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Avarietyofnonvolatilememory(NVM)devicesincludingtheresistiveRandomAccess Memory(RRAM)
arecurrentlybeinginvestigatedforimplementingenergy-efficienthardwarefordeeplearningandartificial
intelligenceattheedge. RRAMdevicesareemployedintheformofdensecrosspointorcrossbararrays.
Inordertoexploitthehigh-densityandlow-poweroperationofthesedevices,circuitdesignersneedtoac-
commodatetheirnon-idealbehaviorandconsidertheirimpactoncircuitdesignandalgorithmperformance.
HybridintegrationofRRAMswithstandardCMOStechnologyisspurringdevelopmentoflarge-scaleneu-
romorphicsystem-on-a-chip(NeuSoC).Thisreviewarticleprovidesanoverviewofneuromorphicintegrated
circuitsusinghybridCMOS-RRAMintegrationwithanemphasisonspikingneuralnetworks(SNNs),de-
vicenonidealities,theirassociatedcircuitdesignchallenges,andpotentialstrategiesfortheirmitigation.An
overviewofvariousSNNlearningalgorithmsandtheirco-developmentwithdevicesandcircuitsisdiscussed.
FinallyacomparisonofNVM-basedfully-integratedneuromorphicICsispresentedalongwithadiscussion
ontheirfutureevolution.
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I. INTRODUCTION

Overthelastdecade,deepneuralnetworks(DNNs),
ordeeplearning,haveemergedasthenextwaveofAr-
tificialIntelligence(AI)whichhasbeenpropelledbythe
advancesinspecializedhardware,open-sourcesoftware
andavailabilityofdatasets.Hardwareplatformssuchas
thegraphicsprocessingunits(GPUs)andapplication-
specificintegratedcircuits(ASICs)forAIacceleration
enableparallelprocessingofalargeamountofdatato
trainDNNmodels.TrainingorlearninginDNNmodels
isperformedusingvariantsofthegradient-descentback-
propagation,orBackprop,algorithm1–3whichisboth
computationallyandenergyintensiveduetothemassive
amountsofdatacontinuouslyshuttledbetween mem-
oryandprocessingunits. Recently,low-power GPUs
andASICshaveappearedfordeeplearninginference
forEdge-AI4,5. However,trainingisperformedona
GPU-basedserverorCloudinfrastructureusingsoftware
frameworkssuchasTensorFlow6andPyTorch7.Inview
ofdiminishingreturnsfromsucharchitectureswiththe
near-endof Moore’sscaling8,semiconductorindustry’s
InternationalRoadmapforDevicesandSystems(IRDS)
looksforwardtoBeyond-Mooreorpost-CMOStechnolo-
giestoconceiveradicallynewcomputingarchitectures
forAIworkloads9.Thisrequiresacross-layerinvestiga-
tionofnonvonNeumanncomputingarchitecturesacross
theentiredevices,circuitsandalgorithmshierarchy.
Severalclasses ofemerging non-volatile memory

(NVM)devicesarecurrentlybeinginvestigatedfortheir
applicationinanalogimplementationofEdge-AIhard-
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ware. Thesedevicescanbetwo-orthree-terminaland
employawiderangeofmaterialsystemsandassociated
physicalmechanismstoachievemulti-levelnon-volatile
memorystates. Moreover,theseNVMdevicesneedto
bemonolithicallyintegratedwithstandardCMOStech-
nologytoenablehybridintegratedcircuitdesign. Deep
learninghardwarerealizationsincludevector-by-matrix
multipliers (VMMs),andneural-inspiredorNeuromor-
phiccomputingcircuits.TheNVMdevicesareemployed
intheformofcrossbar,orcross-point,arrayswithor
withoutselectorsalongwithCMOScircuitsatthepe-
ripheryofthearray.
Whiletheseemergingin-memorycomputingarchitec-
turesshowpromise,inordertoexploitthehigh-density
andoperationofthesedevices,integratedcircuit(IC)
designersneedtoaccommodatetheirrealisticbehavior
andnonidealities.Thisisparticularlyimportantforop-
timizinghybridtransistor-NVMcircuitdesignforperfor-
mance,areaandpowerconsumption.NVMnonidealities
includedevicevariability,lowresistancesofferedbythe
two-terminaldevices,resolutionandstabilityofmulti-
levelstates,nonlinearityanddeviceendurance. More-
over,novelin-situlearningalgorithmsmustbedeveloped
whichcantakeadvantageofthelocalizedin-memory
computingtominimizevonNeumannbottlenecks.
Severalrecentreviewarticlesintheliteraturefocus
onemergingdevicesforin-memorycomputing10–16,neu-
romorphiclearningalgorithms17,pathwaysandsurvey
ofneuromorphichardwarearchitectures18,19. Thisar-
ticleprovidesthe motivationandoverviewforspike-
basedNeuromorphichardwarethatcanberealizedus-
ingemergingNVMs,withaspecificfocusontheResis-
tiveRandomAccessMemory(RRAM),akathememris-
tors,andspikingneuralnetwork(SNN)algorithms.The
uniqueaspectofthisreviewisthatitfocusesonbridging
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thelargegapbetweentheexpectationsproducedbythe
experimentalresultsfromemergingNVMdevicesandthe
requirementssetbytheneuromorphicsystemarchitec-
tures.Thisisattemptedbyconsideringthedevicenon-
idealitiesthatthecircuitdesignersneedtoaccommodate
andthehardwarebottleneckstobesurmountedwhenim-
plementingspike-baseddeeplearninginneuromorphic
hardware. Restofthearticleisorganizedasfollows:
SectionIIintroducesSNNsandtheiruseinneuromor-
phiccomputing.SectionIIIprovidesanoverviewofthe
RRAMdevicesanddiscussestheimpactofdevicenonide-
alitiesoncircuitdesignconsiderationsandsystem-level
performance.SectionIVdiscussesCMOSintegratedcir-
cuitsneededtorealizeneuromorphiccomputing.Section
Vprovidesabriefoverviewofthelearningalgorithmsfor
deepSNNs.Finally,SectionVIbenchmarkstheperfor-
manceoffabricatedNVM-basedneuromorphiccomput-
ingICsfollowedbyaconcludingdiscussion.

II. SPIKINGNEURALNETWORKS(SNNS)AND
NEUROMORPHICCOMPUTING

Energy-efficiencyof DNNsrealizedon GPUsand
ASICsbasedonvonNeumannarchitecturesisfundamen-
tallylimitedbytheenergyandlatencycostofthe‘dis-
tance’betweenstoragememoryandprocessingunits20.
Inaradicalcontrast,abiologicalbrainstoresmemory
andperformslocalizedcomputingusingsimilarneural
motifswithextremelyhighenergy-efficiency,thusmak-
ingacompellinginspirationforin-memorycomputingfor
DNNs.
Fig.1illustratesaneuromorphiccomputingarchitec-

turebasedon1T1Rcrosspointarrayswithneuroncir-
cuitsatthearrayperiphery.Inafully-connectedneural
network,eacharrayrealizesanetworklayerwhichare
connectedwitheachotherusingon-chipand/oroff-chip
interconnects.Theseinterconnectsemployasynchronous
spike-basedcommunicationusingaprotocolsuchasthe
address-evenrepresentation(AER)protocol, whichis
widelyusedinneuromorphicsensorsandprocessors21–23.
TheneuralnetworkweightsarestoredintheNVMmem-
oryarray. Thepre-neuronsconcurrentlydrivetherows
(orthewordlines),asopposedtorandomaccess. The
pre-neuronactivations(orvoltages)areweightedbythe
conductanceofthesynapticweightsandtheresulting
currentissummedandintegratedonthepost-neurons
connectedtothecolumns(orthebitlines).
Inthepastdecade,advancesinspike-based models

withlocalizedplasticitymechanismssuchasthespike-
timing-dependent-plasticity(STDP)anditsfeedback-
basedmodulation24–30haveopenednewavenuesinneu-
romorphiccomputingresearch. Forexample,theoreti-
calstudieshavesuggestedSTDP-likeplasticitymecha-
nismscanbeusedtotraintwo-layerSNNsin-situwith-
outtrading-offtheirparallelism31–34
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FIG.1.Aneuromorphiccomputingarchitecturebuiltaround
1T1RRRAMcrosspointarrays:(a)Afully-connectedspik-
ingneuralnetwork(SNN)showinginput,hiddenandoutput
layersofspikingneurons,(b)acrosspointRRAMarraywith
inputandoutputneurons,(c)asinglesynapsebetweenthe
inputandoutputneuronswithlocalizedweightupdates.

naleitherusingrate-codingwheretheaveragespikerate
representsarealvaluedsignal,ortemporalcodingwhere
spikedelay(orlatency)encodesthesameinformation.In
biology,sensoryinformationisencodedasacombination
ofbothrateandlatencycoding.

A. LeakyIntegrateandFireNeurons

Biologicalneuronsexhibitcomplexspikesignalpro-
cessingandspikegenerationbehaviorwithsomeofthe
spikefilteringoccurringinthedendrites35. Asaresult,
widerangeofmodelshavebeendevelopedinthelitera-
turetoemulatetheirresponse21,36–40.However,inneuro-
morphiccomputingonlythesimplesalientfeaturesuseful
forlearningandinferenceareadaptedintotheSNNar-
chitecture.Asingle-compartmentleakyintegrate-and-fire
(LIF)neuronisasimpleandcommonly-usedneuralmo-
tif.Networkweights,wij,arestoredin‘synapses’which
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FIG.2.(a)Sectionofatwo-layerspikingneuralnetworkillus-
tratingpreandpostspikeflow.(b)Transientwaveformsfor
thesespikes,membranepotential,andweightupdatemodu-
latedbyanexternalfeedbackerror,δ.(c)Spike-timingde-
pendentplasticity(STDP)learningwindowwheretheweight
updatedependsuponthetemporaldelay, ∆t,betweenthe
preandpostspikesatasynapse.

canbeupdatedbasedonHebbianlearning,i.e.thecor-
relationofthespikingactivityofthepre-synapticand
post-synapticneurons.Duringfeedforwardpasses,aLIF
neuronintegratesitsinputspikes,si(t),weightedbythe
synapses,intoitsmembranepotential

vm,j(t)=
N

i=1
wij

t

−∞

si(t)⊗h(t)dt (1)

whereh(t)=e−t/τmu(t)istheimpulseresponsethat
incorporatesneuron’sleakybehavior. Whenthemem-
branepotentialofaneuroncrossesitsfiringthreshold,
i.e.vm,j(t)>Vthr,j,theneuronproducesapost-spike,
sj(t).Afiringeventresetsthemembranepotentialtoa
restingpotential,Vrstandpropagatesthepost-spikein
theforwardaswellasthebackwarddirection. Thisis
describedbyEq.2belowandillustratedinFig.2.

att=tfj vlm,j(t)>V
l
thr,j:

vlm,j(t)←Vrst
sj(t)←g(t−t

f
j)

(2)

Afterfiring,aneuronentersarefractory,orsilent,pe-
riodbeforeitcanfireagain.Duringtherefractoryperiod
ofdurationτrefr,membranepotentialrestsatVrst.τrefr
setsthemaximumrateatwhichaneuroncanfire,i.e.
νmax ≥

1
τrefr
,andthustheresolutionforquantizationin

thetime-domain.
Neuronscanforminhibitoryand/orexcitatorycon-

nectionswithotherneuronsasseeninFig.2.Inhibitory
connectionspreventotherneuronsfromfiringifoneof

theneuronshasfiredinagiventimewindow. Excita-
toryconnectionsmakeconnectedneuronsfiresimultane-
ously.Inhibitionisusedtoimplementcompetitivelearn-
inginanpopulationofneuronstorealizeWinner-take-all
(WTA)motifs41.

