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Abstract—Silicon-based electronic-photonic integration offers
several opportunities for integrated circuits (IC) designers to
innovate systems architectures that leverage the advantages of
optical-domain signal processing and low-loss transmission in
optical fibers. However, photonic integrated circuit (PIC) design
tools have evolved from the numerical Maxwell field solvers and
are completely disjointed from the electronic circuit simulation
tools such as SPICE and Cadence Spectre. Thus there is a gap
that needs to be filled by the IC community where they can
instantiate photonic building blocks to form PICs and perform
co-simulation with interfacing (Bi)CMOS electronic circuits. In
recent work, Verilog-A compact models have been developed for
photonic device building blocks that enable transient simulations
of hybrid electronic-photonic components such as lasers, modula-
tors and detectors. However, frequency sweeps of radio-frequency
(RF) photonic filters remain unwieldy due to the long simulation
times of stepped frequency transient simulations. In this work,
we present complex frequency chirp based methods for rapid
frequency-domain simulation of PICs. The trade-offs involved
in selecting the simulation parameters for a given frequency
response accuracy and simulation time are studied along with the
impact of windowing and frequency chirp profile. The presented
method can result in over 1000× improvement in simulation time
of frequency sweeps of higher-order RF photonic filter topologies.

Index Terms—Optical filters, Photonic integrated circuits
(PICs), RF Photonics, Silicon Photonics (SiP), Verilog-A.

I. INTRODUCTION

S ILICON-based electronic-photonic integration is a
promising platform for pursuing advances in integrated

circuits (IC) in the post-Moore’s Law scaling era. As
the complementary metal oxide semiconductor (CMOS)
technology matures, IC advances are expected from the
heterogeneous integration of novel devices such as the
silicon-based photonics with standard Bi(CMOS). The large
instantaneous bandwidth of integrated photonic devices allows
enormous data transmission capacity reaching Terabits/s and
the optical interconnects realized through on-chip and on-
board waveguides and the optical fibers enable low-loss
long-distance transmission at such speeds [1]. Silicon-on-
insulator (SOI)-based photonics integrated circuits (PICs)
are increasingly being used in data center interconnects to
achieve higher data rates approaching 100Gbps/wavelength
with reduced link energy consumption, compact size, and
dramatically lower cost compared to discrete optics or III-V
PICs [2]. The increased availability of multi-project wafer
(MPW) services such as IME [3], IMEC [4], [5] and AIM
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Photonics [6] are ushering in the Moore’s Law equivalent
of photonic ICs (where the number of components on a
PIC double every two years [7]) by providing fabless PIC
fabrication with a design flow similar to the standard CMOS
electronic ICs as shown in Fig. 1). Furthermore, there is a
growing interest in RF photonic ICs where the wide tunability
and high selectivity of optical filters promise flexible RF
front-ends [8], [9] and high dynamic range radio-on-fiber
links for the next-generation wireless infrastructure [10], [11].
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Fig. 1. Cross-section showing the layers in a typical silicon photonic
fabrication process [2], [5], [12].

An ecosystem of design automation tools has recently
emerged to support the growing demand for PIC design. How-
ever, these tools have taken a route where Finite-Difference
Time-Domain (FDTD) numerical solvers for Maxwell’s equa-
tions [13], [14] and mode solvers [15], [16] filled the short
term need for device-level simulations. More recently, com-
ponent and system-level simulators such as Lumerical’s In-
terconnect [17] have emerged along with the wide selection
of process design kits (PDKs) and simulation interfaces with
electronic design automation (EDA) tools including Cadence
Virtuoso and Mentor Graphics Pyxis. A major limitation of
these simulators is that they idealize the electronics circuit
blocks and their interaction with the photonic devices. For
example, the bandwidth limitation is modeled by an ideal filter
instead of capturing the nonlinear transient response when a
modulator is driven by a transistor-level circuit. These limit
the accuracy of hybrid electronic-photonic circuits especially
at high speeds and fail to predict important artifacts. Thus, it
is imperative for analog IC designers to entirely perform pre-
silicon validation of photonic components along with circuits
in an electronic EDA environment [18], [19].

The IC community has made progress with compact mod-



eling of photonic components using portable Verilog-A code
[20], [21]. These compact photonic device models abstract
but relevant optical as well as electrical characteristics for
simulation using standard circuit simulators, such as Spectre
[22]. It is expected that the compact models allow reasonably
accurate estimation of frequency response as well as tran-
sient behavior with minimum simulation time and memory
usage. Matrix transfer based methods have been employed
with Lumerical Interconnect and Matlab to evaluate spectral
response of photonic components [23], [24]. However, these
models assume linearized steady-state device behavior and
thus fail to accurately capture transient effects such as the
photon lifetime in a ring modulator. Moreover, the specifics
of analytic modeling technique for SOI waveguides, described
later in Section II-C, necessitates time-domain (or transient)
analysis.

Current method of estimating spectral response of PICs
employ stepped-frequency transient analysis (SFTA). In this
method, the frequency is stepped in small increments, and for
each frequency data point, a transient simulation is performed
to obtain the steady-state magnitude and phase response of the
PIC [23], [25], [26]. These simulations can be excruciatingly
slow as the circuit simulator has to obtain steady-state transient
response for each of the small frequency increments. Moreover
for simulating PICs with higher frequency selectivity, the
simulation time and accuracy trade-offs become unwieldy.

