Tolerating Defects in Low-Power Neural Network
Accelerators Via Retraining-Free Weight Approximation

FATEME S. HOSSEINI, FANRUO MENG, and CHENGMO YANG, University of Delaware, USA
WUJIE WEN, Lehigh University, USA
ROSARIO CAMMAROTA, Intel, USA

Hardware accelerators are essential to the accommodation of ever-increasing Deep Neural Network (DNN)
workloads on the resource-constrained embedded devices. While accelerators facilitate fast and energy-
efficient DNN operations, their accuracy is threatened by faults in their on-chip and off-chip memories, where
millions of DNN weights are held. The use of emerging Non-Volatile Memories (NVM) further exposes DNN
accelerators to a non-negligible rate of permanent defects due to immature fabrication, limited endurance,
and aging. To tolerate defects in NVM-based DNN accelerators, previous work either requires extra redun-
dancy in hardware or performs defect-aware retraining, imposing significant overhead. In comparison, this
paper proposes a set of algorithms that exploit the flexibility in setting the fault-free bits in weight memory to
effectively approximate weight values, so as to mitigate defect-induced accuracy drop. These algorithms can
be applied as a one-step solution when loading the weights to embedded devices. They only require trivial
hardware support and impose negligible run-time overhead. Experiments on popular DNN models show that
the proposed techniques successfully boost inference accuracy even in the face of elevated defect rates in the
weight memory.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have gained increasing popularity in many real-world applications
spanning from image recognition and natural language processing, to life sciences, genomics, self-
driving cars, and big data analytics. While the opportunities seem boundless, the harsh reality is
that DNN models not only require the storage for millions of weights but also drastically escalate
the system’s power/energy consumption. To accommodate more DNN workloads on resource-
constrained embedded devices, a lot of research attention has been paid to develop energy-efficient
hardware accelerators, including both traditional ASIC and FPGA-based accelerators [10, 16, 27, 44]
as well as emerging processing-in-memory (PIM) accelerators [14, 24, 40].

The performance and energy consumption of a DNN accelerator are largely determined by
its underlying memory technology and architecture. As traditional SRAM and DRAM technolo-
gies are power-hungry, emerging Non-Volatile Memory(NVM) technologies such as Phase Change
Memory (PCM) [2], Resistive RAM (RRAM) [46], and Spin-Transfer Torque RAM (STT-RAM) [31]
have been proposed for their usage in battery-constrained embedded devices. The in-situ comput-
ing ability of NVMs also makes them ideal for conducting Multiplication-and-Accumulation (MAC)
- the fundamental computation in DNNs. Despite these benefits, NVMs are known for their slow
write speed, high write energy, and limited write endurance [8, 15, 18, 32, 49]. To benefit from differ-
ent memory technologies while overcoming their limitations, hybrid memory architectures have
been proposed [18, 23, 37]. Such designs are well-suited for DNN accelerators, as SRAM/DRAM
can be used to buffer the frequently updated intermediate results to offset NVM write performance,
energy and endurance limitations, while NVMs can be used to hold weight values that are meant
to be reused and hardly updated when classifying different images [9, 29, 33, 42].

From the reliability point of view, traditional and emerging memory technologies are subject
to different challenges as well. Traditional SRAM and DRAM, given their nanoscale feature size
and reduced noise margin, are exposed to transient faults caused by alpha-particle strikes, cosmic
rays, or radiation from radioactive atoms [30], while permanent faults are not a major concern
given their relatively mature manufacturing process (~12 failures in 1 billion hours [6]). Emerging
NVMs, on the other hand, are less vulnerable to transient faults but suffer from a more significant
rate of permanent faults (also called defects') due to immature fabrication, imprecise programming,
limited write endurance, and aging [1, 3], e.g., under the impact of process variation, the permanent
fault rate of PCM cells can go up to 1% due to the limited endurance [28]. As the accelerator ages,
defects can accumulate in the memory, resulting in a dramatic accuracy drop that turns the DNN
output to random guesses [48].

While transient faults in SRAM/DRAM can be detected and/or corrected via error correction
codes (ECC), ECC is not desirable for tolerating permanent faults, where the state of a memory
cell is stuck at either 0 or 1. The constant bit-checking and correction process enforced by the
unrecoverable nature of defects would result in significant performance and energy cost [36] —
even for DRAM, ECC is reported to cause 2.5X slow down in the average execution time [12].
What’s worse, ECC only offers limited error correction capability. If a memory line has more than
one stuck-at-faults, standard ECC will incorrectly modify a non-faulty bit. For these reasons, ECCs
are not preferable for tolerating permanent faults in NVMs, and other techniques such as Error-
correcting-pointers (ECPs) [38], defect-aware mapping, pruning, or retraining have been proposed.
However, none of them is a proper fit for resource-constrained devices as they either rely on
performing extremely expensive, time-consuming, and unscalable retraining process [4, 25, 26, 48,
52] or require an extra level of redundancy in the memory or complex routing operations [4, 19,
21, 25, 38, 47].

!In this paper, the terms of faults and defects both refer to permanent hardware faults and are used interchangeably.
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In comparison, the goal of this work is to develop a light-weight and retraining-free solution to
mitigate the accuracy drop in DNN models induced by defects in NVMs. Our work is driven by
two major characteristics of resource-constrained DNN accelerators: limited memory space which
demands full access to all the available memory cells without eliminating defective ones, and lim-
ited battery lifetime which favors accessing contiguous memory space where DNN weights are
not selectively remapped to different locations. To meet these requirements, we propose to utilize
defective memory cells and mitigate their adverse impact via value approximation. Specifically,
we develop three algorithms to reduce the deviation of DNN weights from their expected val-
ues via careful manipulation of the fault-free bits. This deviation reduction process is performed
before loading the weights to the hardware, i.e., at deployment-time, thus minimizing the associ-
ated hardware and runtime overhead.