B. SynapsesandPlasticity

SynapsesessentiallyimplementweightsintheSNN
wherethepre-spikesareweightedbytheconductance
ofthesynapsebeforetheyareintegratedintheneuron.
Incaseofonlinelearning,synapticweightsarein-situ
updatedontheneuromorphicchip. Weightupdateina
synapseisgovernedbyaplasticityrulebasedonHebbian
correlationwhichcanbemodulatedbyanerrorfeedback,
leadingtoanapproximatedthree-factorlearningrule42

∆wij=f(ti,tj,δj) (3)

Here, tiandtjarepreandpostspiketimes,andδj
istheerrorfeedback. Severalplasticityruleshaveap-
pearedinliteraturebasedonelectricalprobingofbio-
logicalneuronsandupdaterulederivationsincompu-
tationalneuroscience26,29,43.STDPruleisatwo-factor
rulebasedonthetimedifferencebetweenpostandpre
spikes∆tij=tpost−tpre=tj−tiandexpressedas

∆wij=






a+e
∆tij

τ+ , ∆tij=tj−ti≥0

−a−e−
∆tij

τ− ,∆tij=tj−ti<0
(4)

Here,a+andτ+arethevoltageandtemporalparameters
forthelong-termpotentiation(LTP)whenthesynaptic
weightincreases. Conversely,Here,a− andτ− arethe
correspondingparametersforthelong-termdepression
(LTD)whenthesynapticweightdecreases.
Fundamentally,spike-basedcomputingsimplifiesthe
needforprecisemultiplicationandreplacesitbyscal-
ingofbi-level,orbinary,spikesbysynapticconduc-
tances. Thisresultsinsimplerdigitalneuromorphic
hardwareimplementationsandprecludestheneedfor
four-quadrantmultiplicationinanalogneuromorphicre-
alizations. Consequently,SNNscanperformcomputing
withsimplerhardwareandconsumeverysmallamount
ofenergyonlywhenthespikeeventsoccur23,44,45. Due
totheiruniquecharacteristics,SNNsarebetterrealized
onanevent-drivenneuromorphicplatforminsteadofa
vonNeumanncomputer.

C. Analog Mixed-SignalNeuromorphicPlatforms

Asdiscussedearlier,neural-inspirationprovidesthe
motivationforrealizingdenseandlow-powerneuromor-
phichardwarebyimplementingneuronandsynapsesus-
inganalog mixed-signalcircuits. Advancesinanalog
neuromorphiccircuitsincludetheNeurogridhardware46,
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wheresubthresholdbiomimeticCMOScircuitswerede-
velopedtoreproducedynamicsoccurringinbiological
neuralnetworks. However,thefundamentallimitation
ofsuchanalogarchitecturesisthattheweightsaredy-
namicallystoredandupdatedoncapacitors,whichleak
awayinafewseconds,thuslimitinganylong-termlearn-
ing. Bistabilityofanalogweightshasbeenusedasa
stop-gapsolution47,48,butrecentstudiesondeepneural
networkshavedeterminedthat4-bitorhighersynap-
ticresolutionisneededtorealizeSNNswithreasonable
classificationaccuracy49,50.Othersolutionsincludeusing
FloatingGate,orNORFlash,devicesforrealizingmul-
tilevelnon-volatilesynapticweights51.However,despite
oftheirexcellentretention,floating-gatememorysuffers
fromlowenduranceof<105writecycles. Thislimits
thenumberoftimestheneuralnetworkweightscanbe
updatedandthussignificantlylimiton-chiptrainingca-
pability.

D. NeuromorphicComputingusingEmergingNonvolatile
MemoryDevices

Severalemergingnonvolatile memory (NVM)de-
vicesincluding RRAMs, spin-torquetransfer RAM
(STTRAM),phase-changeRAM(PCRAM),alsogen-
erallyreferredto as memristors, have beencon-
sideredfortheirusein Edge-AIandneuromorphic
computing20,55–59. Recently,ferroelectric-field-effect
transistors(FeFETs)havecomeunderfocusfortheirlow
powerperformance54,60.Inthelastdecade,theseNVM
deviceshavebeenextensivelyinvestigatedasahigh-
densitypotentialreplacementforFlashmemory20,52,61

withtheiradvantagessummarizedin TableI. As
theresearchcommunitygainabetterunderstanding
ofthephysical mechanismsforelectricalswitchingin
theRRAMdevices,thereisatrendtowardsdevelop-
ingnovelapplicationsbyleveragingthesedevicesfor
computing57,62–67.

TheseemergingNVMdevicesareemployedintheform
ofcrossbarorcross-pointarrayswithadiodeortransis-
torselector—cellwithonetransistorandoneRRAM
(1T1R).TheseNVMarraysarebeinginvestigatedfor
DNNcomputationsintheanalogdomain.Theseinclude
VMMforEdge-AI58,68andsynapticweightsinamixed-
signalneuromorphichardware23,69.EmergingNVMar-
raysarepromisingforneuromorphiccomputingasthey
provide:(1)averyhighsynapticdensitywithlowleak-
agepower,(2)localizedin-memorylearningsimilartobi-
ologicalsynapticplasticity,(3)verylowpowerconsump-
tionwithevent-drivenupdates,and(4)non-volatilityof
weights23. Thisreviewfocusesontwo-terminalRRAM
devicesforneuromorphiccomputation.

III. RRAMDEVICECHARACTERISTICSAND
PROCESSINTEGRATION

A. RRAMDevices

Resistanceswitchinginemerging nanoscaleresis-
tive memorydeviceshassustainedinterest withthe
goal of high-density andlower powerreplacement
for NVM-basedembedded memory andcomputing
applications9,10,52,70. RRAMarraysareconsideredasa
suitablealternativetotheFlash-basedsolutionsdueto
thefollowingreasons:

(i)Thefilamentarynatureofresistanceswitchinghas
thepotentialtoscalewellbeyondthesub-10nm
featuresize61,71.

(ii)Lowerswitchingvoltagesallowlowpoweroperation
andcompatibilitywithscaled-CMOS952.

(iii)Verysimpleplanartwo-terminalstructuresand
fabrication-friendlymaterialsfacilitateintegration
withstandardCMOStechnology.

(iv)Thesedevicesdemonstratebiologicallyplausible
plasticity(i.e. weightupdate)behaviorinseveral
experiments,57,62,72–74andthereforehaveemerged
asanidealcandidateforrealizingelectricalequiv-
alentofbiologicalsynapses.

SeveralcategoriesofRRAMshavebeenintenselypur-
suedbythedevicecommunity:(1)Electrochemicalmem-
ory(ECM)akaConductiveBridgeRAM(CBRAM),(2)
ValenceChange Memory(VCM)akaOxygenVacancy
based RAM(OxRAM),(3) Thermochemical memory
(TCM),and(4)Interfacialor2DswitchingRRAMs75–77
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ThisreviewprimarilyfocusesonCBRAMandOxRAM
devicesforneuromorphiccomputing,whicharegraphi-
callydepictedinFig.3.AlltheseRRAMsareessentially
metal-insulator-metal(MIM)structureswheretheresis-
tancebetweenthetwoelectrodescanbechangedina
non-volatilemannerbyeitherfilamentaryorinterfacial-
typeswitching.

FIG.3.Graphicalillustrationofthecross-sectionofCBRAM
andOxRAMNVMdevicesandtheircircuitsymbol. Device
cross-sectionsarenottothescale.

CBRAM:CBRAMusesadielectriclayersandwiched
betweentwoelectrodesandtheresistanceischanged
byforminganconductiveelectrochemicalbridge. As
showninFig. 3(a),theanode(topelectrode)iselec-
trochemicallyactiveandismadeofmetalssuchasSil-
ver(Ag)78–81orCopper-basedalloys(e.g. CuTex)

82.
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TABLEI.Comparisonofmemorytechnologiesforin-memorycomputing.DatareproducedfromRefs.20,52–54.

Parameters SRAM DRAM NORFlash PCRAM STTRAM OxRAM CBRAM FeFET
Cellsize 100F2 7F2 5F2 4F2 12F2 4-6F2 4-6F2 24F2

Density Low High High V.High High V.High V.High High
WriteLatency 1ns 5ns 10µ-1ms 100ns 2-25ns 10ns 10ns 3ns
ReadLatency 1ns 20-80ns 50ns 10ns 2-25ns 1-10ns 10ns 2ns
WriteEnergy(pJ/bit) <1 <1 100 2-25 0.1-2.5 0.1-3 0.1-10 0.1
LeakagePower High Medium Low Low Low Low Low Low
Endurance(writecycles) >1015 >1015 105 108 1012 109 108 >105

SwitchingPolarity NA NA Bipolar Unipolar Bipolar Bipolar Bipolar Bipolar
MLCCapability ✗ ✗ 4-8bits 4-6bits 2bits 4-6bits 2bits 3bits
MLCRetention ✗ ✗ Years R-drift Tunneling R-drift R-drift Tunneling
3DStacking ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Thecathodeisaninertelectrodeandusuallyrealized
usingPlatinum(Pt), Nickel(Ni),or Tungsten(W).
Thedielectricisathinfilmlayerwhichcomprisesof
eitherachalcogenide(suchas GexSe1−x),amorphous
silicon71,72,Al2O3, MOx,orHfOx

82. Thereaderisre-
ferredto81,83fortheCBRAMfabricationdetails. An
initialstepcalled‘forming’stepisrequiredtointroduce
silverintotheunformedorpristineswitchinglayer.This
isachievedbyeitherapplyingasufficientlylargevoltage
pulse(akaelectroforming)orbyphoto-diffusionusingop-
ticalillumination84,85.