In this work, we describe a comprehensive approach to
design and compact modeling of silicon PICs from the per-
spective of an electronic IC designer and present a rapid
simulation method to determine frequency response by em-
ploying complex-valued frequency chirp stimulus. This article
is organized as follows: Section II describes the photonic
component modeling framework used in this work. In section
III, we introduce a method for rapid simulation of frequency
or wavelength domain response of photonic components that
offer significant advantages over the previous methods. Trade-
off between simulation time and accuracy are investigated and
detailed to inform PIC designers. Section IV demonstrates
CMOS photonic application circuits using experimental and
simulation results, and presents the efficacy of our rapid
simulation methodology followed by conclusion.

II. PHOTONIC DESIGN FLOW AND COMPACT MODELING

A. PIC Design Flow

In our PIC design flow, a primitive component cell is created
with its Verilog-A model and layout view along with a symbol.
A design rule check (DRC) clean layout is automatically
generated using a parameterized Python script in KLayout [27]
or Luceda IPKISS [15] environment. A library of these cells
with their corresponding parametrized compact models are
created for basic PIC building blocks, such as the waveguides,
phase-shifters, couplers, splitter, combiners, lasers, etc., using
simulations and experimental data from the foundry.

Complex PIC schematics and layout are created by hierar-
chically combining these constituent devices in the schematic
and layout views. Top-level floorplan of the PIC is performed
in the EDA tool (Cadence or Mentor Graphics), followed

by optical routing with low-loss bends using custom scripts
[28]. Chip or block level DRCs are performed using Mentor’s
Calibre [29] using a foundry provided DRC rule deck. In the
current art of the EDA integration for photonics, layout versus
schematic (LVS) checks are available in Mentor Graphics
Pyxis tool [30] using symbol level connectivity. However,
automatic extraction of photonic devices from their layout,
in a way similar to transistors, capacitors or resistors, is still
unavailable. Although a fully automated design flow is still
desired, the presented design flow has been successfully used
to fabricate PICs by the authors as shown in Fig. 2.
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Fig. 2. Silicon Photonic Integrated Circuit (SiPIC) fabricated utilizing the
PIC design flow and IME foundry through the CMC/SiEPIC program.

B. Baseband Equivalent Modeling

Silicon photonics operates in the mid- and long-wave in-
frared regions with telecommunications applications being
concentrated around the 1330nm and 1550nm laser wave-
lengths. The latter wavelength translates into ωR = 2π ·
193 THz center frequency. However, since the signal is
obtained by modulating the laser and limited by the electri-
cal bandwidth of the photonic devices (typically <50GHz),
only the bandpass spectrum around ωR is of interest. Thus,
similar to carrier modulated communication systems, only the
complex baseband equivalent signal and filter response are
employed [23], [25]. Here, Ẽ(t) is the analytic field which is
in turn related to the complex baseband field Ebb(t) by

Ẽ(t) = ejωRtEbb(t) (1)

Similar notations are developed for the baseband equivalent of
the RF photonic filters:

h̃(t) = ejωRthbb(t); H̃(jω) = Hbb(j(ω − ωR)) (2)

Here, hbb(t) is the complex baseband equivalent impulse
response of the optical filter, h(t), with respect to the laser
carrier frequency. Hbb(jω) and H(jω) are their respective
Fourier transforms [31]. Note that these are the baseband
equivalent with respect to the laser frequency (ωR) and not
any RF carrier frequency. The input output relationships are
now given as [31]

Eout,bb(t) =
1

2
hbb(t) ∗ Ein,bb(t) (3)



Representing the optical signals and filters using their complex
baseband significantly relaxes the transient time steps in sim-
ulation, i.e. from 1 fs to 10 ps range, which would otherwise
be prohibitive to simulate. Also, from now onwards in this
paper, only the baseband equivalent models are used and the
subscript bb is dropped in the notations.

Since Verilog-A doesn’t natively handle complex arithmetic,
real and imaginary signals and filter coefficients are repre-
sented as an optical bus E[0 : 1]. The cartesian field is given by
E[0]+jE[1] and polar by E[0]∠(E[1]). Without loss of gener-
ality, we use electric field magnitude and phase as two Verilog-
A ‘natures’ to represent light in an optical bus. To further
simplify the modeling, we only model electric field in forward
direction so the backscattering effect is ignored. Therefore, the
directional blocks need to be carefully connected with each
other. Also, cartesian to polar interconversion, addition and
multiplication library blocks are utilized [23], [26].

C. Single-mode Waveguides

Single-mode waveguides are the fundamental building
blocks in silicon-based PICs where foundry MPWs offer a
single SOI and one or more silicon nitride routing levels
as seen in Fig. 1. A ridge waveguide (essentially an optical
equivalent of wire) is geometrically defined by its width
while its height is fixed by the wafer or process (220nm for
SOI), while a rib waveguide (used for creating pn junctions
with metal contacts) has an additional etch level [1]. Silicon
waveguides are dispersive, i.e. their effective index, ne (a
complex quantity) is wavelength (or frequency) dependent. In
the compact model first-order dispersive effects are captured
by the group index. Also, only the real part of ne varies
strongly with wavelength [32], [33] which is curve-fitted using
the foundry provided data.