The rest of this paper is organized as follows: Section 2 reviews the related work on defect
tolerance in neural network accelerators and highlights the main differences with our work. Sec-
tion 3 provides the motivation behind this work and describes technical details of the proposed
algorithms. Section 4 presents the experimental setup and results, while Section 5 concludes the

paper.

2 PRELIMINARIES
2.1 Impact of Faults on DNN Inference Accuracy

As mentioned before, a DNN accelerator with hybrid memory architecture is mainly subject to two
types of faults, transient faults in SRAM/DRAM which affect intermediate computation results, and
as well as permanent faults in the emerging NVM which may corrupt weight values. This work
focuses on the second type for two major reasons. First, transient faults in the intermediate results
only affect the inference of one input, whereas the impact of faults in weight values is persistent to
all inputs. Second, unlike transient faults that can be detected and/or corrected via error correction
codes (ECC), permanent faults are much difficult to tolerate due to their unrecoverable nature.
As a result of their immature manufacturing, imprecise programming, limited write endurance,
and aging [1, 3, 28], the rates of permanent defects in emerging non-volatile memory technologies
are expected to be high. In [28], it is reported that the rate of stuck-at-faults in PCM can quickly
reach 1% due to the limited endurance. The defect rate in other NVM technologies can be even
higher, e.g., RRAM devices are reported to show up to 10.79% permanent faults (9.04% stuck-at-1s
and 1.75% stuck-at-0s) [1, 3]. While traditionally neural networks are expected to show graceful
degradation in their accuracy in the presence of noisy inputs or small variations/errors in the
underlying hardware [39, 43], this expectation no longer holds in the face of the elevated fault rates
in emerging NVMs. In fact, recent work shows that DNN accuracy can be significantly affected
by the accumulation of hardware faults [13, 34, 48, 50]. As a concrete example, Figure 1 illustrates
the impact of faults in network weights on the accuracy of two popular DNNs trained and tested
on well-known datasets: VGG-16 for CIFAR-10 dataset (with 10 output classes) and Resnet-18 for
Imagenet dataset (with 1000 output classes) both under 16-bit quantization level.? The models are
evaluated under fault rates of 0 to 5%, where x% fault-rate means that each memory cell has x%
probability to be faulty. Each fault has roughly 50% chance to alter the corresponding quantized
weight value (with the other 50% chance of being silent). More details on the experiment setup is
described in Section 4.1.1. As shown, VGG-16’s accuracy drops from ~93% in the fault-free case to
~11% under 0.1% fault rate, at which the model becomes practically useless. The accuracy drops to
~10% at higher fault rates which is equivalent to the random guess accuracy for Cifar-10 (and thus

2Quantization-level is the number of bits used to represent one weight value in integer/fixed-point format.
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Fig. 1. Accuracy vs fault-rate in (a) VGG-16 tested on CIFAR-10 dataset, and (b) Resnet-18 tested on Ima-
genet.

does not go lower afterwards). The accuracy of Resnet-18 drops even more sharply, from 64.9%
to 4.1% under 0.1% fault rate. It reaches the random guess accuracy for Imagenet (i.e., 0.1%) once
the defect rate elevates to 0.5%. These results are consistent with the error rate v.s. DNN accuracy
sensitivity findings reported in [35]. These data indicate that utilizing emerging memories in DNN
accelerators is not practical unless effective and efficient mitigation of such defects is provided.

2.2 Related Work

Previous work on NVM defect tolerance can be divided into two categories: the work designed to
tolerate defects in non-volatile memory independent of the systems they are deployed in, and the
technique specifically designed for DNN accelerators.

One general approach for tolerating defects in NVMs is Error-correcting-pointers (ECPs) [38],
which replaces a defective memory line with a clean line and uses a pointer to record the mapping
so that accesses to the defective line can be re-directed. This technique requires two memory ac-
cesses to obtain the data, one to the original defective line and one to the clean line. Unfortunately,
this two-step redirection is not desirable for DNN accelerators that rely on maintaining a regular
structure for speeding up multiple convolutional operations in parallel. Moreover, ECP requires
custom NVM devices [51] and relies on the availability of extra storage. Specifically, to mitigate
one defective cell, it needs one replacement cell, an N-bit pointer to record the address of the orig-
inal data, and another bit to indicate all the error-correction entries are in use [38]. This is very
costly for DNNs with millions of weights, as a small increase in the defect rate would translate
into a significant number of faulty weights that require remapping.

DNN-specific defect mitigation techniques typically require the accelerator’s defect map
to be obtained a priori, which can be achieved with existing defect detection and locating
schemes [3, 11, 17, 48]. These techniques mainly adopt an offline testing strategy that writes spe-
cific values to memory cells, reads them back, and compares the read values to reference voltages
to identify stuck-at-faults. The overhead of such testing processes depends on the test granularity
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Table 1. Comparison of Defect Mitigation Techniques for NVM-based
DNN Accelerators

Technique Require Require Require
retraining? | extra storage? | extra hardware?

