifn=2r+1
Consequently,
2
I|+d-1 Y ifn=2n
dimg S8 (n,d) = (' ): d ’ 17
K qu( ) d (2T2+Cl2r+d) lf n — 2r + 1 ( )

In the following we provide a concrete description for the 2-dimensional algebra
SB (2,1).
Q,q\ ™

Proposition 2.6.1. The algebra ngq(2,1) 15 1somorphic to the type A Hecke
algebra Hg-1(X2).

Proof. The index set here is 1(2) = {—1,1}. The coalgebra K[M57q(2)]1 has a
K-basis {a = x_1,_1,b = x_11 = x1 _1}. Note that x11 = a+ (Q — Q" 1)b. The
comultiplication is given by

Aa) = Z T QTkr_1=0®a+b®b,
k=+1
AD)=b@a+(a+(Q—-Q N Rb=bRa+a@b+(Q—Q Hb®b.

Hence, the algebra structure of Sg’q(Q, 1) = K[Mg’q(n)]’{ has a basis {a*,b*} such
that

a*a*(a) = (a®a)*(Aa)) = 1, a"a"(b) = (a @ a)"(A(b)) = 0,
a*b*(a) =0="0"a"(a), a*b*(b)=1=>b"a"(b),
b*b*(a) =1, b (b)=(Q-Q ).

Therefore, the multiplication structure of Sg,q(Q, 1) is given by

a*a* =a*, a*b* =b* =0b*a*, bV =(Q—-Q )b* +a*. O
Remark 2.6.2. We expect that Sg’q(Q,d) is isomorphic to K[t]/(P;(t)) for some
polynomial P; € KJt], for d > 1.

3. The isomorphism theorem

The entire section is dedicated to the proof of an isomorphism theorem (Theo-
rem 3.1.1) between the Schur algebras of type B and type A that is inspired by a
Morita equivalence theorem due to Dipper and James [DJ92].
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3.1. The statement
We define a polynomial f2(Q,q) € K[Q, q] by

d—1
BRao= [ @+

i=1—d

We remark that at the specialization ) = g, the polynomial f2(Q,q) is invertible
if (i) q is generic, (ii) ¢* is an odd root of unity, or (iii) ¢? is a primitive (even) fth
root of unity for ¢ > d.

Theorem 3.1.1. If f8(Q, q) is invertible in the field K, then we have an isomor-
phism of K-algebras:

d
®: 8§, (n.d) — D SH([n/2],i) @ Sp([n/2),d —i). (18)
1=0

Example 3.1.2. Forn = 2,d = 1, Theorem 3.1.1 gives the following isomorphism
56.4(2,1) 2 (52(1,0) ® S7(1,1)) @ (S0 (1,1) ® SP(1,0)) = K1, & K1,

where 1,, 1, are identities. We recall basis {a*,b*} of Sg ,(2,1) from Proposition
2.6.1. The following assignments yield the desired isomorphism:

a* =1+ 1, b e —-Q ', +Q1,. (19)

We note that it remains an isomorphism if we replace —Q 1, + Q1, in (19) by
le - Q_l

3.2. Morita equivalence of Hecke algebras

Following [DJ92], we define elements u € H%,q(d)» for 0 <1 <d, by

1—1 1—1
uf =[[(T. . DHT .. T+ Q), uy =[[(Te.. Ty ... T, - Q"). (20)
£=0 £=0

It is understood that ud = 1 = u; . For a,b € N such that a + b = d, we define an
element v, ; by

Va,b = Uy, Tw b Ug G HQ q( ) (21)
where w, ;, € X444, in two-line notation, is given by
1 e a a+1 -+ a+b
Wa,b = .
b+1 --- b+a 1 e b

Finally, when fg’(Q, q) is invertible, Dipper and James constructed an idempotent
€ab = 21:;wa,ava,b7 (22)

for a + b = d, where %, , is some invertible element in H,(3, x Xp)(see [DJ92,
Definition 3.24]). Below we recall some crucial lemmas used in [DJ92].
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Lemma 3.2.1. Let a,b € N be such that a + b= d. Then:

(a) The elements u lie in the center of H%vq(d).

(b) Fora+b>d, u, He, ,(d)uf = 0.

(c) Fora+0b=d, ea,ngvq(d)emb = eapHq(Xq X Xp) and e, commutes with
(d) Fora+d=d, eapH ,(d) = vapH ,(d).

(e) There is a Morita equivalence

d

Hzg(d) Mgor @ ei,dfng,q(d)ei,dfi-

3.3. The actions of uj{ and u

Consider the following decompositions of V' into K-subspaces:
V=Vs0®Veo=Vs0® V<o,

where
P Kv;, ifn=2r+1;
V>0 = @ K’Ui, Vzo = 0<i<r

1<i<r Vso if n=2r,

P Kv;, ifn=2r+1,;
Voo = @ Kv;, Veg = —r<i<o0
—r<i<—1 V<o if n =2r.

Hence, one has the following canonical isomorphisms:
S™([n/2],d) ~ Endwzd)(Vfod), SH(In/2], d) ~ Endﬂq(zd)(vf)od)- (23)

In the following, we introduce two new bases {w} } and {w; } for the tensor
space to help us understand the ui—action. First define some intermediate elements,
for0<i<r,jeN:

n g 7v_; + Qu;, i # 0; _ ¢ o —Q vy, i # 0
Wy = Y . and W,y = _
J (¢7Q "+ Q)v;, =0, 0, i=0.
For a nondecreasing tuple I = (i1, ...,4q) € ([0,7]NZ)%, we further define elements

w}” and w; by
+ .t — =
Wy = Wioyr W) = Wiy

and then inductively (on d) as below:

w}r =w’ ) ® w wy = w(_ ia(s)?

(31,--y0q—1 iq(4)’ T1,e58d—1

)®'UJ

where j = max{k : ig_j = iq}. For arbitrary J € ([0,7] N Z)?, there is a shortest
element g € ¥4 such that ¢g~'J is nondecreasing. We set

+ _ o+ - -
wy —wg,leg, w;y —wg,leg.
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Lemma 3.3.1.

(a) For I € ([0,7]NZ)%, viul =w; .
(b) For I € ([1,r]NZ)%, viu; = wy .

Proof. For non-decreasing I, the result follows from a direct computation. For
general I, there exists a shortest element g € ¥4 such that g~ is non-decreasing.

Then, by Lemma 3.2.1(a),
vluf = vIgfngudi = ’U]gflu?ng = wlig,ng = wIi. U

Example 3.3.2. Let d =7 and let I = (0,1,1,2,3,3,3). We have

. + + + + + +
Wy = W) & Wy gy @ W1y @ Wy gy @ Wg(g) @ Wy(qy & Wy

For J =1(0,2,1,1,3,3,3) = Is3s2,
w}_ = w}FTgTQ.

Example 3.3.3. In the following we verify Lemma 3.3.1 for small d’s. Let d = 2,
I =(1,1) and hence wy = wf(o) ®w;r(1). Since ug = (T ToTh + Q)(Th + Q), we can
check that indeed

vruy = (01 @ ) (LT + Q) (To + Q) = (v @ wyy))(To + Q) = wy .
Now we define K-vector spaces
Wiy =veiut, W=V,
By Lemma 3.2.1(a), u; and u; are in the center of Hg’q(d), hence Wgo and W4,

are naturally 7—[%7 ,(d)-module via right multiplication. Moreover, wTy = Q 'w for
all w e Wgo and wTp = —Qu for all w € W4,

Lemma 3.3.4. We have Wgo = V>®Oduj and Wi, = Vf’odu;.

Proof. We only give a proof for the first claim, and a proof for the second claim
can be obtained similarly. A direct computation shows that

Tout = Q 'uf. (24)

For 1 < < d,
(V5020 @ Vg @ VEE=D)yt

= (Voo @ VIV @ VU NN Ty T quf

= (Voo @ VY @ VEU-NQ I T, ... Ty_ju} Lemma 3.2.1(a) and (24)

C Vgoi @ V=it Vf’oi is a Hq(X;)-module.
Next, an induction proves that for 0 < < d,

Vi g Ve = Y8 g A=)

from which the result follows. O
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Lemma 3.3.5. Let pg : V¥4 — V§®0d be the projection map. For I € ([0,7] N Z)%
and J € (1,7 NZ), pa(w]) = civ_1 and pa(w;) = cyju_; for some invertible
elements cy,cy € K*.

Proof. When I, J are non-decreasing, and when d = 2, the result follows from a
direct computation. For general I (or J), there exists a shortest element g € ¥4
such that Ig~! (or Jg~1!) is non-decreasing. The result follows from an induction
on the length of g. [

Lemma 3.3.6.

(a) The map vr — wj gives an isomorphism of H,(Xq)-modules VE — Wgo.
(b) The map vi + w; gives an isomorphism of Hy(Xq)-modules VEL — W

Proof. Since u} (resp. uj) is in the center of H%’q(d) by Lemma 3.2.1(a), the map
vy — w} (resp. vy — wy ) is clearly H,(X,)-equivariant. Surjectivity of this map
follows from Lemma 3.3.4, and injectivity of this map follows from Lemma 3.3.5.

