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The joint automated repository for various integrated
simulations (JARVIS) for data-driven materials design
Kamal Choudhary 1,2,3✉, Kevin F. Garrity1, Andrew C. E. Reid 1, Brian DeCost1, Adam J. Biacchi 4, Angela R. Hight Walker 4,
Zachary Trautt1, Jason Hattrick-Simpers1, A. Gilad Kusne 1, Andrea Centrone 4, Albert Davydov1, Jie Jiang5, Ruth Pachter5,
Gowoon Cheon6, Evan Reed6, Ankit Agrawal7, Xiaofeng Qian8, Vinit Sharma 9,10, Houlong Zhuang11, Sergei V. Kalinin 12,
Bobby G. Sumpter 12, Ghanshyam Pilania 13, Pinar Acar 14, Subhasish Mandal 15, Kristjan Haule15, David Vanderbilt 15,
Karin Rabe15 and Francesca Tavazza 1

The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials
discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS
is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost
and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-
FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT,
≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which
are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We
compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/
uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other
technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are
publicly available at the website: https://jarvis.nist.gov.
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INTRODUCTION
The Materials Genome Initiative (MGI) (https://mgi.gov/, The
website provides information about several activities and events
under the Materials Genome Initiative (MGI); https://www.nist.gov/
mgi, The website provides information about various projects
under the National Institute of Standards and Technology (NIST)’s
Materials Genome Initiative (MGI) chapter) was introduced in 2011
to accelerate materials discovery using computational1–7, experi-
mental8–11 and data analytics12–14 approaches. The MGI has
revolutionized several fields for materials-applications, such as
batteries15, thermoelectrics16, and alloy-design17, thorough open-
access public database and tool development18. The MGI
encourages systematic Process-Structure-Property-Performance
(PSPP)19-based efficient design-approaches rather than Edisonian
trial-error methods20.
Especially in the field of computational materials design,

quantum mechanics-based density functional theory (DFT)21 has
proven to be an immensely successful technique, and several
databases of automated DFT calculations are widely used in
materials design applications. Despite their successes, existing DFT
databases face limitations due to issues intrinsic to conventional
DFT approaches, e.g., the generalized gradient approximation of
Perdew-Burke-Ernzerhof (GGA-PBE)21,22. Drawbacks of the existing

DFT databases include non-inclusion of van der Waals (vdW)
interactions6, bandgap underestimations23, non-inclusion of spin-
orbit coupling5, overly simplifying magnetic ordering24, neglecting
defects25 (point, line, surface and volume), unconverged computa-
tional parameters such as k-points26, ignoring temperature effects27

(generally DFT calculations are performed at 0 K), lack of layer/
thickness-dependent properties of low dimensional materials28, and
lacking interfaces/heterostructures of materials29, all of which can
be critical for realistic material-applications. In addition, there are
several other computational approaches, such as classical force-field
(FF)30, computational microscopy, phase-field (PF), CALculation of
PHAse Diagrams (CALPHAD)31, and Orientation Distribution Func-
tions (ODF)32 which lack the integrated tools and databases that
have been developed for DFT-based computational approaches.
Finally, the integration of computational approaches with experi-
ments, the application of statistical uncertainty analysis, and the
implementation of data analytics and artificial intelligence (AI)
techniques require significant developments to meet the goals set
forth by the MGI.
Some of the notable materials databases are: Automatic-FLOW

for Materials Discovery (AFLOW)1, Materials-project2, Khazana15,
Open Quantum Materials Database (OQMD)3, Novel Materials
Discovery (NOMAD)7, Computational Materials Repository (CMR)33,
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NIMS-MatNavi(NIMS-MatNavi database. https://mits.nims.go.jp/.
This website host information about several material classes and
their properties), NREL-MatDB34, Inorganic Crystal Structure
Database (ICSD)35, Materials-Cloud36, Citrine(Ctrine informatics.
https://citrine.io. This website hosts several tools for accelerated
materials design), OpenKIM37, Predictive Integrated Structural
Materials Science (PRISMS)38, and Phase-Field hub (PFhub)39.
Some of the commonly used computational-tools are Python
Materials Genomics (PYMATGEN)40, Atomic Simulation Environ-
ment (ASE)41, Automated Interactive Infrastructure and Database
(AIIDA)4 and MPinterfaces42. The data most commonly included in
these databases consists of crystal structures, formation energies,
bandgaps, elastic constants, Poisson ratios, piezoelectric con-
stants, and dielectric constants. These material properties can be
used directly to screen for potentially interesting materials for a
given application as candidates for experimental synthesis and
characterization, as well as part of a PSPP design approach to
better understand the factors driving material performance.
Beyond the directly calculated material properties mentioned
above, several selection metrics are also being developed to aid
materials design, such as scintillation attenuation length43,
thermoelectric complexity factor44, spectroscopy limited max-
imum efficiency45,46, exfoliation energy6, and spin-orbit spil-
lage5,24,47. Akin to DFT-like standard computational approaches
that are used as screening tools for experiments, machine learning
(ML)12–14,48 models for materials design are being developed as
pre-screening tools for other conventional computational meth-
ods such as DFT. In addition, ML tools are proposed to accelerate
experimental methods directly based on computational data49. All
of the above developments show immense promise for accel-
erating materials design.
The principles mentioned above constitute the foundations of

the Joint Automated Repository for Various Integrated Simulations
(JARVIS) (https://jarvis.nist.gov) infrastructure, a set of databases
and tools to meet some of the current material-design challenges.
The main components of JARVIS are: JARVIS-DFT, JARVIS-FF,
JARVIS-ML, and JARVIS-tools. JARVIS is developed and hosted at
the National Institute of Standards and Technology (NIST) (Please
note that commercial software is identified to specify procedures.
Such identification does not imply recommendation by the
National Institute of Standards and Technology) as part of the
MGI. A detailed documentation webpage for the database is
available at: https://jarvis-materials-design.github.io/dbdocs/.
Started in 2017, JARVIS-DFT5,6,23–25,28,29,45,49,50 is a repository

based on DFT calculations that mainly uses the vdW-DF-OptB88
van der Waals functional51. The database also uses beyond-GGA
approaches for a subset of materials, including the Tran-Blaha
modified Becke-Johnson (TBmBJ) meta-GGA52, the hybrid func-
tional PBE0, the hybrid range-separated functional Heyd-Scuseria-
Ernzerhof (HSE06), Dynamical Mean Field Theory (DMFT), and
G0W0. In addition to hosting conventional properties such as
formation energies, bandgaps, elastic constants, piezoelectric
constants, dielectric constants, and magnetic moments, it also
contains previously unavailable datasets, such as exfoliation
energies for van der Waals bonded materials, the spin-orbit
coupling (SOC) spillage, improved meta-GGA bandgaps,
frequency-dependent dielectric functions, the spectroscopy lim-
ited maximum efficiency (SLME), infrared (IR) intensities, electric
field gradients (EFG), heterojunction classifications, and Wannier
tight-binding Hamiltonians. These datasets are compared to
experimental results wherever possible to evaluate their accuracy
as predictive tools. JARVIS-DFT also introduced protocols such as
automatic k-point convergence, which can be critical for obtaining
precise and accurate results. JARVIS-DFT is distributed through the
website: https://jarvis.nist.gov/jarvisdft/.
The JARVIS-FF25,53 database, also started in 2017, is a repository