OxRAM:OxRAMsarefabricatedasan MIMstack
withtransitionmetaloxidesasthedielectric.Themech-
anismforresistanceswitchingistheformationofacon-
ductivefilamentduetothemigrationofoxygenvacancy
defects86,87.Severalinsulatorshavebeenexploredinthe
literatureincludingHfOx,Ta2Ox,TiOx,ZrOx,andNiO.
Sinceforminganoxygenvacancyintheseoxidesrequires
higherenergy,ametalliclayerofHf(orTi,La,Zr)isused
asascavengerelectrodethatscavengesoxygenvacancies
fromHfOx

88. ThisstackisshowninFig. 3(b). The
Hf/HfOx(orTi/HfOx,etc.)interfaceactsastheactive
electrode89whichiscappedwithmaterialsuchasTiN,
Ni,TaN,ITO,orAl87.Incorporationofthescavenger
electrodeleadstobetterswitchingcontrol,reducedvari-
abilityandhigherretention88.DopingofOxRAMactive
layerwithdopantssuchasTiorGeincreasestheoxygen
vacanciesandhasbeenexploredtorealizeforming-free
devices87.

Other RRAM Variants: ExampleofTCMdevices
includetransition metaloxidecellssuchas NiOand
HfO,wherefilamentaryswitchingoccursduetocurrent-
basedheatingandtheresultingstochiometricchanges
duetotemperatureincrease75,77,90.Interfacialswitch-
ingRRAMsincludeNb-dopedSrTiO3(NbO)anddoped
perovskitessuchasPr0.7Ca0.3MnO3 (PCMO). These
RRAMsarealsoreferredtoas2Dswitchingdevicesas
theresistanceisdependentoncross-sectionarea,asop-
posedtothefilamentaryswitchingdevices75,91,92.

B. RRAMElectricalCharacteristics

CBRAM:Atypicalhysteresiscurrent–voltage(I–V)
characteristicsinametal–insulator–metal(MIM)struc-
tureareshowninFig.4.Theseelectricalswitchingchar-
acteristicswereobtainedfromexperimentalcharacteriza-
tionofAg/Ge20Se80/WCBRAMdeviceswhichwerefab-
ricatedbyMitkovagroupatBoiseStateUniversity81,83.
Here,triangularvoltagesweepswereappliedacrossthe
deviceandthecurrent was measuredusingaSemi-
conductorParameterAnalyzer(SPA)suchasKeysight
B1500. TheI-Vsweepswereperformedforseveralset-
tingsofthecompliancecurrent,Icc,rangingfrom50nA
to10µA.ThedevicestateduringtheI-Vswitchingchar-
acteristicsaredescribedasfollows:

(A)Here,initiallythedeviceisintheHigh-resistance
state(HRS),erased,orOffstate.

(B) Whenasufficientlylargepositivevoltagegreater
thantheprogramthresholdvoltage(V+th)isappliedon
thetopelectrode,silverisoxidizedandtheAg+ ions
startmovingtowardsthecathodeandformingabridge
(orfilament)intheprocess.

(C&D)Thesilverionbridgeeventuallyformsahigh-
conductivitypathbetweentheelectrodesrealizingthe
Low-resistancestate(LRS),programmed,orOnstate.
ThisisreferredtoastheProgramorSetoperation.

(E) Conversely,ifavoltage morenegativethan
theerasethresholdvoltage(V−th)isappliedacrossthe
CBRAM,thefilamentisdissolvedandthedevicereverts
totheHRS.ThisiscalledtheEraseorResetoperation.

Theelectrochemicalprocessofconductivefilamentfor-
mationisinherentlystochasticandvariesacrossdevices
andswitchingcycles,wheresilverfilamentsofvarying
geometrycanbeformedintheamorphousswitching
layer. Thevariabilityisreducedwithscalingtosub-
15nmcross-sectionareaasonlyonedominantfilament
canbeformed.

CBRAMswitchingthresholdsdependupontheactive
electrode materialandswitchinglayerusedinthede-
vice.IntheCBRAMfabricatedbyauthor’scollaborators
withtheirexperimentalswitchingcharacteristicsshown
inFig.4,theprogramthresholdisV+th=0.7Vandthe
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FIG.4.ExperimentalI-VcharacteristicsofaCBRAMdevice
withgraphicalillustrationofProgram(A-D)andErase(E)
operations.

erasethresholdisV−th=−0.1V. TheCBRAMswitch-
ingbehaviorisbipolar,i.e.theSetandResetoperations
requiredifferentpolarity.CBRAM’bipolarswitchingis
asymmetricasaverysmallnegativevoltageisneededto
breakthefilament(bridge)attheanodeandrevertthe
devicetoHRS81,93,94.

Compliancecurrentisanimportantparameterthat
setsthemaximumcurrentinthedeviceduringtheelec-
troforming,andthesubsequentoperationofthede-
vice,andthusessentiallydeterminestheLRSresistance,
RLRS.ThisisillustratedinFig.5,wheretheresistance
distributionforvariedvaluesofIccisplotted.Foralarge
Icc>10µA,athickfilamentisformedresultinginanar-
rowerdistributionwithlowerRLRSvalues.Thisregime
issuitablefordigitalapplicationswithbinaryorbistable
memory.

ForlowerIcc∼1µA,aweakfilamentisformedwitha
widerdistributionandhigherresistancevalues. These
characteristicsgiverisetothepossibilityofrealizing
analog-likebehaviorwheretheRRAMresistancecanbe
programmedtooneofthemultilevelresistancestates.
Thiscanbethoughtofasamulti-levelcell(MLC)with
2-bitorhigherresolution.Thefilamentstructuredeter-
minestheswitchingspeed,repeatability,LRSresistance
range,multilevelbehavior,andtheretentionofdevices.

OxRAM: Electrical characteristics of OxRAM
followaI-VhysteresisloopsimilartoCBRAMwith
afewdifferences. Resistanceswitchingin Ti/HfOx
(Hf/HfOx,Ta/Ta2Ox and similar stacks) OxRAMs
occursduetotheformationofaconductivefilamentof
oxygenvacancies.ThemetallicHf,Tiorsimilarlayers,
facilitatescavengingofoxygenatomsfromHfOxlayer.
Theenergyofbreakingoxygen(O)iscompensated
bytheexothermic Hf-Obondformationenergy88,89
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FIG.5.CBRAMresistancedistributionforseveralvaluesof
compliancecurrent. Analog-likestatesareobservedwhena
weakfilamentisformed. Athickfilamentleadstodigital
switchingbehavior.

Whenapositivevoltageisappliedtotheactiveelec-
trode,positiveoxygenvacancies(V+O)arecreatedat

theTi/HfOx interface,whichactsasaV
+
O reservoir.

Thepositivelychargedvacanciesdiffusetowardsthe
inert(TiN)electrodeheldatalowerpotential,thus
formingaconductivefilament. Asthefilamentgrows
inlength,theelectronconduction mechanismchanges
fromtrap-assistedtunnelingtoPoole-Frenkelhopping
toeventually Ohmicconductionwhenthefilamentis
fullyformedandconsignstheOxRAMtoLRS89. A
compliancecurrentensuresthatcompletebreakdownof
HfOxdielectricisavoided. A1T1Rcellconfiguration
istypicallyusedtosetthiscompliancecurrentinthe
array. Whenthevoltagepolarityacrosstheelectrodesis
reversed,O−diffusesbackintoHfOxandtheconductive
filamentisdissolvedleadingtoHRS.

OxRAMsdevicesbasedontransitionmetalswitching
layerhavebeenextensivelycharacterizedusing1Raswell
asIT1Rarrays82,88,95–99.Theprogramanderasethresh-
oldsvarywidelydependinguponspecificdevicestruc-
tureand materialused. Forexampleindevicesfrom
Leti95,100,theProgram/Setthresholdsintherangeof
V+th≈1VandErase/ResetisV

−
th≈−1.5V.Thebipolar

switchinginOxRAMismoresymmetricthanCBRAMs
asalargernegativevoltageisneededtodiffusetheO−

ionsbackanddissolvetheV+O bridge. TheLRSvari-
abilitydependsonIccandthepulsedurationduring
theinitialformingstep. TheHRSvariabilitydepends
uponthetargetresistancerange95,whichisofinterest
foranalog(ormultilevel)applications.ForHRS,cycle-
to-cyclevariabilitytendstohigherthanthecell-to-cell
variability. Thusasmartprogram-and-verifyalgorithm
isneededtoplacethemulti-levelOxRAMinaspecificre-
sistancestate.Theformingvoltage,≈2V,islargerthan
theprogramthreshold.AsmallerIcc≈5µAandshorter
pulsewidth(≈100ns)avoidsstuck-at-LRSfaultsand
placestheOxRAMinanalogregionofoperation(10kΩ-
1MΩ). Theprogram/Setoperationcanbeabruptin
OxRAMsduetoapositivefeedbackloopbetweenelec-
tricalfield/temperatureandoxygenvacancies.Theana-
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logbehaviorcanbeimprovedbyintroducingathermal
enhancedlayer(TEL)toprovideabettercontrolover
incrementalresistancechanges101?.

Other RRAMs: TCMdevicesexhibitapolaror
unipolarswitching,i.e.theSetandResetoperationshave
thesamepolarity75,90.Theadvantageofunipolarswitch-
ingisthatasimplediode-basedselectorcanbeemployed
forminga1D1Rcell. DisadvantagesofTCMdevices
includethehigherenergyconsumptioninthethermal-
activatedswitchingprocess90.Interfacialswitchingde-
vicessuchasNbOandPCMOexhibitbipolarswitch-
ingby modulatingtheSchottkybarrierbarrieratthe
metal-oxideinterface75,91,92. Anadvantageoftheinter-
facialswitchingRRAMsisthattheyexhibitanasym-
metricnonlinearity, whichrealizesaselector-freeself-
rectifyingcell.Also,forming-freePCMORRAMdevices
havebeendemonstratedwhichisadvantageousforon-
chipintegration102.

