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Abstract: This work focuses on the development of nanoparticle-based layer-by-layer (LbL) coatings
for enhancing the detection sensitivity and selectivity of volatile organic compounds (VOCs) using on-
chip mid-infrared (MIR) waveguides (WGs). First, we demonstrate construction of conformal coatings
of polymer/mesoporous silica nanoparticles (MSNs) on the surface of Si-based WGs using the LbL
technique and evaluate the coating deposition conditions, such as pH and substrate withdrawal
speed, on the thickness and homogeneity of the assemblies. We then use the modified WGs to achieve
enhanced sensitivity and selectivity of polar organic compounds, such as ethanol, versus non-polar
ones, such as methane, in the MIR region. In addition, using density functional theory calculations,
we show that such an improvement in sensing performance is achieved due to preferential adsorption
of ethanol molecules within MSNs in the vicinity of the WG evanescent field.

Keywords: layer-by-layer; mesoporous silica nanoparticles; nanocoatings; mid-infrared gas sensing

1. Introduction

Mid-infrared (MIR) spectroscopy can achieve high selectivity waveguide (WG)-based
devices for gas sensing by measuring absorption at the characteristic vibrational frequencies
of different analytes [1,2]. This ability is advantageous for MIR on-chip small form factor
optical sensors when compared to other gas sensing techniques, such as high selectivity
but larger form factor in gas chromatography mass spectroscopy (GC-MS) systems [3,4] or
a smaller form factor but lower selectivity in metal-oxide semiconductor (MOS) [5-7] and
electrochemical sensors [8]. The past decade has seen an increased focus on miniaturization
of the conventional bench top MIR instrumentation toward enabling on-chip waveguide
detection in order to achieve high selectivity and sensitivity in small form factor portable
devices [9,10].

However, achieving high sensitivity while preserving selectivity is challenging for
on-chip MIR gas sensing. In our prior work, MIR detection sensitivity remained low when
bare, unmodified Si-based on-chip WGs were brought in contact with gaseous analytes [11].
This is due to the intrinsically low concentration of analyte molecules in the vapor phase
and the limited overlap between the MIR evanescent field (EF) from the on-chip waveguide
and the environment. One way to enhance detection sensitivity is to use WG materials
with lower refractive indices than Si (such as SizNy) to create a larger overlap between
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the EF and the surrounding environment [12,13]. However, this approach generally only
leads to limited improvements in sensitivity. Another approach is to use coatings to
concentrate gas molecules within the EF of a WG. Thin organic/polymeric coatings have
been mostly implemented in the conventional MIR bench top approach for capturing
analytes from fluids [14-17]. Yet, very few other studies with organic coatings have been
used for detecting gaseous analytes, since they typically fall short due to their poor ability to
concentrate gas molecules close to EF. In one successful example, detection of CO; gas was
facilitated by its reaction with amine groups in the tetraethylenepentamine coatings [18,19].
However, the use of organic/polymeric coatings to detect gases other than CO;, such as
volatile organic compounds (VOCs), remains challenging because organic coatings have
similar functional groups to those in VOCs resulting in a spectral overlap. In our recent
work, we developed submicron all-nanoparticle coatings for MIR on-chip detection of
acetone vapors [20]. The use of inorganic particles rather than polymers in the coating was
a promising solution because it overcame the previous shortcomings by having a wide MIR
range transparency and a high surface area to volume ratio enabling the concentration of
gaseous biomarkers at the vicinity of the EF [20,21]. The coating deposition was enabled by
the layer-by-layer (LbL) technique, which provided good substrate adhesion and precise
control over film thickness and composition as compared to other coating techniques such
as drop-casting, spin-coating and spray-coating [22-24].

In this study, we aim to further develop this strategy by employing a new coating
of highly porous, well defined, mesoporous silica nanoparticles (MSNs) to concentrate
gas molecules in the vicinity of Si WGs for enhanced detection sensitivity. This strategy
offers an added advantage of providing polarity of the surface silanol groups of MSNs that
selectively adsorb and concentrate polar gas molecules. Similar silica-based materials were
previously explored as coating components to create functional coatings for gas sensing
using quartz crystal microbalance (QCM), fiber-optics, ultraviolet-visible spectroscopy,
photoluminescence, refractometry and electrical detection [25-30]. However, to our knowl-
edge, LbL assemblies of MSNs for MIR on-chip gas sensing applications have not been
explored. This work is also distinct from other WG-based technology used for super
resolution imaging, optical filtering and telecommunications [31-33]. Thus, this paper
illustrates the advantages of using the LbL technique for a specific polymer/nanoparticle
submicron coating system composed of branched polyethylenimine/mesoporous silica
nanoparticles (BPEI/MSNs). The developed coatings were then subjected to calcination to
remove BPEI for improved transparency in the MIR region. The effect of solution pH and
substrate withdrawal speed on coating quality, morphology and thickness is thoroughly
characterized in order to optimize surface coverage with mesoporous particles. Finally,
the deposited all-inorganic MSN coatings were applied to Si waveguides to explore their
ability to provide sensitivity and selectivity enhancement in detecting ethanol vapors
versus methane gas.