of classical force-field/potential computational data intended to
help a user select the most appropriate force-field for a specific

application. Many classical force-fields are developed for a
particular set of properties (such as energies), and may not have
been tested for properties not included in training (such as elastic
constants, or defect formation energies). JARVIS-FF provides an
automatic framework to consistently calculate and compare basic
properties, such as the bulk modulus, defect formation energies,
phonons, etc., that may be critical for specific molecular-dynamics
simulations. JARVIS-FF relies on DFT and experimental data to
evaluate accuracy. JARVIS-FF is distributed through the website:
https://jarvis.nist.gov/jarvisff/.
The JARVIS-ML45,49,50,54,55 is a repository of machine learning

(ML) model parameters, descriptors, and ML-related input and
target data. JARVIS-ML introduced Classical Force-field Inspired
Descriptors (CFID) in 2018 as a universal framework to represent a
material’s chemistry-structure-charge related data. With the help
of CFID and JARVIS-DFT data, several high-accuracy classification
and regression ML models were developed, with applications to
fast materials-screening and energy-landscape mapping. Some of
the trained property models include formation energies, exfolia-
tion energies, bandgaps, magnetic moments, refractive indexes,
dielectric constants, thermoelectric performance, and maximum
piezoelectric and infrared modes. Also, several ML interpretability
analyses have provided physical-insights beyond intuitive
materials-science knowledge54. These models, the workflow, the
datasets, etc. are disseminated to enhance the transparency of the
work. Recently, JARVIS-ML was expanded to include ML models to
analyze STM-images in order to directly accelerate the interpreta-
tion of experimental images. Graph convolution neural network
models are currently being developed for automated handling of
images and crystal-structure analysis in materials science. JARVIS-
ML is distributed through the website: https://jarvis.nist.gov/
jarvisml/.
JARVIS-tools is the underlying computational framework used

for automation, data-generation, data-handling, analysis and
dissemination of all the above repositories. JARVIS-tools uses
cloud-based continuous integration, low-software dependency,
auto-documentation, Jupyter and Google-Colab notebook inte-
gration, pip installation and related strategies to make the
software robust and easy to use. JARVIS-tools also hosts several
examples to enable a user to reproduce the data in the above
repositories or to apply the tools for their own applications.
JARVIS-tools are provided through the GitHub page: https://
github.com/usnistgov/jarvis.
While JARVIS has some features in common with existing DFT-

based computational databases, we note that there are several
features currently unique to the JARVIS framework. First, JARVIS
has a tight integration between FF and DFT techniques. Second,
JARVIS includes CFID ML learning descriptors and several ML
models based on those descriptors, including solar-cell efficiency,
thermoelectrics, exfoliation energies, infrared active modes, and
refractive index etc. Finally, JARVIS-DFT itself features heavy use of
a van der Waals functional, a 2D materials database, a STM image
database, spin-orbit calculations, spin-orbit spillage, solar cell
efficiency, meta-GGA functional calculations, other post-GGA
electronic structure calculations, 2D heterostructure design app
and a Wannier function database. We also provide REST-API
framework for users to download and upload materials data using
JARVIS-API.
This paper is organized as follows: (1) we introduce the main

computational techniques, organized by the time and length
scales, (2) we illustrate JARVIS-tools and its functionalities, (3) we
discuss the contents of the major JARVIS databases, (4) we
demonstrate some of the derived applications, and (5) we discuss
outstanding challenges and future work.
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RESULTS AND DISCUSSION
Overview of computational techniques
There are many computational tools for simulating realistic
materials depending on the time and length scales of interest56.
Before we discuss the details of JARVIS, we will provide a brief list
of these techniques and highlight their range of applicability, as
summarized in Fig. 1. Relevant techniques include quantum
mechanical computations, classical/molecular mechanics, mesos-
cale modeling, finite element analysis, and engineering design.
Each of these methodologies has its own ontology and semantics
for describing themselves and the PSPP relationship. For example,
‘structure’ may imply electronic configurations in the quantum
regime, atomic arrangement in molecular mechanics, microstruc-
ture, segments in phase field-based mesoscale modeling, and
mesh-structure in finite element analysis. Material properties are
calculated using corresponding physical laws such as the
Schrödinger equation in the quantum regime, or Newton’s laws
of motion for classical regimes. For realistic material design, it is
important to integrate these methods. A major challenge for
multiscale modeling is propagating the results of one simulation
into another while capturing the relevant physics. Artificial
Intelligence (AI) techniques have been applied in each of these
domains and can be used to integrate the methods to a certain
extent12. In JARVIS, we primarily focus on atomistic-based classical
and quantum simulations and machine-learning, but we also
attempt to integrate other simulation methods with our atomistic
data for a few specific applications such as using DFT based elastic
constants in orientation distribution function based finite element
simulations.

Software and databases
The JARVIS infrastructure (Fig. 2) is a combination of databases
and tools for running and integrating some of the computational
methods mentioned above. The general procedure for adding a
dataset to JARVIS is as follows. We start with the goal of finding or
designing a material to display or optimize a given property. Then,
we decide on an appropriate computational method, as well as a
computationally efficient way to screen for the best candidate
materials. The screening process can proceed in several steps, with
computationally inexpensive methods applied first, followed by
more computationally intensive methods on the remaining
materials. Whenever possible, the data is compared with available
experiments to evaluate the accuracy and quality of the database.
Once a large enough dataset is generated, machine learning
techniques can be utilized to accelerate the traditional computa-
tional approaches.