ECP [38] X v v

[25, 26, 48, 52] Y, X X

[19, 21, 47] X v 2,

[4, 25] N x N

Proposed X X X

and the size of the memory-under-test. For instance, the testing method in [11] performs writes to
each memory cell and imposes high overhead. The approaches in [3, 17] reduce testing overhead by
simultaneously writing a group of cells. However, such an offline testing strategy is destructive, i.e.,
it overwrites the original values of the memory cell, and DNN weights need to be reprogrammed
after testing. Given the high programming overhead of NVMs, offline testing is not cost-effective
enough to be used as on-line fault detection techniques. In comparison, [48] proposes an on-line
defect detection method which performs quiescent-voltage comparison for fast and nondestructive
testing of large memories, e.g., a 1024 X 1024 RRAM crossbar can be tested within 70 test cycles.

Once the accelerator’s defect map is obtained with the aforementioned offline and online testing
methods, DNN-specific defect mitigation techniques retrain the model to silence the effect of the
defects [4, 25, 26, 48, 52]. The work in [52] proposes a defect-aware pruning and retraining tech-
nique for systolic array-based neural network accelerators. In [4, 25, 26, 48], the device variations
in crossbar-based DNN accelerators are compensated during a defect-aware back-propagation
process of network training. However, the original training data set may not always be available to
the deployment process. Even if the data set is available, retraining would still be time-consuming
and requires a considerable amount of extra computing power especially for large DNNs [41, 45].
What is more, as retraining targets a given defect map, it is not a scalable solution in the typical
scenario of a DNN trained once in the cloud and deployed onto many accelerators that are
heterogeneous and display unique defect maps due to process variation and aging.

Another class of DNN-specific defect mitigation techniques rely on an extra level of redundancy
in DNN accelerators to handle defects [19, 21, 47]. In [19, 21], a complex bypassing of faulty units
in the systolic array accelerators is proposed, which not only requires an additional set of routers
and registers but also imposes significant overhead as an entire column/row of processing elements
should be eliminated per fault. The crossbar-based accelerators in [47] map each weight to two
memory cells so that the error in one cell can be compensated by tuning the other. This solution
comes at a cost of 2X storage overhead and still cannot handle the extreme case of both cells
being faulty. The techniques in [4, 25] do not require extra storage, but perform retraining as well
as permuting memory crossbar’s columns to mask the stuck-at faults at deployment-time, which
require complicated and costly routing elements.

Table 1 summarizes and compares existing defect mitigation techniques for NVM-based DNN
accelerators. As shown, both ECP and DNN-specific approaches have limited applicability to
resource- and energy-constrained embedded devices as they depend either heavily on performing
costly retraining operations or on the availability of expensive hardware or extra storage. In con-
trast, this paper presents a light-weight defect mitigation technique for embedded devices which
can rescue the accelerator’s accuracy without retraining and requires no storage overhead and
negligible hardware overhead.
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Fig. 2. (a) Large weight value deviation due to the non-silent defect at bg, (b) Reduced deviation via Add/Sub
Approximation.

3 PROPOSED TECHNIQUES

Our work targets DNN accelerators that use traditional SRAM/DRAM and emerging NVM to
store the intermediate results and network parameters (i.e., weights), respectively. We assume
that SRAM/DRAM memory is equipped with ECC for fault detection and correction, and focus on
mitigating the adverse impact of NVM defects that deviate DNN weight values and induce accu-
racy drop. The location of defects in NVM can be obtained using one of the defect detection and
locating techniques [3, 11, 17, 25] reviewed in Section 2.2.

The proposed solutions are developed based on the fundamental observation that a defect devi-
ates a weight value if and only if it is non-silent i.e., the value to be stored is not the stuck-at faulty
value. Figure 2(a) presents an illustrative example from a 8-bit quantized model. The memory byte
has two defective cells, a stuck-at-1 (sal) cell at bs position and a stuck-at-0 (sa0) at bs. The defect
at bs is silent but the one at by is non-silent. As a result of this non-silent fault, the value of 12
(instead of 76) is used for computation. When many weights are influenced by defects, the errors
accumulate, leading to a significant drop in the model’s inference accuracy.

Based on this observation, we propose three algorithms that manipulate the flexibility in modi-
fying the fault-free bits to approximate weight values as close as possible, thus alleviating defect-
induced accuracy drop. The problem is formulated below:

ProBLEM 1. Given a Q-bit weight W:(bo_1...b1bo) and the defect map of the corresponding memory
location D: (dp-1...d1do) | d € {0,1,X} where each bit has a value of 1 (sal), 0 (sa0), or is clean (X),
find W’:(b’Qfl...b{bé) |b" € {0, 1} such that all the defects in D are silent when storing W' in memory
and W’ closely approximates W.

3.1 Add/Sub Approximation

One critical observation is that the impact of a non-silent defect is equal to adding/subtracting 1
to/from the corresponding bit in the weight value. Such deviation can be maximally compensated
by altering the lower-order fault-free bits to 0/1. Figure 2(b) shows how the add/sub approximation
successfully reduces the weight value deviation compared to Figure 2(a). Since the leftmost non-
silent defect is the sa0 fault at bs, two approximated values are created by adding/subtracting 64
to/from 76 and then resetting/setting the fault-free bits in by — bs to 0/1. Between the two created
values, 63 is closer to the original weight value of 76 and is hence selected to be written to memory.

A further examination shows that the decision on whether to add or subtract 1 can be made
without computing both approximated values. Specifically, as Algorithm 1 shows, one can
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Expected value Baseline stored value
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[ 22 > 77 (Invalid)
Approximated stored value
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Fig. 3. Add/Sub Approximation ineffectiveness for approximating a weight with sa1 fault at by.

