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A variety of nonvolatile memory (NVM) devices including the resistive Random Access Memory (RRAM)
are currently being investigated for implementing energy-efficient hardware for deep learning and artificial
intelligence at the edge. RRAM devices are employed in the form of dense crosspoint or crossbar arrays.
In order to exploit the high-density and low-power operation of these devices, circuit designers need to ac-
commodate their non-ideal behavior and consider their impact on circuit design and algorithm performance.
Hybrid integration of RRAMSs with standard CMOS technology is spurring development of large-scale neu-
romorphic system-on-a-chip (NeuSoC). This review article provides an overview of neuromorphic integrated
circuits using hybrid CMOS-RRAM integration with an emphasis on spiking neural networks (SNNs), de-
vice nonidealities, their associated circuit design challenges, and potential strategies for their mitigation. An
overview of various SNN learning algorithms and their co-development with devices and circuits is discussed.
Finally a comparison of NVM-based fully-integrated neuromorphic ICs is presented along with a discussion
on their future evolution.
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ware. These devices can be two- or three-terminal and

Over the last decade, deep neural networks (DNNs),
or deep learning, have emerged as the next wave of Ar-
tificial Intelligence (AI) which has been propelled by the
advances in specialized hardware, open-source software
and availability of datasets. Hardware platforms such as
the graphics processing units (GPUs) and application-
specific integrated circuits (ASICs) for Al acceleration
enable parallel processing of a large amount of data to
train DNN models. Training or learning in DNN models
is performed using variants of the gradient-descent back-
propagation, or Backprop, algorithm!™® which is both
computationally and energy intensive due to the massive
amounts of data continuously shuttled between mem-
ory and processing units. Recently, low-power GPUs
and ASICs have appeared for deep learning inference
for Edge-AI*®. However, training is performed on a
GPU-based server or Cloud infrastructure using software
frameworks such as TensorFlow® and PyTorch”. In view
of diminishing returns from such architectures with the
near-end of Moore’s scaling®, semiconductor industry’s
International Roadmap for Devices and Systems (IRDS)
looks forward to Beyond-Moore or post-CMOS technolo-
gies to conceive radically new computing architectures
for Al workloads®. This requires a cross-layer investiga-
tion of non von Neumann computing architectures across
the entire devices, circuits and algorithms hierarchy.

Several classes of emerging non-volatile memory
(NVM) devices are currently being investigated for their
application in analog implementation of Edge-Al hard-
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employ a wide range of material systems and associated
physical mechanisms to achieve multi-level non-volatile
memory states. Moreover, these NVM devices need to
be monolithically integrated with standard CMOS tech-
nology to enable hybrid integrated circuit design. Deep
learning hardware realizations include wvector-by-matriz
maultipliers (VMMs), and neural-inspired or Neuromor-
phic computing circuits. The NVM devices are employed
in the form of crossbar, or cross-point, arrays with or
without selectors along with CMOS circuits at the pe-
riphery of the array.

While these emerging in-memory computing architec-
tures show promise, in order to exploit the high-density
and operation of these devices, integrated circuit (IC)
designers need to accommodate their realistic behavior
and nonidealities. This is particularly important for op-
timizing hybrid transistor-NVM circuit design for perfor-
mance, area and power consumption. NVM nonidealities
include device variability, low resistances offered by the
two-terminal devices, resolution and stability of multi-
level states, nonlinearity and device endurance. More-
over, novel in-situ learning algorithms must be developed
which can take advantage of the localized in-memory
computing to minimize von Neumann bottlenecks.

Several recent review articles in the literature focus
on emerging devices for in-memory computing'®16, neu-
romorphic learning algorithms!?, pathways and survey
of neuromorphic hardware architectures'®!9. This ar-
ticle provides the motivation and overview for spike-
based Neuromorphic hardware that can be realized us-
ing emerging NVMs, with a specific focus on the Resis-
tive Random Access Memory (RRAM), aka the memris-
tors, and spiking neural network (SNN) algorithms. The
unique aspect of this review is that it focuses on bridging
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the large gap between the expectations produced by the
experimental results from emerging NVM devices and the
requirements set by the neuromorphic system architec-
tures. This is attempted by considering the device non-
idealities that the circuit designers need to accommodate
and the hardware bottlenecks to be surmounted when im-
plementing spike-based deep learning in neuromorphic
hardware. Rest of the article is organized as follows:
Section II introduces SNNs and their use in neuromor-
phic computing. Section III provides an overview of the
RRAM devices and discusses the impact of device nonide-
alities on circuit design considerations and system-level
performance. Section IV discusses CMOS integrated cir-
cuits needed to realize neuromorphic computing. Section
V provides a brief overview of the learning algorithms for
deep SNNs. Finally, Section VI benchmarks the perfor-
mance of fabricated NVM-based neuromorphic comput-
ing ICs followed by a concluding discussion.

Il. SPIKING NEURAL NETWORKS (SNNS) AND
NEUROMORPHIC COMPUTING

Energy-efficiency of DNNs realized on GPUs and
ASICs based on von Neumann architectures is fundamen-
tally limited by the energy and latency cost of the ‘dis-
tance’ between storage memory and processing units?0.
In a radical contrast, a biological brain stores memory
and performs localized computing using similar neural
motifs with extremely high energy-efficiency, thus mak-
ing a compelling inspiration for in-memory computing for
DNNs.

Fig. 1 illustrates a neuromorphic computing architec-
ture based on 1T1R crosspoint arrays with neuron cir-
cuits at the array periphery. In a fully-connected neural
network, each array realizes a network layer which are
connected with each other using on-chip and/or off-chip
interconnects. These interconnects employ asynchronous
spike-based communication using a protocol such as the
address-even representation (AER) protocol, which is
widely used in neuromorphic sensors and processors? 23,
The neural network weights are stored in the NVM mem-
ory array. The pre-neurons concurrently drive the rows
(or the wordlines), as opposed to random access. The
pre-neuron activations (or voltages) are weighted by the
conductance of the synaptic weights and the resulting
current is summed and integrated on the post-neurons
connected to the columns (or the bitlines).

In the past decade, advances in spike-based models
with localized plasticity mechanisms such as the spike-
timing-dependent-plasticity (STDP) and its feedback-
based modulation?*3° have opened new avenues in neu-
romorphic computing research. For example, theoreti-
cal studies have suggested STDP-like plasticity mecha-
nisms can be used to train two-layer SNNs in-situ with-
out trading-off their parallelism®' 4. SNNs essentially
encode information using asynchronous spatiotemporal
‘spikes.” A spikes sequence can represent the input sig-
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FIG. 1. A neuromorphic computing architecture built around
1T1R RRAM crosspoint arrays: (a) A fully-connected spik-
ing neural network (SNN) showing input, hidden and output
layers of spiking neurons, (b) a crosspoint RRAM array with
input and output neurons, (c) a single synapse between the
input and output neurons with localized weight updates.

nal either using rate-coding where the average spike rate
represents a real valued signal, or temporal coding where
spike delay (or latency) encodes the same information. In
biology, sensory information is encoded as a combination
of both rate and latency coding.

A. Leaky Integrate and Fire Neurons

Biological neurons exhibit complex spike signal pro-
cessing and spike generation behavior with some of the
spike filtering occurring in the dendrites3®. As a result,
wide range of models have been developed in the litera-
ture to emulate their response?!:36-4° However, in neuro-
morphic computing only the simple salient features useful
for learning and inference are adapted into the SNN ar-
chitecture. A single-compartment leaky integrate-and-fire
(LIF) neuron is a simple and commonly-used neural mo-
tif. Network weights, w;;, are stored in ‘synapses’ which
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FIG. 2. (a) Section of a two-layer spiking neural network illus-
trating pre and post spike flow. (b) Transient waveforms for
these spikes, membrane potential, and weight update modu-
lated by an external feedback error, . (¢) Spike-timing de-
pendent plasticity (STDP) learning window where the weight
update depends upon the temporal delay, At, between the
pre and post spikes at a synapse.

can be updated based on Hebbian learning, i.e. the cor-
relation of the spiking activity of the pre-synaptic and
post-synaptic neurons. During feedforward passes, a LIF
neuron integrates its input spikes, s;(¢), weighted by the
synapses, into its membrane potential

vm,j(t)zzilng/_ s ®h®d (1)

where h(t) = e~%/"™u(t) is the impulse response that
incorporates neuron’s leaky behavior. When the mem-
brane potential of a neuron crosses its firing threshold,
ie. vmj(t) > Viarj, the neuron produces a post-spike,
s;(t). A firing event resets the membrane potential to a
resting potential, V., and propagates the post-spike in
the forward as well as the backward direction. This is
described by Eq. 2 below and illustrated in Fig. 2.
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After firing, a neuron enters a refractory, or silent, pe-
riod before it can fire again. During the refractory period
of duration Tref-, membrane potential rests at Ve, Trepr
sets the maximum rate at which a neuron can fire, i.e.
Vmaz = #, and thus the resolution for quantization in
the time-domain.