As an example of making use of multiple computational tools
within the same framework, we consider finding materials to
maximize solar-cell efficiency. We develop a screening criterion
(Spectroscopic Limited Maximum Efficiency, SLME, a part of
JARVIS-tools) and calculate the necessary properties (dielectric
function and band gap, a part of JARVIS-DFT). We test the method
by comparing known materials to experiment (precision and
accuracy assessment), and we perform more accurate meta-GGA
and GW calculations (JARVIS-Beyond DFT) as additional screening
and validation steps. Finally, we develop a machine learning
model (JARVIS-ML) to accelerate future materials design. Details of
this example can be found in refs. 45,46. Similar case-studies for
thermoelectrics, dielectrics, and infrared-phonon modes are
available in ref. 50 and ref. 55.
The database component of JARVIS consists of JARVIS-DFT for

DFT calculations and JARVIS-FF for molecular dynamics simula-
tions. JARVIS-ML hosts several machine learning models based on
our datasets. JARVIS-tools contains tools for automating, post-
processing and disseminating generated data, as well as several
derived applications such as JARVIS-Heterostructure. We also
include precision and accuracy analyses of the generated data,
which consists of comparing DFT data with experiments,
comparing FF data with DFT, comparing ML models with DFT,
etc. As a lower-level technique (see Fig. 1), JARVIS-DFT data can
be fed into JARVIS-FF and JARVIS-ML models, but not vice versa.
We use JARVIS-ML to accelerate both JARVIS-DFT and JARVIS-FF.
In this way, the JARVIS-infrastructure establishes a joint integra-
tion for automation and generation of repositories. We provide
several social-media platforms to build a community of interest.
Some of the key resources for the JARVIS-infrastructure are shown
in Table 1.

JARVIS-tools
JARVIS-tools is a python-based software package with ≈20,000
lines of code and consisting of several python-classes and
functions. JARVIS-tools can be used for (a) the automation of
simulations and data-generation, (b) post-processing and analysis
of generated data, and (c) the dissemination of data and methods,
as shown in Fig. 3. It uses cloud-based continuous integration
checking including GitHubAction, CircleCI, TravisCI, CodeCov, and
PEP8 linter to maintain consistency in the code and its
functionalities. The JARVIS-tools is distributed through an open
GitHub repository: https://github.com/usnistgov/jarvis.
An example python class in JARVIS-tools is ‘Atoms’. It uses

atomic coordinates, element types and lattice vectors to build an
‘Atoms’ object from which several properties, such as density and
chemical formula, can be calculated. This ‘Atoms’ class, along with
several other modules (discussed later), can be used for setting up
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Molecular dynamics 
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Fig. 1 Length and time-scale based computational materials
design techniques. We primarily focus on the lowest two levels of
the computational methodologies, DFT and MD, but we integrate
with other simulation methods for specific applications.
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Fig. 2 An overview of the JARVIS infrastructure. For a given
materials performance metric, several JARVIS components can work
together to design optimized or completely new materials.
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calculations with external software packages. An example of the
‘Atoms’ class is shown in Fig. 4.
The ‘Atoms’ class along with many other modules in JARVIS-tools

are used to generate input files for automating software codes.
Currently, JARVIS-tools can be used to automate DFT calculations
with packages such as Vienna Ab-initio simulation package
(VASP)57,58, Quantum Espresso (QE)59; MD with Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)60; ML
with Scikit-learn61, Keras62, and LightGBM63; Wannier calculations
with Wannier9064 and Wanniertools65. A number of predefined
workflows are available in JARVIS-tools that are continuously being
used to calculate properties of uncharacterized or existing
materials in the database. Three workflows are shown in Fig. 5.
For DFT calculations, an input Atoms class is used to generate input
files for VASP (Fig. 5a) with the ‘VaspJob’ class in order to calculate
the desired properties, such as the energy. We automatically
perform calculations to converge numerical parameters like the k-
points and plane-wave cut-off for individual materials. Geometry
optimization is then carried out with energy, force, and stress
relaxation. We have chosen a particular set of pseudopotentials or

PAWs as tested and recommended by the software developers of
various codes. Subsequent properties, such as band structure,
dielectric function, elastic constants, piezoelectric constants or
spin-orbit spillage are computed on the relaxed structure. Later,
custom jobs can also be run on the optimized structure using
‘VaspJob’, such as Wannier90 calculations using the ‘Wannier90-
Win’ class, which generates the input files for an Atom class and a

Table 1. An overview of resources available in the JARVIS infrastructure.

Resource Website Brief description

Homepage https://jarvis.nist.gov/ Description and API

FF https://jarvis.nist.gov/jarvisff Evaluation of classical force field

DFT https://jarvis.nist.gov/jarvisdft Density functional theory data

ML https://jarvis.nist.gov/jarvisml Machine learning models

Tools https://github.com/usnistgov/jarvis Scripts for running simulations

Downloads https://www.ctcms.nist.gov/~knc6/downloads.html Downloadable metadata

Notebooks https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks Jupyter/Google-Colab notebooks

Heterostruct https://jarvis.nist.gov/jarvish 2D heterostructure properties

WannierTB https://jarvis.nist.gov/jarviswtb Wannier tight binding models

BeyondDFT https://jarvis.nist.gov/jarvisbdft High-level ab-initio methods

Publications https://www.ctcms.nist.gov/~knc6/pubs.html JARVIS-related publication

Tools docs https://jarvis-tools.readthedocs.io/en/latest/ Documentation (docs) of tools

DB docs https://jarvis-materials-design.github.io/dbdocs/ Documentation on the database

Tools pypi https://pypi.org/project/jarvis-tools/ Pypi repository of tools

Workshops https://www.ctcms.nist.gov/~knc6/workshops.html JARVIS-related workshops

ResearchG. https://www.researchgate.net/project/NIST-JARVIS Social media researchgate page

Twitter https://twitter.com/jarvisnist Social media twitter page

Facebook https://www.facebook.com/jarvisnist/ Social media Facebook page

Linkedin https://www.linkedin.com/company/jarvisnist Social media Linkedin page

YouTube https://www.youtube.com/channel/UClChK_t7kmVx_QMStQH_T9g Social media Youtube page

Google group https://groups.google.com/forum/#!forum/jarvis-nist Social media google-group

DFT (VASP, QE, …)
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ML (Sklearn, Keras, …)
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Fig. 3 Three main components of the JARVIS-tools package and
their capabilities.

Fig. 4 Examples of using python classes in JARVIS-tools for
constructing ‘Atoms’ class and downloading data. More tutorial-
based examples are available on the documentation pages.