O

3.4. The actions of v,
Lemma 3.4.1. Fora+b=d, V®y,, = (Vf’ob ® Vg%a)va,b.

Proof. It follows from Eq. (21) and Lemma 3.3.4 that
VO, = (VE @ VO, Ty, ,ut = (VE @ VE)u, Ty, yut = (VEZ @ VE Y, p.

For b < i <d,

ToTh T - T 1vqp

=Ty Ty (T TWTTy - Ty) (Togr - Tim1)wy Tw, ,ud Eq. (21)

=17 Ty Ty To - Ty)uy (Towr - Tim1) T, ud by commutivity
=T Ty Ny + Q  uy ) (Tygr -+ Tim1) T,y ud Eq. (20)

=Q 'y Ty (Tywr -+ Ti1) T, ud Lemma 3.2.1

= Q_lTl_1 .- -Tb_l(Tb+1 . ~Ti_1)ub_Twa7bu;L by commutivity
=Q 'y Ty N (Togr - Ti—1) Ve Eq. (21)

Then, for b <1 < d,

(V2@ Va0 Vg @ Oy, ,
= (Voo ® V>®ob Q Vfo(i—b—l) ® V®(d—i))TOT1T2 Ty 1ap
_ Q_l(V>0 Q V;X)Ob ® V2®O(z‘—b—1) ® V®(d—i))Tf1 . .be1(Tb+1 . ‘Tz'—1)va,b
C(VE @ Voo ® Vfo(i_b_l) @ VI (Typr - Ty )va
C (Vi@ Ve " @ Ve,
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where the last two inclusions follow from the fact that V®(b+1) is a Hq(Xpt1)-

module, and V®(l YisaH ¢(2i—p)-module, respectively. An induction shows that
for b <i <d,

&b ® V®(b7z‘) ® V@(dﬂ')vmb _ V;g)Ob ® Vfo(i_b) ® V®(d7i)va7b,

from which the result follows. O

For a + b = d, define projections
Pap : VEL S VEFQVEY, pl, VI 5 VR VE
Lemma 3.4.2. Leta+b=d, I € ([0,7]NZ)* and J € ([-r,7] NZ)®. Then

Pup((vs @vr)Tw,,) = cryvr @ py(vy)

for some cr ; € K, where py is defined in Lemma 3.3.5. Moreover,

pg,b((w; ® UI)Twa,b) = C1,JCJV QU_J
for some cr j,c5; € K*.

Proof. First note that (vy ® vr)Ty, , = c1,7 (Vs @ vD)Wap + D 0. , Cg(Vs @ VI)g
for some invertible ¢y ; € K and some ¢, € K, where g < wq under the Bruhat
order. Hence,

Pap(vs @ V)T, ,) = Phy(crs(vs @ v way + Y cglvs @ vr)g)
g<wa,b

= craph (01 ®vs)+ Y eoplhy((vs @ vr)g)

g<Waq, b
/
= ¢1,7Pap(V1 ® V) = cr yvr @ py(vy).
By Lemma 3.3.5, we have py(w;) = cjyv_y for some c¢; € K*. Therefore,
Pop((wy ®@vr)Ty,,) = cryvr @ pp(wy) = crycqvy @v_y. O

Lemma 3.4.3. For I € ([0,7] NZ)* and J € ([1,7] NZ)®, pap((v) @ v1)vap) =
cv_; @u_y for somec e K*.

Proof.

Pab (v @ v1)Vap) = Pap((vs @ vr)uy T, ,ud) Eq. (21)

—~

(
= pap((w; @vp) T, ,ul) Lemma 3.3.1
= pap(Pop (W) @ v1) T, ,)ug)
= papleryes(vr @ v_y)ul) Lemma 3.4.2
= paplcryeqw @v_y) Lemma 3.3.1

= ¢ ycipa(w]) @v_y
=Cr,JCICJU_1 Q@ V_. Lemma 3.3.5 O
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Lemma 3.4.4. For a+b=d, the map vi @ vy — (v ® V1)Vap gives an iSomor-
phism of Hy(Xa) @ Hq(Xp)-modules V<, ® VO — V&y, .
Proof. It follows from [DJ89, Lem. 3.10] that

. Tivay 1<i<b
TN, b+1<i<a4+b—1.

Hence, the map is H,(X,) ® Hq(Zp)-equivariant. The injectivity follows from
Lemma 3.4.3, and the surjectivity follows from Lemma 3.4.1. [J

3.5. The proof

Finally, we are in a position to prove the isomorphism theorem.

Proof of Theorem 3.1.1.

Sg’q(n, Cl) = End’}—[%ﬂ(d) (V®d)

= End@ogigd ei,d—iHBQ,q(d)ei,dfi (V®d€i,d—i) Lemma 321(6)

= @ Endei,d_iﬂz’q(d)eivd_i(V®d€7g,d7z)
0<i<d

= @ Enqu(gi)(@Hq(gd_i)(V®dviyd_¢) Lemma 321<C)(d)
0<i<d

= EB Enqu(Ei)®Hq(Ed,i)(V§)oi ® Vfo(d_i)) Lemma 3.4.4
0<i<d

= @ Endﬂq(zi)(vé@oi) ® Endﬂq(zdfi)(vgod_i)
0<i<d

= P Sp(In/21,4i) @ Sp([n/2),d—1). Eq. (23) O
0<i<d

3.6. Simple modules of Sg,q(n, d)

As an immediate consequence of the isomorphism theorem one obtains a classifica-
tion of irreducible representations for Sg (n, d).

Theorem 3.6.1. If f2(Q,q) is invertible in the field K then there is a bijection
{Irreducible representations of Squ(n, d)} < {( A\ p) F(di,d2) | di + dy = d},

where the number of parts of X and p is no more than n. In particular, the standard
modules over qu(n,d) are of the form V(A XKV (u), where V(X) (resp. V(X)) are
standard modules over SP([n/2],dy) (resp. Sp(|n/2],dz)).

Remark 3.6.2. There are variants of our isomorphism theorem in the literature
related to different Schur algebras. In [GH97] there was established a Morita
equivalence

d

SHWE)) = €D Sp(i,1) © Sp(d —i,d — 1),

q
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where S(H(WPE)) is an endomorphism algebra on a g-permutation module involv-
ing r-compatible compositions.

By [Ar99, Thm. 3.2], under a separation condition at the specialization u; =
—Q,uz = Q7' the Sakamoto-Shoji algebra Sy ., .([n/2],|n/2],d) (see 9.3) is
isomorphic to the right-hand side of Theorem 3.1.1, and hence is isomorphic to
our algebra Sg} q(n, d). When the separation condition fails, the two algebras do not
coincide since their dimensions do not match. For instance, in [Ar99, §2, Example]
it is computed that dim S, ,, ,(1,1,2) can be 3, 4, 5 and 10 while dim SF(2, d) is
always 3.

4. Schur functors

4.1. Schur functors

For type A it is well known that, provided n > d, there is an idempotent e” =
e?(n,d) € Sf(n,d) such that eASH(n, d)e* ~ Hy(Sq), and a Schur functor

FR : Mod (S0 (n,d)) = Mod(H(24)), M+ e*M. (25)

In the following proposition we construct the Schur functor for 557 (1, d) when
In/2] > d.
Proposition 4.1.1. If |[n/2| > d then there is an idempotent eB = €B(n,d)
S8.4(n,d) such that e®Sg  (n,d)e® ~ Hg (d) as K-algebras, and e®Sg, (n,d)
Ve as (5§ ,(n,d), 1 ,(d))-bimodules..

Proof. Recall AB(n,d) from (12) and ¢§\u from (14). Let 8 = ¢!, where

[ m

{(0,...,0,1,...,1,0...,0) € AB(2r,d)} if n = 2r;
N——
W= 2d
{(0,...,0,1,...,1,0...,0) € AB(2r +1,d)} ifn=2r+1.
N——
2d+1

Note that such w is well defined only when r = |n/2] > d. By Lemma 2.5.1, we

have
g

e®¢,,e® = { e ATA= v
0 otherwise.
Since W, is the trivial group, =z, = 1 € H%’q(d) and hence ¢9 , is uniquely
determined by 1 — T,. Therefore, eBSg’q(n, d)e® and ’Hg,q(d) are isomorphic as
algebras.
Now from Section 2.5 we see that there is a canonical identification

d B B B
V®d ~ EB T MG 4 =~ ED HOHLH(BQ’Q (waQ’q, quQ’q),
HEAB(n,d) pEAB(n,d)

and hence the maps ¢¢,,, with p € AB(n,d), g is a minimal length coset representa-

tive for WB/W,, form a linear basis for V¥, Again by Lemma 2.5.1, we have

99, fA=uw;
S, = { g (26)

0 otherwise.
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Hence, eBngq(n, d) has a linear basis {¢f,,} where 11 € AB(n,d), g aminimal length
double coset representative for W,,\W®&/W,. Therefore, V®¢ and eBSS’ 4(n, d) are
isomorphic as (Sg’q(n,d),?-[aq(d))—bimodules. O

We define the Schur functor of type B by
FB,: Mod(S§ ,(n,d)) — Mod(Hg, ,(d)), M — e®M.
Define the inverse Schur functor by

Gg : Mod(Hg, ,(d)) = Mod (S5, ,(n, d)),
M s Hom,e Sg,q(n’d)es(eBSE'?’q(n, d), M).