Neurons can form inhibitory and/or excitatory con-
nections with other neurons as seen in Fig. 2. Inhibitory
connections prevent other neurons from firing if one of

3

the neurons has fired in a given time window. Excita-
tory connections make connected neurons fire simultane-
ously. Inhibition is used to implement competitive learn-
ing in an population of neurons to realize Winner-take-all

(WTA) motifs?!.

B. Synapses and Plasticity

Synapses essentially implement weights in the SNN
where the pre-spikes are weighted by the conductance
of the synapse before they are integrated in the neuron.
In case of online learning, synaptic weights are in-situ
updated on the neuromorphic chip. Weight update in a
synapse is governed by a plasticity rule based on Hebbian
correlation which can be modulated by an error feedback,
leading to an approximated three-factor learning rule*2

Aw;; = f(ti, t,05) (3)

Here, t; and t; are pre and post spike times, and §;
is the error feedback. Several plasticity rules have ap-
peared in literature based on electrical probing of bio-
logical neurons and update rule derivations in compu-
tational neuroscience?®:2%43, STDP rule is a two-factor
rule based on the time difference between post and pre
spikes Ati; = tpost — tpre = t; — t; and expressed as

Aty
ate=, Atij=t;i—t; >0
Awyj = Aty et (4)

—a"€e T 3 Atij = t_? - ti < 0

Here, at and 77 are the voltage and temporal parameters
for the long-term potentiation (LTP) when the synaptic
weight increases. Conversely, Here, a— and 7~ are the
corresponding parameters for the long-term depression
(LTD) when the synaptic weight decreases.

Fundamentally, spike-based computing simplifies the
need for precise multiplication and replaces it by scal-
ing of bi-level, or binary, spikes by synaptic conduc-
tances. This results in simpler digital neuromorphic
hardware implementations and precludes the need for
four-quadrant multiplication in analog neuromorphic re-
alizations. Consequently, SNNs can perform computing
with simpler hardware and consume very small amount
of energy only when the spike events occur?4445, Due
to their unique characteristics, SNNs are better realized
on an event-driven neuromorphic platform instead of a
von Neumann computer.

C. Analog Mixed-Signal Neuromorphic Platforms

As discussed earlier, neural-inspiration provides the
motivation for realizing dense and low-power neuromor-
phic hardware by implementing neuron and synapses us-
ing analog mixed-signal circuits. Advances in analog

neuromorphic circuits include the Neurogrid hardware?6,
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where subthreshold biomimetic CMOS circuits were de-
veloped to reproduce dynamics occurring in biological
neural networks. However, the fundamental limitation
of such analog architectures is that the weights are dy-
namically stored and updated on capacitors, which leak
away in a few seconds, thus limiting any long-term learn-
ing. Bistability of analog weights has been used as a
stop-gap solution?”*®, but recent studies on deep neural
networks have determined that 4-bit or higher synap-
tic resolution is needed to realize SNNs with reasonable
classification accuracy®®*°. Other solutions include using
Floating Gate, or NOR Flash, devices for realizing mul-
tilevel non-volatile synaptic weights®. However, despite
of their excellent retention, floating-gate memory suffers
from low endurance of < 10° write cycles. This limits
the number of times the neural network weights can be
updated and thus significantly limit on-chip training ca-
pability.

D. Neuromorphic Computing using Emerging Nonvolatile
Memory Devices

Several emerging nonvolatile memory (NVM) de-
vices including RRAMs, spin-torque transfer RAM
(STTRAM), phase-change RAM (PCRAM), also gen-
erally referred to as memristors, have been con-
sidered for their use in Edge-Al and neuromorphic
computing20:55-59, Recently, ferroelectric-field-effect
transistors (FeFETs) have come under focus for their low
power performance®%60, In the last decade, these NVM
devices have been extensively investigated as a high-
density potential replacement for Flash memory?%:°%6!
with their advantages summarized in Table I. As
the research community gain a better understanding
of the physical mechanisms for electrical switching in
the RRAM devices, there is a trend towards develop-
ing novel applications by leveraging these devices for
computing57:62-67,

These emerging NVM devices are employed in the form
of crossbar or cross-point arrays with a diode or transis-
tor selector— cell with one transistor and one RRAM
(1T1R). These NVM arrays are being investigated for
DNN computations in the analog domain. These include
VMM for Edge-AI5®:68 and synaptic weights in a mixed-
signal neuromorphic hardware?369, Emerging NVM ar-
rays are promising for neuromorphic computing as they
provide: (1) a very high synaptic density with low leak-
age power, (2) localized in-memory learning similar to bi-
ological synaptic plasticity, (3) very low power consump-
tion with event-driven updates, and (4) non-volatility of
weights23. This review focuses on two-terminal RRAM
devices for neuromorphic computation.

I1l. RRAM DEVICE CHARACTERISTICS AND
PROCESS INTEGRATION

A. RRAM Devices

Resistance switching in emerging nanoscale resis-
tive memory devices has sustained interest with the
goal of high-density and lower power replacement
for NVM-based embedded memory and computing
applications?®10:5270  RRAM arrays are considered as a
suitable alternative to the Flash-based solutions due to
the following reasons:

(i) The filamentary nature of resistance switching has
the potential to scale well beyond the sub-10nm
feature sizeS™7!.

(ii) Lower switching voltages allow low power operation
and compatibility with scaled-CMOS®52.

(iii) Very simple planar two-terminal structures and
fabrication-friendly materials facilitate integration
with standard CMOS technology.

(iv) These devices demonstrate biologically plausible
plasticity (i.e. weight update) behavior in several
experiments,®"6%72"™ and therefore have emerged
as an ideal candidate for realizing electrical equiv-
alent of biological synapses.

Several categories of RRAMs have been intensely pur-
sued by the device community: (1) Electrochemical mem-
ory (ECM) aka Conductive Bridge RAM (CBRAM), (2)
Valence Change Memory (VCM) aka Oxygen Vacancy
based RAM (OxRAM), (3) Thermochemical memory
(TCM), and (4) Interfacial or 2D switching RRAMs™ 77,
This review primarily focuses on CBRAM and OxRAM
devices for neuromorphic computing, which are graphi-
cally depicted in Fig. 3. All these RRAMs are essentially
metal-insulator-metal (MIM) structures where the resis-
tance between the two electrodes can be changed in a
non-volatile manner by either filamentary or interfacial-
type switching.

(a) CBRAM (c) Symbol

Top Electrode Ag SH0E

4 i
Switching ChG L o
Layer  Silver __ »_Oxygen

Filament % Toaie Vacancies

Bottom
Electrode TiN

FIG. 3. Graphical illustration of the cross-section of CBRAM
and OxRAM NVM devices and their circuit symbol. Device
cross-sections are not to the scale.

CBRAM: CBRAM uses a dielectric layer sandwiched
between two electrodes and the resistance is changed
by forming an conductive electrochemical bridge. As
shown in Fig. 3(a), the anode (top electrode) is elec-

trochemically active and is made of metals such as Sil-
ver (Ag)™® 3! or Copper-based alloys (e.g. CuTe,;)%2.
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TABLE I. Comparison of memory technologies for in-memory computing. Data reproduced from Refs.20:52-54,
Parameters SRAM DRAM NOR Flash PCRAM STTRAM OxRAM CBRAM FeFET
Cell size 100F* 7F? 5F* 4F* 12F* 4-6F* 4-6F* 24F*
Density Low High High V. High High V. High V. High High
Write Latency 1ns 5ns 10p-1ms 100ns 2-25ns 10ns 10ns 3ns
Read Latency 1ns 20-80ns 50ns 10ns 2-25ns 1-10mns 10ns 2ns
Write Energy (pJ/bit) <1 <1 100 2-25 0.1-2.5 0.1-3 0.1-10 0.1
Leakage Power High Medium Low Low Low Low Low Low
Endurance (write cycles) > 1015 > 10%® 10° 108 1012 10° 10® > 10°
Switching Polarity NA NA Bipolar Unipolar Bipolar Bipolar Bipolar Bipolar
MLC Capability X X 4-8 bits 4-6 bits 2 bits 4-6 bits 2 bits 3 bits
MLC Retention X X Years R-drift Tunneling R-drift R-drift Tunneling
3D Stacking X X X v X v v v

The cathode is an inert electrode and usually realized
using Platinum (Pt), Nickel (Ni), or Tungsten (W).
The dielectric is a thin film layer which comprises of
either a chalcogenide (such as GeySe;_ ), amorphous
silicon™"2, Al,03, MO, or HfO,%2. The reader is re-
ferred to®:®3 for the CBRAM fabrication details. An
initial step called ‘forming’ step is required to introduce
silver into the unformed or pristine switching layer. This
is achieved by either applying a sufficiently large voltage
pulse (aka electroforming) or by photo-diffusion using op-
tical illumination®48°

OxRAM: OxRAMs are fabricated as an MIM stack
with transition metal oxides as the dielectric. The mech-
anism for resistance switching is the formation of a con-
ductive filament due to the migration of oxygen vacancy
defects®®®7. Several insulators have been explored in the
literature including HfO,, TasO,, TiO,, ZrO,, and NiO.
Since forming an oxygen vacancy in these oxides requires
higher energy, a metallic layer of Hf (or T4, La, Zr) is used
as a scavenger electrode that scavenges oxygen vacancies
from HfO,%. This stack is shown in Fig. 3(b). The
Hf/HfO, (or Ti/HfO,, etc.) interface acts as the active
electrode®® which is capped with material such as TiN,
Ni, TaN, ITO, or AI®¥". Incorporation of the scavenger
electrode leads to better switching control, reduced vari-
ability and higher retention®®. Doping of OxRAM active
layer with dopants such as Ti or Ge increases the oxygen
vacancies and has been explored to realize forming-free

devices®".