K. Choudhary et al.

4

npj Computational Materials (2020)   173 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://jarvis.nist.gov/
https://jarvis.nist.gov/jarvisff
https://jarvis.nist.gov/jarvisdft
https://jarvis.nist.gov/jarvisml
https://github.com/usnistgov/jarvis
https://www.ctcms.nist.gov/~knc6/downloads.html
https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks
https://jarvis.nist.gov/jarvish
https://jarvis.nist.gov/jarviswtb
https://jarvis.nist.gov/jarvisbdft
https://www.ctcms.nist.gov/~knc6/pubs.html
https://jarvis-tools.readthedocs.io/en/latest/
https://jarvis-materials-design.github.io/dbdocs/
https://pypi.org/project/jarvis-tools/
https://www.ctcms.nist.gov/~knc6/workshops.html
https://www.researchgate.net/project/NIST-JARVIS
https://twitter.com/jarvisnist
https://www.facebook.com/jarvisnist/
https://www.linkedin.com/company/jarvisnist
https://www.youtube.com/channel/UClChK_t7kmVx_QMStQH_T9g
https://groups.google.com/forum/#!forum/jarvis-nist


chosen set of pseudopotentials, disentanglement window and
other controlling parameters. All of these steps produce a
JavaScript Object Notation (JSON) file once the calculations are
done as a signature of their completion. The workflows can be
restarted from intermediate computations, making the calculations
robust to interruptions due to computer failure, etc. We also add
several error-handlers in the workflows to automatically re-submit
a calculation if a typical error is encountered.
A similar workflow is shown for an example of FF based on

LAMMPS calculations in Fig. 5b. Here, for a particular force-field
such as Ni-Al53, for example, all the structures related to Ni, Al, and
Ni–Al are obtained from the DFT database and converted into a
LAMMPS input format using ‘Atoms’, ‘LammpsData’ and ‘Lammps-
Job’ objects. Then a series of geometry optimization, vacancy
formation energy, surface energy, and phonon-related calcula-
tions are run, based on the symmetry of the structure. All of these
steps use a set of “.mod” module files with input parameters that
control respective LAMMPS calculations. The obtained results are
compared with corresponding DFT data, to evaluate the quality of
an FF for a particular system or simulation.
In machine learning calculations, the input materials-data is

transformed into several machine-readable descriptors66 such as
CFID dataset or STM image ‘numpy’ arrays. As we are not going to
generate another set of data for testing ML models, we split the
dataset into training and testing sets in a 90:10 or similar split.
Using k-fold cross-validation, we obtain hyperparameters for the

chosen algorithm, for example, the number of trees, learning rate,
etc. in the case of Gradient Boosting Decision Tree (GBDT). We
choose the optimized parameters and train on 90% train data and
test on the 10% test data to evaluate the truly predictive
performance on unseen data. We also carry out k-fold cross-
validation using the finalized model to get model uncertainty.
Later, we can analyze interpretability with techniques such as
feature importance in tree-based algorithms or filters in neural
networks. These models are saved in Pickle, cPickle and Joblib
modules for model persistency. We also carry out uncertainty
analysis using methods such as prediction interval and Monte-
Carlo dropouts67. A few examples and Jupyter notebooks are
provided on the GitHub page to illustrate the above-mentioned
methods. More details about the individual python modules
mentioned above can be found in the JARVIS-tools documenta-
tion (https://jarvis-tools.readthedocs.io/en/latest/). A documenta-
tion on integrating JARVIS-tools with the database is available at
(https://jarvis-materials-design.github.io/dbdocs/).
After running the automated calculations, the data is post-

processed to predict various material properties (such as bandgap,
formation energy, spin-orbit spillage, SLME, density of states,
phonons, dielectric function, or STM image). Many of the python
classes use ‘ToDict’ and ‘FromDict’ methods that help store the
metadata. These metadata are then used with HTML68, Javascript,
Flask69 and other related software to make web-pages and web-
apps. The metadata is also shared in public repositories such as
Figshare (https://figshare.com/authors/Kamal_Choudhary/4445539),
and JARVIS-Representational state transfer (REST) API, based on the
MGI philosophy of creating and using interoperable datasets. Note
that through the JARVIS-REST API, a user can download JARVIS data
and can also upload/store their own data. If the stored data follows
the schema (in XSD format), then the API automatically generates
HTML pages for the user’s data. The data generated in JARVIS is
mainly stored in Extensible Markup Language (XML), JavaScript
Object Notation (JSON), Comma-Separated Values (CSV) or Amer-
ican Standard Code for Information Interchange (ASCII) format and,
again, JARVIS-tools can be used to analyze the pre-calculated data
for materials design. A wrapper-code for the REST-API upload and
download is available at (https://github.com/usnistgov/jarvis/blob/
master/jarvis/db/restapi.py). An example of downloading precalcu-
lated dataset with JARVIS-tools is shown in Fig. 4. JARVIS-tools,
along with the various software shown in Fig. 3, has led to several
databases shown in Fig. 6.

Other steps

Cross-validate

Interpretability

Learning curve

Predict on test set

Hyper-param tuning

Algo. selection

Train-test split

Input & target data

JJARVIS-DFT workflow JARVIS-FF workflow JARVIS-ML workflow

Other steps

SOC spillage

Elastic Tensor

TBmBJ

Linear Optics

Band-structure

Optimize geometry

Converge K-point, cutoff

Atoms class

Other steps

Phonons

Vacancy energy

Surface energy

Elastic-constants

Optimize geometry

Atoms class

Fig. 5 Flowcharts showing some of the main steps used in most-
commons calculations. a JARVIS-DFT, (b) JARVIS-FF, and (c) JARVIS-
ML workflows.
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Fig. 6 Three main databases in JARVIS and a summary of their contents.
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JARVIS-DFT
Density functional theory is one of the most commonly used
techniques in condensed-matter physics to solve real-world
materials problems. In DFT, instead of solving the fully interacting
Schrödinger equation, we solve the Kohn-Sham equations, which
describe an effective non-interacting problem, greatly improving
computational efficiency. Although exact in principle, DFT
requires several approximations in practice. In particular, various
levels of approximation to the exchange-correlation functional
are possible, which require different computational effort. Most
existing DFT databases use the common GGA-PBE throughout all
the material-classes. JARVIS-DFT can be viewed as an attempt to
build a repository beyond existing DFT databases. JARVIS-
DFT5,6,23–25,28,29,45,49,50 was started in 2017 and contains data
for ≈40,000 materials, with ≈1 million calculated properties,
mainly based on the VASP package. Although there are several
DFT-functionals adopted in JARVIS-DFT, we use vdW-DF-OptB88
consistently for all the 3D, 2D, 1D, and 0D materials. This
functional has been shown to provide accurate predictions for
lattice-parameters and energetics for both vdW and non-vdW
bonded materials28. In addition to hosting 3D bulk materials, the
database consists of 2D monolayer, 1D-nanowire, and 0D-
molecular materials (as shown in Table 2). However, to date, 3D
and 2D materials have primarily been distributed publicly.
Moreover, other exchange-correlation functionals are considered
(as shown in Table 3), which can help estimate the prediction
uncertainty. While vdW-DF-OptB88 can predict accurate lattice
parameters and formation energies, bandgaps are still under-
estimated. Calculations with hybrid functionals (such as range-
separated HSE06 and PBE0) and many-body approaches (such as
G0W0) remain too computationally expensive21 to use in a high-
throughput methodology for thousands of materials. Hence, a
meta-GGA Tran-Blaha-modified Becke-Johnson (TBmBJ) potential
is used to provide a good balance between computational
expense and accuracy. The TBmBJ accuracy is shown to be close
enough to the high-level methods such as HSE06 at up to ten
times lower computational expense52. Accurate prediction of
optical gaps by calculation of the frequency-dependent dielectric
function is important for several applications, for example, solar-
cell efficiency calculations. Accurate prediction of bandgaps also
helps in obtaining accurate frequency-dependent dielectric
functions, which can be critical for solar-cell efficiency calcula-
tions; however, TBmBJ cannot describe the excitonic nature of
electron-hole pairs in low-dimensional materials. In addition to
TBmBJ, we are generating HSE06, PBE0, G0W0, and DMFT
datasets, which can be considered as beyond-DFT methods
discussed in the next section. Next, SOC is varied to analyze the
differences introduced by this coupling. These differences are
used to discover 3D and 2D topological materials. In addition,
several DFT databases are developed including properties such
as frequency-dependent dielectric function and electric field