Below we define a Schur-like functor ngd : Mod(qu(n?d)) — Mod(”;‘-[%’q(d))
using Theorem 3.1.1, under the same invertibility assumption: recall ¢ from (48):

let y
e = ei’d =¢! (@eA(M/ﬂ,i) ®er(|n/2],d — z)) :
i=0
Note that engyq(n, d)e® ~ GB;Z:O He(Eit1)@Hg(X4—i+1), and hence left multiplica-
tion by € defines a functor Mod(Sg’q(n, d)) %Mod(@fzo He(Zit1)OH g (Ea—it1))-

Hence, we can define

F} 4 Mod(Sg ,(n,d)) — Mod(H§ ,(d)), M+ Fg' (€M), (27)

n

where Fp is the Morita equivalence for the Hecke algebras given by

Fu : Mod(HB, () — Mod< PH, (1) ® %q(zd_m)) . (28)

Under the invertibility condition, one can define an equivalence of categories in-
duced from ¢ as below:

d
Fs : Mod(Sg ,(n,d)) — Mod ( P s ([n/21,i) @ Sp(|n/2),d - i)) . (29)

i=0
In other words, we have the following commutativity of functors:

Proposition 4.1.2. Assume |n/2] > d > i > 0 and that f(? is invertible. The
diagram below commutes:

d
Mod(SB_ (n,d)) 2 Mod(@)sg\(m/zq,z‘)@s@qn/m,d—i))
ng,d liéF?n/z],i®an/2J,d—i : (30)

Mod(Hg ,(d)) —— Mod< é%q(zi—&-l) ® Hq(zd—iﬂ))
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Remark 4.1.3. We expect that Proposition 4.1.2 still holds if we replace the functor
Ffz’d therein by Ff’d.
4.2. Existence of idempotents

We construct additional idempotents in Schur algebras of type B that will be used
later in Section 7.

Proposition 4.2.1. There exists an idempotent e € ngq(n’, d) such that
B B
eSg .(n',d)e ~ S5 ,(n,d)
if either one of the following holds:

(a) n’ >n andn' =n mod 2;
(b) n =2r"+1>n=2r.

Proof. We use the combinatorial realization in Section 2.5. For (a) we set
_ 1
€= Z QS’Y’Y’
gl
where v runs over the set
AB(n/,d)|n
{v=1(0,...,0,%,...,%0...,0) € AB(n',d)} if (a) holds;
———

= n

{v=1(0,...,0,%,...,%,1,%,...,%0...,0) € AB(n/,d)} if (b) holds,
—_— =

where the *’s stand for arbitrary entries such that v € AB(n/,d).
By Lemma 2.5.1 we have

g : B,/ .
etd e — P if \,u€ AP(n/,d)|n;
r 0 otherwise.

It follows by construction that eSE’?’q(n’ ,d)e and Sg’q(n,d) are isomorphic as
algebras. [

4.3. Existence of spectral sequences

Let A be a finite-dimensional algebra over a field k£ and e be an idempotent in
A. Doty, Erdmann and Nakano [DEN04] established a relationship between the
cohomology theory in Mod(A) versus Mod(eAe). More specifically, they construct
a Grothendieck spectral sequence which starts from extensions of A-modules and
converges to extensions of eAe-modules.

There are two important functors involved in this construction. The first functor
is an exact functor from Mod(A) to Mod(eAe) denoted by F (that is a special
case of the classical Schur functor) defined by F(—) = e(—). The other functor
is a left exact functor from Mod(eAe) to Mod(A), denoted G defined by G(—) =
Hom 4 (Ae, —). This functor is right adjoint to F.

In [DENO04], the aforementioned construction was used in the quantum setting to
relate the extensions for quantum GL,, to those for Hecke algebras. For |n/2] > d
there exists an idempotent e € qu(n,d) such that ng(d) = 65’57q(n,d)e.
Therefore, we obtain a relationship between cohomology of the type B Schur
algebras with the Hecke algebras of type B.
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Theorem 4.3.1. Let |n/2]>d with M € Mod(S§ ,(n,d)) and N € Mod(Hg, ,(d)).
There exists a first quadrant spectral sequence

Bl — Bxtys (M, R/G(N)) = Ext;jéq(d)(eM, N),

where RIG(—) = Ext? ,

®d _
HE, (d) (V ) )

We can also compare cohomology between ngq(n,d) and Squ(n’ ,d) where
n’ > n since there exists an idempotent e € Sgaq(n’,d) such that Squ(n, d) =
eSg ,(n', d)e thanks to Proposition 4.2.1.

Theorem 4.3.2. Let M € Mod(Saq(n’,d)) and N € Mod(ngq(n,d)). Assume
that either

(a) n' >n and n’ =n mod 2;
(b) ' =2r"+1>n=2r.

Then there exists a first quadrant spectral sequence

(M,R'G(N)) = Ext’t/ (eM,N).

Ey’ = Ext!
2 5% 58 4(n:d)

L (n',d)

where RIG(—) = Exth

Q.q

(n,d)<655,q(n/’ d), =)

5. Cellularity

5.1. Definition

We start from recalling the definition of a cellular algebra following [GL96]. A
K-algebra A is cellular if it is equipped with a cell datum (A, M, C, *) consisting
of a poset A, a map M sending each A € A to a finite set M (\), a map C' sending
each pair (s,t) € M(A)? to an element C2, € A, and a K-linear involutory anti-
automorphism * satisfying the following conditions:

(C1) The map C' is injective with image being a K-basis of A (called a cellular
basis).

(C2) For any XA € A and s,t € M(X), (C2)* = C{,.

(C3) There exists rq(s',5) € K for A € A,s,8' € M()\) such that for all a € A
and s,t € M()\),

e = Z ro(s',8)Cy  mod Acy.
s'eM(X)

Here A_) is the K-submodule of A generated by the set {Cﬁ,’t,, | <
Ns e M(p)}.

For a cellular algebra A, we define for each A\ € A a cell module W () spanned by
C2, 5 € M()\), with multiplication given by

aCy = Z ro(s’,5)CL. (31)

s'eM ()
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For each A € A we let ¢ : W(A\) x W(A\) — K be a bilinear form satisfying
C2sCo = 9a(Cs,C)CZ mod Ac. (32)

It is known that the type A ¢-Schur algebras are always cellular, and there
could be distinct cellular structures. See [AST18] for a parallel approach on the
cellularity of centralizer algebras for quantum groups.

Example 5.1.1 (Mathas). Let A = A?(d) be the set of all partitions of d, and
let A’ = A’(d) be the set of all compositions of d. For each composition A\ € A’, let
> be the corresponding Young subgroup of ¥;. We set

Ty = Z T, € ’Hq(Ed).

wWE )\

It is known the g-Schur algebra admits the following combinatorial realization:
SqA(n, d) = Endﬂq(zd)(ﬂﬁ)\eA/{L‘)\HQ(Zd»
= D Homyy, (s, (@uHo(Za), 1A Ho(Za)).

A uEN’
The finite set M(A) is given by M(A) = |, SSTD(A, p1), where
SSTD(A, p) = {semi-standard \-tableaux of shape p}. (33)

For ;1 = d, denote the set of shortest right coset representatives for 3, in X4 by
D, ={w e Xq | l(gw) = l(w) + £(g) for all g € 3, }.

Let t* be the canonical M-tableau of shape ), then for all A-tableau t there is
a unique element d(t) € Dy such that td(t) = t. The cellular basis element, for
A€ As €sstd(\, ), t € sstd(\, v), is given by

Cﬁt(xah) = (5(17# Z Td(s)—1x,\Td(t)h, (34)
s,t
where the sum is over all pairs (s,t) such that p(s) =s,v(t) = t.

Example 5.1.2 (Doty—Giaquinto). The poset A is the same as the one in Ex-
ample 5.1.1, and we have A = ¥3A ™. It is known that the algebra S7(n,d) admits
a presentation with generators E;, F;(1 <i <n—1) and 1,(A € A). The map * is
the anti-automorphism satisfying
Ef=F, F'=E, 1.=1,.

For each A € A we set AY = {u € AT | x4 < A}. Note that A is saturated and
it defines a subalgebra S,(AY) of SA(n,d) with a basis {Z, | 1 < s < dy} for
some dy € N. Let x5 € S{;(n,d)_ be the preimage of T, under the projection
S (n,d) — Sg(AY) that is the identity map except that it kills all 1,, where p £ A,
The finite set M ()\) is given by

M\ ={1,2,...,d\}. (35)
Finally, for A € A,s,t € M(\), we set

Coy = w1} (36)
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5.2. Cellular structures on Sg,q(n, d)

We show that the isomorphism theorem produces a cellular structure for Sg’ .(n,d)
using any cellular structure on the g-Schur algebras of type A. For any n, d, we fix
a cell datum (A, 4, My, 4, Cy, 4, *) for Sé\(n, d). Define

A AB n d |_|A[n/2] i X AL”/QJ d—i> (37)

1=0

as a poset with the lexicographical order. For A = (A(), \(?)) € AB, we define M®
by

d
MBON) = || Mppya1. () x My, s9) 4 s (AP).
i=0
The map CB is given by, for s = (s s ¢ = () 2)) ¢ M[n/Q],i(/\(l)) X
My 9] 4-i(A?) € MB(N),

(CB)2 ¢ = (Crny21.)20 1) @ (Clnya] ai)do v

Finally, the map * is given by

A 2)
1 (Cpy, )5(1> (@ ® (Clny2),d— 1)?@) £(2)
A )
= (Crny2), i s @ (Clny2),a- )i 52
Corollary 5.2.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra Sg’q(n, d) is a cellular algebra with cell datum (AB, MB, CB x).