C. RRAMRetentionandEndurance

Retention andendurance of both CBRAM and
OxRAMhavebeenextensivelystudiedforbinarystor-
ageapplications52,53. DevelopmentofRRAMsforana-
logcomputingwhereeachcellcanbeprogrammedwith
multilevelstatesisacurrentfocusofresearch103–107.
Ti/HfOxOxRAMshavedemonstratedenduranceof≈
109cycles,ultra-fastwrites(∼5ns),andRoff/Ronra-
tioexceeding10052,88,98. Multilevelresistancestates
areprogrammedbymodulatingeitherthevoltageam-
plitudeorthepulse-widthoftheprogram/erasepulses,
andsettingacompliancecurrent.Aprogram-and-verify
schemeisemployedforiterativeprogrammingtoachiev-
ingtightresistancedistributionswhile minimizingthe
read/writedisturbbetweenthecells108. Consequently,
thedeviceisstressed multipletimesper MLCwrite
eventandhasabearingonoveralldevicelifetime. Re-
centworkonMLCOxRAMcharacterizationhasshown
thatitcanbeprogrammedupto64-levels,or6-bit
percellresolution66,108–110. However,theprogrammed
stateshavebeenobservedtorelaxandtheirresistances
driftovertimeonatimescaleofhourstoweeks66,108,111.
Severalretentionfailuremodeshavebeenobservedde-
pendinguponthedevicematerialstackandstructure112.
Also,theresistancedriftisacceleratedasthechiptem-
peratureisincreasedduetotheincreasedBrownianmo-
tionofconductingionsintheswitchinglayer66.

CBRAMshavealsoshownmulti-levelresistancestates
with2-bit/cellstorageand≥ 105sretentionbyusing
appropriatecompliancecurrentsettings53,113.Basedon
literaturesurvey, OxRAMshavebeen moreamenable
toanalogbehaviorwhencomparedtoCBRAMs,but
thelattercanimprovedbyusingoptimizedbilayer
materials53.

FIG.6. GraphicalillustrationofintegrationofRRAMstack
intheBEOLofa4-MetalCMOSprocessasdescribedin
Ref.100

D. ProcessIntegrationofRRAMwithCMOS

IntegrationofemergingNVMdeviceswithstandard
CMOStechnologyisessentialforthedevelopmentof
largescaleneuromorphiccircuits. Toallowflexibility
whenoptimizingtheNVMdevicestack,apreferredap-
proachistointegrateRRAM,oranyotheremerging
NVMdevices,intheback-end-of-the-line(BEOL)ofa
CMOSprocess.OxRAMsallowstraightforwardintegra-
tionwithaCMOSprocessflowasthematerialsusedare
compatiblewithCMOSfabrication. Thisisduetothe
factthatHfOxandsimilarmaterialsareusedashigh-k
gateoxideinscaledCMOSprocessnodes.Recently,few
foundrieshaveintegratedOxRAMandCBRAMsinto
theirCMOSfabricationflows20,69,114,115.Fig.6showsa
cross-sectionrepresentationoftheOxRAMintegratedin
theBEOLofa4-metalCMOSprocess100.1T1RRRAM
arraysfrom16Kbitsto2Mbitshavebeenfabricatedusing
thisplatformwithmemorysizescaleddownto40nm67,96.
CBRAMwithAgfilamentischallengingassilverisacon-
taminantforsilicon-baseddevices. Thus,copper(Cu)
basedCBRAMshavebeeninfocusasCuisalreadyused
intheCMOSBEOLflow53.

E. ChallengeswithRRAMDevicesforNeuromorphic
Computing

HybridCMOS-NVMcircuitshavebeenproposedto
achievedenseintegrationofCMOSneuronsandemerging
memoryforneuromorphiccomputingICs116–121. How-
ever,RRAMsynapsesincurseverallimitationswhichare
summarizedasfollows23:

1.Variability: IndividualRRAMcharacteristicsin-
cludingtheswitchingthresholdvoltagesandin-
termediateresistancesvaryfromcell-to-celland
cycle-to-cycledependingupontheresistancestate
andthecompliancecurrent53,66,82,95,112.Impactof
variabilityonSTDPupdateswasexperimentally
studiedonacrossbararray122. Thecell-to-cell
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variationofswitchingthresholdsisamajorchal-
lengethatneedstobeaddressedbycarefulpro-
gram/erasepulsewaveformdesign122.Inan1T1R
cell,transistorvariationsalsocontributetovari-
ationsintheoverallsynapse. TheRRAMresis-
tancealsoexhibitstemperature-dependentswitch-
ingwithadecreaseinRHRS duetotheincreasein
leakagecurrentwithtemperature107,123.

2.Low-resistance:TypicalRRAMsexhibit1-10kΩ
LRSresistance. Alargesynapsefan-outin-
curssignificantstaticpowerconsumptioninthe
CMOSdrivercircuits. A1T1Rsynapsecan
mitigatethisbyemployingasource-degenerated
transconductor124orcascodetopology124,125.

3.Resolution,RetentionandStateDrift: Even
thoughRRAMcanrealizemulti-levelcell(MLC)
storage66,theresistance-driftovertimepresents
challengesintheiruseasstableanalogsynapses
overalongduration.Furthermore,theresistance
drifthasstrongdependenceonthechiptempera-
turewhichcanmakeitdifficulttoestimatedegra-
dationofthesynapticstatesbeyondacceptable
performancelimits.

4.Endurance: Continualon-chiptrainingisre-
strictedbythemaximumnumberofwritecycles
allowedbeforethedeviceswearout. Also, MLC
deviceswithshorterretentiontimewillleadtoneu-
ralnetworkclassificationperformancedegradation
ifstatesarenotperiodicallyrestored.

IV. NEUROMORPHICINTEGRATEDCIRCUITS

AsseenearlierinFig.1,RRAMbasedneuralnetworks
arebuiltaround1Ror1T1Rcrosspointarraysdrivenby
pre-neurons. Thepost-neuronssumtheweightedcur-
rentsandproducespikepatterns. Theneuronsarelo-
catedontheperipherywherepre-neuronsdrivetherows
(orthewordlines)andpost-neuronsonthecolumns(or
thebitlines)accumulateweightedsynapticcurrentsand
generateoutputspikes.

A. CMOS-RRAMSynapses

An1Rsynapseissimplyacrosspointsynapsewithout
aselecttransistorwhichisprogrammedtoaresistance
stateofRM

126,127. TheLIFneuronprovidesavirtual
groundwheretheinputspikevoltagesareweightedby
theconductance,GM =

1
RM
,ofthesynapseandthenin-

tegratedontheneuron.Ontheotherhand,atranscon-
ductorsynapseisrealizedwithan1T1Rarraywhere
theselecttransistorisbiasedappropriatelytosetthe
synapsetransconductance124,128. Fig.7showsa1T1R
synapsecircuitwhichemploysthetransistorasasource-
degeneratedtransconductor(Gsyn)andconvertsthepre-
synapticspikestosynapticcurrents(ispk).Here,thepre-
neuronoutputdrivestheinputcapacitanceofthetran-

sistor(≈5-10fFin65nmCMOS).Thebottom(inert)
electrodeisconnectedtoVpostterminal,whichstaysat
groundduringintegrationandswitchestoVrst

1T1R
Synapse

Pre-Neuron
Spikes 
in

0 t

VDD

Post-Neuron

Spike 
out

0 t

VDD

Vin

Vpre

Vpost

Vrst t
VProg

VErase

whenthe
post-neuronfires.

FIG.7.Atransconductance-type1T1Rsynapsewithin-situ
weightupdatesasdescribedinRef.124.

ThesynapticcurrentinFig.7isexpressedas

ispk(t)≈Gsyn·vpre(t) (5)

wherethetransconductanceoftheoverallsynapseis
givenby

Gsyn=
gmGM
gm+GM

≈gm||GM (6)

Here,thetransistorisbiasedinsaturationwithsmall-
signaltransconductance,gm,andoutputresistance,ro.
Therelationshipbetweenispkandvpreforthe1T1R
synapseisnonlinear. ThisnonlinearityshowninFig.
8anddependsupontheRRAMstateandalsovary
withprocessandtemperature. Theresultingsynapse
transconductance,Gsyn,isalsonotconstantanddepen-
dentuponvpre. Byemployingbinaryspikes,theI-V
nonlinearityismitigatedasastraightlinecanbefitted
acrossthetwopointsontheI-Vcharacteristicswitha
constantslope.Also,thespacingbetweenvarioussynap-
ticstatescanbemadelinearbycontrolledprogramming
ofthe MLCstates,orbyaccommodatingtheresulting
nonlinearityatthealgorithmiclevel.
Thesynapseallowsweightupdatesbasedonthecor-
relationofpre-synapticandpost-synapticspikesander-
rorfeedback(δ)asillustratedinFig. 9. Here,volt-
agewaveformengineeringisperformedtotranslatethe
timedelaybetweenthepre-andpost-spikes(∆t)into
theapplicationofprogramanderasepulseacrossthe
RRAMdevicetoincreaseordecreasetheweight,i.e.the
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FIG.8.(left)SimulatedDCisynversusvprecharacteristics
fora1T1Rsynapsewith65nmCMOSandanRRAMmodel.
TheRRAMisinitializedinthemodelintendistinctstates.
Theselecttransistorissizedwith W

L
= 600nm

60nm
withitsdrain

atVrst=0.6Vandsourceat0V.(right)Synapsetranscon-
ductance,Gsyn,asafunctionofinputvoltage.

synapsetransconductance,∆w=∆Gsyn
128. Thepre-

neurononlyobservestheinputcapacitanceofthetran-
sistorandcandrivealargesynapticfanoutusingdigital
CMOSbuffers(asopposedtodrivingseveralresistances
inparallelasinthe1Rarray).Theoutputresistanceof
thetransconductorsynapseisgivenby

Rout≈gmro·RM (7)

whichsignificantlyreducestheloadingattheinputter-
minal,Vin,ofthepost-neuroninthefiringphase. When
preandpostpulsesoverlap,theVpostnodeisloadedby

Rpost≈RM +ro (8)

Theselecttransistorshouldbesizedsuchthatduring
inference,thevoltagedroppedacrossRM shouldn’tex-
ceedthethreshold,V+thtoavoiddisturbingthesynaptic
weight. Also,duringtheweight-updatephase,alarge
fractionoftheprogram/erasevoltageshoulddropacross
RM

t
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affectLTP/LTD.Theseconstraintsneedtoworkin
concertwiththewaveformdesignseeninFigure9.Sig-
nificantpost-neuronloadingandtheassociatedenergy
consumptionisavoidedbyensuringsparseoverlapofpre
andpostspikesatthealgorithmlevel.