2. Materials and Methods
2.1. MSNs Synthesis and Characterization
2.1.1. MSNs Synthesis

High purity cetrimonium bromide (CTAB, CH3(CH3)15N(Br)(CH3)3) and ammonia so-
lution (NH4OH, 28-30%) were purchased from VWR International Co. (Radnor, PA, USA).
Tetraethylorthosilicate (TEOS, 99.99%), pluronic F-127, branched polyethyleneimine (BPEI,
M,y 750 kDa) and ethanol were received from Sigma Aldrich Chemicals Co. (St. Louis, MO,
USA). Ultrapure Milli-Q water, deionized (DI), (MilliporeSigma Co., Burlington, MA, USA)
with a resistivity of 18.2 M()-cm was used in all experiments. All materials were used with-
out further purification. Silicon (Si) wafers (100 orientation, P/B doped) were purchased
from WaferPro Inc. (Santa Clara, CA, USA). Before use, wafers were precleaned using
ultraviolet (UV) light and concentrated sulfuric acid to remove organic contaminants. The
pH of the deposition solutions was adjusted using diluted concentrations of hydrochloric
acid (HCI) and sodium hydroxide (NaOH).
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MSNs were synthesized using the modified Stober method [34]. In brief, MSNs were
prepared as follows: 0.5 g of CTAB and 2.05 g of F-127 were dissolved in a mixture of
96.0 mL of DI water, 43.0 mL of ethanol and 11.2 mL of ammonia solution by stirring at
room temperature. After the dissolution was completed, 1.9 mL of TEOS was added in
one shot. The mixture was then stirred for 1 min at 1000 RPM and left undisturbed for
24 h at room temperature to allow silica condensation and formation of the mesoporous
network. The white precipitate formed after 24 h was then recovered and washed with
DI water twice via centrifugation (14,000 RPM) at room temperature (HERMLE Z 216 MK,
Gosheim, Germany). Finally, the collected precipitate was dried at 343 K for at least 12 h.
The resulting powder was grinded in a ceramic mortar, and calcinated for 5 h at 823 K
in air.

2.1.2. MSNs Characterization

The morphology of MSNs was identified using transmission electron microscopy
(TEM, JEOL1200 EX at 100 kV, JEOL USA Inc., Peabody, MA, USA). The samples were
prepared by casting a drop of a MSN aqueous solution (0.2 wt.%, pH = 9) on copper square
grids (EMS 400-CU, VWR International Co., Radnor, PA, USA). Excess solution was then
removed with a filter paper, and the samples were dried at room temperature for at least
12 h before imaging. The Image] open source software (imagej.net, ImageJ 1.52a) was used
to determine diameters of 200 nanoparticles. Hydrodynamic diameters of MSNs were
measured by dynamic light scattering (DLS) (Zetasizer Nano ZS, Westborough, MA, USA).
In addition, a zeta potential analyzer, included in the Zetasizer Nano ZS, was used to
measure zeta potential of MSNs using electrophoretic light scattering. To that end, 0.2 wt.%
aqueous solutions of MSNs at pH 7, 8 and 9 were injected in folded capillary zeta cell
cuvettes to perform hydrodynamic diameter and zeta potential measurements. Powder
X-ray diffraction (XRD) measurements of the synthesized MSNs were performed using a
Bruker D8 da Vinci instrument (Madison, WI, USA) fitted with a Cu source and a LynxEye
XE detector (Madison, WI, USA) in Bragg-Brentano (theta-theta mode). Surface area and
pore size of MSNs were determined via Brunauer—-Emmett-Teller (BET) method [35] based
upon nitrogen (N;) adsorption isotherm. The N, isotherm was collected at 77 K on a
Micromeritics ASAP 2420 instrument (Micromeritic Instrument Corp., Norcross, GA, USA).
Prior to the N; adsorption and desorption measurements, the MSN powder sample was
activated at 120 °C for 10 h under high vacuum (<100 pbar).