(38)

Proof. Condition (C1) follows from the isomorphism theorem; while Condition
(C2) follows directly from (38). Condition (C3) follows from the type A cellular
structure as follows: for a; € S4([n/2],i) and az € SH(|n/2],d — i),

(1) A
(Cfn/ﬂ );\<1> t1) = Z r((zll)(u(l)»5(1))(cf /2], )u(l) (o mod Ay,
u(1)€M|—n/2—|,i(>\(l))
&) &)
a2(Clp/2) a-i)s 0 = > r@ W, 5P (Cp21a-i)ae g mod Ag,

U EM, 4, (A®)
where
Ar = 53([n/2],0)(< AW),
Ay = S0 ([n/2]),d —i)(< AP).
That is, for a = a1 ® ap € SH([n/2],1) ® S} (|n/2],d — i) C SP(n,d), we have
a(CP)zi = > ra(,5)(CP)i mod SP(n, d)(< ),

u=(u® u®)
EM [y, /91 ,AM)XM o1, (A3

where rB(u,5) = r{ (u® s (42 5(2)) is independent of t. O
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6. Quasi-hereditary structure

6.1. Definition

Following [CPS88], a K-algebra A is called quasi-hereditary if there is a chain of
two-sided ideals of A:
ochclhhc---Ccl,=A

such that each quotient J; = I;/I;_ is a hereditary ideal of A/I;_;. It is known
[GL96] that if A is cellular and ¢y # 0 (cf. (32)) for all A € A then A is quasi-
hereditary.

An immediate corollary of our isomorphism theorem is that Sg} ,(n,d) is quasi-
hereditary under the invertibility condition. We conjecture that this is a sufficient
and necessary condition and provide some evidence for small n.

Corollary 6.1.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra SP(n,d) is quasi-hereditary.
Proof. Let ¢} with v € A, ; be such a map for SH(r,j). Fix A = (A1, A®) ¢
A|—n/2-|,z' X Al_n/2J,d—i C AB, and fix

5= (s1,s®)) t = (M ) € My, 191, (AY) x My ) 4 (AP) € MB(N),

we have
(1) A (2) (2)
C Ol = (Crnya1.0) e s (Crnya1 i) tw 10 ©(Clayaa—i) o 5 (Clna) a—i) i g

=2 (C, C)he (CP,CP)CY mod SB(n,d)(< A). O

Recall that in Proposition 2.6.1 we see that Sg ,(2,1) ~ Hg-1(X2). In the
following we show that the known cellular structure (due to Geck/Dipper—James)
fails when fB = Q=2 4+ 1 is not invertible.

Example 6.1.2. Let Sg (2,1) ~ Ho-1(5) = K[t]/(t* — (Q™' — Q)t +1). We
have

1
= {(\=rDen=H}. 200 = ¢ =mzh v = {s =3}
The cellular basis elements are
Ch= > QT =1+Q" Ch= > QT
WENg WEX L X1
Firstly, we have C{,C; =1=C%, and hence ¢, is determined by ¢,,(Cs, Cs) =
which is nonzero. For A\, we have
CaChi=1-Q 2+ (Q2+1)Q "= (Q2+1)C;; mod A_,.
That is, ¢, is determined by ¢, (C¢,Cy) = (@2 4 1), which can be zero when
fB=Q 241 =0. Therefore, Sg’ q(2, 1) is not quasi-hereditary in an explicit way.

One can also see that Sg’ 4(2,1) is not quasi-hereditary because if it were then
it would have finite global dimension. However, Hq-1(X2) is a Frobenius algebra
with infinite global dimension.

Conjecture 6.1.3. The algebra 5’57q(n, d) is quasi-hereditary if and only if the
polynomial f2(Q,q) is invertible.
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7. Representation type
7.1.

Let A be a finite-dimensional algebra over a field K. A fundamental question
one can ask about A is how to describe its representation type. The algebra A is
semisimple if and only if every finite-dimensional module (i.e., M € mod(A)) is a
direct sum of simple modules. This means that indecomposable modules for A are
simple. If A admits finitely many finite-dimensional indecomposable modules, A
is said to be of finite representation type. If A does not have finite representation
type A is of infinite representation type.

A deep theorem of Drozd states that finite-dimensional algebras of infinite
representation type can be split into two mutually exclusive categories: tame or
wild. An algebra A has tame representation type if for each dimension there exists
finitely many one-parameter families of indecomposable objects in mod(A). The
indecomposable modules for algebras of tame representation type are classifiable.
On the other hand, the algebras of wild representation type are those whose repre-
sentation theory is as difficult to study as the representation theory of the free
associative algebra k(z,y) on two variables. How to classify the finite-dimensional
k(x,y)-modules is very much an open question.

7.2. Summary: type A results

The following results from [ENO1, Thm. 1.3(A)—(C)] summarize the representation
type for the g-Schur algebra for type A over K. Assume that p = char(K), § € K*
has multiplicative order [ and q # 1.

Theorem 7.2.1. The algebra Sg(n,r) 1s semasimple if and only if one of the
following holds:

() n=1;
(ii) q is not a root of unity;
(iii) G is a primitive lth root of unity and r < ;
(iv) n=2,p=0,1=2 and r is odd;
(V) n=2,p>3,1l=2 and r is odd with r < 2p+ 1.

Theorem 7.2.2. The algebra SqA(n,r) has finite representation type but is not
semi-simple if and only if q is a primitive [th root of unity with | < r, and one of
the following holds:

(i) n >3 and r < 2[;

(i) n=2,p#0,1>3 and r < lp;

(iii) n =2, p=0 and either l > 3, orl =2 and r is even;

(iv) n=2,p>3,1=2 and r even with r < 2p, or r is odd with 2p+1 <r <
2p? + 1.

Theorem 7.2.3. The algebra Sg(n, r) has tame representation type if and only if
q is a primitive [th root of unity and one of the following holds:

(i) n=3,1=3,p#2andr =17,8;

(i) n=3,1l=2and r =4,5;
(ili) n=4,1=2 and r =5;
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(iv) n=2,1>3,p=2o0orp=3andpl <r < (p+1)I;
(V) n=2,1=2,p=3 and r € {6,19,21,23}.
7.3.

In this section we summarize some of the fundamental results that are used to
classify the representation type of Schur algebras. The first proposition can be
verified by using the existence of the determinant representation for .S, qA (n,r1) (cf.
[ENO1, Prop. 2.4B]).

Proposition 7.3.1. If Sg‘(n, r1)®S§(n, ro) have wild representation type then the
tensor product Sg‘(n, r+n)® Sg\(n, ro) has wild representation type.

Next we can present a sufficient criteria to show that the tensor product of type
A Schur algebras has wild representation type.

Proposition 7.3.2. Suppose that the Schur algebras S{?(n,rl) and Sqé(n,rg) are

non-semisimple algebras. Then Sg(n, r) ® S?(n, r9) has wild representation type.

Proof. First note that S2(n,r) is a quasi hereditary algebra and if S5 (n,r) is not
semisimple then it must have a block with at least two simple modules.
Suppose that S, S5, S35 are three simple modules in Sg\(n, r1) with

EXt;]éqA(n,’f'l)(Sl7 82) # O, EXt‘]éqe(n,Tl)(Sz7 SS) % O
Note that via the existence of the transposed duality,
EXt}SqA(n’Tl)(Sz,S]) = Extég(n’rl)(sj,sl)

for 7,5 = 1,2,3. Similarly, let 77,75 be two simple modules for Sg(n,rz) with
Ext}gqé(nh)(Tl,Tg) # 0. Then the Ext'-quiver for S2(n,r1) ® S4(n,r2) will have
a subquiver of the form as in Figure 1 below. This quiver cannot be separated

into a union of Dynkin diagrams or extended Dynkin diagrams. Consequently,
S8(n,r1) ® S2(n,ry) must has wild representation type.

FIGURE 1.

The other case to consider is when the blocks of S2(n,71) and S2(n,r3) have
at most two simple modules. Let B; be a block of Sg\(n,rj) for 7 = 1,2 with two
simple modules. There are four simple modules in By ® By and the structure of
the projective modules is the same as of a regular block for category O for the Lie
algebra of type A; x A; (cf. [FNPO1, 4.2]). The argument in [FNP01, Lem. 4.2]
can be used to show that By ® By has wild representation type. [
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7.4.