FIG.9. Anexampleofwaveformengineeringinthe1T1R
synapsetotranslatethetemporalcorrelationofspikesinto
synapseweightupdateasdescribedinRefs.124,128. Rectan-
gularaswellasexponentiallydecayingpulsecanbeusedto
customizetheSTDPlearningfunction,althoughonlythefor-
merisshownhere.

Thepreandpostwaveformsaredesignedsuchthat
duringLTP,apositivevoltagepulsegreaterthantheV+th
appearsacrossthedevice. Conversely,duringLTD,a
voltagepulsemorenegativethanV−thisappliedacross
thedevice.Anerrorfeedbacksignal,δ,canbeemployed
tomodifythepost-waveformbychangingitssignand
amplitudeinordertoimplementadesiredthree-factor
learningruleasinEq.3.Inadditiontowaveformen-
gineeringwithRRAMs,noveldeviceshavebeenengi-
neeredwithbio-realisticinternaldynamicstosupport
STDP-typeupdates. TheseincludeAg-in-oxide mem-
ristor(Ag/SiOxNy/Pt)withdiffusivedynamics129and
second-orderoxygenvacancydynamicsinaPt/WOx/W
device130.

B. ArrayProgrammingCircuits

TheimmediateapplicationofNVM-basedNeuSoCs
isintransferlearningforinferenceapplications. Also,
on-chiplearningrequiressuitableinitializationofsynap-
ticweights. Moreover,itmaybedesirabletoreadout
learnedweightsfromaparticularchip.Thus,RRAMar-
rayprogramandreadcircuitsbecomeanecessaryfeature
(inadditiontotheneurons).
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ForSNNswithunsignedweightsa1T1Rsynapseisem-
ployed.However,forVMMsandhigheraccuracyDNNs,
signedweightsbecomenecessary.Thesearerealizedus-
ingadifferential2T2Rtopologywheretheconductances
oftwodevicesaresubtractedintheanalogdomain131–133

Gsyn,ij=G
+
ij−G

−
ij (9)

Here,G±ijaretheconductancesofpositiveandnegative
branches.
Inordertoprogram multi-levelstatesin1T1R(or

2T2R)arrays, anIncremental Step Pulse Program
(ISPP)schemeisemployed,whichwasadaptedfromear-
lierMLCFlashmemorydesigns134.ISPPforRRAMar-
rayshasbeendemonstratedintherecentliteratureusing
asemiconductorparameteranalyzer(SPA).Intheseex-
periments,thevoltagepulseprofilesaresetaftercareful
characterizationofcell-to-cellandcycle-to-cyclevariabil-
ityofthedevices135–137.
InanISPPscheme,theprogram(orerase)voltageis

appliedtothedevice,whilesettingacompliancecurrent,
Icc,anditsstateisverifiedusingareadoperation.The
program(erase)pulsemagnitudeisgraduallyincreased
andthestateisverifiedtillatargetsynapseconductance
stateisachieved135,136. Alternatively,pulsewidthcan
alsobeprogressivelyincreased(ordecreased)tosetthe
desiredconductancestate138,however, modificationof
theprogrampulsemagnitudewasfoundtobemoreef-
fectiveintermsofdevicevariabilityandprogram/erase
time136.
On-chipISPPimplementationsinclude1Darraysof

rowDACsandcolumnADCswithaddressinglogicand
anon-chipRISCprocessortoisolateaparticular MLC
cellandthenprogramitintoadesiredstate139. Here,
theDACsdrivetheworldlineswithanaloginputs,xi,
andtheeachofthecolumnsdigitizetheweightedsums,
yj= iwijxi. Backendprocessingishandledinthe
digitaldomainusingtheprocessor.

C. CMOSNeuronCircuitDesign

Thereisasignificantbodyofworkoverthepastsev-
eraldecadesonlow-powerspikingneuronsandsynapses
usingsubthresholdCMOScircuits,whichisdocumented
in21andreferencestherein. Thesecircuitsoperatedin
therangeofkHzspikerate,similartobiology,andwere
optimizedforultralowpoweremulationofneurophys-
iologicalbehavior. However,withtheadventofNVM
synapses,arenewedfocusisonin-memoryneuromor-
phiccomputingfordeepneuralnetworks.Recently,sev-
eralspikingneuronsdesignshavebeenproposedforneu-
romorphiccomputing36,40,140,142,145,howeverthechal-
lengesassociatedwiththeircircuitintegrationwithprac-
ticalRRAMdevicesweren’tconsidered.
InthecontextofNVM-basedneuromorphiccomput-

ing,CMOSneurondesigncanvarywidelydepending
uponthedesiredfunctionality.Forinference-onlyNeu-
SoCarchitectures,theneuronneedstointegratesynaptic

currents,makedecisionswhenthemembranepotential
crossesthethreshold(i.e.fire),andgeneratepostspikes.
Ontheotherhand,forin-situlearningfunctionality,the
neuronhastogeneratethewaveformseeninFigs.7and
9anddrivetheRRAMs(Eq.7). Moreover,theneu-
ronshouldalsoallowforathree-factorlearningrulethat
incorporatesthefeedbackerror(δ).
Ultra-lowpowerneuronswith≈100nWstaticpower
consumptioncanbedesignedforinference-onlyneuro-
morphicICs146.However,neuronsdesignsthatinterface
withRRAMsneedsufficientdrivecapabilityandaddi-
tionalcircuitryforenablingin-situlearning36,119,147.
Opamp-basedneurondesignswereintroducedin118,141

anddesignedtodrivealargeRRAMfan-out. Event-
drivenLIFneuronsweredemonstratedin180nmCMOS
whichdrove1RRRAMcrosspointarrayswithinsitu
STDP-basedlearningasillustratedinFig.1023,41,148,149.
Here,theCBRAMswereintegratedusingwirebonding
withtheCMOSneuronsandaneuralcircuitwithas-
sociativelearning(i.e.aPavlov’sDogexperiment)was
demonstrated.Inordertoaccommodateawidevari-
etyofmaterialstackusedintheCBRAM,theneuron
spikevoltageandtemporalprofileparameterswerede-
signedtobedigitallyprogrammable.Thisneurondesign
hadabiascurrentof13µAintheintegrationmodeand
dynamically-biasedwith56µAinthefiringmode. The
neuron’sclass-ABoutputstagecouldsourceupto1.4mA
currenttodriveanequivalentRRAMloadof10Ωwitha
powerefficiencyof97%41,148,149.
1T1Rsynapsesnotonlysignificantlyrelaxcurrent
sourcingrequirementfortheneurons,butalsoenable
digitalCMOSdrive(i.e.withfull-swingoutputbetween
0andVDD)asseeninFig.7.Fig.11showsanevent-
drivenneuronthatisadaptedforthe1T1Rcrosspoint
arrays124. Theneuronoperatesasynchronouslyintwo
event-driven modeswithasharedopamp–integration
andfiring. Theneuronnominallyoperatesintheinte-
grationmode,wheretheopampisbiasedwithverylow
biascurrentandconfiguredasaleakyintegratorwith
thevirtualgroundattherestpotentialVrst=VDD/2,
VDD beingthesupplyvoltage. Theincomingweighted
currentspikes,ii= jwij·vpre,j(t),areintegratedon
thecapacitorCm resultinginthemembranevoltage

Vm,j(t)=Vrst+
i

Gm,ij
Cm,j

t

0

vpre,i(t)⊗h(t)·dt (10)

Here,h(t)=e
− t
τlku(t)istheimpulseresponseofthe

LIFcircuitduringintegrationmodewhereτlk=RlkCm,j
istheleaktime-constant;RlkisrealizedusingtheMOS-
FET,Mlk,biasedintriode.
Anasynchronouscomparatorisusedtocomparethe
membranepotential, Vm,j,withthethresholdvoltage,
Vthr. Whenapositivecrossingoccurs,theneuron
switchedintothefiremodewhereitsreconfiguredasa
voltagefollower/buffer. Concurrently,anoutputspike
withfulldigitallevelsiscreatedandpropagatedforward.
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TABLEII.PerformancecomparisonofrecentCMOSintegrateandfireneurons.

Design Architecture Technology SynapseType SpikeRate In-situ
Learning

Power Energy-efficiency
(/spike/synapse)

Area
(µm2)

indiveriet.al.2006? Subthreshold 0.35µm CMOS,Bistable 200Hz ✓ - 90pJ 2,573

BasuandHasler2010? Subthreshold 0.35µm FloatingGate 100Hz ✗ 1.74nW 17.4pJ 2,740
Cruz-Albrechtet.al.2012140 Capacitive 90nm CMOS,Dynamic 100Hz ✓ 40pW 400fJ 442

Wuet.al.2015141 Opamp 0.18µm 1Rarray† 0.1-1MHz ✓
23.4µW

95.4µW‡
9.3pJ 12,100

Sahoo2017142 RingVCO 65nm None 0.4-1.5MHz ✗ - - -
Larraset.al.2017143 Currentsumming 65nm Digital,Binary - ✗ 7fJ 41,820
Sourikopouloset.al.2017144 Subthreshold 65nm None 25kHz ✗ 100pW 4fJ 35

Saxena2020124 Opamp 0.18µm 1T1Rarray 0.1-1MHz ✓
16.2µW

64.8µW‡
8.1fJ
40fJ

5,625

†AnLRSresistanceofRLRS =1kΩisassumed.
‡Opampisdynamicallybiasedwithhighercurrentduringthefiring mode.