We have the wave vector given as

β(λ) =
2π · n(λ)

λ
=
ω · n(ω)

c
(4)

where n , <(ne) is the real part of the effective index. The
wave vector can be expanded around the reference frequency,
ωR, as [23], [25]

β(ω) = β(ωR) +
∂β

∂ω

∣∣∣∣
ωR

∆ω + . . . = β(ωR) +
ng∆ω

c
(5)

where ng is the group index:

ng = n(ωR) +
ωR
c
· dn
dω

∣∣∣∣
ωR

= n(λR)− λR ·
dn

dλ

∣∣∣∣
λR

(6)

The imaginary component of ne represents the waveguide
loss and is approximated by a constant, i.e. the field-loss
coefficient, αA = =(ne). The optical loss in a waveguide
is typically expressed in dB/cm. The fields in the waveguide
can be shown to be related by the following equation [23]

Eout(t) = e−
(
αA+jβ(ωR)

)
L · Ein

(
t− ng · L

c

)
(7)

where L is the waveguide length, and Ein(t) and Eout(t)
are the input and output baseband equivalent electric fields.

In Eq. 7, the first product term represents initial phase at the
reference frequency and the second term is the delay due to
the group index, ng . Eqn. 7 equation is implemented using the
absdelay statement in Verilog-A as shown below:

module WG(in, out);
input [0:1] in; // in[0] + j*in[1]
output [0:1] out;
opticalField [0:1] in, out;
..................................

//Convert the loss mag and phase into cartesian
Pol2Cart converter1(loss_pol, phi_pol, loss_cart);
//Lossy output without the group delay
CartMul cartMul1(loss_cart, in, out_nD);

analog begin
// Field loss factor
OptMag(loss_pol) <+ sqrt(loss_factor);
// Initial phase
OptPhase(phi_pol) <+ (-L*neff * 2*‘PI/lambdaR)

%(2*‘PI);
// Group delay
OptE(out[0]) <+ absdelay(OptE(out_nD[0]),L*ng/‘C);
OptE(out[1]) <+ absdelay(OptE(out_nD[1]),L*ng/‘C);

end //analog
endmodule

Listing 1. Key elements of the Verilog-A Waveguide model

The absdelay operator reflects the waveguide delay in a tran-
sient simulation but is replaced by a unity multiplier if Spectre
‘ac’ simulations are performed. Consequently, transient simu-
lations are needed to determine the frequency response of the
circuit at hand.

D. Continuous-wave Laser Source

In our model, reference wavelength (or frequency) of the
continuous-wave (CW) laser is considered its “DC” operating
point and the source generates monochromatic light at a
frequency offset, ∆ω = 2π∆f . In our baseband equivalent
CW laser model, only the frequency offset is used as a sweep
parameter which in turn influences the phase of the source
electric field. Therefore, the laser electric field magnitude and
phase can be expressed by the phasor [23], [26]:

Eout = Eamp∠(φ0 + 2π

∫ t

0

∆f · dτ) (8)

Here, φ0 is the initial phase. Eamp is set using a voltage
source and Eout is evaluated by employing time integral
operator in Verilog-A. Therefore, the CW laser source in
simulations is a sinusoidally varying complex field at the offset
frequency. Note that in Eq. 7, the group index is constant and
thus the delay is also constant. However, since in the laser
model the phase output is time integral of frequency offset,
the constant delay results in different phase shifts at different
frequency offsets.

E. Passive Photonic Building Blocks

1) Grating Coupler: Light is coupled between an optical
fiber and the PIC either using a grating coupler (GC) or
an edge coupler [1]. Grating couplers allow simplified chip
testing and coupling to fiber arrays. GCs can be either single



polarization or polarization splitting type. The GC is designed
for a coupling angle from the vertical plane, say 8◦ − 22◦ ,
and characterized by its loss profile [34]

Loss = −Losspeak −
( λ− λpeak
λ−3dB/2

√
3

)2

(9)

with parameters peak loss (Losspeak), peak wavelength
(λpeak), and 3dB bandwidth (λ−3dB). The typical measured
loss in around 4-5 dB per coupling and depends upon the fiber
tilt angle and spacing.

2) Waveguide Couplers: When two waveguides are brought
in close proximity, the optical power is transferred back and
forth between the waveguides along the direction of propaga-
tion. This is analyzed using coupled-mode theory and essen-
tially realizes a directional coupler by appropriately sizing the
coupling length and the gap [1]. In our unidirectional coupler
model, the input and output are complex fields. The compact
model allows wavelength independent (i.e. point coupler) as
well as wavelength dependent coupling with associated delay
and optical loss. Here, Kp = κ2 is the power coupling
coefficient which is an input parameter to the model, where
κe−j

π
2 = −jκ is the amount of field cross-coupling and

t =
√

1− κp is the field through-coupling. For a lossless
coupler, the field coupling coefficients satisfy the condition,
κ2 + t2 = 1. With this notation, the resulting field coupling
matrix is described as:[

Eo1
Eo2

]
=

[
t −jκ
−jκ t

] [
Ei1
Ei2

]
(10)

In practice, the coupling matrix is wavelength dependent
and the coupler loss includes the loss-dependent on the coupler
length, Lc, and the bend loss. This data is either simulated
using a mode solver or provided by the foundry.