Other RRAM Variants: Example of TCM devices
include transition metal oxide cells such as NiO and
HfO, where filamentary switching occurs due to current-
based heating and the resulting stochiometric changes
due to temperature increase”™""?, Interfacial switch-
ing RRAMs include Nb-doped SrTiO3z (NbO) and doped
perovskites such as Prp7CapsMnOsz (PCMO). These
RRAMSs are also referred to as 2D switching devices as
the resistance is dependent on cross-section area, as op-
posed to the filamentary switching devices™:°1:92,

B. RRAM Electrical Characteristics

CBRAM: A typical hysteresis current—voltage (I-V)
characteristics in a metal-insulator-metal (MIM) struc-
ture are shown in Fig. 4. These electrical switching char-
acteristics were obtained from experimental characteriza-
tion of Ag/GeapSegp/W CBRAM devices which were fab-
ricated by Mitkova group at Boise State University®1:83,
Here, triangular voltage sweeps were applied across the
device and the current was measured using a Semi-
conductor Parameter Analyzer (SPA) such as Keysight
B1500. The I-V sweeps were performed for several set-
tings of the compliance current, I, ranging from 50nA
to 10pA. The device state during the I-V switching char-
acteristics are described as follows:

(A) Here, initially the device is in the High-resistance
state (HRS), erased, or Off state.

(B) When a sufficiently large positive voltage greater
than the program threshold voltage (Vc}t) is applied on
the top electrode, silver is oxidized and the Ag?t ions
start moving towards the cathode and forming a bridge
(or filament) in the process.

(C & D) The silver ion bridge eventually forms a high-
conductivity path between the electrodes realizing the
Low-resistance state (LRS), programmed, or On state.
This is referred to as the Program or Set operation.

(E) Conversely, if a voltage more negative than
the erase threshold voltage (V) is applied across the
CBRAM, the filament is dissolved and the device reverts
to the HRS. This is called the Erase or Reset operation.

The electrochemical process of conductive filament for-
mation is inherently stochastic and varies across devices
and switching cycles, where silver filaments of varying
geometry can be formed in the amorphous switching
layer. The variability is reduced with scaling to sub-
15nm cross-section area as only one dominant filament
can be formed.

CBRAM switching thresholds depend upon the active
electrode material and switching layer used in the de-
vice. In the CBRAM fabricated by author’s collaborators
with their experimental switching characteristics shown
in Fig. 4, the program threshold is Vc}t = 0.7V and the
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FIG. 4. Experimental I-V characteristics of a CBRAM device

with graphical illustration of Program (A-D) and Erase (E)
operations.

erase threshold is V,;, = —0.1V. The CBRAM switch-
ing behavior is bipolar, i.e. the Set and Reset operations
require different polarity. CBRAM’ bipolar switching is
asymmetric as a very small negative voltage is needed to
break the filament (bridge) at the anode and revert the
device to HRS81:93:94,

Compliance current is an important parameter that
sets the maximum current in the device during the elec-
troforming, and the subsequent operation of the de-
vice, and thus essentially determines the LRS resistance,
R;rs. This is illustrated in Fig. 5, where the resistance
distribution for varied values of I,.. is plotted. For a large
I.c > 10pA, a thick filament is formed resulting in a nar-
rower distribution with lower Rygps values. This regime
is suitable for digital applications with binary or bistable
memory.

For lower I, ~ 1pA, a weak filament is formed with a
wider distribution and higher resistance values. These
characteristics give rise to the possibility of realizing
analog-like behavior where the RRAM resistance can be
programmed to one of the multilevel resistance states.
This can be thought of as a multi-level cell (MLC) with
2-bit or higher resolution. The filament structure deter-
mines the switching speed, repeatability, LRS resistance
range, multilevel behavior, and the retention of devices.

OxRAM: Electrical characteristics of OxRAM
follow a I-V hysteresis loop similar to CBRAM with
a few differences. Resistance switching in Ti/HfO,
(Hf/HfO,,Ta/Tas0, and similar stacks) OxRAMs
occurs due to the formation of a conductive filament of
oxygen vacancies. The metallic Hf, Ti or similar layers,
facilitate scavenging of oxygen atoms from HfO, layer.
The energy of breaking oxygen (O) is compensated

by the exothermic Hf-O bond formation energy®%:89,

u;‘
Resistance ({1}

FIG. 5. CBRAM resistance distribution for several values of
compliance current. Analog-like states are observed when a

weak filament is formed. A thick filament leads to digital
switching behavior.

When a positive voltage is applied to the active elec-
trode, positive oxygen vacancies (Vg) are created at
the Ti/HfO, interface, which acts as a V{ reservoir.
The positively charged vacancies diffuse towards the
inert (TiN) electrode held at a lower potential, thus
forming a conductive filament. As the filament grows
in length, the electron conduction mechanism changes
from trap-assisted tunneling to Poole-Frenkel hopping
to eventually Ohmic conduction when the filament is
fully formed and consigns the OxRAM to LRS®%. A
compliance current ensures that complete breakdown of
HfO, dielectric is avoided. A 1T1R cell configuration
is typically used to set this compliance current in the
array. When the voltage polarity across the electrodes is
reversed, O~ diffuses back into HfO, and the conductive
filament is dissolved leading to HRS.

OxRAMs devices based on transition metal switching
layer have been extensively characterized using 1R as well
as IT1R arrays®%8%:95-99  The program and erase thresh-
olds vary widely depending upon specific device struc-
ture and material used. For example in devices from
Leti®190 the Program/Set thresholds in the range of
V=1V and Erase/Reset is V,; = —1.5V. The bipolar
switching in OxRAM is more symmetric than CBRAMs
as a larger negative voltage is needed to diffuse the O~
ions back and dissolve the V$ bridge. The LRS vari-
ability depends on I, and the pulse duration during
the initial forming step. The HRS variability depends
upon the target resistance range®, which is of interest
for analog (or multilevel) applications. For HRS, cycle-
to-cycle variability tends to higher than the cell-to-cell
variability. Thus a smart program-and-verify algorithm
is needed to place the multi-level OxRAM in a specific re-
sistance state. The forming voltage, =2V, is larger than
the program threshold. A smaller I, =~ 5pA and shorter
pulse width (= 100ns) avoids stuck-at-LRS faults and
places the OxRAM in analog region of operation (10k(2-
1M€). The program/Set operation can be abrupt in
OxRAMs due to a positive feedback loop between elec-
trical field /temperature and oxygen vacancies. The ana-
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log behavior can be improved by introducing a thermal
enhanced layer (TEL) to provide a better control over
incremental resistance changes!'®? .

Other RRAMs: TCM devices exhibit apolar or
unipolar switching, i.e. the Set and Reset operations have
the same polarity”®9°, The advantage of unipolar switch-
ing is that a simple diode-based selector can be employed
forming a 1DIR cell. Disadvantages of TCM devices
include the higher energy consumption in the thermal-
activated switching process®. Interfacial switching de-
vices such as NbO and PCMO exhibit bipolar switch-
ing by modulating the Schottky barrier barrier at the
metal-oxide interface™°1:%2, An advantage of the inter-
facial switching RRAMs is that they exhibit an asym-
metric nonlinearity, which realizes a selector-free self-
rectifying cell. Also, forming-free PCMO RRAM devices
have been demonstrated which is advantageous for on-
chip integration®2.