(d) Die with the fabricated CBRAMs 
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FIG.10. (a)Anopamp-basedevent-drivenintegrateand
fireneurontodrive1RCBRAMsynapsesasdescribedin
Refs.41,141,149,(b)a180nmCMOSchipwithLIFneurons,(c)
Layoutofasingleneuronwithcapacitorbanks,(d)CBRAM
devicesasdescribedinRef.93,(e)Anoutputspikegenerated
bytheneuron.

Ifon-chiplearningisenabledthenthewaveformseenin
Fig.9isgeneratedbyaswitched-capacitorcircuit.The
phasecontrolcircuitgeneratesthestrobesφintandφfire
fortheswitched-capacitorcircuits,andφ1andφ2
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for
waveformgeneration.Thewaveformparameterscanbe
digitallyconfiguredforaspecificRRAMmaterialstack
andcanbechangedonthefly.Thewaveformdrivesthe
positiveopampinputwhiletheopampisconfiguredasa
voltagefollower.Thevoltagefollowerprovidesthesuffi-

FIG.11.(a)Schematicoftheevent-drivenCMOSneuronfor
1T1RarrayarchitectureasdescribedinRef.124,(b)Neuron
intheintegrationmode,(c)Neuroninthefiringmodewhere
aweightupdatecantakeplace.

cientdrivecurrentfortheRRAMsthatareintheSTDP
windowwherepre-andpost-spikesoverlap124.Afterthe
firephaseisconcluded,theneuronentersarefractory
period,whereitisreconfiguredbackintheintegration
modeandVm,j isresettoVrst.

TheCMOSneuronfromFig.11wasdesigned180nm
CMOSprocesswithaVDD =1.8V

124.Acompactmodel
fortheRRAM150wasimplementedinVerilog-A.Theto-
talbiascurrentwas9µAandandenergy-efficiencyof
40fJ/spike/synapse. Comparedtopriorneuronsthat
weredesignedtodrive1Rsynapses141,this1T1Rdesign
onlydrivesathesmallinputcapacitanceoftheaccess
transistorduringinference,andresistiveloadonlydur-
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FIG.12. Plotsgeneratedfromatransientsimulationofthe
180nmCMOSneuronfordriving1T1RsynapsesseeninFig-
ure11.Theasynchronousinputspikesareintegratedintothe
membranepotential,Vm. WhenVm crossesVthr,theneuron
firesandafull-swingoutputspikeisgenerated.Also,aspike
waveform,Vspk,isgeneratedandappliedacrossthe1T1R
synapse,andthustheRRAMdevice,bytheopampwhichis
configuredasavoltagefollower.Inthiscase,theconductance
ofthesynapseisincreasedasthepositiveportionofthespike
waveformoverlapswiththepre-spikepulse.

ingthetraining/learningphases.

Aperformancecomparisonofrecentintegrateandfire
neuronsfromtheliteratureisprovidedinTableII. As
evidencedbythiscomparison,veryfewarchitectures
haveaddressedthecircuitinterfacingchallengeswith
theRRAMdevices.Thereissignificantroomforreduc-
tioninneuronenergyconsumptionbyemployingscaled
CMOSnodes,andtechniquesincludingadaptivebias-
ing(withstaticbiascurrentsinthenAs),relaxingthe
transitiontimesontheprogram/erasepulsesandpower
gating. However,thedesignswillcontinuetoco-evolve
withspike-basedlearningalgorithms.

V. NEUROMORPHICDEEPLEARNINGALGORITHMS

RealizationofDNNsinalow-powerhardwarehasbeen
ofgreatinterestinapplicationswhereneuralnetwork
processingneedstooccurclosetothesensorswithreal-
timeinferenceandwithminimalrelianceontheCloudin-
frastructure.Thisisdrivenbytwodivergentparadigms.
Thefirstviewisdrivenbytheneedtodemonstrate
competitiveperformanceonreal-worldapplicationscom-
paredtoBackprop-basedstandardDNNs. Thesecond
viewisofexploringtheunderlying mechanismbehind
distributedandcontinuallearninginbiologicalbrains,
whichcanlearnfromsmallamountofdatainanunsu-
pervisedorsemi-supervisedmanner.Abriefoverviewof
evolvingneuromorphiclearningalgorithmsispresented
inthissectionandtheirperformanceiscomparedinTa-
bleIII.

A. TransferLearning

AstraightforwardapproachistofirsttrainaDNN
comprisedofdifferentiablenon-spikingneuronsusing
Backprop,regularizationmethodssuchasDropout,and
optimizationtechniquesincludingbatchnormalization3.
ThentheDNNisconvertedtoitsequivalentSNNby
employingratebasedcoding,scalingtheweightsbased
onthespikingactivity,andadjustingthethresholdsto
minimizeabsenceofspikesorneuronsaturationdue
toover-spiking156,171. Thereisaperceptibleperfor-
mancedropinclassificationaccuracyintheDNNto
SNNconversion156–158,171. Transferlearninghasalso
beenusedtoinitializeadeepSNNwhichisthenfur-
thertrainedusingBackprop172. Tofacilitatetransfer
learning,aneuromorphicICshouldhaveamechanism
todownloadapre-trainedmodelandprogramtheon-
chipsynapsestothedesiredweights.Furthermore,these
weightsdecayovertimeduetoresistancedriftandadrift
compensationschemeisneededtomaintainmodelaccu-
racyoverlongertimescales173. Transferlearninghas
achievedhighestaccuracyof99.44%158forthe MNIST
handwrittendigitsdatasetcomparedtothebestin-class
DNNaccuracyof99.79%151.ForCIFAR-10dataset,this
gapiswithin2%oftheAlexnetDNN.

B. Semi-supervisedLearning

Spike-basedunsupervisedorsemi-supervisedlearning
algorithmsarebasedontheneural-inspired WTAmotifs
ofLIFneuronswithinhibitionandcompetition. Their
abilitytolearnspatiotemporalpatternsusingSTDPwas
firststudiedusingsoftwaresimulations174andwasthen
appliedtovisiontasks31,175. Subsequently,analytical
modelingshowedthatWTAneuronswithSTDPlearning
realizeaspikingversionoftheExpectationMaximization
algorithm34. Thistwolayermotiflearnsfromasmall
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TABLEIII. ComparisonofdeepSNNAlgorithmsandtheirbenchmarkingagainstthehighestperformingnon-spikingDNNs.

Reference Algorithm/NeuronType Network Dataset Accuracy
StandardDeepNeuralNetworks

Simardet.al.2003151 BackpropwithReLU 784-20c5-2s-100-10o MNIST 99.6%
Wanet.al.2013152 BackpropwithReLUandDropConnect - MNIST 99.79%
Krizhevskyet.al.2012153 Alexnet: BackpropwithReLU 5-layerConvNet CIFAR-10 88.91%

Heet.al.2016154 ResNet: BackpropwithReLU ResNet-1001 CIFAR-10 95.08%

VGGNet2017155 BackpropwithReLU 16-layerConvNet ImageNet 93.2%
SNNswithTransferLearning

Diehlet.al.2015156
FullyconnectedwithRate-basedIFN
ConvNetwithRate-basedIFN

784-1200-1200-10o
784-12c5-2s-64c5-2s-10o

MNIST
98.68%
99.14%

Hunsbergeret.al.2016157 ConvNetwithRate-basedLIFN
784-16c5-2s-64c5-2s-10o

Alexnet
-

MNIST
CIFAR-10
ImageNet

99.1%
82.95%
76.2%

Rueckauer2017158 ConvNetwithRate-basedLIFN

LeNet
Alexnet
VGG-16

Inception-V3

MNIST
CIFAR-10
ImageNet
ImageNet

99.44%
88.82%
84.86%
92.04%

Senguptaet.al.2019159 ResNetwithRate-basedLIFN
ResNet-20
ResNet-34

CIFAR-10
ImageNet

87.46%
86.43%

UnsupervisedLearningSNNs

Diehl&Cook2015160 STDP-WTA,LIFNwithinhibition 784-1600-10o MNIST 95%
Kheradpishehet.al.2016161 STDP-WTA,IFNwithlatencycoding 784-30c5-2s-100c5-2s-10o MNIST 98.4%

Vailaet.al.2019162 BinarizedSTDP-WTA,Surrogategradients 784c5-2s-30c5-s7-500-70-10o
MNIST
EMNIST

98.49%
85.3%

Spike-basedBackpropagation

Neftciet.al.2016163 Event-drivenRBPwithRate-basedIFN 784-500-10o MNIST 97.04%
Leeet.al.2016164 BackpropwithRate-basedIFN 784-800-10o MNIST 99.31%
O’Connoret.al.2017165 BackpropwithDeltacoding 784-200-200-10o MNIST 98.36%
Kulkarniet.al.2018166 NormADwithIFN 784-12c3-10o MNIST 98.17%
Mostafa2018167 BackpropwithTemporalcoding 784-400-400-10o MNIST 97.55%
Shresthaet.al.2018168 SLAYERwithRate-basedIFN 784-12c5-2s-64c5-2s-10o MNIST 99.36%

Mostafaet.al.2018169 DNNwithSyntheticgradients,ReLU†
784-1000-1000-1000-10o

ConvNet3
MNIST
CIFAR-10

98.7%
89.1%

†Thisworkusesnon-spikingReLUsbutcanbeadaptedtoSNNsusingrate-basedortemporal-coding170.
NetworkforCIFAR-10is32x32x3-96c5-s3-128-c5-s3-256c5-s3-2048-2048-10o.
Top-5accuracyonImageNetdataset.

numberofsamplesandtheSNNweightsconvergetothe
logprobabilityofthepatternsinthetrainingdataset34.

Theabovementionedtwo-layerSNN,withoutahid-
denlayer,wasappliedtotheMNISThandwrittendigits
recognitiontask41,160. Usingcompetitivelearning,each
neuronlearnedtofireondistinctinputs.Theoutputla-
belsareeitherassignedafterthelearningiscompleted160

oronlytheintendedoutputneuronsareallowedtofire41.
Thissemi-supervisedSNNachievedaclassificationaccu-
racyof94%forfourdigitsand83%onallthetendigits
(with10outputneurons)witharound1000trainingsam-
plesforeachimagelabel41.Higherclassificationaccuracy
wasdemonstratedbyusingalargenumberofcompeting
neurons(≈5000)leadingtoa maximumclassification
accuracyof95%160.