3) Splitters and Combiners: Splitters and combiners are
inverse of each other and are employed to build Mach Zehnder
interferometric structures which find applications in optical
modulators and filters. Y-branch and multi-mode interference
(MMI) based splitters and couplers are available in the foundry
PDKs. A 2×1 MMI or Y-branch splits/combines optical power
at ks = 0.5 ratio [1] . The splitter compact model implements
the following governing equation[

Eo1(t)
Eo2(t)

]
=

[ √
αsks√

αs(1− ks)

]
Ein(t− td) (11)

where αs and td are the loss and delay, respectively.

F. Active Photonic Building Blocks

Active silicon photonics is build around the plasma or free
carrier dispersion effect which at 1550 nm wavelength is
described by the Soref and Bennett’s equation [35]:

∆n(x, y) = −8.8× 10−22∆Ne(x, y)− 8.5× 10−18∆N0.8
h (x, y)

∆α(x, y) = 8.5× 10−18∆Ne(x, y) + 6× 10−18∆Nh(x, y)
(12)

Here, ∆n(x, y) is the change in the real part of the effective
index and ∆α(x, y) is the change in loss. ∆Ne(x, y) and

∆Nh(x, y) are the spatial distribution of free electrons and
holes respectively. The change in effective index, ∆n(V ),
and loss, ∆α(V ), as a function of voltage are obtained by
numerically solving the overlap integral with the waveguide
optical mode profile [36]. Optical phase shift can either
be created thermally (due to thermal carrier generation) or
electrically. The resultant phase shift for a phase shifter of
length L at wavelength λ can be described by

∆φ(V, λ) =
2πL

λ

(
∆n(V ) +

dn

dT
· (T − T0)

)
(13)

where dn
dT ≈ 1.86×10−4K−1 is the thermo-optic coefficient

for silicon and T0 = 300K [35].
1) Thermal Phase Shifters: Thermal phase shifters allow

tuning of passive optical elements with a small footprint.
Doped waveguides or tungsten resistors are employed for Joule
heating of the waveguide sections. Since ne is dependent
upon temperature, which in turn depends upon the voltage
(or current) applied across the heater, an optical phase shift
is produced [12]. Since thermal modeling is computationally
intensive, empirical curve-fitted models are used to relate the
phase shift to the electrical stimulus. The I-V characteristics
of the doped heater is given by [37], [38]

I =
V

R0
· 2√

1 +Kv · V
(14)

where R0 and Kv are fitted parameters. The optical phase
shift as a function of the applied voltage, ∆φ(V ), is imple-
mented in Verilog-A as a polynomial curve-fit.

2) High-speed Phase Modulators: High-speed phase mod-
ulators are constructed using the free carrier dispersion ef-
fect, which is realized using depletion-mode pn-junction or
accumulation-mode metal-oxide-semiconductor (MOS) capac-
itor built around the rib waveguide. Intensity modulators are
constructed from the phase modulators using either Mach
Zehnder or microring modulator configuration that trade-off
size, power and capacitance with robustness to process, voltage
and temperature (PVT) variations [1]. The depletion-mode
phase shifter is modeled using a polynomial fit of optical
phase shift ∆φ(V ), loss α(V ), and junction capacitance
Cj(V ) as function of applied voltage. Also, the finite elec-
trical bandwidth is modeled using an RC network based on
experimental data from the foundry. A detailed treatment of
compact modeling active phase shifters is provided in literature
(including authors’ prior work) [18], [19], [39], [40].

3) Detector: Since silicon is transparent to infrared, germa-
nium (Ge) waveguide photodetectors are included in the PIC
MPW platforms [5], [6]. The compact model for photocurrent
is described by

ipd = Idark +
ρ · |Ein|2

1 + sτ
(15)

where ρ is the responsitivity, Idark is the dark current, and
τ is the optical response time-constant.



III. RAPID SIMULATION OF PHOTONIC COMPONENTS

When simulating Mach Zehnder modulators, the ability to
perform transient simulations is sufficient to verify circuit
functionality by just observing the eye diagrams [18], [19].
However, design of RF photonic filters requires frequency
(or wavelength)-domain analysis. Therefore, to obtain the
frequency response of a PIC, prior work employed SFTA
simulations [23], [25]. SFTA method can be extremely slow,
especially when the typical range of frequency sweep is
50 GHz or more to capture the Free Spectral Range (FSR)
of ring resonators or filters. The frequency resolution should
also be kept sufficiently high, so that the high-Q resonances of
such components can be captured with reasonable accuracy.
This necessitates simulation techniques for rapid frequency
sweep without significant loss in accuracy.

A. Broadband Analytic Chirp Excitation

Instead of exciting the system with a frequency tone, a
broadband source such as a frequency chirp can be applied to
estimate its frequency response in a single transient simulation.
A variety of chirps have been used in engineering disciplines
to estimate frequency response of a wide range of systems
with non-linear dynamics [41]–[44]. In our context, an analytic
chirp signal is defined as

Ech(t) = Ea(t) · ejϕ(t) (16)

In a strict definition, the amplitude evolution, Ea(t), should
be much slower than the phase oscillations, ϕ(t), and is
expressed by the conditions [45]

ε1 =
∣∣∣ Ėa(t)

Ea(t)ϕ̇(t)

∣∣∣� 1; ε2 =
∣∣∣ ϕ̈(t)

ϕ̇2(t)

∣∣∣� 1 (17)

For a simple chirp laser source, Ea(t) = Eamp is a
constant field magnitude. The phase evolution depends upon
the instantaneous frequency, which is swept from a start
offset frequency, f1, to the stop frequency, f2, over the chirp
duration, T , and is expressed as [44]