ALGORITHM 1: Add/Sub Approximation

1: k « index of the leftmost non-silent defectin W,0 < k < Q-1
2: if by_; = 1 then

3 W — W + 2k

4: b]'.<—0forje[k—1,0]

5

6

7

: else
W w2k
bi « 1forj e [k—1,0]
8. if W’ is invalid then
9: W’ « approximate W using the other option

approximate a non-silent fault at bit position by based on the value of by_;: if br_; is a 1, then
adding 1 to by and resetting all the lower-order bits to 0 leads to a closer approximation, while the
subtracting-1 option is better if bx_; is a 0. This property can be observed in Figure 2(b) as well: as
bs is a 0, the closer approximation is to subtract 1 from bs and setting the fault-free bits in by — bs
to 1. This Add/Sub Approximation algorithm is formally presented in Algorithm 1 (lines 1-7).
The Add/Sub Approximation algorithm works in most cases with the following three exceptions:
(1) if the approximated value falls outside the quantized weight value range, (2) if add/subtract op-
eration needs to change the value of higher-order silent faults, or (3) if bx_; is defective. In these
cases, the current add/subtract option does not generate a valid approximation, and the algorithm
approximates the weight value via the subtract/add operation instead (lines 8-9 of Algorithm 1).
Figure 3 shows an example of an invalid approximation for an 8-bit weight value of 51 wherein b;
is sal and causes a deviation of 128 (179-51). Since the value of bg is 0, the algorithm chooses to
subtract 1 from the defective bit which, however, creates an invalid out-of-range result® of -77. As
a result, the algorithm has no choice but to approximate the value by adding 1 to b; which creates
the approximated value of 128. This example also shows the major drawback of Add/Sub Approxi-
mation: although the algorithm is capable of reducing the deviation in weight values, a non-silent
sal/sa0 fault at the high-order bits of a small/large weight value can still lead to a large deviation.

3.2 Flipping-based Approximation

If a non-silent defect locates in a high-order bit of the weight, its impact cannot be effectively
mitigated via manipulating the lower-order bits. Instead, our observation is that if all the bits of

3The example assumes that the quantized weights are unsigned numbers, however, the algorithm can be applied to 2’s
complement numbers as well.
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ALGORITHM 2: LSB Approximation

1. W« W

2: Flipped < 0

3: if LSB is fault-free and leftmost defect is non-silent then
4: b]le—bjforje[Q—l,O]

5 Flipped < 1

6: else if LSB is a sal fault then

7: bj’.<—1—bjforj€[Q—l,1]

8: Flipped < 1

9: if still non-silent defects remaining in W’ then
10: Use Add/Sub to approximate the leftmost remaining fault

11: by < Flipped

the weight are flipped and then stored in the memory, the non-silent defect will become silent.
While the idea, sounds simple, the major challenge is to cost-effectively encode the information
of whether a weight has been flipped or not, so that it can be conditionally flipped back at run-
time before being used in computation. We propose two approaches that encode the conditionally
flipping information directly into the network weight values without incurring any extra storage,
namely, LSB Approximation and Count-One (C-1) Approximation.

3.2.1 LSB Approximation. The LSB Approximation utilizes the weight’s Least Significant Bit
(LSB) to indicate weight-flips.* Algorithm 2 shows the approximation process. It assigns a Flipped
flag to each weight to indicate whether it has gone through the weight-flip operation. Initially
the flag is set to 0 (line 2). If the leftmost defect is non-silent, it flips the weight value bit by bit
and sets the flag to 1 (lines 3-5). The remaining non-silent defect, if any, is mitigated via Add/Sub
Approximation (lines 9-10). At the end, the value of LSB (by) is matched with the value of the flag
(line 11). The obtained weight W’ is then stored to memory. At run-time, the LSB approximation
technique reads the weight value and checks its LSB. The value is then flipped back if and only if
LSB =1.

Figure 4(a) demonstrates the ability of LSB Approximation in minimizing weight deviation for
the highest-ordered sal cell in the example of Figure 3. Here, b; is the leftmost defect and because
it is non-silent, the weight is flipped and the Flipped flag is set. Since there is no more defect, the
algorithm terminates by setting by to 1 which results in the value of 205 being stored in memory.
At run-time, the system reads the weight and checks its LSB. Since by is 1, it flips all the weight
bits and as a result, the value of 50 is used in computation which creates a minimum deviation
of 1 from the expected weight value of 51. Figure 4(b) shows the process of applying both LSB
Approximation and Add/Sub Approximation to the example in Figure 2, which has more than one
stuck-at faults in a weight. Integrating the two approximation approaches together reduces the
weight deviation from 13 (76-63) in Figure 2(b) to 6 (76-70).

It is important to note that LSB Approximation is uniformly applied to all the weights in the
network, regardless of whether they are faulty or not. This may lead to a minimum deviation in
the fault-free weight values as the LSBs of all fault-free weights are set to 0. While this minimum
deviation has probably negligible impact,® a more critical drawback is the case when the LSB itself

4The technique can also assign an extra bit per weight, however, here an existing bit is used to minimize the hardware
overhead.