gradient. A few important protocols such as k-point automatic
convergence are also introduced. A snapshot of the JARVIS-DFT
website along with a list of properties that are available is shown
in Fig. 7. JARVIS-DFT has several filtering options on the website
to screen candidate materials. We provide the input files as
downloadable .zip files, especially for the users who do not have
much expertize in using python-based codes. Raw input and
output files (on the order of 1 terabyte) will soon be made
publicly available through the Figshare repository, NIST-Materials
data repository, and Materials Data Facility (MDF). A summary
table, with the number of data available with vdW-DF-OptB88
and other methods, is shown in Tables 2 through 4. Table 2, Table
3, and Table 4 provides a summary of available materials classes,
DFT functionals used and materials properties available in the
JARVIS-DFT database, respectively.

JARVIS-beyond-DFT
While quantum mechanical methods in single-particle theories
such as DFT or DFT+U methods (mainly GGA) are fast and can
predict accurate results for most structural parameters, even when
relatively strong electron correlations are present, qualitative
predictions of excited state properties may require beyond-DFT
methods70. Beyond-DFT calculations have been applied to many
materials systems, including cuprates and Fe-based high-tem-
perature superconductors, Mott insulators, heavy Fermion sys-
tems, semiconductors, photovoltaics, and topological Mott
insulators70. In the last few decades, both perturbative and
stochastic approaches have been developed to understand these
strongly correlated materials. These approaches, including Dyna-
mical Mean Field Theory (DMFT)71, the GW approximation, or
hybrid exchange-correlation functionals are often called beyond-
DFT methods since they go beyond the limit of semilocal DFT. The
materials design community often requires benchmarking for
particular cases, where it is necessary to use beyond-DFT methods,
in order to assess accuracy of the results. In the JARVIS-Beyond-
DFT database we are building a database of spectral functions
and related quantities as computed using meta-GGA, GW,
hybrid functionals, and LDA+DMFT for head-to-head comparison
on 100+ materials.
In the JARVIS-Beyond-DFT70 database we try to answer a few

key questions regarding discoveries through a materials database
for quantum materials. First, where is it necessary to use a beyond-
DFT method, and which method to be use? Second, how do
different “beyond-DFT" methods compare with experiments?
Target materials include but are not limited to various transition
metal oxides, perovskites and mixed perovskites, nickelates,
transition metal dichalcogenides, and a wide range of metals
starting from alkali metals to transition metals, and various Iron-
based superconductors. JARVIS-Beyond-DFT will be distributed
through the website: https://jarvis.nist.gov/jarvisbdft/.

JARVIS-FF
Classical force-field-/interatomic-potential-based simulations are
the workhorse technique for large scale atomistic simulations.

Table 2. A brief summary of datasets available in the JARVIS-DFT.

Material classes Numbers

3D-bulk 34,622

2D-bulk 2293

1D-bulk 235

0D-bulk 413

2D-monolayer 1105

2D-bilayer 102

Molecules 12

Heterostructure 3

Total DFT calculated systems 38,785

Table 3. A brief summary of functionals used in optimizing crystal
geometry in the JARVIS-DFT.

Functionals Numbers

vdW-DF-OptB88 (OPT) 38785

vdW-DF-OptB86b (MK) 109

vdW-DF-OptPBE (OR) 111

PBE 99

LDA 92

K. Choudhary et al.

6

npj Computational Materials (2020)   173 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://jarvis.nist.gov/jarvisbdft/.


They are especially suited for temperature-dependent and defect-
related phenomena. Several varieties of FFs differ based on the
materials system and the underlying phenomena under investiga-
tion, e.g., whether they include bond-angle information and fixed

or dynamic charges. Also, they are generally designed for
particular applications and phases, making it difficult to ascertain
whether they will perform well in simulations for which they were
not explicitly trained. JARVIS-FF25,53 is a collection of LAMMPS
calculation-based data consisting of crystal structures, formation
energies, phonon densities of states, band structures, surface
energies and defect formation energies. There are ≈110 FFs in the
database, for which the corresponding crystal structures are
obtained from JARVIS-DFT, converted to LAMMPS format inputs,
and used in a series of LAMMPS calculations to produce the
aforementioned properties. These properties, when compared
with corresponding DFT data, can help a user analyze the quality
of a force-field for a particular application. Examples include
the comparison of DFT convex hull with FF, elastic modulus,
surface energy and vacancy formation energy data. Some types
of FFs included are EAM, MEAM, Bond-order and Tersoff, COMB,
and ReaxFF as shown in Table 5. Furthermore, we plan to include
several recently developed machine learning force-fields into
JARVIS-FF. A snapshot of the JARVIS-FF website is also shown
in Fig. 8.

JARVIS-ML
Machine learning has several applications in materials science and
engineering12,72,73, such as automating experimental data analysis,
discovering functional materials, optimizing known ones by
accelerating conventional methods such as DFT, automating
literature searches, discovering physical equations, and efficient
clustering of materials and their properties. There are several data
types that can be used in ML such as scalar data (e.g., formation
energies, bandgaps), vector/spectra data (e.g., density of states,
dielectric function, charge density, X-ray diffraction patterns, etc.),

• Crystal structure 
• Forma�on energy
• Bandgap
• Band-structure
• K-point
• Cut-off
• Dielectric func�on
• Absorp�on coeff.
• Solar-efficiency
• Elas�c constant
• Topological spillage
• Dielectric
• Piezoelectric

• Thermoelectric
• Wannier �ght-binding
• Exfolia�on energy
• Phonon
• Infrared ac�vity
• Raman ac�vity
• Electric field gradient
• Magne�c moment
• Diffrac�on
• STM image
• Heterostructure
• Work func�on
• Carrier effec�ve mass

Fig. 7 A snapshot of JARVIS-DFT website and summary of its contents.