The WTAmotifscanbeorganizedinaConvNetar-
chitectureasshowninFig. 13whereonlyoneneu-
ronperkernelisallowedtofireacrossallthefeature
maps161,177. StackingofthesespikingConvNet mo-
tifstoimproveclassificationperformancewasexplored
next161,162,177,178. WhiletheConvNetlayerslearninan
unsupervised manner,afully-connectedread-outlayer
whichistrainedusingBackpropisemployedasseenin
Fig.13.Itwasfoundthatgreedystackingofmorethan
twounsupervisedlearningConvNetlayersdidn’timprove
theclassificationaccuracy.Inessence,each WTAwith
STDPlayercanbethoughtofasifitsperformingun-
supervisedclusteringovertheinputfeaturespace.This

learningoccurswithveryfewsamples. However,inthe
absenceofa mechanismtoassigncreditacrosslayers
basedontheoutputclassificationerror,theresultingac-
curacydoesn’timprovebyincreasingtheSNNdepth.
Thesedeepsemi-supervisedSNNshavedemonstrateda
maximumaccuracyof98.5%forthe MNISThandwrit-
tendigitdataset161,162,177–179,andhavebeenshownto
besuitableforincrementallearningoftasks180.

C. Backpropagation-basedLearning

Inspiteofthedesirablefeaturesofthesemi-supervised
learningSNNs,thereisaclassificationaccuracygap
betweensemi-supervisedSNNsand Backprop-trained
DNNs. Asaresult,therehasbeensustainedinterest
inadaptingBackproptoSNNs163.Backprop,alongwith
theConvNetlayers,istheworkhorsefordeeplearning
andminimizestheoutputclassificationerrorbypropa-
gatingerrorgradientsbackwardfromtheoutputlayer,
L,tothelowernetworklayers,1≤l<L.Thisisanalyt-
icallydescribedbythefourBackpropequationsbelow3
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FIG.13. ASpike-basedConvNetfor MNISThandwritten
digitsdataset:27×27×2-30c5-2s-500c7-7s-10oasdescribedin
Ref.176. EdgedetectionisperformedusingOn-centerand
Off-centerDifferenceofGaussian(DoG)kernelstoresultin
a27x27x2image.

δL=∇aC σ(zL) (11a)

δl=((Wl+1)Tδl+1) σ(zl) (11b)

∂C

∂wljk
=al−1k δ

l
j (11c)

∂C

∂θlj
=δlj (11d)

Here,Cisaformulationoftheoutputloss,orcost,
functionandgivenby3

C=
1

2N
x

y(x)−aL(x)2 (12)

whereNisthebatchsize,andxandyrepresentasample
andthecorrespondinglabelinthedatasetrespectively.
Furthermore,aljrepresentstheactivationforthei

thneu-

roninthelthlayer(1≤l≤L),σ(·)istheequivalentacti-
vationfunction,δljisthebackpropagatederrorforneuron

jinlayerl,andθlj≡Vrstisthespikethresholdforthe

neuron.Also,zlj= jw
l
jkν

l−1
k isanalogoustotheneu-

ronmembranepotential,Vm,j.SNNscaneitherbefor-
mulatedusingrate-basedorspikelatencycoding167,181.

Foreverytrainingbatch,eachofthenetworkweights

areupdatedusingthegradientsas163

w
(t+1)
k =w

(t)
k −η

∂C

∂wk
(13a)

θ
(t+1)
j =θ

(t)
j −η

∂C

∂θj
(13b)

whereηisthelearningrate.Sincetheactivationofspik-
ingneuronsisdiscontinuous,directcomputationofgra-
dientsisnotfeasible.Asaresult,equivalentlinearizedor
stochasticdifferentiableneuronmodelshavebeenderived
toobtainacontinuousactivationfunction,σ(),witha
welldefinedderivative,σ()163,168.

1. ChallengeswithSpike-basedBackprop

SinceBackprophasevolvedusingvonNeumannar-
chitectures,itassumesthatthenetwork-wideweights,
neuronactivations,andtheirderivativesarealwaysac-
cessiblefromahigh-densitymemory.Thismemoryhasa
latencyandenergycostassociatedwithdataaccesswhich
percolatesthroughthevonNeumannbottlenecks163,170.
Neuromorphiccomputers,ontheotherhand,aimtomin-
imizethisbackandforthshuttlingofdatabyperform-
inglocalizedcomputinginsidethememoryitself;how-
ever,thenatureofdataflowassociatedwithBackprop
presentsthefollowingarchitecturalchallenges23,163:

1.WeightTransportProblem:Inordertocom-
putetheweightupdatesatlayerlusingEq.11b,
thetransposeoftheweightmatrixforlayer(l+
1),(Wl+1)T, mustbeavailablewhileevaluating
weightsconnectinglayers(l−1)andl,whichposes
challengesforhardwaredesign.

2.Non-concurrence: Dataflow mustalternate
betweenforwardand backward passes during
eachminibatchwhichlimitslearningonreal-time
streamingdata.

3.Differentiabilityand Precision: Derivatives
needtobecomputedwithhigh-precisionorapprox-
imatedtosimplerfunctions.

4.TemporalCreditAssignmentProblem:Dur-
ingtrainingofaDNNasshowninFig.13,thenet-
worklayersundergoaforwardpassandthenwait
forthegradientstobepropagatedinthereverse
direction.Thisposesatemporalcreditassignment
problemwherefutureerrorsareneededtoupdate
weightsbasedoncurrentspikecorrelations.Conse-
quently,thelowerlayersinthenetworkarefrozen
tilltheweightupdateinthebackwardpasstakes
place182.

2. RecentAdvancesinSpike-basedBackprop

Severaltechniqueshaveappearedinspike-basedBack-
propadaptationswheretheconstraintsofstandardBack-
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proparerelaxedtosimplifyneuromorphichardwarede-
sign. RandomBackprop(RBP)orfeedbackalignment
(FA)algorithmeliminatesthesymmetryconstraint183.
Here,insteadof(Wl+1)T intheweightupdatecompu-
tationinEq.11c,afixedrandommatrix,Bl+1 isused.
ThisreplacesEq.11cby183

δlFA=(B
l+1δl+1) σ(zl) (14)

Switchingtothefixed matrixsimplifiesthesymme-
tryconstraintinthearchitecturewithoutincurringsig-
nificantdecreaseinclassificationaccuracy183. Random
Backpropwasadaptedtoevent-drivenneuronsinan
earlydemonstrationofdeeplearninginSNNs163.
IntheBackpropEqs.11ato11dseenearlier,acon-

tinuous,andthusdifferentiable, modelfortheneuron
activationfunction,σ(·),wasassumed.Recentresultsin
deepSNNshavedevelopedcontinuousmodelsfortheLIF
neuronsbyconsideringsignalnoisetosoftenthehard
decisionthresholds.Inoneofthesedifferentialneuron
models,thederivativeofspikingactivationwasapproxi-
matedas:

σ(zlj)=αe
−β|zlj−θ| (15)

where,αandβaremodelconstants,andθistheneuron
threshold168.
BycombiningRBPwithevent-drivenspikesandap-

proximaterate-basedgradients163,anaccuracyof97.4%
forthe MNISTdatasetwasobtainedwithathree-layer
fully-connectednetwork.Inanotherrate-codingSNN,
the WTAstructurewaspreservedintheweightupdate
rulesandresultedinanMNISTaccuracyof98.71%164.
Inlatencyortime-codedSNNs,SpikeProp181wasan
earlyworkwherethepostneuronspiketimeswerelin-
earizedtocomputegradients. Anotherlearningrule
callednormalizedapproximategradientdescent(Nor-
mAD)wasproposedfortemporally-codedSNNs,where
anapproximategradientwasdefinedbylinearizingthe
membranepotentialasafunctionofinputspikes166,184.
Inamorerecentwork,theexplicitspikedelayswereem-
ployedtocomputegradientswithoutanylinearization167.
ThisworkresultedinareducedMNISTclassificationac-
curacyat97.55%.
ArecentSNNtrainingalgorithm,calledSLAYER,

adaptedspike-basedBackpropwherelearningoccursin
boththeweightsaswellastheaxonaldelaysusingthe
stochasticexponentialneuronmodelseeninEq.15168.
Inthiswork,atemporalcreditassignmentschemeis
employedwheretheerrorisbackpropagatedthrough
time. ThealgorithmwasimplementedinaGPUand
achievedthehighestSNNclassificationaccuracyfor
MNISTdatasetat99.44%168.Therequirementofpropa-
gatingerrorbackintimewassolvedbytheSuperSpike185

algorithm. SuperSpikeemploysathree-factorlearning
rulewithsynapticeligibilitytracestosolvethetemporal
creditassignmentproblem170.
FromthecomparisoninTableIII,itcanbeseenthat

transferlearningachievesthehighestaccuracyforSNNs

whichcomesveryclosetotheclassificationperformance
fortheAlexNet-sizeDNNs. Steadyprogresshasbeen
madeinadaptingBackproptoSNNswiththerecently
reportedalgorithmsdemonstratingcompetitiveperfor-
manceontheMNISTandCIFAR-10datasetswhilere-
laxingthehardwarebottlenecksassociatedwiththestan-
dardBackprop.

VI. NVM-BASEDNEUROMORPHICICS

EarlyanalogneuromorphicICscomprisedoflow-
powersubthresholdanalogneuronandsynapsecircuits
andwereprimarilyintendedforemulatingionchannelki-
neticsinbiologicalneuralcircuits21,46. Mixed-signalICs
employedSRAMwithDACstorealizesynapsesalong
withanalogLIFneurons49,191. Thesewerescaledto
wafer-levelSNNimplementationsanddemonstratedsev-
eralneurobiologicalaswellasneuromorphiccomputing
tasks192,193.

Progressindigitalneuromorphichardwareplatforms
hasledtotherealizationasynchronousevent-driven(as
opposedtoclockdriven)computingICsthatcommuni-
cateinformationonandacrossthechipsusingdigital
spikes. Themostpertinentexamplesofdigitalneuro-
morphicchipsareIBM’sTrueNorthchip44,therecent
LoihichipfromIntel45,andthetwoversionsofSpiN-
NakersystemsfromtheEuropeanBrainProject194–196.