ϕ(t) = 2π
(
f1 · t+

g · tm+1

m+ 1

)
(18)

where g is a normalizing constant. For m = 1, the
output is a linear chirp and non-linear for m > 1. The
frequency can also evolve exponentially (i.e. f = f1b

t) or
logarithmically (for hyperbolic chirps). For an exponential
chirp, ϕ(t) = 2πf1( b

t−1
ln(b) ), where b is the exponential increase

rate [46].
In our compact modeling environment, the laser source

model in Eq. 8 is modified to include a chirped phase. The
baseband equivalent linear chirp source is now given by

Eout = Eamp∠
(

2π

∫ t

0

(f1 + g · τ)dτ
)

(19)

where g = f2−f1
T = ∆F

T , ∆F being the chirp bandwidth.
The baseband equivalent frequency response of the circuit

or device under test (DUT) is estimated as

H[k] =
Xout[k]

Xch[k]
(20)

where Xch are the NFFT -point fast Fourier transform (FFT)
of the complex input chirp and Xout is the FFT of the complex
output of the DUT. Fig. 3 outlines the steps of estimating
frequency response of a PIC using chirp signal. In order to
satisfy the Nyquist sampling criterion for the entire chirp
signal, a sampling rate of fs ≥ 2f2 is required.

Fig. 3. Estimation of frequency response of PIC using our proposed analytic
Frequency Chirp Method (FCM).

Fig. 4 illustrates the linear chirp from f1 = 10 GHz to
f2 = 60 GHz with T = 100 ns generated using the Verilog-
A source module. The spectrogram in Fig. 4 (top) shows a
linear increase in frequency. Fig. 4 (bottom) illustrates the
normalized FFT magnitude response of the complex chirp
The chirp’s FFT response exhibits ripples near the edges of
desired frequency range (i.e. near f1 and f2). The ripples
in the complex chirp source appear in the simulated PIC
frequency response, H(k), leading to undesirable artifacts and
inaccuracies and thus must be minimized.
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B. Time-Bandwidth Product and Fresnel Ripples

In order to understand the source of ripples in the spectrum,
Fourier integral of the chirp waveform is considered. Analyt-
ical expressions for the linear chirp, essentially a broadband
frequency modulation (FM) signal, can be expressed in the
form of Fresnel integrals [46], [47]:

|Xch(f)| =
√

T

2∆F

[
(C(x1)+C(x2))2+(S(x1)+S(x2))2

] 1
2

(21)

∠Xch(f) = tan−1
( S(x1) + S(x2)

C(x1) + C(x2)

)
− 2π(f − f0)2 T

2∆F
(22)

where, S(x) =
∫ x

0
sin(πy

2

2 )dy and C(x) =
∫ x

0
cos(πy

2

2 )dy

are Fresnel integrals, and f0 = f1+f2
2 is the center frequency.

The Fresnel arguments x1 and x2 are given by

x1 =

√
T ·∆F

2
(1 + r); x2 =

√
T ·∆F

2
(1− r) (23)

where r = 2( f−f0∆F ) is the scaled frequency. The first term
in Eq. 22 approximates to a residual phase of π

4 over a
large frequency range of interest while the second term is the
quadratic phase.

From Eqs. 21 - 23, the chirp spectra is a function of the
time-bandwidth product, T · ∆F , and independent of center
frequency and bandwidth. A lower value of time-bandwidth
product results in larger Fresnel ripples in the magnitude
spectrum [46]. As illustrated in Fig. 4 (bottom), with the
increase in T · ∆F from 100 to 5000, the chirp magnitude
spectrum gets closer to the ideal rectangular response with flat
magnitude and the ripples get less pronounced in the frequency
range of interest i.e. between f1 to f2. Also, with a larger value
of the T ·∆F , phase stays closer to π

4 in the frequency range
of interest [46], [47].

C. Simulation Parameter Selection

For rapid simulation of spectral response of the DUT, the
time-bandwidth product plays a critical role. For lower ripple
in the passband, a T · ∆F ≥ 1000 can be employed which
effectively pushes the ripples to the edge of the spectrum. This
sets the chirp length, T , for a given chirp bandwidth (∆F ).
To illustrate the significance of T ·∆F , the spectral response
of a ring resonator with a circumference of 8mm is shown in
Fig. 5 for the input chirps seen in Fig. 4. Here, it is evident
that a larger T ·∆F reduces Fresnel ripples in the frequency
range of interest.

The duration of the analytic FCM transient simulation is set
by the maximum time-step (tstep) set by the Nyquist sampling
rate, i.e. tstep ≤ 1

2f2
. However in practice, a sampling

frequency of several multiples of the Nyquist rate is used
to obtain the necessary FFT resolution, fres = ∆F

NFFT
, with

NFFT = T
tstep

. Another less obvious consideration is the fact
that the chirp excitation should be slower than the temporal
dynamics of the DUT. This is particularly relevant for high-Q
optical resonators where longer photon lifetime determines the
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Fig. 5. Spectral response of a DUT (Ring Resonator) under T∆F =
100, 500, 1000 and 5000. The inset illustrates the DUT response at the edge
of the Chirp spectrum (47 to 59 GHz) for better visualization.

settling time. Thus, the chirp rate should be much less than the
circuit bandwidth, i.e. T ≥ 10

f3dB
) and can be manually fine-

tuned to improve simulation results. Due to this reason fast
single-cycle chirps, known as the Titlets [44], are not suitable
for frequency domain analysis.