Table 4. A brief summary of material-properties available in the
JARVIS-DFT.

Property Numbers

Optimized crystal-structure (OPT) 38,785

Formation-energy (OPT) 38,785

Bandgap (OPT) 38,785

Exfoliation energy (OPT) 819

Bandgap (TBmBJ) 15,655

Bandgap (HSE06) 40

Bandgap (PBE0) 40

Bandgap (G0W0) 15

Bandgap (DMFT) 11

Frequency dependent dielectric tensor (OPT) 34,045

Frequency dependent dielectric tensor (TBmBJ) 15,655

Elastic-constants (OPT) 15,500

Finite-difference phonons at Г-point (OPT) 15,500

Work-function, electron-affinity (OPT) 1105

Theoretical solar-cell efficiency (SLME) (TBmBJ) 5097

Topological spin-orbit spillage (PBE+SOC) 11,500

Wannier tight-binding Hamiltonians (PBE+SOC) 1771

Seebeck coefficient (OPT, BoltzTrap) 22,190

Power factor (OPT, BoltzTrap) 22,190

Effective mass (OPT, BoltzTrap) 22,190

Magnetic moment (OPT) 37,528

Piezoelectric constant (OPT, DFPT) 5015

Dielectric tensor (OPT, DFPT) 5015

Infrared intensity (OPT, DFPT) 5015

DFPT phonons at Г-point (OPT) 5015

Electric field gradient (OPT) 15,187

Non-resonant Raman intensity (OPT, DFPT) 250

Scanning tunneling microscopy images (PBE+SOC) 770

The database is continuously expanding5,6,23–25,28,29,45,49,50.

Table. 5. A summary of various types of force-fields available in the
JARVIS-FF25,53.

Force-fields Numbers

EAM 92

Tersoff 9

ReaxFF 5

COMB 6

AIREBO 2

MEAM 1

EIM 1
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image-based data (such as scanning tunneling microscopy and
transmission electron microscopy images), and natural language
processing-based data (such as scientific papers). In addition, ML
can be applied on a variety of materials classes such as bulk
crystals, molecules, proteins and free-surfaces.
Currently, there are two types of data that are machine-learned

in JARVIS-ML45,49,50,54,55: discrete and image-based. The discrete
target is obtained from the JARVIS-DFT database for 3D and 2D
materials. There have been several descriptor developments as
attempts to capture the complex chemical-structural information
of a material66. We compute CFID descriptors for most crystal
structures in various databases (as shown in Table 6). Many of
these structures are non-unique but can still be used for pre-
screening applications45. The CFID can also be applied to other
materials classes such as molecules, proteins, point defects, free
surfaces, and heterostructures, which are currently ongoing
projects. These descriptor datasets, along with JARVIS-DFT and
other databases, act as input and outputs for machine learning
algorithms. The CFID consists of 1557 descriptors for each
material: 438 average chemical, 4 simulation-box-size, 378 radial
charge-distribution, 100 radial distribution, 179 angle-distribution
up to first neighbor, and another 179 for the second neighbor, 179
dihedral angle up to fist neighbor and 100 nearest neighbor
descriptors. More details can be found in ref. 54. Currently, we
provide CFID descriptors only, but other descriptors such as
Coulomb-matrix, and sine-matrix will be provided soon. With CFID
descriptors, we trained several classification and regression tasks.
Once these models are trained, parameters are stored that can
predict the properties of an arbitrary compound quickly. We
developed a web-based application to host the trained models, as
shown in Fig. 9, and a list of the trained properties are displayed

there as well. We note that classical quantities such as bulk
modulus, maximum infrared (IR) active mode, and formation
energies can be accurately trained, especially with regression
models. For other properties such as bandgaps, magnetic
moments, piezoelectric coefficients, thermoelectric coefficients,
high accuracy models are obtained for classification tasks only. In
addition to the descriptor-based data, we develop Scanning
Tunneling Microscopy (STM)49 image classification models that
can be used to accelerate the analysis of STM data. The images are
converted into a black/white image to identify spots with/without
atoms. The model’s accuracy is compared with respect to DFT data
or experiments wherever applicable.

Derived apps
The knowledge developed through the above-mentioned data-
bases and tools can serve as static content, as well as accessed
through dynamic user-defined inputs. Derived applications (apps)
are designed to help a user analyze the combinatorics in the data.
Based on the databases and tools discussed above, several apps
are derived from JARVIS such as JARVIS-Heterostructure29,
JARVIS-Wannier TB, and JARVIS-ODF. JARVIS-Heterostructure (as
shown in Fig. 10a) can be used to characterize heterojunction
type and modeling interfaces for exfoliable 2D materials. We
classify these heterostructures into type-I, II, and III systems
according to Anderson’s rule, which is based on the band-
alignment with respect to the vacuum potential of non-
interacting monolayers, obtained from JARVIS-DFT. The app also

• Crystal structure
• Elas�c proper�es
• Forma�on energy
• Phonons
• Surface energy
• Defect forma�on energy

Fig. 8 A snapshot of JARVIS-FF website and summary of its contents.

Table. 6. A summary of classical force-field inspired descriptors
(CFID)-descriptor datasets available in the JARVIS-ML.

CFID-Dataset Number of materials

JARVIS-DFT 3D 39,240

JARVIS-DFT 2D 1105

AFLOW 820,082

OQMD 460,046

Materials-project 83,964

Crystallography Open Database (COD) 11,783

QM9 13,385

Total 1,429,605

• Forma�on energy
• Bandgaps(GGA, mGGA)
• K-point
• Plane wave cut-off
• Solar-cell efficiency
• Bulk, shear mod.
• Refrac�ve index
• Topological spillage
• Dielectric
• Thermoelectric
• Piezoelectric
• Exfolia�on energy
• Infrared mode
• Magne�c moment
• STM image
• Work func�on

Fig. 9 A snapshot of JARVIS-ML website and summary of its
contents.
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generates crystallographic positions for the heterostructure that
could be used as input for subsequent calculations. JARVIS-
WannierTB (as shown in Fig. 10b) can be used to solve Wannier
Tight Binding Hamiltonians on arbitrary k-points for 3D and 2D
materials. Properties such as the band structure and the density
of states can be predicted on the fly from this app. In addition,
many other apps are being developed, which are primarily based
on the Flask python package69.
The JARVIS-ODF (Orientation Distribution Function) library is

under development, which aims to calculate volume-averaged
(meso-level) material properties, including the elasto-plastic
deformation behavior, using the property data available for single
crystals in the JARVIS database. Once generated, the JARVIS-ODF
library will be capable of obtaining such material properties for all
crystalline structures.