The results in [ENO1, Thm. 1.3(A)—(C)] entail using a different parameter g than
the parameter ¢ in our paper. The relationship is given by ¢ = ¢~2 or equivalently
¢*> = (q)~* with S2(n,d) = 52(n,d). This means that

e ¢ is generic if and only if ¢ is generic,

e ¢2? is a primitive {th root of unity if and only if ¢ is a primitive /th root of
unity;

e if ¢ is a primitive (2s)th root of unity if and only if g is a primitive sth root
of unity;

e if ¢ is a primitive (2s 4+ 1)th root of unity if and only if g is a primitive
(25 + 1)th root of unity.

Now let n’ > n. By Proposition 4.2.1, under suitable conditions on n’ and n,
there exists an idempotent e € SB (s d) such that SQ g (n,d) = eSQ ,(n';d)e. By
using the proof in [ENO1, Prop. 2 4B] one has the following result.

Proposition 7.4.1. Letn' > n withn’ > n and n’ =n mod 2.

(a) If ngq(n, d) is not semisimple then Sg’q(n’, d) is not semisimple.
(b) If Sg,q(n, d) has wild representation type then Sg’q(n’, d) has wild represen-
tation type.

7.5. Type B results

Throughout this section, let Squ(n,d) be the g-Schur algebra of Type B under
the condition that the polynomial fc?(Q,q) £ 0. Moreover, assume that ¢ # 1
(i.e., ¢ # 1 or a primitive 2nd root of unity). One can apply the isomorphism in
Theorem 3.1.1 to determine the representation type for SCB?’ q(n, d) from the Type
A results stated in Section 7.2.

Theorem 7.5.1. The algebra Sg’q(n,d) 1s semisimple if and only if one of the
following holds:

(i) n=1;

(ii) q is not a root of unity;
(iii) ¢° is a primitive lth root of unity and d < I;
(iv) m =2 and d arbitrary.

Proof. The semisimplicity of (i)—(iii) follow by using Theorem 3.1.1 with Theo-
rem 7.2.1. The semisimplicity of (iv) follows by Theorem 3.1.1 and the fact that
SA(1,d) is always semlslmple

Now assume that ¢? is a primitive Ith root of unity, d > I, n > 3 and [ > 3.
Consider the case when n = 3. From Theorem 3.1.1,

d
S§,(3.d) = P SH(2.1) ® Sp(L,d—1i). (39)

1=0

If d > I then S7(2,1) appears as a summand of ngq(?), d) (when i = d—I[). For | > 3,
SA(2,1) ~ SZ(2,1) is not semisimple. It follows that ngq(?),d) is not semisimple
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for d > [. One can repeat the same argument for n = 4 to show that Sg7q(4, d) is

not semisimple for d > [. Now apply Proposition 7.4.1(a) to deduce that ng  (n:d)
is not semisimple forn >3 and d >1. [

Theorem 7.5.2. The algebra Sg’q(n,d) has finite representation type but is not
semisimple if and only if ¢* is a primitive lth oot of unity with | < d, and one of
the following holds:

(i) n>5,1<d<2l;

(i) n=3,p=0andl < d;

(iii) n=3,p>2and | < d < lp;

(iv) n=4,p=0,1=2 and d > 4 with d odd;

(V) n=4,p>3,1l=2and 4 <d <2p—1 with d odd.

The algebra Sg’q(n,d) has tame representation type if and only if

(vi) n=3,1=2,p=3 and d = 6;
(vil) n=3,1>3,p=2o0r3 andlp<d<l(p+1);
(vili) n=4,1=2,p=3 andd=1T.

Proof. We first reduce our analysis to the situation where n = 3 and 4. Assume that
n >5so [n/2] > 3 and [n/2] > 2. By Theorem 7.2.1, the algebras 5% (2,1) and
S(/;(z', [+j) are not semisimple for ¢ > 3,5 > 0, and hence neither are SQ(M/Q} J+7)
and S7(|n/2],1) for n > 5,5 > 0. Therefore, S2([n/2],1+ j) ® SH([n/2],1) has
wild representation type by Proposition 7.3.2. It follows that Sg, q(n, d) has wild
representation type for d > 2I,n > 5. When | < d < 2] and n > 5, one can
use Theorem 3.1.1 in conjunction with Theorem 7.2.2 to prove that Sg (n,d) has
finite representation type.

Now consider the case when n = 3. The isomorphism (39) indicates that
we can reduce our analysis to considering 55(2,7“). From this isomorphism and
Theorem 7.2.2, one can verify (i) when char K = 0 then Squ(?),d) has finite
representation type (but is not semisimple) for | < d; (ii) when char K = p > 0
then 857 (3, d) has finite representation type (but is not semisimple) for I < d < Ip;
and (iii) when char K = p > 0, S(Bqu(&d) has infinite representation type for
d > Ip.

For n = 3, one can also see that under conditions (vi) and (vii), Sg,q(?),d)
has tame representation type. Moreover, one can verify that 357 q(3,d) has wild
representation type in the various complementary cases.

Finally let n = 4. From Proposition 7.3.2, 57(2,1) ® S2(2,1) and S}(2,1) ®
S#(2,1+ 1) has wild representation type for I > 3. Therefore, ngq(él, d) has wild
representation type for d > 2] and [ > 3. For [ = 2, the same argument can be
used to show that 557 4(4,d) has wild representation type for d-even and d > 4.

This reduces us to analyzing Sg7q(4,d) when [ = 2 and d > 4 is odd. By
analyzing the components of Sg’q(él, d) via the isomorphism in Theorem 3.1.1,
one can show that for d odd: (i) Sg,q(él,d) has finite representation type (not
semisimple) for 4 < d < 2p —1 and p > 3, (i) S§ ,(4,d) has finite representation
type (not semisimple) for d > 4 and p = 0, (iii) SCB?’ (4, d) has wild representation
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type for d > 2p + 1 for p > 5, and (iv) Squ(él,d) has wild representation type
for d > 2p + 3 for p = 3. One has then to show that Squ(él, 7) for p=3,1=2

has tame representation type since the component 59(2, 6) ® 59(2, 1) has tame

representation type, and the remaining components have finite representation type.
O

Note that for the case ¢ = 1 (i.e., ¢> = 1) one obtains the classical Schur
algebra for type A, and can use the results in [Er93] [DN98] [DEMN99] to obtain
classification results in this case for Sg,  (n,d).

8. Quasi-hereditary covers

In this section we first recall results on 1-faithful quasi-hereditary covers due
to Rouquier [Ro08]. Then we demonstrate that our Schur algebra is a 1-faithful
quasi-hereditary cover of the type B Hecke algebra via Theorem 3.1.1. Hence, its
module category identifies the category O for the rational Cherednik algebra of
type B, see Theorem 8.3.3. A comparison of our Schur algebra with Rouquier’s
Schur-type algebra is also provided.

8.1. 1-faithful covers

Let C be a category equivalent to the module category of a finite dimensional
projective K-algebra A, and let A = {A(X\)}rea be a set of objects of C indexed
by an interval-finite poset structure A. Following [Ro08], we say that C (or (C,A))
is a highest weight category if the following conditions are satisfied:

(H1) End¢(A(N)) = K for all A € A;

(H2) If Home(A(N), A(p)) # 0 then A < p;

(H3) If Home(A(X), M) =0 for all A € A then M = 0;

(H4) For each A(XA) € A there is a projective module P(A) € C such that
A(A

ker(P(\) — )) has a A-filtration, i.e., finite filtrations whose quotients
are isomorphic to objects in A.

Let A-mod be the category of finitely generated A-modules. The algebra A is
called a quasi-hereditary cover of B if the conditions below hold:

(C1) A-mod admits a highest weight category structure (A-mod, A).

(C2) B = End4(P) for some projective P € A-mod.

(C3) The restriction of F' = Hom (P, —) to the category of finitely generated
projective A-modules is fully faithful.

Quasi-hereditary covers are sometimes called highest weight covers since the
notion of highest weight category corresponds to that of split quasi-hereditary
algebras [Ro08, Thm. 4.16]. We also say that (A, F') is a quasi-hereditary cover
of B. Moreover, a category C (or the pair (C, F')) is said to be a quasi-hereditary
cover of B if C ~ A-mod for some quasi-hereditary cover (A, F') of B.

Following [Ro08], a quasi-hereditary cover A of B is i-faithful if
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Ext’, (M, N) ~ Ext%,(FM,FN) for j<i, (40)

and for all M, N € A-mod admitting A-filtrations. Furthermore, a quasi-hereditary
cover (C, F) of B is said to be i-faithful if the diagram below commutes for some
quasi-hereditary cover (A, F’) of B:

s A-mod

. -
N

B-mod

Rouquier proved in [Ro08, Thm. 4.49] a uniqueness theorem for the 1-faithful
quasi-hereditary covers which we paraphrase below:

Proposition 8.1.1. Let B be a finite projective K -algebra that is split semisimple,
and let (C;, F;) for i = 1,2 be 1-faithful quasi-hereditary covers of B with respect
to the partial order <; on Irr(B). If <y is a refinement of <o then there is an

equivalence C1 ~ Cq of quasi-hereditary covers of B inducing the bijection Irr(Cy) ~
Irr(B) ~ Irr(Cs).