Several categories of chirp profiles were introduced in Sec-
tion III-A where the frequency changes in quadratic (m = 2)
or exponential fashion. Therefore, for the same sampling rate,
the DUT will experience larger frequency steps as the chirp
frequency approaches f2. In this study, these non-linear chirps
didn’t provide any significant advantages over the linear chirps
for the same simulation parameters.

D. Windowing
Based on the discussion in Sections III-B and III-C, the

Fresnel ripples can be pushed to the edge of the desired spec-
trum by using a large time-bandwidth product. However, these
ripples, seen in Fig. 5, still distort the magnitude spectrum at
the edges. This is specially important in simulations where
the full FSR for a filter is simulated and the filter passband
is placed close to the frequency edges of the chirp excitation.
As seen in Fig. 5 , the spectral response of the drop port of
the optical ring resonator suffers from the obtrusive Fresnel
ripples near the passband edge. The impact of Fresnel ripples
can be further mitigated by employing a suitable windowing
function such as Tukey, Hann, Blackman-Harris, etc., in the
time-domain. The idea is to retain the broadband spectral
characteristics of the complex chirp while smoothening the
temporal discontinuities at the edges. However, the condition
in Eq. 17 should be satisfied where the relative change, Ėa(t)

Ea(t) ,
in the output chirp amplitude should be small during a pseudo-
period 2π

|ϕ̇(t)| , which again sets a limit on the chirp time, T .
The cosine-tapered function, better known as the Tukey

window, is given by

X[n] =

{ 1
2 [1 + cos(π( 2n

αN − 1))] 0 ≤ n < αN
2

1 αN
2 ≤ n ≤ N(1− α

2 )
1
2 [1 + cos(π( 2n

αN −
2
α + 1))] N(1− α

2 ) < n ≤ N
(24)

where, N and α are the total number of samples and
cosine factor, respectively. A representative Verilog-A code



description of the chirp laser with Tukey window is shown in
Listing 2.

module Laser_Chirp_Tukey(out, Vin);
electrical Vin;
output [0:1] out;

opticalField [0:1] out; // E = E[0] + j*E[1]

//Internal nodes
opticalMag outMag;
opticalPhase outPhase;
...............................................

analog begin
@(initial_step) begin
frate = (f2-f1)/Tsw;

end

// Amplitude
freq = f1 + frate*$abstime;

if ($abstime < Tsw*alpha/2) begin
OptMag(outMag) <+ V(Vin) * 0.5*(1+cos(‘PI*((2*
$abstime/(alpha*Tsw))-1)));

end else if (($abstime >= Tsw*alpha/2) && (
$abstime<=(Tsw-(Tsw*alpha/2)))) begin
OptMag(outMag) <+ V(Vin);

end else begin
OptMag(outMag) <+ V(Vin)*0.5*(1+cos(‘PI*((2*
$abstime/(alpha*Tsw))-(2/alpha)+1)));

end

OptPhase(outPhase) <+ idt(2*‘PI*(f1+ frate*
$abstime),0);

end //analog

Pol2Cart out_conv(outMag, outPhase, out);
endmodule

Listing 2. Sections of complex chirp source model with Tukey window.

Fig. 6 presents comparison of spectrum of linear chirp
laser modified with Rectangular, Hanning, and Tukey window
functions and their effectiveness in suppressing ripples. The
chirp laser with non-rectangular window functions lead to ex-
cellent ripple suppression, even with very low time-bandwidth
product. Excellent ripple suppression can easily be obtained
with T · ∆F as low as 50. Due to the significant reduction
in ripples, smoothly varying windows are the best candidates
for optical filters with high-Q resonant structures. Thus, the
subsequent simulations in this study are performed using a
complex chirp stimulus with Tukey window and with α = 0.3
cosine factor. Its important to note the flat amplitude spectrum
of the complex chirp signal is not necessary since the output
spectrum will be normalized by the input chirp spectrum to
obtain the frequency response.

IV. RF PHOTONIC APPLICATION CIRCUITS

Spectral response of several photonic application circuits
have been simulated and verified with an industry standard PIC
simulator and with experimental measurements. The simula-
tions were performed using Cadence Virtuoso IC6.1.7 running
on CentOS Linux 6.9 on a Dell PowerEdge R440 Server with
Dual Intel Xeon Silver 4214 CPUs operating at 2.2GHz and
16GB DRAM.
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Fig. 6. Normalized FFT magnitude response of linear chirp source windowed
with Rectangular, Hanning and Tukey functions. Here, the linear chirp source
∆F = 50GHz.

A. CROW Filter

Coupled Resonator Optical Waveguide (CROW) filters are
widely used in wavelength division multiplexing (WDM) and
Amplified Spontaneous Emission (ASE) filters [48]. As the
name suggests, CROW filters are realized by coupling bus
waveguides with multiple cascaded optical cavities (micror-
ings) as shown in Fig. 7. In this study, a CROW filter of third
order was designed and simulated with the design parameters
summarized in Table I.
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shifter
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Fig. 7. (a) Third-order CROW filter topology, (b) Cadence schematic of the
CROW.