C. RRAM Retention and Endurance

Retention and endurance of both CBRAM and
OxRAM have been extensively studied for binary stor-
age applications®253, Development of RRAMs for ana-
log computing where each cell can be programmed with
multilevel states is a current focus of research!3-107,
Ti/HfO, OxRAMs have demonstrated endurance of =
10° cycles, ultra-fast writes (~ 5ns), and Rog/Ron Ta-
tio exceeding 100°%8%9  Multilevel resistance states
are programmed by modulating either the voltage am-
plitude or the pulse-width of the program/erase pulses,
and setting a compliance current. A program-and-verify
scheme is employed for iterative programming to achiev-
ing tight resistance distributions while minimizing the
read/write disturb between the cells'®®. Consequently,
the device is stressed multiple times per MLC write
event and has a bearing on overall device lifetime. Re-
cent work on MLLC OxRAM characterization has shown
that it can be programmed up to 64-levels, or 6-bit
per cell resolution®6:108-110  However, the programmed
states have been observed to relax and their resistances
drift over time on a timescale of hours to weeks66:108:111
Several retention failure modes have been observed de-
pending upon the device material stack and structure!!2.
Also, the resistance drift is accelerated as the chip tem-
perature is increased due to the increased Brownian mo-

tion of conducting ions in the switching layer56.

CBRAMSs have also shown multi-level resistance states
with 2-bit/cell storage and > 10°s retention by using
appropriate compliance current settings®>!!3. Based on
literature survey, OxRAMs have been more amenable
to analog behavior when compared to CBRAMs, but
the latter can improved by using optimized bilayer
materials®3.
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a4 Ti/HfOx Top plate
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wiald
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wal
ILD
Contact
SiSubstrate FEOL
130nm Transistors

FIG. 6. Graphical illustration of integration of RRAM stack
in the BEOL of a 4-Metal CMOS process as described in
Ref.lﬂo

D. Process Integration of RRAM with CMOS

Integration of emerging NVM devices with standard
CMOS technology is essential for the development of
large scale neuromorphic circuits. To allow flexibility
when optimizing the NVM device stack, a preferred ap-
proach is to integrate RRAM, or any other emerging
NVM devices, in the back-end-of-the-line (BEOL) of a
CMOS process. OxRAMs allow straightforward integra-
tion with a CMOS process flow as the materials used are
compatible with CMOS fabrication. This is due to the
fact that HfO, and similar materials are used as high-k
gate oxide in scaled CMOS process nodes. Recently, few
foundries have integrated OxRAM and CBRAMs into
their CMOS fabrication flows20:69:114.115 Fis 6 shows a
cross-section representation of the OxRAM integrated in
the BEOL of a 4-metal CMOS process!®. 1T1IR RRAM
arrays from 16Kbits to 2Mbits have been fabricated using
this platform with memory size scaled down to 40nm®%7-96.
CBRAM with Ag filament is challenging as silver is a con-
taminant for silicon-based devices. Thus, copper (Cu)
based CBRAMSs have been in focus as Cu is already used
in the CMOS BEOL flow>3.

E. Challenges with RRAM Devices for Neuromorphic
Computing

Hybrid CMOS-NVM circuits have been proposed to
achieve dense integration of CMOS neurons and emerging
memory for neuromorphic computing ICs''61?!, How-
ever, RRAM synapses incur several limitations which are

summarized as follows?3:

1. Variability: Individual RRAM characteristics in-
cluding the switching threshold voltages and in-
termediate resistances vary from cell-to-cell and
cycle-to-cycle depending upon the resistance state
and the compliance current®*66:82:95112  Tmpact of
variability on STDP updates was experimentally
studied on a crossbar array'?2. The cell-to-cell
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variation of switching thresholds is a major chal-
lenge that needs to be addressed by careful pro-
gram /erase pulse waveform design'?2. In an 1TIR.
cell, transistor variations also contribute to vari-
ations in the overall synapse. The RRAM resis-
tance also exhibits temperature-dependent switch-
ing with a decrease in Ry pg due to the increase in
leakage current with temperature!07:123,

2. Low-resistance: Typical RRAMs exhibit 1-10kQ
LRS resistance. A large synapse fan-out in-
curs significant static power consumption in the
CMOS driver circuits. A 1T1R synapse can
mitigate this by employing a source-degenerated
transconductor!?* or cascode topology 24125,

3. Resolution, Retention and State Drift: Even
though RRAM can realize multi-level cell (MLC)
storage®®, the resistance-drift over time presents
challenges in their use as stable analog synapses
over a long duration. Furthermore, the resistance
drift has strong dependence on the chip tempera-
ture which can make it difficult to estimate degra-
dation of the synaptic states beyond acceptable
performance limits.

4. Endurance: Continual on-chip training is re-
stricted by the maximum number of write cycles
allowed before the devices wear out. Also, MLC
devices with shorter retention time will lead to neu-
ral network classification performance degradation
if states are not periodically restored.

IV. NEUROMORPHIC INTEGRATED CIRCUITS

As seen earlier in Fig. 1, RRAM based neural networks
are built around 1R or 1T1R crosspoint arrays driven by
pre-neurons. The post-neurons sum the weighted cur-
rents and produce spike patterns. The neurons are lo-
cated on the periphery where pre-neurons drive the rows
(or the wordlines) and post-neurons on the columns (or
the bitlines) accumulate weighted synaptic currents and
generate output spikes.

A. CMOS-RRAM Synapses

An 1R synapse is simply a crosspoint synapse without
a select transistor which is programmed to a resistance
state of Ryr'2%127. The LIF neuron provides a virtual
ground where the input spike voltages are weighted by
the conductance, Gy = RL, of the synapse and then in-
tegrated on the neuron. On the other hand, a transcon-
ductor synapse is realized with an 1T1R array where
the select transistor is biased appropriately to set the
synapse transconductance'?'?®_ Fig. 7 shows a 1T1R
synapse circuit which employs the transistor as a source-
degenerated transconductor (Ggyrn ) and converts the pre-
synaptic spikes to synaptic currents (ispx). Here, the pre-
neuron output drives the input capacitance of the tran-

sistor (= 5-10fF in 65nm CMOS). The bottom (inert)
electrode is connected to Vpoe terminal, which stays at
ground during integration and switches to V;., when the
post-neuron fires.

VErase ‘ H
Vist

1T1R
Synapse
Pre-Neuron %,
Spikes Ve '
in =
Vb g
0- t

FIG. 7. A transconductance-type 1T1R synapse with in-situ
weight updates as described in Ref.!2%,

The synaptic current in Fig. 7 is expressed as
iopk(t) = Gayn - Vpre(t) (5)

where the transconductance of the overall synapse is
given by

Im G

Goyn = ImTM_
T gm+Gu

~ gm||Gm (6)

Here, the transistor is biased in saturation with small-
signal transconductance, g,,, and output resistance, r,.

The relationship between igp, and vpr. for the 1T1R
synapse is nonlinear. This nonlinearity shown in Fig.
8 and depends upon the RRAM state and also vary
with process and temperature. The resulting synapse
transconductance, Ggyn, is also not constant and depen-
dent upon vp,.. By employing binary spikes, the I-V
nonlinearity is mitigated as a straight line can be fitted
across the two points on the I-V characteristics with a
constant slope. Also, the spacing between various synap-
tic states can be made linear by controlled programming
of the MLC states, or by accommodating the resulting
nonlinearity at the algorithmic level.

The synapse allows weight updates based on the cor-
relation of pre-synaptic and post-synaptic spikes and er-
ror feedback (§) as illustrated in Fig. 9. Here, volt-
age waveform engineering is performed to translate the
time delay between the pre- and post-spikes (At) into
the application of program and erase pulse across the
RRAM device to increase or decrease the weight, i.e. the
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FIG. 8. (left) Simulated DC #syn versus vpre characteristics
for a 1T1R synapse with 656nm CMOS and an RRAM model.
The RRAM is initialized in the model in ten distinct states.
The select transistor is sized with % = ﬁgoo:n’:‘ with its drain
at Vist = 0.6V and source at 0V. (right) Synapse transcon-

ductance, Gsyn, as a function of input voltage.

synapse transconductance, Aw = AGg.ynmg. The pre-

neuron only observes the input capacitance of the tran-
sistor and can drive a large synaptic fanout using digital
CMOS buffers (as opposed to driving several resistances
in parallel as in the 1R array). The output resistance of
the transconductor synapse is given by

Rout = GmTo * Ry (7)

which significantly reduces the loading at the input ter-
minal, V;,, of the post-neuron in the firing phase. When
pre and post pulses overlap, the Vpos; node is loaded by

Rpost &~ Ry + 1o (8)

The select transistor should be sized such that during
inference, the voltage dropped across Rj; shouldn’t ex-
ceed the threshold, Vt}’; to avoid disturbing the synaptic
weight. Also, during the weight-update phase, a large
fraction of the program/erase voltage should drop across
Ry affect LTP/LTD. These constraints need to work in
concert with the waveform design seen in Figure 9. Sig-
nificant post-neuron loading and the associated energy
consumption is avoided by ensuring sparse overlap of pre
and post spikes at the algorithm level.
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FIG. 9. An example of waveform engineering in the 1T1R
synapse to translate the temporal correlation of spikes into
synapse weight update as described in Refs.!2%12% Rectan-
gular as well as exponentially decaying pulse can be used to
customize the STDP learning function, although only the for-
mer is shown here.