8.2. Rational Cherednik algebras

Let (W,S) be a finite Coxeter group, and let Ay, be the corresponding rational
Cherednik algebra over C[h,;u € U] as in [Ro08], where U = | | cg{s} x{1,...,es}
and ey is the size of the pointwise stabilizer in W of the hyperplane corresponding
to s. If W = WB(d) and S = {sg, 51} then U = {(s;,7) | 0 <1i,j < 1}. In this case
we assume that

h(sl,O) = h, h(Slyl) = 07 h(so,z’) = hi for = 0, 1. (41)

Remark 8.2.1. In [EGO02] the rational Cherednik algebra H, . is defined for a
parameter t € C, and a W-equivariant map ¢ : S — C. The two algebras, Ay
and Hy ., coincide if ¢ = 1, h(s ) = 0 and h(, 1) = ¢(s) for all s € S.

Following [Ro08, §5.1.2, §5.2], let m be a maximal ideal of C[h,;u € U] and K’
be the completion at m, and let Of;, be the deformed category of finitely generated
Aw-modules that are locally nilpotent for S(V'). Let Ow = K®g Oy, It is proved
in [GGORO03| that (Ow, Aw ) is a highest weight category of H(W)-mod

Aw = {A(E) = Aw Xs(V)yxWw E ’ E e IIT(W)}.
See [Ro08, 3.2.1-3] for the partial order < on Irr(W). Let AJ (d) be the poset of

all bipartitions of d on which the dominance order < is given by A < p if, for all
s >0,

1 1 r r
ST ST MO STIA < @]+ 3T ).
j=1 j=1 j=1 j=1



CHUN-JU LAI, DANIEL K. NAKANO, ZIQING XIANG
For A € AJ (d), set
Wf(d) = Cg X (2/\(1) X 2/\(2)).

Set
L) = {1, AV, L) = (WD + 1., d).

Following [Ro08, 6.1.1], there is a bijection

B
A (d) = Te(WB(d), A= (A, AP) 5 xo = Indjpey) (am @ 0P xaem),

where Y is the irreducible character of W8(d) corresponding to A, and #@ is the
1-dimensional character of CQI*(z) X Y1, (2) whose restriction to C’QI*(Z) is det and
the restriction to X, () is trivial.

Rouquier showed that the order < is a refinement of the dominance order <
under an assumption on the parameters h, h;’s for the rational Cherednik algebra

as follows:

Lemma 8.2.2 ([Ro08, Prop. 6.4]). Assume that W = WE(d), h < 0 and hy —
ho > (1 —d)h (see (41)). Let A\, € AJ (d). If A\ <, then xx < x, on Irr(W).

Remark 8.2.3. The assumption in Lemma 8.2.2 on the parameters is equivalent to
c(sp) = h1 > 0 using Etingof-Ginzburg’s convention.

Let KZw and KZj, be the KZ functor on Ow and Oy, respectively. We
paraphrase [Ro08, Thm. 5.3] in our setting as below:

Proposition 8.2.4. If W = W®(d) and H(W) = Hg), (d), then (Ow, K Zw)
is a quasi-hereditary cover of H(W)-mod. Moreover, (Oy,, KZy,) is a 1-faithful
quasi-hereditary cover if (¢* +1)(Q?* + 1) # 0.

It is shown in [Ro08] that under suitable assumptions, Oys(q) is equivalent to
the module category of a Schur-type algebra S®(d) which does not depend on n
using the uniqueness property Proposition 8.1.1. Below we give an interpretation
in our setting.

Let Aa(d) be the set of all bicompositions of d. In [DJM98b] a cyclotomic Schur
algebra over Q(q, @, @1, Q2) for each saturated subset A C Ay (d), which specializes
to cyclotomic Schur algebras Sg(A) over K is defined (see Section 9.2). Moreover,
in [Ro08] an algebra Sg(A) is defined that is Morita equivalent to Sg(A) as given
below:

S®(d) = Endye (q(Pa). Pa:= €D maHp ,(d),
AeAT (d)

where m,, is defined in (46). Note that S®(d) does not depend on n. Set

F}' = Homgr (gy(Pg, —) : S¥(d)-mod — H%7q(d)—mod.
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Proposition 8.2.5 ([Ro08, Thm. 6.6]).

(a) The category Mod(S®(d)) is a highest weight category for the dominance
order.

(b) (SR(d), FY) is a quasi-hereditary cover of Hqu(d).

(c) The cover (SR(d), F}) is 1-faithful if

d
(@ +1)(@Q@*+1)#0, and f§,(d)-JJA+¢+--+¢ ) #0. (42)
=1

The category O for the type B rational Cherednik algebra together with its K7
functor can then be identified by combining Propositions 8.1.1, 8.2.4 and 8.2.5. In
other words, the following diagram commutes if (42) holds:

~

OWB(d) > SR(d)—mod

KZW%)\ %‘}}

Hg) ,(d)-mod

8.3. 1-faithfulness of Sg’q(n, d)-mod

Let ¢ be the multiplicative order of ¢? in K. In this section we use the following
assumptions:

d—1
Q0= 1] @?+¢) eKk”, ri=|n/2]>d, (>4  (43)
i=1—d

As a consequence, there exists a type B Schur functor by Proposition 4.1.1.
For type A, it is known in [HNO4] that the ¢g-Schur algebra is a 1-faithful quasi-
hereditary cover of the type A Hecke algebra if ¢ > 4. Moreover, Theorem 3.1.1
applies and hence we will see shortly that 557 (1, d) is a 1-faithful quasi-hereditary
cover of 7—[%7 4(@). Furthermore, Proposition 8.1.1 implies that we have a concrete
realization for the category O for the type B rational Cherednik algebra together
with its KZ functor using our Schur algebra.

Corollary 8.3.1. If f2 € KX, then ngq(n, d)-mod is a highest weight category.

Proof. Tt follows immediately from the isomorphism with the direct sum of type
A g-Schur algebras that ng q(n, d)-mod is a highest weight category. [

Below we characterize a partial order for highest weight category SE’?’ q(n,d)—
mod obtained via Corollary 8.3.1 and the dominance order for type A. Denote the
set of all N-step partitions of D by AA(NV, D). Set

A% p = {AMN) | A € AN, D)}.

Now AJA\I’ p is a poset with respect to the dominance order < on AA(N ,D). Tt is

well known that for all non-negative integers N and D, (S?(N, D)-mod, A%,D) is
a highest weight category.
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Recall Fs from (29) and AB(n,d) from (37). Set

AB = {ABO) = FHAMN D) @ AR [ A= (AP, AD) € AB(n,d)}. (44)

Now AE’ 4 is a poset with respect to the dominance order (also denoted by <)
on AB(n,d) C AJ (d). Hence, (S2(n,d)-mod, <) is a highest weight category.

Lemma 8.3.2. Assume that Squ(n,d) is a quasi-hereditary cover of ”H,g’q(d). If
(43) holds, then the cover is 1-faithful.

Proof. Write A= Sg’q(n, d), B :Hqu(d), S'=85[n/2],4),8" = SH(|n/2],d — i)
for short. We need to show that, for all M, N admitting AB-filtrations,

EXtZ(M’ N) . EXtiAe<FZ,dM7 F?E,,dN)7 { < 1.

Recall Fg from (29). Write FsM = @, M} ® M/ and FsN = @, N/ ® N/’ for
some M/, N/ € Mod(S") and M/, N/" € Mod(S"”). From construction we see that
all M/, M!", N/, N!" admit AA-filtrations since M, N have AB-filtrations.

For |n/2] > d > i > 0, we abbreviate the type A Schur functors (see (25)) by
F' = Fﬁn/QM’Fu = FLAn/QJ,d—z" Since the type A ¢-Schur algebras are 1-faithful
provided ¢ > 4, for j <1 we have

EXtJS/(Mi/? Nz/) = Eth}-Lq(EiJrl)

j AT o J
EXtS//(Mi JNi ) - EXt’Hq(Edfiqu)

(F'M!,F'N]),
(F/,M'// F,/N'//).