2.2. BPEI/MSN Coating Assembly and Characterization
2.2.1. BPEI/MSN Coating Assembly

Coating assembly deposition was performed on regular crystalline Si (111) substrates.
The coatings were assembled using the LbL technique under controlled and conventional
dipping conditions. The Si substrates were first immersed in a 0.2 mg/mL BPEI solution of
selected pH (7, 8 or 9) for 7 min of equilibration time before substrate withdrawal. This first
step was followed by thorough rinsing in DI water. Then, these substrates were immersed
in 0.2 wt.% MSN aqueous solution of selected pH (7, 8 or 9) for 7 min and thoroughly
rinsed. This four-step dipping process represents one bilayer (BL) deposition. To explore
the effect of pH on coating deposition, all the dipping solutions and DI water used for
rinsing were kept at the same pH (7, 8 or 9). For controlled substrate withdrawal, the
substrate withdrawal speed was varied at 0.001, 0.01, 0.1 and 1 cm/s. For comparison
purposes, a conventional dipping technique was also performed, where the substrates
were withdrawn manually in a fast and uncontrolled manner.

2.2.2. BPEI/MSN Coatings Characterization

A M-2000 spectroscopic ellipsometer (J.A. Woollam Co., Lincoln, NE, USA) was used
to determine the thickness of the assembled coatings on Si substrates. Data analysis
was done using the CompleteEASE software package (version 653). Measurements were
performed at wavelengths from 400 to 1000 nm and at angles 45°, 55° and 65°. The data
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obtained were fitted using the grade layer Cauchy model, which assumes that the real part
of the refractive index (1) can be described as follows:

n(?\):A—F%—F}\% 1)
where A, B and C are constants and A is the wavelength of the incident light. The index of
refraction was determined as reported as #n (A) = A due to the negligible contributions of
the B and C terms in the above equation.

The coverage and the maximum topographical thickness of MSN coatings were
measured using top-view and cross-sectional scanning electron microscopy (SEM) images,
respectively, collected by a JSM-7500F (JEOL USA Inc., Peabody, MA, USA) instrument. For
cross-sectional SEM imaging, the wafers were cut using a diamond pen. The images were
taken using an accelerating voltage of 5 kV and emission current of 10 pA. The working
distance was 12 and 15 mm for top-view and cross-sectional SEM imaging, respectively.
Prior to imaging, samples were sputtered with 3 nm Pt/Pd coating to minimize charging
and to obtain better quality images. Coverage and cross-sectional thickness analyses were
done using the Image] software for 10 images per deposition condition.

2.3. Molecular Dynamics (MD)/Density Functional Theory (DFT) Simulations of Ethanol and
Methane Adsorption on the Surface of MSNs

First-principles density functional theory (DFT) [36,37] calculations of the surface
adhesion were carried out using the Vienna ab initio simulation package (VASP ver-
sion 5) [38,39]. All the DFT calculations employed the Perdew—Burke-Ernzerhof (PBE) [40]
exchange-correlation functional within the generalized gradient approximation. All struc-
tural relaxations were performed until atomic force convergence of 0.02 eV/A and total
energy convergence of 1 x 107° eV/A were reached. The plane-wave cutoff was set to
520 eV with a I'-centered k-points grid of 1 x 1 x 1 due to the large supercell of the slab
model used in the calculations. Dipole correction was included to remove the artificial inter-
actions from the periodic images due to the periodic boundary condition in the plane-wave
DFT calculations [41,42].

An amorphous 5iO; (a-SiO,) slab was constructed using a combination of molecular
dynamics (MD) and DFT following a similar method as described by Ewing et al. [43]. First,
a cubic FCC SiO; structure consisting of 96 atoms was heated to 5000 K and equilibrated
for 500 ps, and then rapidly cooled to 300 K at a rate of —0.47 K/ps and held for 100 ps
using the large-scale atomic/molecular massively parallel simulator (LAMMPS) [44] and
Tersoff interatomic potential [45]. The rapidly cooled a-SiO, structure was further relaxed
using DFT, and a surface slab was then created by removing atoms at the top /bottom of
the cell and adding a vacuum layer of 15 A along the surface normal with the slab centered
in the unit cell. O and H atoms were then added to the unsaturated Si and O atoms on
the surface to functionalize the surface with silanol (5i-OH) groups. The functionalized
slab was further relaxed to yield a-SiO, surface by relaxing the top SiO; layer of 5.5 A near
the functionalized surface and fixing the bottom SiO, layer of 5.5 A. To identify potential
binding sites on the a-SiO; surface, the adsorbent molecule was systematically placed at
different initial positions over the surface with the system subsequently relaxed to allow
the molecule to migrate to low energy binding sites. The system with the lowest energy
was used for the subsequent adsorption energy calculations.