The pre and post waveforms are designed such that
during LTP, a positive voltage pulse greater than the ﬁ}’;
appears across the device. Conversely, during LTD, a
voltage pulse more negative than V,; is applied across
the device. An error feedback signal, 4, can be employed
to modify the post-waveform by changing its sign and
amplitude in order to implement a desired three-factor
learning rule as in Eq. 3. In addition to waveform en-
gineering with RRAMSs, novel devices have been engi-
neered with bio-realistic internal dynamics to support
STDP-type updates. These include Ag-in-oxide mem-
ristor (Ag/SiOzNy/Pt) with diffusive dynamics'?® and
second-order oxygen vacancy dynamics in a Pt/WO, /W
device!30,

B. Array Programming Circuits

The immediate application of NVM-based NeuSoCs
is in transfer learning for inference applications. Also,
on-chip learning requires suitable initialization of synap-
tic weights. Moreover, it may be desirable to read out
learned weights from a particular chip. Thus, RRAM ar-
ray program and read circuits become a necessary feature
(in addition to the neurons).
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For SNNs with unsigned weights a 1T1R synapse is em-
ployed. However, for VMMs and higher accuracy DNNS,
signed weights become necessary. These are realized us-
ing a differential 2T2R topology where the conductances
of two devices are subtracted in the analog domain!31-133

Goyngj = G5 — G35 (9)

Here, G;g are the conductances of positive and negative
branches.

In order to program multi-level states in 1T1R (or
2T2R) arrays, an Incremental Step Pulse Program
(ISPP) scheme is employed, which was adapted from ear-
lier MLC Flash memory designs'3*. ISPP for RRAM ar-
rays has been demonstrated in the recent literature using
a semiconductor parameter analyzer (SPA). In these ex-
periments, the voltage pulse profiles are set after careful
characterization of cell-to-cell and cycle-to-cycle variabil-
ity of the devices!35-137,

In an ISPP scheme, the program (or erase) voltage is
applied to the device, while setting a compliance current,
I.., and its state is verified using a read operation. The
program (erase) pulse magnitude is gradually increased
and the state is verified till a target synapse conductance
state is achieved!®®136  Alternatively, pulse width can
also be progressively increased (or decreased) to set the
desired conductance state!3®, however, modification of
the program pulse magnitude was found to be more ef-
fective in terms of device variability and program/erase
time!36.

On-chip ISPP implementations include 1D arrays of
row DACs and column ADCs with addressing logic and
an on-chip RISC processor to isolate a particular MLC
cell and then program it into a desired state!39. Here,
the DACs drive the worldlines with analog inputs, x;,
and the each of the columns digitize the weighted sums,
y; = »_,wir;. Backend processing is handled in the
digital domain using the processor.

C. CMOS Neuron Circuit Design

There is a significant body of work over the past sev-
eral decades on low-power spiking neurons and synapses
using subthreshold CMOS circuits, which is documented
in 2! and references therein. These circuits operated in
the range of kHz spike rate, similar to biology, and were
optimized for ultra low power emulation of neurophys-
iological behavior. However, with the advent of NVM
synapses, a renewed focus is on in-memory neuromor-
phic computing for deep neural networks. Recently, sev-
eral spiking neurons designs have been proposed for neu-
romorphic computing36:40:140,142,145  however the chal-
lenges associated with their circuit integration with prac-
tical RRAM devices weren’t considered.

In the context of NVM-based neuromorphic comput-
ing, CMOS neuron design can vary widely depending
upon the desired functionality. For inference-only Neu-
SoC architectures, the neuron needs to integrate synaptic

10

currents, make decisions when the membrane potential
crosses the threshold (i.e. fire), and generate post spikes.
On the other hand, for in-situ learning functionality, the
neuron has to generate the waveform seen in Figs. 7 and
9 and drive the RRAMs (Eq. 7). Moreover, the neu-
ron should also allow for a three-factor learning rule that
incorporates the feedback error (4).

Ultra-low power neurons with =~100nW static power
consumption can be designed for inference-only neuro-
morphic ICs'¥8. However, neurons designs that interface
with RRAMs need sufficient drive capability and addi-
tional circuitry for enabling in-situ learning36:119:147,

Opamp-based neuron designs were introduced in!1814!
and designed to drive a large RRAM fan-out. Event-
driven LIF neurons were demonstrated in 180nm CMOS
which drove 1R RRAM crosspoint arrays with in situ
STDP-based learning as illustrated in Fig. 1023:41,148,149
Here, the CBRAMSs were integrated using wire bonding
with the CMOS neurons and a neural circuit with as-
sociative learning (i.e. a Pavlov’s Dog experiment) was
demonstrated. In order to accommodate a wide vari-
ety of material stack used in the CBRAM, the neuron
spike voltage and temporal profile parameters were de-
signed to be digitally programmable. This neuron design
had a bias current of 13pA in the integration mode and
dynamically-biased with 56pA in the firing mode. The
neuron’s class-AB output stage could source up to 1.4mA
current to drive an equivalent RRAM load of 10Q) with a
power efficiency of 97%%*1:148:149,

1T1R synapses not only significantly relax current
sourcing requirement for the neurons, but also enable
digital CMOS drive (i.e. with full-swing output between
0 and Vpp) as seen in Fig. 7. Fig. 11 shows an event-
driven neuron that is adapted for the 1T1R crosspoint
arrays'?4. The neuron operates asynchronously in two
event-driven modes with a shared opamp— integration
and firing. The neuron nominally operates in the inte-
gration mode, where the opamp is biased with very low
bias current and configured as a leaky integrator with
the virtual ground at the rest potential V. = Vpp/2,
Vpp being the supply voltage. The incoming weighted
current spikes, i; = EJ. Wij - Upre,j(t), are integrated on
the capacitor C,, resulting in the membrane voltage

Gm ij ¢
Vm,.j (t)=Vea + Z C—,j / Upre,i (t) @ h(t)-dt (10)
. Umj Jo

Here, h(t) = e_ﬁu(t) is the impulse response of the
LIF circuit during integration mode where 1jx = RixCr j
is the leak time-constant; R;y is realized using the MOS-
FET, M;;., biased in triode.

An asynchronous comparator is used to compare the
membrane potential, Vi, ;j, with the threshold voltage,
Vinr. When a positive crossing occurs, the neuron
switched into the fire mode where its reconfigured as a
voltage follower/buffer. Concurrently, an output spike
with full digital levels is created and propagated forward.
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TABLE II. Performance comparison of recent CMOS integrate and fire neurons.

Design Architecture Technology Synapse Type Spike Rate  In-situ Power Energy-efficiency Area
Learning (/spike/synapse) (um?)
indiveri et. al. 20067 Subthreshold 0.35um CMOS, Bistable 200Hz v - 90pJ 2,573
Basu and Hasler 20107 Subthreshold 0.35um Floating Gate 100Hz X 1.74nW 17.4pJ 2,740
Cruz-Albrecht et. al. 201214 Capacitive 90nm CMOS, Dynamic 100Hz v 40pW 400£7 442
Wu et. al. 20151 Opamp 0.18um 1R array! 0.1-1MHz v ;53;14;?';:/4/* 9.3pJ 12,100
Sahoo 2017142 Ring VCO 65nm None 0.4-1.5MHz X - - -
Larras et. al. 2017143 Current summing 65nm Digital, Binary - X TEJ 41,820
Sourikopoulos et. al. 201744 Subthreshold 65nm None 25kHz X 100pW 4£7 35
Saxena 2020124 Opamp 0.18um 1TIR array 0.1-1MHz v 16.2uW 8.1£1% 5,625
: : 64.8uW#* 40£] '
T An LRS resistance of Rips = 1k is assumed.
1 Opamp is dynamically biased with higher current during the firing mode.
2 Energy-efficiency when used in inference mode only.
(e) Measured Spike waveform (d) Die with the fabricated CBRAMSs Vi Vst Vil
: o Q0
o SR L CMOS Neuron
e hha-l—r

99 1 3 66 4

o

(b) A 180nm cmds chip with

33{][“"
(c) Layout of a single Neuron with
programmable neurons

capacitor banks

FIG. 10. (a) An opamp-based event-driven integrate and
fire neuron to drive 1R CBRAM synapses as described in
Refs.41:141:149 " (h) 5 180nm CMOS chip with LIF neurons, (c)
Layout of a single neuron with eapacitor banks, (d) CBRAM
devices as described in Ref.%?, () An output spike generated
by the neuron.