Accuracy and precision analysis
In simulations, accuracy refers to the degree of closeness between
a calculated value and a reference value, which can be from an
experiment or a high-fidelity theory. Precision refers to the degree
of closeness between numerical approaches to solving a certain
model, including the effect of convergence and other simulation
parameters.
In JARVIS-DFT, the accuracy of the DFT data is obtained by

comparing it to available experimental results (see Supplementary
Tables 1–9). The accuracy of JARVIS-FF and JARVIS-ML, instead, is
given with respect to DFT results. Note that the numbers of high-

quality experimental measurements or high-fidelity calculations
for a given property are often low. Therefore, the accuracy metrics
we derive in our works are obtained only for the few cases we can
directly compare, not for the entire dataset. In Table 7, we provide
accuracy metrics for some material properties in the JARVIS-DFT
with respect to experiments. In addition to the scalar data, vector/
continuous data, such as frequency dependent dielectric function
and Scanning Tunneling Microscopy (STM) images, are compared
to a handful of experimental data points as well. Details of
individual properties can be found in refs. 6,28,45,48–50,54,55.
JARVIS-FF data accuracy is calculated with respect to the DFT

data, for properties such as the convex hull, bulk modulus,
phonon frequencies, vacancy formation energies and surface
energies. In refs. 25,53, we showed this through several examples,
including the comparison of Ni–Al and Cu–O–H systems convex
hulls to DFT data. We also showed examples of comparing defect
formation energies, surface energies and its effects on Wulff-
shape. Although these accuracy analyses are based on 0 K DFT
data, they are useful in predicting temperature-dependent and
dynamical behavior because we consider several crystal proto-
types of a system.
JARVIS-ML model accuracy is evaluated on the test-set (usually

10%) representing previously unseen DFT data for both regression
and classifications models. Accuracy of regression and classification
models are reported in terms of mean absolute error (MAE) and
Receiver Operating Characteristic (ROC) Area Under Curve (AUC)
metric, respectively. A brief summary of regression and classification
model accuracy results is given below in Tables 8 and 9. Details of
the accuracy analyses are provided in refs. 45,49,50,54,55.
Precision analysis can refer to a wide variety of optional

selections of simulation set-ups. Examples of precision analysis in
JARVIS-DFT are using our convergence protocols for k-points and
plane-wave cutoff, and the convergence of Wannier tight-binding
Hamiltonians. Using a converged k-point mesh and plane-wave
cutoff26 for each individual material is necessary to obtain high-
quality data. Note that these DFT convergences are carried out for
energies of the system only, and not for other properties.
However, we impose tight convergence parameters for both k-
points and energy cutoff (0.001 eV/cell), which typically results in
other physical quantities being converged as well. In JARVIS-FF,
comparison across structure-minimization methods for calculating
surface and vacancy formation energy values are examples of
precision analysis25. We find that the FF simulation setups (‘refine’
and ‘box’ methods) have minimal effect on the FF-based
predictions. For classification ML models, precision is the ratio
TP

TPþFP where TP is the number of true positives and FP the number
of false positives, which can be derived from the confusion.
Precision analysis for classification ML model for STM Bravais-
lattices are available in ref. 49. We find high precision (more than

Fig. 10 Snapshots of JARVIS-DFT derived apps. a JARVIS-Heterostructure and (b) JARVIS-Wannier Tight Binding.

Table. 7. Mean absolute error (MAE) for JARVIS-DFT data with respect
to available experimental data for various material properties.

Property #Materials MAE Typical range

Formation energy (eV/atom) 1317 0.128 −4 to 2

OptB88vdW-bandgaps (eV) 54 1.33 0 to 10

TBmBJ-bandgaps (eV) 54 0.51 0 to 10

Bulk modulus (GPa) 21 5.75 0 to 250

Electronic (휀11) OPT 28 3.2 0 to 60

Electronic (휀11) MBJ 28 2.62 0 to 60

Solar-eff. (SLME) (%) (MBJ) 5 6.55 0 to 33.7

Max. piezoelectric strain coeff
(Cm−2)

16 0.21 0 to 2

Dielectric constant (휀11) (DFPT) 16 2.46 0 to 60

Seebeck coefficient (μV/K) 14 54.7 −600 to 600

Electric field gradient Vzz (10
21Vm−2) 37 1.17 0 to 100

IR mode (cm−1) 8 8.36 0 to 4000
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0.87) for all of the 2D-Bravais lattices. Precision analysis for
regression tasks are still ongoing and will be available soon.

Future work
Given that the number of all possible materials74 could be of the
order of 10100, and furthermore existing materials properties can
be computed at increasing levels of accuracy/cost, the JARVIS
databases will always be incomplete. This represents an oppor-
tunity for JARVIS to be drastically expanded in the future. Future
work will be aimed at addressing some of the limitations of the
existing databases, and may include additions like defect/disorder
properties, magnetic ordering, non-linear optoelectronics, more
beyond-DFT calculations, temperature-dependent properties,
integration with experiments, and more detailed uncertainty
analysis. Moreover, several ML models and methods for data-
prediction and uncertainty quantification will be developed for
‘explainable AI’ (XAI) and transfer-learning (TL)-based research.
Other derived apps such as JARVIS-ODF, JARVIS-Beyond-DFT,
JARVIS-GraphConv, and JARVIS-STM are also being developed. In

addition to the technical aspects, the broader impact of the
infrastructure will be to provide a research platform that will allow
maximum participation of worldwide researchers. NIST-JARVIS
currently hosts pre-computed data and would host on-the-fly
calculation resources also. To make the data-processing user-
friendly, we have a few filtering options on the JARVIS-DFT
website. Furthermore, advanced filtering tools will be available
through ElasticSearch package soon. ElasticSearch integration will
allow cross-filtering among several databases. We are also working
on several visualization tool integration using Plotly, Javascript
and XSLT which will be available on the web soon.
In summary, we described the Joint Automated Repository for

Various Integrated Simulations (JARVIS) platform, which consists of
several databases and computational tools to help accelerate
materials design and enhance industrial growth. JARVIS includes
three major databases: JARVIS-DFT for density functional theory
calculations, JARVIS-FF for classical force-field calculations, and
JARVIS-ML for ML predictions. In addition, we provide JARVIS-tools,
which is used to generate the databases. The generated data is
provided publicly with several example notebooks, documentation
and calculation examples to illustrate different components of the
infrastructure. We believe the publicly available data and resources
provided here will significantly accelerate futuristic materials-design
in various areas of science and technology.