TABLE I
CROW FILTER DESIGN PARAMETERS

Design Parameter Value
Ring Circumference (all 3) 500 µm

Coupling coefficients: [κ1 κ2 κ3 κ4] [0.1 0.08 0.08 0.1]

This CROW filter is then simulated in our compact mod-
eling framework and analytic FCM. The same filter is also
simulated in Lumerical Interconnect - an industry standard
photonic integrated circuit simulation tool [17] and with a
foundry PDK from IMEC [5]. Excellent match between the
two spectral responses, evaluated in two different simulation
platforms, is observed (as shown in Fig. 8). This confirms the
accuracy of the compact Verilog-A models of our photonic
library components. The same CROW filter is also simulated



in Cadence Virtuoso platform employing the SFTA method
and the results are compared in Table III.
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Fig. 8. Estimation of Spectral response of a CROW filter utilizing Lumerical
Interconnect and analytic FCM. Here, linear chirp source ∆F = 400GHz
and FSR = 141.8GHz.

The spectral response estimation with a frequency resolution
of 1 GHz took 205s to execute using SFTA. In comparison,
analytic FCM with T · ∆F = 2000 took only 3.23s for the
same frequency resolution and accuracy, which resulted in a
63× improvement.

B. APF-based Higher-Order Filters

To further evaluate of our method, a PIC with much higher
level of complexity is demonstrated. As shown in Fig. 9, All-
Pass-Filter (APF) based optical filter is implemented using ring
resonators coupled with the arms of a Mach Zehnder interfer-
ometer. To design the filter, all pass decomposition method
described in [49] is employed that synthesizes a discrete-time
Infinite Impulse Response (IIR) into an analog passive ring
based structure. First, the filter specifications are translated
to a Chebyshev Type-II IIR filter characteristic polynomial.
Afterwards, the all pass decomposition method is employed
to estimate the analog optical filter design parameters, i.e. the
coupling coefficients (κj), and phase shifts (β and φj) [24],
[50], [51]. A sixth-order APF-based filter specifications and
design parameters are summarised in Table II.

TABLE II
APF-BASED FILTER SPECIFICATIONS AND DESIGN PARAMETERS

APF-based Filter Specifications Value
Filter Order 6

Bandwidth, BW 2 GHz
Stopband Attenuation 60 dB

Stopband Edge Frequency fc±2 GHz
Design Parameter Value

Ring Circumference (all 6) 500 µm
Coupling coefficients: [κ1 κ2 κ3] [0.0712 0.3066 0.2056]

Mach Zehnder Arm Phase Shift, β -1.5723 rad
[φ1 φ2 φ3] [0.1624 0.0579 -0.1356] rad

The spectral response of the filter is then estimated using
both Lumerical Interconnect and our simulation framework,
utilizing SiP foundry provided data. Again, an excellent match
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Fig. 9. (a) Topology of a sixth-order APF-based filter (b) Cadence schematic
of the APF-based Filter.

between the two spectral responses is observed in Fig. 10. The
analytic FCM method, with T · ∆F = 1600, took 7.21s to
estimate the spectral response compared to 1499.1s taken by
SFTA, resulting in 208× speed up in simulation time.
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Fig. 10. Estimation of Spectral response of a sixth-order APF-based filter
utilizing Lumerical Interconnect and analytic FCM. Here, the linear chirp
source ∆F = 320GHz and FSR = 141.8GHz

C. Fabricated Dual-Bus Ring Resonator

Here, several PIC components were studied and fabricated
(refer to Fig. 11) using IME’s SiP MPW foundry with 248nm
DUV lithography [52]. The components selected for this study
are a Dual-Bus Ring Resonator (DUT 1) and Vernier Rings
(DUT 2) as shown in Fig. 11.

The PIC characterization process involves coupling light
from a tunable laser source (Keysight 81940A) into the SOI
waveguide via on-chip grating couplers. The through and drop
port optical signals of the PICs are then coupled into a single-
mode polarization maintaining fiber (PMF) array through on-
chip grating couplers at 127µm pitch and terminated at a
high-speed optical detector (Keysight N7744A). The spectral
responses of the PICs are then obtained by sweeping the laser
wavelength.
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Fig. 11. Fabricated Photonic Chip using IME Silicon Photonic process.
It contains several microring-based photonic filters including ring resonator
(DUT 1) and Vernier Ring filter (DUT 2).

The fabricated dual bus ring resonator shown in Fig. 11
has a radius of 6.786 µm and ring-to-bus gap of 200nm.
The measured and simulated (using FCM) spectral responses
are presented in Fig. 12. Again, excellent match is observed
between the measured and FCM simulation. The slight in-
consistency can be attributed to fabrication variation and ring
losses. It is important to note that the grating coupler and
optical routing loss has been de-embedded from the measured
ring response. For this ring resonator, SFTA simulation took
1552s to estimate the response with a frequency resolution of 1
GHz while our FCM (with T ·∆F = 11000) was significantly
faster (11.44s) for the same level of accuracy.
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Fig. 12. Spectral response of the fabricated ring resonator. Here, ∆F =
2.2THz and FSR = 1.6232 THz