If on-chip learning is enabled then the waveform seen in
Fig. 9 is generated by a switched-capacitor circuit. The
phase control circuit generates the strobes ¢in; and @ire
for the switched-capacitor circuits, and ¢; and ¢ for
waveform generation. The waveform parameters can be
digitally configured for a specific RRAM material stack
and can be changed on the fly. The waveform drives the
positive opamp input while the opamp is configured as a
voltage follower. The voltage follower provides the suffi-

1T1R
Synapse

(@)

Leaky Integrator

(b) R

Voltage Buffer

(c) VMJ—[F

FIG. 11. (a) Schematic of the event-driven CMOS neuron for
1T1R array architecture as described in Ref.!24, (b) Neuron
in the integration mode, (¢) Neuron in the firing mode where
a weight update can take place.

cient drive current for the RRAMs that are in the STDP
window where pre- and post-spikes overlap!?4. After the
fire phase is concluded, the neuron enters a refractory
period, where it is reconfigured back in the integration
mode and Vi, ; is reset to Vig.

The CMOS neuron from Fig. 11 was designed 180nm
CMOS process with a Vpp = 1.8V124, A compact model
for the RRAM'%Y was implemented in Verilog-A. The to-
tal bias current was 9uA and and energy-efficiency of
401J /spike/synapse. Compared to prior neurons that
were designed to drive 1R synapses'*!, this 1T1R design
only drives a the small input capacitance of the access
transistor during inference, and resistive load only dur-
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FIG. 12. Plots generated from a transient simulation of the
180nm CMOS neuron for driving 1T1R synapses seen in Fig-
ure 11. The asynchronous input spikes are integrated into the
membrane potential, V. When V;,, crosses Vin,, the neuron
fires and a full-swing output spike is generated. Also, a spike
waveform, Vipr, is generated and applied across the 1T1R
synapse, and thus the RRAM device, by the opamp which is
configured as a voltage follower. In this case, the conductance
of the synapse is increased as the positive portion of the spike
waveform overlaps with the pre-spike pulse.

ing the training/learning phases.

A performance comparison of recent integrate and fire
neurons from the literature is provided in Table II. As
evidenced by this comparison, very few architectures
have addressed the circuit interfacing challenges with
the RRAM devices. There is significant room for reduc-
tion in neuron energy consumption by employing scaled
CMOS nodes, and techniques including adaptive bias-
ing (with static bias currents in the nAs), relaxing the
transition times on the program/erase pulses and power
gating. However, the designs will continue to co-evolve
with spike-based learning algorithms.

12
V. NEUROMORPHIC DEEP LEARNING ALGORITHMS

Realization of DNNs in a low-power hardware has been
of great interest in applications where neural network
processing needs to occur close to the sensors with real-
time inference and with minimal reliance on the Cloud in-
frastructure. This is driven by two divergent paradigms.
The first view is driven by the need to demonstrate
competitive performance on real-world applications com-
pared to Backprop-based standard DNNs. The second
view is of exploring the underlying mechanism behind
distributed and continual learning in biological brains,
which can learn from small amount of data in an unsu-
pervised or semi-supervised manner. A brief overview of
evolving neuromorphic learning algorithms is presented
in this section and their performance is compared in Ta-

ble III.

A. Transfer Learning

A straightforward approach is to first train a DNN
comprised of differentiable non-spiking neurons using
Backprop, regularization methods such as Dropout, and
optimization techniques including batch normalization®.
Then the DNN is converted to its equivalent SNN by
employing rate based coding, scaling the weights based
on the spiking activity, and adjusting the thresholds to
minimize absence of spikes or neuron saturation due
to over-spiking'®%!7!.  There is a perceptible perfor-
mance drop in classification accuracy in the DNN to
SNN conversion'®6- 158171 Transfer learning has also
been used to initialize a deep SNN which is then fur-
ther trained using Backprop!™2. To facilitate transfer
learning, a neuromorphic IC should have a mechanism
to download a pre-trained model and program the on-
chip synapses to the desired weights. Furthermore, these
weights decay over time due to resistance drift and a drift
compensation scheme is needed to maintain model accu-
racy over longer time scales!”. Transfer learning has
achieved highest accuracy of 99.44%'58 for the MNIST
handwritten digits dataset compared to the best in-class
DNN accuracy of 99.79%15!. For CIFAR-10 dataset, this
gap is within 2% of the Alexnet DNN.

B. Semi-supervised Learning

Spike-based unsupervised or semi-supervised learning
algorithms are based on the neural-inspired WTA motifs
of LIF neurons with inhibition and competition. Their
ability to learn spatiotemporal patterns using STDP was
first studied using software simulations'”™ and was then
applied to vision tasks31'7°. Subsequently, analytical
modeling showed that WTA neurons with STDP learning
realize a spiking version of the Expectation Maximization
algorithm34. This two layer motif learns from a small
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TABLE III. Comparison of deep SNN Algorithms and their benchmarking against the highest performing non-spiking DNNs.

Reference Algorithm/Neuron Type Network Dataset Accuracy
Standard Deep Neural Networks
Simard et. al. 2003™°" Backprop with ReLU 784-20c5-25-100-100 MNIST 99.6%
Wan et. al. 2013'%2 Backprop with ReLU and DropConnect - MNIST 99.79%
Krizhevsky et. al. 2012153 Alexnet: Backprop with ReLU 5-layer ConvNet CIFAR-10 88.91%
He et. al. 2016'%¢ ResNet: Backprop with ReLU ResNet-1001 CIFAR-10 95.08%
VGGNet 201715° Backprop with ReLU 16-layer ConvNet ImageNet” 93.2%
SNNs with Transfer Learning
- Fully connected with Rate-based IFN 784-1200-1200-100 08.68%
Diehl et. al. 2015'%° ComeNet with Rate-based TFN 784-12c5-25-64¢5-25-100 MNIST 09.14%
784-16c5-2s-64c5-2s-100 MNIST 99.1%
Hunsberger et. al. 201657 ConvNet with Rate-based LIFN Alexnet CIFAR-10 82.95%
- ImageNet 76.2%
LeNet MNIST 99.44%
Rueckauer 20175 ConvNet with Rate-based LIFN é(]}eér_lle'é 1(3:::;&;;(‘}' gz:gggg
Inception-V3 ImageNet"” 92.04%
Sengupta et. al. 2019159 ResNet with Rate-based LIFN x:g:g{; ?&iﬁ?ﬁig g;:jg;‘:
Unsupervised Learning SNNs
Diehl & Cook 2015757 STDP-WTA, LIFN with inhibition 784-1600-100 MNIST 95%
Kheradpisheh et. al. 201661 STDP-WTA, IFN with latency coding 784-30c5-25-100c5-25-100 MNIST 98.4%
Vaila et. al. 2019162 Binarized STDP-WTA, Surrogate gradients ~ 784c5-2s-30¢5-57-500-70-100 T e
Spike-based Backpropagation
Neftci et. al. 20167°° Event-driven RBP with Rate-based IFN 784-500-100 MNIST 97.04%
Lee et. al. 201654 Backprop with Rate-based IFN 784-800-100 MNIST 99.31%
O’Connor et. al. 20176% Backprop with Delta coding 784-200-200-100 MNIST 98.36%
Kulkarni et. al. 20181%¢ NormAD with IFN 784-12¢3-100 MNIST 98.17%
Mostafa 2018167 Backprop with Temporal coding 784-400-400-100 MNIST 97.55%
Shrestha et. al. 201818 SLAYER with Rate-based IFN 784-12c5-2s-64c5-2s-100 MNIST 99.36%
Mostafa et. al. 201816° DNN with Synthetic gradients, ReLU' 784”10(2((;1‘,0;)2;;20& 100 PN gg:gﬁ

t This work uses non-spiking ReLUs but can be adapted to SNNs using rate-based or temporal—cucling”u.
4 Network for CIFAR-10 is 32x32x3-96c5-83-128-c5-83-256¢5-53-2048-2048-100.

¥ Top-5 accuracy on ImageNet dataset.

number of samples and the SNN weights converge to the
log probability of the patterns in the training dataset®?.

The above mentioned two-layer SNN, without a hid-
den layer, was applied to the MNIST handwritten digits
recognition task?1:160. Using competitive learning, each
neuron learned to fire on distinct inputs. The output la-
bels are either assigned after the learning is completed60
or only the intended output neurons are allowed to fire?!.
This semi-supervised SNN achieved a classification accu-
racy of 94% for four digits and 83% on all the ten digits
(with 10 output neurons) with around 1000 training sam-
ples for each image label*!. Higher classification accuracy
was demonstrated by using a large number of competing
neurons (= 5000) leading to a maximum classification
accuracy of 95%199.