5Such deviation can be avoided if an extra bit is used to encode flip/no-flip information per weight, or if the weights are
quantized to be 1-bit shorter and the LSB is not used during computation but only encodes flip/non-flip information.
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Fig. 4. (a) LSB Approximation successfully silences the sa7 fault in by, (b) LSB Approximation used together
with Add/Sub Approximation to reduce the deviation.

is defective. As shown in Algorithm 2 (lines 6-8), the weight has to be flipped/not-flipped according
to the LSB’s stuck-at value which may contradict the correction desired by the leftmost non-silent
defect. Figure 5(b) shows an example of this case where by and b7 are respectively non-silent and
silent sal faults. Without LSB Approximation, the value stored in memory would be 203. With
LSB Approximation, however, the weight has to be flipped since b is sal. This makes the defect
at b; non-silent and thus the algorithm will use Add/Sub Approximation to mitigate it. The final
weight value stored in memory is 129 and the value used in computation is 126, which is a larger
deviation from the expected value. This example shows that LSB approximation is limited by the
probability of conflicts caused by defective LSBs. Even if an extra bit is used to encode flip/no-flip
information per weight (or if the weights are quantized to be 1-bit shorter and the LSB is used to
encode flip/no-flip information), such conflicts still may occur since the extra bit can be faulty as
well.

3.22 Count-One (C-1) Approximation. Instead of relying on a single bit that may be faulty, C-
1 Approximation encodes the existence/absence of weight-flip via forming an odd/even number
of 1’s among all of the bits in a weight. This property is formed by selectively modifying the
lowest non-faulty bit in the weight, thus minimizing the possibility of conflicts. Algorithm 3 shows
the encoding process, which starts by assigning a 1-Count flag, that is initiated to “even” (line
2). Then, the leftmost defect is examined. If it is non-silent, the weight is flipped and the flag is
changed to “odd” (lines 3-5). The remaining non-silent defects, if any, are mitigated via Add/Sub
Approximation (lines 6-7). At the end, the algorithm ensures that the 1’s count property holds, by
checking the number of 1’s in the weight and the 1-Count flag value. If they are inconsistent, (i.e.,
the flag is odd/even while there are even/odd number of 1’s in the weight value), the rightmost
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Fig. 6. Procedural overview of the proposed techniques.

fault-free bit of the weight is flipped to enforce the property (lines 8-9). At run-time, the system
reads the weight value, counts the number of 1’s in it, and flips it bit-by-bit if any only if the count
is odd.

Figure 5(b) shows how the C-1 Approximation tolerates the two sal defects and reduces the
deviation from 76 (202 — 126) in Figure 5(a) to 1 (202 — 201). In the first step, the weight is not
flipped as its leftmost defect at by is silent. Next, Add/Sub approximation is used for the by defect,
which leads to an odd number of 1’s in the weight. Then, to make the C-1 property hold, the
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Fig. 7. (a) LSB Approximation read circuity, (b) C-1 Approximation read circuity.
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8: if (1-Count = odd and number of 1’s in W’ is even) or (1-Count = even and number of 1’s in
W’ is odd) then
9: Flip the rightmost fault-free bit of W’

rightmost fault-free bit b is flipped, generating the value of 201 for memory storage. At run-time,
the system reads the stored weight value and since it has an even number of 1’s, the system does
not flip it and uses 201 in computation.

The C-1 Approximation is expected to outperform LSB Approximation by minimizing the possi-
bility of conflicts — as long as there are fault-free bits, the weight can be well-approximated. Since
the technique relies on forming the C-1 property for all the weights, healing faulty weights also
comes at the cost of creating minor deviations in fault-free weights where the total number of 1’s
is not even. As will be shown in Section 4, such minor deviations will not overpass the benefit
obtained from the fine approximation of faulty weights.

3.3 Run-time Support

So far, we have demonstrated the ability of the three approximation algorithms in mitigating the
impact of permanent faults in accelerator memory. It is important to note that these algorithms
impose zero storage overhead and require minimal run-time support. Figure 6 summarizes the
steps taken at both deployment-time and run-time. Since deployment is a one-time process which
loads the DNN model’s parameters to the NVM memory, the proposed weight approximation al-
gorithms only bring in a one-time offline overhead. In terms of run-time support, the Add/Sub
Approximation requires no support as it relies entirely on deployment-time modification of the
weights, while the LSB and C-1 Approximation require selective weight bit flipping, which can be
achieved with very limited hardware added to the weight read circuity, as shown in Figure 7.
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Table 2. Target Datasets and Evaluated DNN Models’ Specifications, Accuracy, and Quantization

Dataset | DNN Layers | Weights | Accuracy | Accuracy after quantization
m -
CifarNet 18 1.25x10% | 78.39% of bits 3 16
CIFAR-10 Accuracy | 74.78% 78.28%
# of bits 8 16
- 6 .
Voot > 1510 93.32% Accuracy | 89.85% 93.32%
# of bits 16
- x 106 97%
Imagenet | Resnet-18 8 11 x 10 64.97% Accuracy o
m -
MNIST | LeNet 8 | 1.20x10° | 99.15% of bits 4
Accuracy 99.11%

To conditionally flip an N-bit weight in LSB Approximation, all bits of the stored weight value
are XOR-ed with the LSB (as a result, the LSB of the read value is always 0), which can be achieved
with N — 1 2-input XOR gates. Whereas, computing whether the number of 1’s is even or odd
in the C-1 Approximation requires one N-input XOR gate as well as N 2-input XOR gates to per-
form conditional weight-flip. Such hardware and timing overhead brought by these techniques is
negligible.