METHODS
The entire study was managed, monitored, and analyzed using the
modular workflow, which we have made available (Please note that
commercial software is identified to specify procedures. Such identification
does not imply recommendation by the National Institute of Standards and
Technology) on our JARVIS-tools GitHub page (https://github.com/
usnistgov/jarvis).

Density functional theory calculations
The DFT calculations are mainly carried out using the Vienna Ab-initio
simulation package (VASP)57,58. We use the projected augmented wave
method and OptB88vdW functional51, which gives accurate lattice para-
meters for both van der Waals (vdW) and non-vdW solids28. Both the internal
atomic positions and the lattice constants are allowed to relax in spin-
unrestricted calculations until the maximal residual Hellmann–Feynman
forces on atoms are smaller than 0.001 eV Å−1 and energy-tolerance of 10−7

eV. We do not consider magnetic orderings besides ferromagnetic yet,
because of a high computational cost. We note that nuclear spins are not
explicitly considered during the DFT calculations. The list of pseudopotentials
used in this work is given on the GitHub page. The k-point mesh and plane-
wave cut-off were converged for each material using the automated
procedure described in ref. 26. The elastic constants are calculated using the
finite difference method with six finite symmetrically distinct distortions. The
thermoelectric coefficients such as power factor and Seebeck coefficients are
obtained with the BoltzTrap code with Constant Relaxation Time approxima-
tion (CRTA)75. Optoelectronic properties such as dielectric function and solar-
cell efficiency are calculated using linear-optics methods mainly using
OptB88vdW and TBmBJ. We also compared such data with HSE06 and G0W0.
The piezoelectric, dielectric and phonon modes at Г-point are calculated
using Density Functional Perturbation Theory (DFPT). Topological spillage for
identifying topologically non-trivial materials is calculated by comparing DFT
wave functions with/without SOC5,24. 2D exfoliation energies are calculated
by comparing bulk and 2D monolayer energy per atom. The 2D
heterostructure29 behavior is predicted using Zur and Anderson methods.
Wannier tight binding Hamiltonians are generated using the Wannier90
code64. 2D STM images are predicted using the Tersoff-Hamman method49.

Force-field calculations
Classical force-field calculations are carried out with the LAMMPS software
package60. In our structure minimization calculations, we used 10−10 eVÅ−1

for force convergence and 10,000 maximum iterations. The geometric
structure is minimized by expanding and contracting the simulation box
with ‘fix box/relax’ command and adjusting atoms until they reach the
force convergence criterion. These are commonly used computational set-
up parameters. After structure optimization point vacancy defects are

Table 9. Performance of the classification machine learning models in
JARVIS-ML with JARVIS-DFT data using OptB88vdW (OPT) and TBmBJ
(MBJ) with Receiver Operating Characteristic (ROC) Area Under Curve
(AUC) metric.

Property Number of
datapoints

ROC AUC

Metal/non-metal (OPT) 24549 0.95

Magnetic/Non-magnetic (OPT) 24549 0.96

High/low solar-cell efficiency
(TBmBJ)

5097 0.90

High/low piezoelectric coeff 3411 0.86

High/low Dielectric 3411 0.93

High/low n-Seebeck coeff 21899 0.95

High/low n-power factor 21899 0.80

High/low p-Seebeck coeff 21899 0.96

High/low p-power factor 21899 0.82

Random guessing and perfect ROC AUC are 0.5 and 1, respectively.

Table 8. Performance of regression machine learning models in
JARVIS-ML with JARVIS-DFT data using OptB88vdW (OPT) and TBmBJ
(MBJ) with mean absolute error (MAE).

Property Training data MAE MAD

Formation energy (eV/atom) 24549 0.12 0.81

OPT bandgap (eV) 22404 0.32 1.05

MBJ bandgap (eV) 10499 0.44 1.60

Bulk mod., Kv (GPa) 10954 10.5 49.95

Shear mod., Gv (GPa) 10954 9.5 23.26

Refr. Index(x) (OPT) 12299 0.54 1.15

Refr. Index(x) (MBJ) 6628 0.45 1.03

IR mode (OPT) (cm−1) 3411 77.84 316.7

Max. Born eff. charge (OPT) (e) 3411 0.60 1.48

Plane-wave cutoff (OPT) (eV) 24549 85.0 370.6

K-point length (OPT) (Å) 24549 9.09 22.23

2D-Exfoliation energy(OPT) (eV/atom) 616 37.3 46.09

The mean absolute deviation (MAD) of properties are also included.
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created using Wycoff-position data. Free surfaces for maximum miller
indices up to 3 are generated. The defect structures were required to be at
least 1.5 nm long in the x, y, and z directions to avoid spurious self-
interactions with the periodic images of the simulation cell. We enforce the
surfaces to be at least 2.5 nm thick and with 2.5 nm vacuum in the
simulation box. The 2.5 nm vacuum is used to ensure no self-interaction
between slabs, and the slab-thickness is used to mimic an experimental
surface of a bulk crystal. Using the energies of perfect bulk and surface
structures, surface energies for a specific plane are calculated. We should
point out that only unreconstructed surfaces without any surface-
segregation effects are computed, as our high-throughput approach does
not allow for taking into account specific, element dependent reconstruc-
tions yet. Phonon structures are generated mainly using the Phonopy
package interface76.

Machine learning training
Machine learning models are mainly trained using Scikit-learn61, Keras62, and
LightGBM63 (TensorFlow backend) software. For DFT generated scalar data
such as formation energies, bandgaps, exfoliation energies etc. the crystal
structures are converted into a Classical Force-field Inspired Descriptors
(CFID) input array and the DFT data is used as target data, which is then train-
test split in a ratio of 90: 10. Preprocessing such as ‘VarianceThreshold’,
‘StandardScalar’ are used before ML training. Regression models’ perfor-
mance are generally reported in terms of Mean Absolute Error (MAE) or r2,
while that for classification models using the Receiver Operating Character-
istic (ROC) Area Under Curve (AUC) value which lie between 0.5 and 1.0.
Several other analyses such as feature importance, k-fold cross validation and
learning curve are carried out after the model training. The trained model is
saved in pickle and joblib formats for model persistence. All the web-apps are
developed using JavaScript, Flask, and Django packages69.

DATA AVAILABILITY
JARVIS-related data is available at the JARVIS-API (http://jarvis.nist.gov), JARVIS-DFT
(https://jarvis.nist.gov/jarvisdft/), JARVIS-FF (https://jarvis.nist.gov/jarvisff/), JARVIS-ML
(https://jarvis.nist.gov/jarvisml/) websites. The metadata is also available at the
Figshare repository, see https://figshare.com/authors/Kamal_Choudhary/4445539.

CODE AVAILABILITY
Python-language based codes with examples are available at JARVIS-tools page:
https://github.com/usnistgov/jarvis.
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