2.4. Detection of Ethanol Vapor and Methane Gas Using Functionalized Amorphous Silicon
(a-Si) Waveguides

The a-Si ridge waveguides were fabricated using a complementary metal-oxide-
semiconductor (CMOS) compatible process. The images of the a-S5i waveguides were
acquired by a Tescan FERA-3 model SEM (Brno-Kohoutovice, Czech Republic). The images
were taken using an accelerating voltage of 10 kV and a working distance of 9 mm. The
dimensions of the a-Si waveguides were 10 pm in width and 1 um in height. Smooth
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Frgure 52). Finally, the most important characteristics of MSNs exploited in this study—the
large surface area and porosity of MSNs—were determined using the BET method [35].
These measurements yielded a surface area of 1103.81 m?/g with a pore size diameter of
2.4 nm calculated using the BJH model. Supplementary Materials Figure S3 presents an
adsorption isotherm of nitrogen on the surface of MSNs as a reference.
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loopiness of the BPEI priming layer provides more surface area for negatively charged
MSNSs to “stick” [51-53]. As a result, ellipsometric thickness measured after deposition
also increased with pH (Supplementary Materials Figure S5). The largest amount of MSN
was deposited at pH 9 using controlled dipping at 0.001 cm/s when the BPEI layer was
the thickest (3.6 nm vs. 1.0 nm for conventional dipping at the same pH). Supplementary
Materials Figure S6 schematically shows how the deposition pH of the precursor layer
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bilayers, capillary forces seem to further aid deposition of the MSN within these coatings.
3.3. MD/DFT Simulation of Adsorption of Ethanol and Methane Gas at the Surface of MSNs

To explore the ability of surface-immobilized MSNss to selectively adsorb polar and
nonpolar gas molecules, theoretical simulations were performed to guide selection of
analyte molecules followed by experimental measurements. These simulations were
performed for ethanol as a representative polar molecule, and methane as a representative
nonpolar gas molecule. Specifically, the adsorption energy (E,4s) for ethanol and methane
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absorption was low (0.0107 & 0.001) for the bare WG, and showed a modest 2-fold increase
to 0.0189 = 0.005 with the coating. These results suggest that our polar MSN surfaces were
more efficient in concentrating polar compounds (ethanol) versus non-polar compounds
(methane) but did enhance the sensitivity of both gases relative to the bare waveguide
at their absorption wavelength maximums. In comparison to our prior work [20], MSNs
surpasses the performance of spherical solid nanoparticles utilized for polar vapors (such
as acetone) in terms of stability of the measurements and enhancement factor. This can
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Figure S5: Ellipsometric thickness of 1-BL coatings (BPEI/MSN) deposited at pH 7, 8 and 9 using
conventional dipping and optimized controlled dipping at 0.001 cm/s. Fitted refractive index of
these films is 1.2, Figure S6: Schematic representation of the effect of BPEI deposition pH on surface
coverage with MSNs, Figure S7: Top-view SEM image of MSNs deposited directly on bare Si substrate
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Figure S9: Comparison of controlled and conventional dipping ellipsometric thickness as a function
of number of bilayers (A). and cross-sectional SEM images of 1- and 5-BL films at pH 9 (B-E): 1-BL
film at 0.001 cm/s (B); 5-BL film at 0.001 cm/s (C); 1-BL film using conventional dipping (D); and 5-BL
film using conventional dipping (E). Refractive indices of these films were fitted accordingly. Cross-
sectional SEM thicknesses were estimated using Image] software analysis of 10 images collected
from samples prepared by using several repeated coating depositions, Table S1: Zeta potentials
and hydrodynamic diameters for MSN 0.2 wt.% aqueous solutions at pH 7 and 8, Table S2: Dry
ellipsometric thickness of a BPEI priming layer as a function of solution pH and substrate withdrawal
conditions, Table S3: Total energy and adsorption energy of ethanol and methane molecule on a-5iO,
surface with and without dipole correction.
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