D. Fabricated Vernier Ring Filter

The fabricated Vernier Ring filter (DUT2) shown in Fig. 11
consists of two rings coupled through a bus (middle) and two
outer buses facilitating through and drop ports. The radius
of the two rings are 10 and 11 µm. Each ring is separated
from the busses by 200 nm. Moreover, the middle bus is
optically terminated in order to reduce reflections. Again,
the measured result, presented in Fig. 13, confirms the FCM
simulation, validating the accuracy of our Frequency Chirp
Method. Furthermore, for this vernier ring, the time required
to estimate spectral response with the same level of accuracy
and a frequency resolution of 1 GHz using SFTA and FCM
(with T ·∆F = 11000) was 8350s and 20.8s, respectively.
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Fig. 13. Spectral response of the fabricated Vernier Ring filter. Here, the
linear chirp source ∆F = 2.2THz and FSR = 1.1012THz

E. Performance Summary

Here, we compare the simulation accuracy of the SFTA
method with our analytic FCM method which is summarized
in Table III. In order to allow a fair comparison, we compare
the simulation time for each design, for the same frequency
resolution (fres) and simulation accuracy. The simulation
accuracy is defined using the Mean-Squared Error (MSE)
of the filter magnitude response in dB, compared against a
baseline simulation. The MSE is calculated as

MSE =
1

Ns

Ns−1∑
k=0

(|X[k]|dB − |Xbaseline[k]|dB)2 (25)

where, Ns is the number of frequency points, |X|dB and
|Xbaseline|dB are the filter magnitude response, in dB, for
the relaxed and baseline simulation settings (described later),
respectively. In Table III, MSEs were selected based on the
filter selectivity, i.e. lower MSE for sharper filter response with
respect to the FSR.

TABLE III
PERFORMANCE COMPARISON

Design ∆F fres SFTA FCM MSE Improv.
CROW 400GHz 1GHz 205s 3.23s 0.12 63×
APF6 320GHz 1GHz 1499.1s 7.21s 0.46 208×
APF6 320GHz 0.1GHz 17215s 17.06s 0.13 1009×
Ring 2.2THz 1GHz 1552s 11.44s 0.015 135×

Vernier 2.2THz 1GHz 8350s 20.84s 0.06 400×

As observed in Table III, the proposed analytic FCM method
took significantly less time, compared to SFTA, to estimate
the spectral response of the PICs for the same accuracy
and frequency resolution. This proposed method becomes
even more advantageous when spectral estimation with high
frequency resolution, fres, is required. For example, for the
APF-based optical filter, a 10× increase in resolution from 1
to 0.1 GHz results in 4.85× performance improvement factor
(i.e. from 208× to 1009×) with FCM. Moreover, when the
frequency range of interest (∆F ) is very wide (e.g. for the



ring and vernier filters in Table III), our method offers orders
of magnitude improvement in computation time.

Table IV compares the performance of analytic FCM with
SFTA for the sixth-order optical filter, as the user relaxes
the SFTA transient stop-time (tstop) and simulation time-step
(tstep) settings for a given frequency-offset step (or the corre-
sponding time-period, Tp). In order to maximize the efficiency
of SFTA, we employ global SFTA sweep parameters: number
of time periods N1 =

tstop
Tp

, and number of time-steps per

time-period N2 =
Tp
tstep

. Thus, for each frequency-offset, only
the necessary tstep and tstop are employed to achieve the
desired accuracy and unnecessary data points are not computed
and collected. This will result in an efficient SFTA, thus
enabling a fair comparison with analytic FCM. The baseline
simulation was performed using the conventional SFTA with
a very long simulation time, i.e. N1 = 1500, and small
sampling time-step, i.e. N2 = 100. As illustrated in Fig. 14 as
N1 and N2 are relaxed, the MSE increases drastically while
the simulation time is reduced. Thus, if SFTA is relaxed to
reduce the simulation speed up gap with FCM, the simulation
accuracy is sacrificed. For example, in Table IV, for the same
MSE = 0.46 and frequency resolution, FCM still offers a
208× simulation time improvement over heavily optimized
SFTA.

TABLE IV
COMPARISON OF PERFORMANCE FOR VARYING SFTA SETTINGS FOR THE

SIXTH-ORDER OPTICAL FILTER (APF-6).

SFTA Settings N1 =
tstop
Tp

N2 =
Tp

tstep
Sim. Time MSE

Baseline 1500 100 > 4hrs 0
A 10 100 220s 531.18
B 50 100 658s 488.71
C 245 100 2959.2s 0.88
D 245 20 802.8s 4.37
E 245 5 280s 42.68
F 248 50 1499.1s 0.46

FCM T · ∆F = 1600 7.21s 0.46
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Fig. 14. SFTA performance, and its comparison with baseline and FCM
results, as the stop-time and time-step parameters N1 and N2 are relaxed as
per the settings A-F in Table IV.

V. CONCLUSION

In this work, a compact modeling and simulation framework
for PICs using standard CMOS IC design tools is presented.
A rapid simulation methodology has been proposed using
analytic chirp waveforms for simulating frequency response
of PICs. A combination of moderate time-bandwidth prod-
uct and windowing schemes allows faster simulation while
mitigating the ripple artifacts in the simulated PIC spectrum.
This methodology is employed to estimate spectral response of
APF-based and CROW filters, and up to 1000× improvement
was observed in execution time of the simulation. Lastly,
the presented analytic FCM method will allow orders of
magnitude improvement in time taken to perform Monte Carlo
analysis of PICs. The Verilog-A models can be easily extended
to include the process statistical variation data from the silicon
photonic foundries for Monte Carlo analysis.
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