4 EXPERIMENTAL EVALUATIONS
4.1 Methodology

4.1.1 Benchmarks. The approximation algorithms proposed in this work are generally appli-
cable to any DNN workloads. To demonstrate its wide applicability, this section evaluates the
proposed techniques under three well-known datasets and four diverse DNN models - as repre-
sentatives of standard applications deployed on neural network accelerators. Table 2 shows the
data sets and the selected DNN structures, along with their total number of layers, total number
of weights, original accuracy (of floating-point models), and accuracy after quantization. The eval-
uated datasets include two object recognition sets, CIFAR-10 [20] and Imagenet [7], as well as
one handwritten digit classification set, MNIST [22]. CIFAR-10 consists of 60K 32 X 32 color im-
ages (50K training and 10K testing) that are classified into 10 classes; Imagenet dataset is the largest
dataset with 1.35M (1.2M training and 150K testing) 500 X 375 color images in 1000 classes; MNIST
has 70K 28 x 28 grey-level images (60K training and 10K testing) that are classified in 10 classes. As
our target systems are battery- and resource-constrained devices, our experiments are performed
on quantized DNN structures. Resnet-18 weights are quantized in 16 bits to retain maximum accu-
racy (as close as possible to the original floating-point model), while LeNet weights are quantized
in 4 bits. CifarNet and VGG-16 are evaluated under both 8-bit and 16-bit quantization levels to
further evaluate the impact of different quantization levels on the effectiveness of our solution.

4.1.2  Fault Injection Experiments. All the fault injection and accuracy assessment processes are
implemented in Keras [5]. All the quantized DNN models are evaluated under six different defect
rates ranging from 0.1% to 5%, where x% defect rate means that each memory cell has x% probability
to be a defect. For each combination of defect rate and quantization level, 20 different defect maps
are randomly generated.

One important consideration in fault injection studies is the distribution of different fault types.
While in some NVMs such as PCM, the chance of stuck-at-0 (sa0) vs stuck-at-1 (sal) faults is
50%-50%, in RRAM the probability of sal fault is 4X higher than sa0 as reported in [3]. Since in
most DNN models the majority of weight values are close to zero, the impact of sa0 faults is less
significant than sal faults. In other words, the asymmetric distribution with higher rate of sal faults
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Table 3. Average Ratio of Network Weights With 1 and 2+ Non-silent Faults Per Weight, e.g., 0.195% is
the Percentage of Network Weights with 1 Non-silent Fault when the Defect Rate is 0.1%

Quantization | Non-silent fault Defect rate (%)

level per weight 0.1% 0.2% 0.5% 1% 2% 5%

A-bit 1 0.195% | 0.389% | 0.967% | 1.925% | 3.791% 6.608%
2+ 0.000% | 0.001% | 0.003% | 0.013% | 0.054% 1.571%

8-bit 1 0.390% | 0.777% | 1.923% | 3.782% | 7.315% | 16.506%
2+ 0.001% | 0.003% | 0.016% | 0.065% | 0.253% 1.491%

16-bit 1 0.781% | 1.563% | 3.785% | 7.335% | 13.619% | 27.033%
2+ 0.003% | 0.011% | 0.071% | 0.279% | 1.065% | 6.020%

is more harmful to network accuracy and more difficult to recover from. Targeting the worst case,
our fault injection experiments adopt this asymmetric fault distribution, and the injected rates of
sal vs sa0 faults are 4:1.

To ensure the fairness of our fault injection setup, we performed detailed profiling of the gen-
erated defect maps. The obtained data confirm that faults are uniformly distributed across all bit
positions (from MSB to LSB). Moreover, the generated defect maps cover a diverse set of fault sce-
narios including various number of non-silent defects per weight. Table 3 reports the average ratio
of network weights with 1 and 2 (or more) non-silent faults. The data are averaged across different
models with the same quantization level, as the probability of faults per weight is only affected by
the quantization level and the defect rate,® not by the network structure or weight count. The data
shows that while the majority of network weights are fault-free, the probability of non-silent faults
per weight increases super-linearly as the quantization level increases. At a high defect rate, the
chance of having two or more non-silent faults in a single weight becomes significant, especially
for the 16-bit models.

4.2 Results

4.2.1  Accuracy Improvement. Our first set of experiments evaluate the efficacy of the three pro-
posed algorithms in rescuing the target DNN’s accuracy. Figures 8(a)-(b) and Figures 8(c)-(d) re-
spectively display the average accuracy of CifarNet and VGG-16 under two quantization-levels
and six defect rates. One can observe that both DNN structures are highly sensitive to the accumu-
lation of faults as their baseline accuracy drops sharply even under the lowest defect rate of 0.1%.
At 5% defect rate, the accuracy of CifarNet descends to 10% which is equivalent to the random
guess accuracy for Cifar-10 (as it has 10 classes), while the accuracy of VGG-16 drops to 10% even
at 0.1% defect rate.

Among the proposed techniques, C-1 Approximation consistently outperforms the other two in
both 8- and 16-bit CifarNet and VGG models. Generally, as the defect rate increases, the accuracy
of all the models drops across different approximation techniques. However, the higher the defect
rate, the better the C-1 Approximation is compared to the other two. Even at 2% defect rate, C-1
Approximation can deliver an accuracy of more than 70% for both 8- and 16-bit CifarNet models,
and around 90% for 8- and 16-bit VGG-16 models.