The WTA motifs can be organized in a ConvNet ar-
chitecture as shown in Fig. 13 where only one neu-
ron per kernel is allowed to fire across all the feature
maps'6L177 Stacking of these spiking ConvNet mo-
tifs to improve classification performance was explored
next161,162,177.178  While the ConvNet layers learn in an
unsupervised manner, a fully-connected read-out layer
which is trained using Backprop is employed as seen in
Fig. 13. It was found that greedy stacking of more than
two unsupervised learning ConvNet layers didn’t improve
the classification accuracy. In essence, each WTA with
STDP layer can be thought of as if its performing un-
supervised clustering over the input feature space. This

learning occurs with very few samples. However, in the
absence of a mechanism to assign credit across layers
based on the output classification error, the resulting ac-
curacy doesn’t improve by increasing the SNN depth.
These deep semi-supervised SNNs have demonstrated a
maximum accuracy of 98.5% for the MNIST handwrit-
ten digit dataset!61:162,177-179 4nd have been shown to
be suitable for incremental learning of tasks'?.

C. Backpropagation-based Learning

In spite of the desirable features of the semi-supervised
learning SNNs, there is a classification accuracy gap
between semi-supervised SNNs and Backprop-trained
DNNs. As a result, there has been sustained interest
in adapting Backprop to SNNs'®®. Backprop, along with
the ConvNet layers, is the workhorse for deep learning
and minimizes the output classification error by propa-
gating error gradients backward from the output layer,
L, to the lower network layers, 1 <[ < L. This is analyt-
ically described by the four Backprop equations below?
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FIG. 13. A Spike-based ConvNet for MNIST handwritten
digits dataset: 27x27x2-30¢5-25-500¢7-7s-100 as described in
Ref.1"6. Edge detection is performed using On-center and
Off-center Difference of Gaussian (DoG) kernels to result in
a 27x27x2 image.
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Here, C is a formulation of the output loss, or cost,
function and given by3

€= gy Ll o @) (12)

where N is the batch size, and x and y represent a sample
and the corresponding label in the dataset respectively.
Furthermore, a; represents the activation for the it" neu-
ron in the [*? layer (1 < I < L), o(-) is the equivalent acti-
vation function, 5} is the backpropagated error for neuron
j in layer I, and 951- = Vst is the spike threshold for the
neuron. Also, zﬁ; = ZJ. w;;kvfc_l is analogous to the neu-
ron membrane potential, Vi, ;. SNNs can either be for-
mulated using rate-based or spike latency coding®7:181,

For every training batch, each of the network weights
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are updated using the gradients as!63
@&y _ @ _  9C

WS W T g (13a)
(t+1) _ g _ OC

0; =6;"— n% (13b)

where 7 is the learning rate. Since the activation of spik-
ing neurons is discontinuous, direct computation of gra-
dients is not feasible. As a result, equivalent linearized or
stochastic differentiable neuron models have been derived
to obtain a continuous activation function, (), with a
well defined derivative, o/()163:168,

1. Challenges with Spike-based Backprop

Since Backprop has evolved using von Neumann ar-
chitectures, it assumes that the network-wide weights,
neuron activations, and their derivatives are always ac-
cessible from a high-density memory. This memory has a
latency and energy cost associated with data access which
percolates through the von Neumann bottlenecks!63:170,
Neuromorphic computers, on the other hand, aim to min-
imize this back and forth shuttling of data by perform-
ing localized computing inside the memory itself; how-
ever, the nature of data flow associated with Backprop
presents the following architectural challenges?3:163:

1. Weight Transport Problem: In order to com-
pute the weight updates at layer [ using Eq. 11b,
the transpose of the weight matrix for layer (I +
1), (WHHT must be available while evaluating
weights connecting layers (I — 1) and [, which poses
challenges for hardware design.

2. Non-concurrence: Data flow must alternate
between forward and backward passes during
each minibatch which limits learning on real-time
streaming data.

3. Differentiability and Precision: Derivatives
need to be computed with high-precision or approx-
imated to simpler functions.

4. Temporal Credit Assignment Problem: Dur-
ing training of a DNN as shown in Fig. 13, the net-
work layers undergo a forward pass and then wait
for the gradients to be propagated in the reverse
direction. This poses a temporal credit assignment
problem where future errors are needed to update
weights based on current spike correlations. Conse-
quently, the lower layers in the network are frozen
till the weight update in the backward pass takes
placel®2,

2. Recent Advances in Spike-based Backprop

Several techniques have appeared in spike-based Back-
prop adaptations where the constraints of standard Back-
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prop are relaxed to simplify neuromorphic hardware de-
sign. Random Backprop (RBP) or feedback alignment
(FA) algorithm eliminates the symmetry constraint!53.
Here, instead of (W'*1)T in the weight update compu-
tation in Eq. 1lc, a fixed random matrix, B! is used.
This replaces Eq. 11c by!®?

pa= (BT 00'(2") (14)

Switching to the fixed matrix simplifies the symme-
try constraint in the architecture without incurring sig-
nificant decrease in classification accuracy'®®. Random
Backprop was adapted to event-driven neurons in an
early demonstration of deep learning in SNNs!63,

In the Backprop Egs. 1la to 11d seen earlier, a con-
tinuous, and thus differentiable, model for the neuron
activation function, o(-), was assumed. Recent results in
deep SNNs have developed continuous models for the LIF
neurons by considering signal noise to soften the hard
decision thresholds. In one of these differential neuron
models, the derivative of spiking activation was approxi-
mated as:

J"(z;) = ae P50 (15)

where, a and 3 are model constants, and # is the neuron
threshold168.

By combining RBP with event-driven spikes and ap-
proximate rate-based gradients!®3, an accuracy of 97.4%
for the MNIST dataset was obtained with a three-layer
fully-connected network. In another rate-coding SNN,
the WTA structure was preserved in the weight update
rules and resulted in an MNIST accuracy of 98.71%6%.
In latency or time-coded SNNs, SpikeProp'®! was an
early work where the post neuron spike times were lin-
earized to compute gradients. Another learning rule
called normalized approrimate gradient descent (Nor-
mAD) was proposed for temporally-coded SNNs, where
an approximate gradient was defined by linearizing the
membrane potential as a function of input spikes!®6:184,
In a more recent work, the explicit spike delays were em-
ployed to compute gradients without any linearization!67.
This work resulted in a reduced MNIST classification ac-
curacy at 97.55%.

A recent SNN training algorithm, called SLAYER,
adapted spike-based Backprop where learning occurs in
both the weights as well as the axonal delays using the
stochastic exponential neuron model seen in Eq. 1568,
In this work, a temporal credit assignment scheme is
employed where the error is backpropagated through
time. The algorithm was implemented in a GPU and
achieved the highest SNN classification accuracy for
MNIST dataset at 99.44%68. The requirement of propa-
gating error back in time was solved by the SuperSpike!®®
algorithm. SuperSpike employs a three-factor learning
rule with synaptic eligibility traces to solve the temporal
credit assignment problem!™.

From the comparison in Table III, it can be seen that
transfer learning achieves the highest accuracy for SNNs
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which comes very close to the classification performance
for the AlexNet-size DNNs. Steady progress has been
made in adapting Backprop to SNNs with the recently
reported algorithms demonstrating competitive perfor-
mance on the MNIST and CIFAR-10 datasets while re-
laxing the hardware bottlenecks associated with the stan-
dard Backprop.

VI. NVM-BASED NEUROMORPHIC ICS

Early analog neuromorphic ICs comprised of low-
power subthreshold analog neuron and synapse circuits
and were primarily intended for emulating ion channel ki-
netics in biological neural circuits®!**6, Mixed-signal ICs
employed SRAM with DACs to realize synapses along
with analog LIF neurons®191, These were scaled to
wafer-level SNN implementations and demonstrated sev-
eral neurobiological as well as neuromorphic computing

tasks192:193

Progress in digital neuromorphic hardware platforms
has led to the realization asynchronous event-driven (as
opposed to clock driven) computing ICs that communi-
cate information on and across the chips using digital
spikes. The most pertinent examples of digital neuro-
morphic chips are IBM’s TrueNorth chip**, the recent
Loihi chip from Intel*5, and the two versions of SpiN-
Naker systems from the European Brain Project194-196,

Table IV presents NVM-based Neuromorphic ICs
in the literature along with their performance bench-
marking. Development of in-memory computing neu-
romorphic ICs initially focused on small-scale NVM
device arrays for characterization of device switching,
multi-level or analog states, variability, retention and
endurance*!117137:197-199 ' Tp several of these works, de-
vice results were extrapolated to DNNs or SNNs which
were entirely simulated in software.