We show first it is O-faithful. We have

Hom (M, N) ~ Homgys g5 (J-"SM, ]-"SN)

d
~ P Homg: (M;, N}) ® Homg» (M]', N]')
1=0
d

~ P Homyy, s,,,)(F' M/, F'N}) ® Homyy (s,_,,,)(F"M]', F"N/')
1=0

d
~ @Homﬂq(zprl)@ﬂq(zd_i_i_l) (FIM,L/ ® F’M{l,F//Ng ® F//Nil/)
1=0

d
= @ HOqu(2i+l)®Hq(2d7i+l) (‘FHFZvdM’ ]:HFZ’dN)
1=0
~ HomB(Fb,dMa FZ,dN)‘

n

Note that the second last isomorphism follows from Proposition 4.1.2.
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For 1-faithfulness, we have
Ext! (M,N)

~

((Bxtg, (M{, N}) ® Homgn (M]{', N{"))

@-

@
I
=)

D (HOI’HS/(MZ-/, Nz/) ® EXt}@” (Mz'”7 Nzu)))

-

@
I
o

((EXt%‘lq(Ewl)(F/Mi/’ FINZI) ® Hoqu(Ed7i+1)(F”MiH7 F”Niu))
& (Homyy, (s, ,) (F'Mj, F'N}) ® Exty, (s, . (F"M]', F"N}")))

d
b b
~ (P Exthy, (5., )om, 0asia) (FuFo M, FuF)  N)
1=0
= EXt]lE}(FrbL,de Fi,dN)- O

Theorem 8.3.3. Assume that W = WB(d), h < 0, hy — hp > (1 — d)h (see
(41)) and (¢* +1)(Q* + 1) € K*. If (43) holds, then there is an equivalence
Ow ~ Sg’q(n,d)-mod of quasi-hereditary covers. In other words, the following
diagram commutes:

12

Ow > qu(n, d)-mod

kv —

n,d
Hg, ,(d)-mod
Proof. The theorem follows by combining Proposition 8.1.1, Proposition 8.2.4,

Lemma 8.2.2, and Lemma 8.3.2. [

Remark 8.3.4. The uniqueness theorem for 1-faithful quasi-hereditary covers also
applies on our Schur algebras and Rouquier’s Schur-type algebras. That is, the
following diagram commutes provided (42) and (43) hold:

~

SR (d)-mod > 56.4(n,d)-mod

n,d
Hg ,(d)-mod

9. Variants of g-Schur algebras of type B/C

It is interesting that the type A ¢-Schur algebra admits quite a few distinct
generalizations in type B/C in the literature. This is due to the fact that the type A
g-Schur algebra can be realized differently through the following realizations of the
tensor space (K™)®%: (1) a combinatorial realization as a quantized permutation
module (cf. [DJ89]); (2) a geometric realization as the convolution algebra on GL,,-
invariant pairs consisting of a n-step partial flag and a complete flag over finite

field (cf. [BLM90]).
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In the following sections we provide a list of ¢g-Schur duality /algebras of type B/C
in literature, paraphrased so that they are all over K, and with only one parameter
q. These algebras are all of the form Endﬂg(d)(‘/@d) for some tensor space that

may have a realization V®¢ ~ @ rer M A via induced modules. Considering the
specialization at ¢ = 1, we have

M)\|q:1 = indg/f(d) U, Hy < WB8(d) is a subgroup,

where U is usually (not always) the trivial module. We summarize the properties

of the ¢-Schur algebras in the following table:

coideal g-Schur Algebra

cyclotomic Schur algebra

Sakamoto—Shoji algebra

5P (n,d) Sq(A) Sg(a,b,d)
index set I compositions bicompositions unclear
A= ()‘i)iel(n) A= (}\(1)7 >\(2))
with constraints on \;
subgroup H) WEB(Xo) X Z(ar, ) (C‘;‘(l)l X C‘QA(Q)‘) X 3y unknown
module U trivial nontrivial
Schur duality (UB(n), HE(d)) partial (Uq(gl, % gly), HE(d))
cellularity new [LNX] known [DJM98b] unknown
quasi-heredity new [LNX] known [DJM9I8b] unknown
Schur functor new [LNX] known [JMO0O] unknown
1-faithful cover new [LNX] known [Wel7] unknown

For completeness, we remark that there is studied in [DS00] a more involved
“type B” g-Schur algebra (referred as the g-Schur? algebras), which admits a Morita
equivalence theorem (see [DR00]). We also distinguish the coideal g-Schur algebras
from the slim cyclotomic Schur algebras constructed in [DDY18].

9.1. The coideal Schur algebra Sg’ (n,d)

This is the main object in this paper which we have been calling the g-Schur algebra
of type B. To distinguish it from the other variants we call them for now the coideal
Schur algebras since they are homomorphic images of coideal subalgebras.

For the equal-parameter case, a geometric Schur duality is established between
HZ(d) and the coideal subalgebra U2 (n) as below (cf. [BKLW18]):

Ug (n)
i .
Sg(n,d) ~Tgo(n,d) ~ (K")® ~ T3 (n,d) ~HE(d)

Note that a construction using type C flags is also available, and it produces
isomorphic Schur algebras and hence coideals. A combinatorial realization 7.5 on,d)
as a quantized permutation module is also available along the line of Dipper—James.

For the case with two parameters, the algebra SCB?’ q(n, d), when n is even, was
first introduced by Green and it is called the hyperoctahedral ¢-Schur algebra
[Gr97]. A two-parameter upgrade for the picture above is partially available — a
Schur duality is obtained in [BWW18] between the two-parameter Hecke algebra
’H%’q(d) and the two-parameter coideal UB over the tensor space Q(Q, q); a two-

parameter upgrade for TaBlg(n,d) is studied in [LL18] — while a two-parameter
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upgrade for TgBeo (n,d) remains unknown since dimension counting over finite fields
does not generalize to two parameters naively.

To our knowledge, this is the only ¢-Schur algebras for the Hecke algebras of
type B that admit a coordinate algebra type construction and a notion of the Schur
functors with the existence of appropriate idempotents.

9.2. Cyclotomic Schur algebras

The readers will be reminded shortly that the cyclotomic Hecke algebra H(r, 1, d)
of type G(r,1,d) is isomorphic to H?(d) at certain specialization when r = 2. For
each saturated subset A of the set of all bicompositions, Dipper—James—Mathas
(cf. [DJMO98b]) define the cyclotomic Schur algebra S(A):

S4(A) = Endys (0)T(A),

where T'(A) is a quantized permutation module that has no known identification
with a tensor space. This generalizes the (Q, ¢)-Schur algebras introduced in the
paper [DJMO98a], which is the special case when A is the set of all bicompositions
and r = 2.

While a cellular structure (and hence a quasi-heredity) is obtained for S,(A), it
is unclear if it has an analogue of full Schur duality.

We also remark that there is no known identification of TaBlg
for some A.

Let R = Q(q, Q, Q1,Q2). The cyclotomic Hecke algebra (or Ariki-Koike algebra)
H = H(2,1,d) is the R-algebra generated by T, ..., T5 | subject to the relations
below, for 1 <i<d—-1,0<j<k—-1<d-2:

(n,d) with a T'(A)

(T5* = QT3 — Q2) =0, (T2 +1)(T5* —qa) =0,
(TOAT1A)2 = (T1AT0A)27 TiAj—;%—lTiA = Ti%—lTiATi%-D TszTjA = TjATkA'

Next we rewrite the setup in loc. cit. using the following identifications:
ga < q % TP < q T
Under the identification, the Jucy-Murphy elements are, for m > 1,

L = (qa)'™™TA ... T ... TS|

= (qTﬁ—l) ce (qToA) cee (qTr%—ﬂ
= mfl...To...Tmfl.

Then the cyclotomic relation is

(T — Q)¢ 'To—Q2) =0, or (Tp—qQ1)(To—qQ2) = 0.

This is equivalent to our Hecke relation at the specialization below:

Qr=-q'Q, Q=q¢'Q"

In summary we have the following isomorphism of K-algebras.



CHUN-JU LAI, DANIEL K. NAKANO, ZIQING XIANG

Proposition 9.2.1. The type B Hecke algebra Hg’q(d) is isomorphic to the cyclo-
tomic Hecke algebra H(2,1,d) at the specialization Q1 = —q~1Q, Q2 = ¢~ 1Q 1.

For a composition A = (A1,...,\¢) € N¥ of £ parts write
A=A +--+ X, and £\ =/

A bicomposition of d is a pair A = (A, A\(2)) of compositions such that |[A1)| +
IA2)| = d. We denote the set of bicompositions of d by Ay = A (d). A bicomposition
A is a bipartition if A(Y), A(2) are both partitions. The set of bipartitions of d is
denoted by A = AJ (d).

Following [DJM98b], the cyclotomic Schur algebras can be defined for any
saturated subset A of the set Ay(d) of all bicompositions of d. That is, any subset
A of A satisfying the condition below:

if u€ A,ve Aj(d) and v 1> i, then v € A.

For each A we define a cyclotomic Schur algebra S(A) = Endy (,., maH) ,
where

g()\(l))
my = uZ(m))x/\v uZ_(A(l)) - H (Lm = Q2), xx= Z Tw, (45)
m=1 wWEX

and Xy = 2&1) X ZE\Q) is the Young subgroup of ¥;. The specialization Sg(A) of
S(A) at Q1 = —¢7'Q, Q2 = ¢ Q™! is then given by

SQ (A) = End}%,q < @ m)\’Hg’q) y
AEA

where
my= (L1 —q'Q7 ) (Lynwy —a ' Q Haa. (46)

Remark 9.2.2. There seems to be a common misconception that the type B Schur
algebras S('? (n,d) is a special case of the cyclotomic Schur algebras, just as the
Hecke algebras of type B are a special case of cyclotomic Hecke algebras (see
Proposition 9.2.1).

It is known in [DMO02] that the cyclotomic Schur algebras admit a Morita
equivalence under an invertibility condition. Below we give a paraphrase of [DM02,
Thm. 1.5] using our specialization:

d

B i i,i) @ Sp(d — iy d — 1), (47)
=0

Sa(Aa(d) =
where Ay(d) is the set of all bicompositions of d. For convenience, let us repeat the
assertion of our Theorem 3.1.1 below:

d
S8.q(n.d) ~ @ S5 ([n/2],1) ® S{(|n/2],d — ). (48)
i=0

We remark that, while the invertibility conditions in Theorem 3.1.1 and (47) are
the same under our specialization,
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e the left-hand sides of (47) and (48) are not Morita equivalent in general;
e the right-hand sides of (47) and (48) are not Morita equivalent in general.