In comparison, Add/Sub Approximation, which requires no run-time support, is a favorable
choice for mitigating defect rates of 0.2% and lower. However, its performance gradually degrades
as the defect rate increases, and becomes less effective for all CifarNet and VGG-16 models once

®For a quantization level of n-bit and a fault rate of x%, the probability for an n-bit weight to have at least one faulty bit
is 1 — (1 — x%)"™. The data reported in Table 3 are lower than the theoretical values as only non-silent faults are counted.
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Fig. 8. Impact of the proposed techniques on the accuracy of CifarNet and VGG-16.

the defect rate is increased beyond 0.2%. This is because, as we discussed in Section 3.1 and illus-
trated in Figure 3, the impact of a non-silent fault in a high-order bit position cannot be effectively
mitigated via manipulating the lower-order bits in the weight. The probability of this case solely
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Table 4. Impact of the Proposed Techniques on the Accuracy of 16-bit Resnet-18

Fault rate(%)
0 0.1 0.2 0.5 1 2 5
Baseline | 64.92 | 4.05 | 0.24 | 0.10 | 0.10 | 0.10 | 0.10
Add/Sub Approximation | 64.92 | 63.55 | 62.25 | 55.48 | 30.07 | 0.35 | 0.10
LSB Approximation | 64.92 | 64.94 | 64.90 | 64.84 | 64.47 | 62.94 | 40.57
C-1 Approximation | 64.92 | 64.93 | 64.90 | 64.82 | 64.54 | 63.33 | 43.34

Technique

depends on the defect rate, not the quantization level. As a result, for the same network model,
Add/Sub Approximation behaves similarly across different quantization levels.

In terms of LSB Approximation, it displays quite diverse levels of effectiveness for 8- and 16-bit
models, as shown in Figure 8. For 8-bit models, LSB Approximation is consistently outperformed
by the other two techniques, while for 16-bit models it shows higher effectiveness, close to C-1
Approximation. The reason for this diverse behavior is that LSB Approximation needs to use one
bit per weight to record the flipping status which actually reduces the quantization level from N
to N — 1. For CifarNet and VGG-16, however, a minimum quantization level of 8-bit is required to
maintain acceptable accuracy. As a result, LSB Approximation causes a significant accuracy drop
for 8-bit models but not for the 16-bit versions. The figure also shows that for 16-bit networks,
the only case that LSB Approximation is not able to maintain high accuracy is VGG-16 under 5%
defect rate. This is because the 5% defect rate in 16-bit networks causes a high ratio of weights
to suffer two or more non-silent faults, as one can observe from Table 3. This in turn leads to a
higher chance of conflicts (such as the one shown in Figure 5(a)) when LSB Approximation is used.
Note that although the ratio of weights with two or more faults is similar in VGG-16 and CifarNet,
VGG-16 ends up experiencing more conflicts simply because it is a larger network.

The experimental results on the 16-bit Resnet-18 model show similar trends. Table 4 presents
the accuracy results of Resnet-18 on the Imagenet dataset. Compared to the previous two network
models studied on Cifar-10, Resnet-18 is even more sensitive to defects. Its accuracy drops sharply
to ~4% with only 0.1% defect rate and quickly reaches the random guess accuracy (i.e. 0.1% for
Imagenet as it has 1000 classes) at 0.5% defect rate. Despite such a high-level of fault sensitiv-
ity, both C-1 Approximation and LSB Approximation can successfully rescue the model accuracy.
Even under a high defect rate of 2%, C-1 Approximation can improve the accuracy to 63.33% while
LSB Approximation offers a slightly lower performance, achieving 62.94% accuracy. In compari-
son, Add/Sub Approximation’s performance is very close to the flipping-based techniques when
the defect rate is 0.2% or lower, while its effectiveness reduces for 1% or higher fault rates. These
data show that Add/Sub Approximation is a good choice for resource-constrained devices with
0.2% or lower defect rates, while in the case of higher fault rates either of the flipping-based ap-
proximations can be selected to rescue the model’s accuracy.

We also performed accuracy study on 4-bit LeNet, and the results are reported in Table 5. The
data show that LeNet is intrinsically more resilient (i.e., MNIST is more recognizable) — even un-
der a 5% defect rate, the baseline accuracy of 4-bit LeNet only drops by 3.12%. Among the three
approximation techniques, C-1 is still the most effective in general. LSB approximation does not
perform well, as it ends up reducing the quantization level to 3-bit, which is insufficient for LeNet
to maintain a high accuracy. Finally, Add/Sub Approximation offers comparable and sometimes
even better results, especially at lower defect rates. Since Add/Sub Approximation is more afford-
able, it is therefore the recommended defect mitigation technique for LeNet accelerators.

Overall, the results of CifarNet, VGG-16, and LeNet show that the proposed C-1 Approximation
is the most effective approximation method across all the networks, both low and high fault rates,
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Table 5. Impact of the Proposed Techniques on the Accuracy of 4-bit LeNet

Fault rate(%)
0 0.1 0.2 0.5 1 2 5
Baseline | 99.11 | 98.64 | 99.09 | 99.05 | 98.97 | 98.74 | 95.99
Add/Sub Approximation | 99.11 | 99.11 | 99.11 | 99.09 | 99.09 | 99.06 | 98.90
LSB Approximation | 99.11 | 18.88 | 18.88 | 18.88 | 18.83 | 18.90 | 18.94
C-1 Approximation | 99.11 | 99.09 | 99.09 | 99.10 | 99.07 | 99.07 | 98.81

Technique

and different quantization levels. If the defect rate in the target system is expected to be low or the
network model is intrinsically more resilient (such as LeNet for simple MNIST dataset), then the
Add/Sub Approximation which is more affordable is a good alternative.