A. NOR Flash Architectures

Flash-based neuromorphic architectures have been
studied for the past several years'®. However, the recent
interest in NVM-based VMM led to their first hardware
demonstration using established NOR Flash arrays inte-
grated in a standard CMOS technology, along with the
array programming and read circuitry!37. In this work,
a three-layer analog neural network was demonstrated
using 180nm NOR Flash array'®”. The chip was pro-
grammed using a transfer learning approach with 6-bit
analog precision and demonstrated an MNIST accuracy
of 94.7%. An important observation was that the cell
conductances decayed by around 13% over the 7 months
storage period, however, the classification accuracy had
minimal degradation and it remained above 94%.
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TABLE IV. Comparison of NVM-based Neuromorphic ICs for Deep Learning.

. . Synapse On-chip . Dataset, .
Design Technology Architecture Resolution  learning Network Size Classf. Acc. Energy-efficiency
130nm CMOS
186 : :
Yu 2016 + TaO, /HfO; OXRAM Binary VMM 1-bit X 400-200-100 MNIST, 96.5% -
. MNIST, 94.7% .
187 s
Guo 2017 180nm NOR Flash Analog VMM 6-bit Analog X 784-256¢5-100 CIFAR-10, g4.8%1 20nJ /inference
: 188 2pm CMOS i
Li 2018 + Ta/HfO, OXRAM R array Analog v 64-100 BxB UCI, 91.7%
Wang 2018189 Ta/HfO, OxRAM 1T1R array Analog v 8-80 Custom patterns -
Cai 2019%9 & 180nm CMOS 1R array, .
Correll 2019139 1+ WOx RRAM Mixed-signal Analog v 54x108 array 5x5 images 8.5GOPS/W
. 115 130nm CMOS .
CEA-Leti 2019 + Ti/HfO, OXxRAM 1T1R, SNN 1-bit X T84-100 MNIST, 84% 180pJ/SynOp
Xue 2019'%° SSEI“RFC{TL? S VMM, 1T1R 3-bit Digital X 1Mb Macro  CIFAR-10, 85.52%%  53.17TOPS/W
MNIST, 98.3%
Hirtzlin 202031 130nm CMOS 2T2R 1-bit X Off-chip CIFAR-10, 87.5%"  20-30pJ/SynOp
+ Ti/HfO, OxRAM +
ImageNet, 69.7%
90nm CMOS
173 .
Nandakumar 2020 + GST PCRAM 2T1R, LIFN 7-bit Analog v 784-100 MNIST, 7T0% -
. 133 130nm CMOS 1 to 8-bit
Liu 2020 + RRAM VMM, 2T2R Digital X T84-100-100 MNIST, 94.4% 78.4TOPS/W
146 130nm CMOS .
Wan 2020 + TaO, RRAM IFN, 1T1IR 1-bit X 225-60 MNIST RBM TATOPS/W
114 22nm CMOS . CIFAR-10, 90.19%*
4-bit Digital ! .
Xue 2020 + RRAM VMM, 1TIR it Digita X 1Mb Macro CIFAR-100, 64.15%* 121.38TOPS/W

t Simulated result.
Result is using off-chip computation.

B. CMOS-RRAM Architectures

Initial demonstrations focused on very simple pattern
learning tasks using small-scale RRAM memory arrays.
For example, synapses were interfaced with discrete elec-
tronic circuits to demonstrate a small-scale network?0.
In an early work on event-driven RRAM-compatible neu-
ron design, a 3-neuron associative SNN was experimen-
tally demonstrated'*®, and then adapted to 8 x 8 UCI
handwritten digit dataset?!.

These were followed by in-silicon demonstration of
shallow two-layer neural networks. For example, online
learning of binarized neural networks was demonstrated
using TaO, /HfO; RRAMs in 130nm CMOS and resulted
in an MNIST accuracy of 96.5%186. In another work, in-
situ learning in a two-layer network was demonstrated
using Ta/HfO, memristor array integrated with 2pm
CMOS'®8. However, in this work, the neuron activa-
tions were simulated in software!®®. Furthermore, 8 x 8
Ta/HfO,/Pd 1T1R arrays were demonstrated to learn
basic patterns under unsupervised training'®°.

With the recent integration of RRAMs with CMOS
transistors in a foundry process, neuromorphic ICs
with medium to large-scale integration of -circuits
with RRAMs have begun to appear. A major-
ity of these works target inference-only applications
by leveraging the high density of RRAM arrays
with analog-domain multiply and accumulate (MAC)
operations!14115:131,133,146,186,190 ~ Apyong the inference-
only demonstration chips, either binarized weights were
employed, or parallel RRAM cells were used to emulate
a multibit synapse. In the latter case, unit-weighted bi-
nary 1T1R cells were used as a current-DAC to realize
multi-bit synapses!14:131,133,146,190

As an example of large-scale integration of OxRAMs
with 130nm CMOS, a 2Kb differential binary RRAM
(2T2R) array with integrated column sense-amps was
fabricated, and on-chip inference was exhibited for
MNIST, CIFAR and ImageNet datasets with competitive
classification performance!®!. In another recent work!®?
using a similar technology, binarized 2T2R synapses were
used for signed weights in order to demonstrate a multi-
bit VMM. Again, in this work multi-bit weights were
realized by combining several 2T2R. cells in parallel. The
weighted currents were integrated and digitized using
a successive approximation register (SAR) ADC. This
chip-scale demonstration fully-integrated a 784-100-10
network with an FPGA-based back-end, and demon-
strated 94.4% MNIST accuracy'3®. Overall, a full-chip
integration that demonstrates true multilevel-cell 1'T1R
synapses for on-chip inference is yet to be seen (other
than the attempts in the works6%:139),

So far, only a few designs have attempted fully-
integrated on-chip learning where the challenges associ-
ated with analog synapses need to be addressed®®13%,
This CMOS-RRAM IC prototype incorporates 54 x 108
WOx RRAM crossbar array integrated with 180nm
CMOS9:139 The chip also includes arrays of 6-bit DAC
and 13-bit column ADCs and a RISC processor for digital
backend. The row DAC produces voltage pulses of fixed
width proportional to the input value. These DAC pulses
are weighted by the RRAM-based VMM and then inte-
grated in charge-domain on the integrating-type column
ADCs, thus realizing a mixed-signal VMM with digital
input and output vectors.
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VIl. DISCUSSION AND CONCLUSION

From the discussion in Section VI, it is evident that
fully CMOS-based digital and mixed-signal neuromor-
phic ICs feature very high-level of system integration
and functionality. This is due to the maturity of de-
sign, modeling and verification infrastructure for CMOS
technology. However, CMOS realizations either exhibit
lower neurosynaptic density, employ binarized volatile
synapses, and can be limited by a von Neumann bot-

tleneck.

While digital neuromorphic ICs have made significant
progress in low-power realizations of deep neural net-
works, NVMs have a role to play in another order of
magnitude improvement in neurosynaptic density and
energy-efficiency. Among the NVMs, NOR Flash-based
architectures have demonstrated multi-layer neural net-
works for inference, all due to the maturity of floating-
gate devices, proven multilevel cell capability, and their
longer retention times.

As seen in Table IV, RRAM and PCRAM-based neu-
romorphic inference ICs have shown steady progress,
while on-chip training architectures are still in their in-
fancy. Hybrid CMOS-RRAM inference SoCs using bi-
narized RRAMs have demonstrated higher neurosynap-
tic density, competitive on-chip classification accuracies,
and higher energy-efficiency approaching 100 TOPS/W.
RRAMSs also promise in-situ training capability due to
their significantly higher reported endurance approach-
ing 109 write cycles. However, several device-level chal-
lenges such as the controllability of multilevel states and
state drift need to be addressed. Resistance state drift
in RRAM synapses degrades the classification perfor-
mance of the neural network models, that rely on multi-
bit synapses, only in a few hours and thus restoration of
the states will have to be addressed at the circuit as well
as algorithmic level.

As far as algorithms are concerned, a direct adapta-
tion of Backprop to SNNs may not be the actual algo-
rithm responsible for cognitive ‘computation’ occurring
in the biological brains. Nevertheless, it provides an in-
termittent solution to embedded Al applications desired
by the computing community. Needless to say, develop-
ment of learning algorithms for SNN is a promising area
of research and together with developments in the field of
computational neuroscience, it may lead to better under-
standing of brain computation. However, going forward
with the development of large-scale neuromorphic com-
puting architectures, these algorithms will synergistically
evolve by accommodating the realistic behavior of synap-
tic devices and by alleviating the hardware bottlenecks
that arise when deep learning algorithms are mapped to
in-memory computing hardware.
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