It is better to understand our Theorem 3.1.1 as an independent result, compared
to [DMO02, Thm. 1.5], as they do not generalize to each other.

Without an algebra isomorphism, one can achieve at best the following Morita
equivalence:

Proposition 9.2.3. If f2 is invertible in the field K and n > 2d, then the type
B Schur algebra Squ(n,d) 1s Morita equivalent to the cyclotomic Schur algebra
So(A2(d)) at the specialization

Ql = _q_1Q7Q2 = q_lQ_17
where Ay (d) is the set of all bicompositions of d.

Proof. In light of the algebra isomorphism (48) and the Morita equivalence (47),
qu(n, d) is Morita equivalent to Sg(A2(d)) if there are Morita equivalences

Se([n/2],4) ® Sp(In/2],d — i) = S i) ® SH(d —i,d — i)
for all 0 < i < d. The condition n > 2d is imposed so that, for 0 <7 < d, we have
both [n/2] > i and [n/2| > d —i. It follows that

Se([n/2],1) = Sa (i, i)
and
St([n/2],d—1i) ~ SHd—i,d—1i).

Mor

This concludes the proof. [

Below we describe a basis for the cyclotomic Schur algebras, and then use it to
distinguish 557 4(n,d) from the cyclotomic ones (See Example 9.2.4).

Let To(A, 1) be the set of semi-standard A-tableaux of type pu, that is, any
T = (TW, TP) € To(\, p) satisfies the conditions below:

(S0) T is a A-tableau whose entries are ordered pairs (i, k), and the number of

(i,7)’s appearing is equal to ugk);

(S1) entries in each row of each component T*) are non-decreasing;

(S2) entries in each column of each component T are strictly increasing;
S3

(S3) entries in T must be of the form (i, 2).
We note that the dimension of the cyclotomic Schur algebra A is given by

dimSo(A) = 3 [Tl - [To(A,v).

AEAT (d)
,vEA

It is then defined as a “tensor space” T(A) = @, o0 m ,\7-[%7 o, Which has an obvious
Sq(A)-HE(d)-bimodule structure.
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Example 9.2.4. Let
Aap = Aap(d) = {d = AP, AP) € Ay (d) [ ((AD) < a,6(AP)) < b}
Recall that the dominance partial order in A (1) is given by ps = (], 2) >
w1 = (9, ]), and hence Ag1(1),A1,1(1) are saturated, while Ay (1) is not. The
cardinality of |To(fte, fte)| is given as below:
| To(pas pa)| = 1 = |To(pa, pa)| = [To(pz, p2)l,  [To(p, p2)| = 0.

Note that To(u1,u2) is empty since the only ps-tableau of type p; is (&,[1]2]),
which violates (S3). Hence, the dimensions of these cyclotomic Schur algebras are

Sq(Moa(1)) =1, Sg(Ao,1(1)) = 3.
For d = 2, the dominance order in A3 (2) is given by

A =(T]2)> M = (H@) b= (L) Ae= (2, [ ])> A = (@H)

The sets A 2(2), A1.2(2), and Az 2(2) are saturated. The cardinality of |7To( e, Ae)]
is given in the following table

type\shape | A5 As Az A2 A\
A5 1 O 0 0 0
A4 1 1 0 0 O
A3 1 1 1 0 O
Ao 1 0 1 1 0
A1 1 1 2 1 1

Hence, the dimensions are
dim Sq(A072(2>) = 37 dim Sq(Al’Q(Q)) = 7, dim Sq(A2’2(2)) = 15.

Recall that dim SP(2,d) = d + 1 for all d, hence the algebras S? and S;(A) small
ranks do not match in an obvious way.

9.3. Sakamoto—Shoji Algebras

The cyclotomic Hecke algebra H(r, 1,d) admits a Schur-type duality (cf. [SS99])
with the algebra Ugy(gl,, x---xgl, ) where ny +---+n, = n. Hence, it specializes
to the following double centralizer properties, for a + b = n:

UQ(g[a X g[b>
! :
SB(a,b,d) ~T(a,b,d) = (K")®" ~HE(d)

We will see in (49) that Ty acts as a scalar multiple on T'(a,b,d), which is
different from our Tp-action (3). Consequently, the duality is different from the
geometric one. We could not locate an identification between S¢(a, b, d) and Sq(A)
for some A in the literature.

Now we set up the compatible version of the cyclotomic Schur duality introduced
in [SS99]. Let R = Q(Q, ¢, u1,uz2), and let Hy o be the the R’-algebra generated
by ai,...,aq subject to the relations below, for 2 <:1<d,1<j<k—-1<d-—-1:

(a1 —wr)(ar —u2) =0, (a;—q)(ai +(¢)7) =0,
(a1a2)2 = (a2a1)2, a;Ai410; = Aj410;0441, Apa; = Q0.
With the identifications below one has the following result:

/ —1
a; < Ti1, q < q .
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Proposition 9.3.1. The type B Hecke algebra Hqu(d) is isomorphic to the al-

gebra Hy o at the specialization up = —Q,uz = Q1.

Let Tg(a,b,d) = Va‘g”bd where V,;, = K% @ K" is the natural representation of

U, (gl, x gly) with bases {vil), . ,v((zl)} of K and {v?), . ,véz)} of K. The tensor
space Tg(a,b, d) admits an obvious action of the type A Hecke algebra generated
by T1,...,T4—1. The Ty-action on T'(a,b,d) is more subtle as defined by

To=T; o 0T; ' 0S4 1008 ow € End(T(a,b,d)), (49)
where w is given by

—Qr1®---Qxg ifx = oY for some i
w(r1 @ ®xq) = _11 , 1_ @) '
Q' r1® - ®@xq if x1 =v;” for some 7,

and that S; is given by

Si(z1® -+ @ xq)
. {Tz‘(fm@---@md) if x;, x;41 both lies in K¢ or Kb

L] QT @ Q Tip ® -+ otherwise.

Define
56,q4(a:b,d) = Endys (4) (To(a,b,d)).

It is proved in [SS99] that there is a Schur duality as below:

Uq(gl, % gl)
} :
S2(a,b,d) ~T(a,b,d) ~HE(d)

In [Ar99, Thm. 3.2] there is also proved an isomorphism theorem under a
separation condition on u1,us and g. Note that the separation condition is equiva-
lent to our invertibility condition at the specialization u; = —Q,us = Q1.

Proposition 9.3.2. If fg’(Q,q) 1s invertible in the field K, then we have an
isomorphism of K-algebras:

d

S8.4([n/21, n/2],d) — @D SM([n/2,i) ® SM([n/2,d — i),

i=0
As a consequence, ngq([n/Q], |n/2],d) is isomorphic to the coideal q-Schur al-
gebra Squ(n, d) under the invertibility condition.

In the example below we show that the two algebras do not coincide when the
invertibility condition fails.
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Example 9.3.3. Let a = b = 1,d = 2. Then TH(1,1,2) has a basis {v =
(1)
Uy

LW = 012)} The Ty-action is given by
(v@v)Th = —Qu R,
(v®w)To——Qv®w
(wev)Th=Q ' (wadv+ (¢~ —gvdw),
(w@w) Ty =Q 'w®w.

Note that this is essentially different from the Tj-action for the coideal Schur
algebra given in (3).

Following [Ar99, §2, Example], the dimension of ngq(l, 1,2) is either 3,4 or 5.
Note that 10 is excluded since at our specialization u; = —Q,us = Q' it is not
possible that u; = us = 0. In contrast, 557 q(2, d) is always of dimension 3.

9.4. Slim cyclotomic Schur algebras

The slim cyclotomic Schur algebra S, . .,)(n,d) introduced in [DDY18] is a
different attempt to establish a Schur duality for the cyclotomic Hecke algebra
H(r,1,d). When r = 2, the algebra S(,, u,)(n,d) has the same dimension as the
coideal g-Schur algebra SCB?’ q(2n, d); while there is no counterpart for the algebra
Sg,q(2n +1,d).

It is conjectured in [DDY18] that there is a weak Schur duality between the

cyclotomic Hecke algebras and certain Hopf subalgebras U, (;[n)(t) of U, (gA[n) for
an integer t to be determined. In our setting it can be phrased as follows:

Uy(gl,) 2 Uy(sl,)®
d .
Sh(n,d) — S(g,q(n,d) Q¥ AHE(d)

Here Sy 4)(n,d) = Endye q) (T(q,q)(n,d)) is the centralizer algebra of the %qB(d)—
action on a finite dimensional g-permutation module T, 4)(n,d), while  is the

(infinite-dimensional) natural representation of Uq(g[n).
We remark that it is called a weak duality in the sense that there are epimor-

phisms Uq(g[n)(t) — S(q.q)(n,d) and HB(d) — Ends(qu)(md)(Q@d); while it is not
a genuine double centralizer property.
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