TableIVpresents NVM-based NeuromorphicICs
intheliteraturealongwiththeirperformancebench-
marking. Developmentofin-memorycomputingneu-
romorphicICsinitiallyfocusedonsmall-scale NVM
devicearraysforcharacterizationofdeviceswitching,
multi-leveloranalogstates,variability,retentionand
endurance41,117,137,197–199.Inseveraloftheseworks,de-
viceresultswereextrapolatedtoDNNsorSNNswhich
wereentirelysimulatedinsoftware.

A. NORFlashArchitectures

Flash-basedneuromorphicarchitectureshavebeen
studiedforthepastseveralyears18.However,therecent
interestinNVM-basedVMMsledtotheirfirsthardware
demonstrationusingestablishedNORFlasharraysinte-
gratedinastandardCMOStechnology,alongwiththe
arrayprogrammingandreadcircuitry187.Inthiswork,
athree-layeranalogneuralnetworkwasdemonstrated
using180nmNORFlasharray187. Thechipwaspro-
grammedusingatransferlearningapproachwith6-bit
analogprecisionanddemonstratedanMNISTaccuracy
of94.7%. Animportantobservationwasthatthecell
conductancesdecayedbyaround13%overthe7months
storageperiod,however,theclassificationaccuracyhad
minimaldegradationanditremainedabove94%.
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TABLEIV. ComparisonofNVM-basedNeuromorphicICsforDeepLearning.

Design Technology Architecture
Synapse
Resolution

On-chip
learning

NetworkSize
Dataset,
Classf. Acc.

Energy-efficiency

Yu2016186
130nmCMOS

+TaOx/HfO2OxRAM
BinaryVMM 1-bit ✗ 400-200-10o MNIST,96.5% -

Guo2017187 180nmNORFlash AnalogVMM 6-bitAnalog ✗ 784-256c5-10o
MNIST,94.7%

CIFAR-10,84.8%†
20nJ/inference

Li2018188
2µmCMOS

+Ta/HfOx OxRAM
Rarray Analog ✓ 64-10o 8x8UCI,91.7% -

Wang2018189 Ta/HfOx OxRAM 1T1Rarray Analog ✓ 8-8o Custompatterns -
Cai201969&
Correll2019139

180nmCMOS
+ WOxRRAM

1Rarray,
Mixed-signal

Analog ✓ 54x108array 5x5images 8.5GOPS/W

CEA-Leti2019115
130nmCMOS

+Ti/HfOx OxRAM
1T1R,SNN 1-bit ✗ 784-10o MNIST,84% 180pJ/SynOp

Xue2019190
55nmCMOS
+RRAM

VMM,1T1R 3-bitDigital ✗ 1Mb Macro CIFAR-10,85.52%‡ 53.17TOPS/W

Hirtzlin2020131
130nmCMOS

+Ti/HfOx OxRAM
2T2R 1-bit ✗ Off-chip

MNIST,98.3%†

CIFAR-10,87.5%†

ImageNet,69.7%†
20-30pJ/SynOp

Nandakumar2020173
90nmCMOS
+GSTPCRAM

2T1R,LIFN 7-bitAnalog ✓ 784-10o MNIST,70% -

Liu2020133
130nmCMOS
+RRAM

VMM,2T2R
1to8-bit
Digital

✗ 784-100-10o MNIST,94.4% 78.4TOPS/W

Wan2020146 130nmCMOS
+TaOx RRAM

IFN,1T1R 1-bit ✗ 225-60 MNISTRBM 74TOPS/W

Xue2020114
22nmCMOS
+RRAM

VMM,1T1R 4-bitDigital ✗ 1Mb Macro
CIFAR-10,90.19%‡

CIFAR-100,64.15%‡
121.38TOPS/W

†Simulatedresult.
‡Resultisusingoff-chipcomputation.

B. CMOS-RRAMArchitectures

Initialdemonstrationsfocusedonverysimplepattern
learningtasksusingsmall-scaleRRAMmemoryarrays.
Forexample,synapseswereinterfacedwithdiscreteelec-
troniccircuitstodemonstrateasmall-scalenetwork200.
Inanearlyworkonevent-drivenRRAM-compatibleneu-
rondesign,a3-neuronassociativeSNNwasexperimen-
tallydemonstrated148,andthenadaptedto8×8UCI
handwrittendigitdataset41.
These werefollowedbyin-silicondemonstrationof

shallowtwo-layerneuralnetworks.Forexample,online
learningofbinarizedneuralnetworkswasdemonstrated
usingTaOx/HfO2RRAMsin130nmCMOSandresulted
inanMNISTaccuracyof96.5%186.Inanotherwork,in-
situlearninginatwo-layernetworkwasdemonstrated
usingTa/HfOx memristorarrayintegratedwith2µm
CMOS188. However,inthiswork,theneuronactiva-
tionsweresimulatedinsoftware188.Furthermore,8×8
Ta/HfOx/Pd1T1Rarraysweredemonstratedtolearn
basicpatternsunderunsupervisedtraining189.
WiththerecentintegrationofRRAMswithCMOS

transistorsinafoundryprocess, neuromorphicICs
with mediumtolarge-scaleintegration ofcircuits
with RRAMs have begunto appear. A major-
ityofthese workstargetinference-onlyapplications
byleveragingthe high density of RRAM arrays
withanalog-domain multiplyandaccumulate(MAC)
operations114,115,131,133,146,186,190.Amongtheinference-
onlydemonstrationchips,eitherbinarizedweightswere
employed,orparallelRRAMcellswereusedtoemulate
amultibitsynapse.Inthelattercase,unit-weightedbi-
nary1T1Rcellswereusedasacurrent-DACtorealize
multi-bitsynapses114,131,133,146,190.

Asanexampleoflarge-scaleintegrationofOxRAMs
with130nmCMOS,a2KbdifferentialbinaryRRAM
(2T2R)arraywithintegratedcolumnsense-ampswas
fabricated, andon-chipinference wasexhibitedfor
MNIST,CIFARandImageNetdatasetswithcompetitive
classificationperformance131.Inanotherrecentwork133

usingasimilartechnology,binarized2T2Rsynapseswere
usedforsignedweightsinordertodemonstrateamulti-
bitVMM.Again,inthiswork multi-bitweightswere
realizedbycombiningseveral2T2Rcellsinparallel.The
weightedcurrentswereintegratedanddigitizedusing
asuccessiveapproximationregister(SAR)ADC.This
chip-scaledemonstrationfully-integrateda784-100-10
networkwithanFPGA-basedback-end,anddemon-
strated94.4% MNISTaccuracy133. Overall,afull-chip
integrationthatdemonstratestruemultilevel-cell1T1R
synapsesforon-chipinferenceisyettobeseen(other
thantheattemptsintheworks69,139).

Sofar,onlyafewdesignshaveattemptedfully-
integratedon-chiplearningwherethechallengesassoci-
atedwithanalogsynapsesneedtobeaddressed69,139.
ThisCMOS-RRAMICprototypeincorporates54×108
WOx RRAMcrossbararrayintegrated with180nm
CMOS69,139.Thechipalsoincludesarraysof6-bitDAC
and13-bitcolumnADCsandaRISCprocessorfordigital
backend.TherowDACproducesvoltagepulsesoffixed
widthproportionaltotheinputvalue.TheseDACpulses
areweightedbytheRRAM-basedVMMandtheninte-
gratedincharge-domainontheintegrating-typecolumn
ADCs,thusrealizingamixed-signalVMMwithdigital
inputandoutputvectors.
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VII. DISCUSSIONANDCONCLUSION

FromthediscussioninSectionVI,itisevidentthat
fullyCMOS-baseddigitaland mixed-signalneuromor-
phicICsfeatureveryhigh-levelofsystemintegration
andfunctionality. Thisisduetothe maturityofde-
sign,modelingandverificationinfrastructureforCMOS
technology. However,CMOSrealizationseitherexhibit
lowerneurosynapticdensity,employbinarizedvolatile
synapses,andcanbelimitedbyavonNeumannbot-
tleneck.

WhiledigitalneuromorphicICshavemadesignificant
progressinlow-powerrealizationsofdeepneuralnet-
works,NVMshavearoletoplayinanotherorderof
magnitudeimprovementinneurosynapticdensityand
energy-efficiency. AmongtheNVMs,NORFlash-based
architectureshavedemonstratedmulti-layerneuralnet-
worksforinference,allduetothematurityoffloating-
gatedevices,provenmultilevelcellcapability,andtheir
longerretentiontimes.

AsseeninTableIV,RRAMandPCRAM-basedneu-
romorphicinferenceICshaveshownsteadyprogress,
whileon-chiptrainingarchitecturesarestillintheirin-
fancy. HybridCMOS-RRAMinferenceSoCsusingbi-
narizedRRAMshavedemonstratedhigherneurosynap-
ticdensity,competitiveon-chipclassificationaccuracies,
andhigherenergy-efficiencyapproaching100TOPS/W.
RRAMsalsopromisein-situtrainingcapabilitydueto
theirsignificantlyhigherreportedenduranceapproach-
ing109writecycles. However,severaldevice-levelchal-
lengessuchasthecontrollabilityofmultilevelstatesand
statedriftneedtobeaddressed. Resistancestatedrift
inRRAMsynapsesdegradestheclassificationperfor-
manceoftheneuralnetworkmodels,thatrelyonmulti-
bitsynapses,onlyinafewhoursandthusrestorationof
thestateswillhavetobeaddressedatthecircuitaswell
asalgorithmiclevel.

Asfarasalgorithmsareconcerned,adirectadapta-
tionofBackproptoSNNsmaynotbetheactualalgo-
rithmresponsibleforcognitive‘computation’occurring
inthebiologicalbrains.Nevertheless,itprovidesanin-
termittentsolutiontoembeddedAIapplicationsdesired
bythecomputingcommunity.Needlesstosay,develop-
mentoflearningalgorithmsforSNNisapromisingarea
ofresearchandtogetherwithdevelopmentsinthefieldof
computationalneuroscience,itmayleadtobetterunder-
standingofbraincomputation.However,goingforward
withthedevelopmentoflarge-scaleneuromorphiccom-
putingarchitectures,thesealgorithmswillsynergistically
evolvebyaccommodatingtherealisticbehaviorofsynap-
ticdevicesandbyalleviatingthehardwarebottlenecks
thatarisewhendeeplearningalgorithmsaremappedto
in-memorycomputinghardware.
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