4.2.2  Deviation Reduction. After demonstrating the capability of preserving accuracy, we per-
formed an in-depth study to understand why the models’ accuracy can be rescued by the proposed
techniques. Specifically, we evaluated the distribution of deviations in weight values before and
after applying each approximation technique. Our study focuses on 16-bit CifarNet for a randomly
selected defect map of 5% fault rate wherein the three approaches show more distinct behaviors.

Figure 9 presents the histograms of weight deviations for the selected experiment. The x-axis
shows the base-2 logarithm of deviation in faulty weights (i.e. x means the deviation in weight
value falls in the range of [2¥, 2¥*1]) and the Y-axis shows the total number of weights whose de-
viation falls into the corresponding range. The total number of deviated weights and the obtained
accuracy are shown at the top of each figure.

The deviation distribution of the baseline (no approximation) is shown in Figure 9(a). About
8% (96031) of the weights are deviated by the non-silent defects. Many of the non-silent defects
occur in the MSB (i.e., the 15-bit bar), and the DNN accuracy drops to 10%. Note that the uneven
distribution of deviation across the x-axis is due to the fact that most of DNN weight values center
around 0, which is represented as 0 X 7FFF in 16-bit unsigned numbers. As 80% of the injected faults
are stuck-at-1 faults, a large deviation is shown in the 15-bit bar but not the 14-bit bar. Figures 9(b)-
(d) illustrate the change in this distribution after applying the three approximation techniques. The
Add/Sub Approximation changes the histogram shape by reducing the deviations in the 15-bit bar
and generating more deviations in other bars. However, the overall deviation in some weights
is still considerably large. The accuracy is improved to 26.11% which is still much lower than
the original accuracy. In comparison, both LSB and C-1 Approximations result in a way more
significant change. As both approaches mask the leftmost non-silent faults, the deviation originally
in the 15-bit bar is eliminated completely. On the other hand, both approximations deviate many
weights that are originally fault-free as they need to selectively flip the LSB or the rightmost non-
faulty bit. As a result, the total number of deviated weights is raised to about 50% (627503 in LSB
and 628669 in C-1) of the total weights. However, most of these introduced deviations are minimal
(i.e., in the 1-bit bar) and thus do not suppress the significant benefit of eliminating non-silent
MSB errors. As a result, LSB Approximation raises the accuracy to 61.42% and C-1 Approximation,
with fewer weights falling into the higher deviation range, achieves 75.32% accuracy, which is very
close to the original accuracy of 78.28% of 16-bit CifarNet. Overall, this study demonstrates that
the proposed techniques improve accuracy by effectively mitigating the large deviations caused
by defects in the higher-order bits of DNN weights.

4.2.3 Comparison Against Retraining-based Scheme. As reviewed in Section 2.2, the majority
of existing defect mitigation techniques rely on retraining the model as part of their solutions to
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Fig. 9. Distribution of deviation in 16-bit CifarNet weights.

silent the effect of defects. In this study, we compare our proposed C-1 Approximation technique
with the defect-aware retraining process proposed in [48]. The goal is to check whether our pro-
posed technique can rescue the model’s accuracy to a similar level of retraining-based approaches
without the costly and non-scalable retraining.

As retraining is non-scalable and dependent on defect maps, to simplify the process, we only
retrain one random defect map under each fault rate for 8-bit CifarNet, 8-bit VGG-16, and 4-bit
LeNet models. The post-retraining accuracy compared with the accuracy achieved by C-1 approx-
imation for the corresponding defect map is reported in Figure 10. As can be seen, the retraining
process is effective in recovering the model accuracy in general. However, once the defect rate
increases beyond a specific point (e.g., 2% for CifarNet and 1% for VGG-16), the effectiveness
of retraining drops significantly. In comparison, the C-1 Approximation can rescue the model
accuracy to a similar level under both low and medium fault rates. Under a high defect rate such as
5%, it outperforms retraining significantly for both CifarNet and VGG-16. For LeNet on the simple
MNIST dataset, due to its high intrinsic resilience, both schemes are capable of recovering the
accuracy.

Overall, the results show that our solution outperforms the retraining solution even better as
the dataset and DNN become larger in terms of both accuracy (especially at a higher defect rates)
and the training cost. Please note that retraining of larger networks can be much more costly
than smaller ones. Hence, we believe that our technique is a better fit for recourse-constrained
embedded devices as it requires no retraining and imposes zero storage overhead and negligible
hardware overhead.
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Fig. 10. Comparison of the proposed C-1 Approximation against retraining.

5 CONCLUSION

In this paper, we have proposed a set of retraining-free and low-cost solutions to tolerate
permanent defects in NVM memories of DNN accelerators. Without imposing any storage
overhead, the proposed solutions manipulate the flexibility in altering fault-free bits to minimize
the impact of defects on weight values. By utilizing the defective cells but mitigating their adverse
impact, these techniques allow for larger DNNs to be deployed on resource-constrained devices
quickly. Their negligible run-time overhead furthermore makes them excellent candidates for
energy-constrained platforms. These techniques have been evaluated on four DNN structures
for three popular datasets under different quantization levels and fault rates, and the promising
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results demonstrate their great potential in rescuing the accelerators’ accuracy compared with
existing solutions even in the presence of high defect rates. Future work will focus on extending
this work to cover NVM-specific transient faults by incorporating runtime error detection and
correction capability.
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