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ABSTRACT
We propose a one-step procedure to estimate the latent positions in random dot product graphs efficiently.
Unlike the classical spectral-based methods, the proposed one-step procedure takes advantage of both
the low-rank structure of the expected adjacency matrix and the Bernoulli likelihood information of the
sampling model simultaneously. We show that for each vertex, the corresponding row of the one-step
estimator (OSE) converges to a multivariate normal distribution after proper scaling and centering up
to an orthogonal transformation, with an efficient covariance matrix. The initial estimator for the one-
step procedure needs to satisfy the so-called approximate linearization property. The OSE improves the
commonly adopted spectral embedding methods in the following sense: Globally for all vertices, it yields an
asymptotic sum of squares error no greater than those of the spectral methods, and locally for each vertex,
the asymptotic covariance matrix of the corresponding row of the OSE dominates those of the spectral
embeddings in spectra. The usefulness of the proposed one-step procedure is demonstrated via numerical
examples and the analysis of a real-world Wikipedia graph dataset.
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1. Introduction

Statistical inference on graph data, an important topic in statis-
tics and machine learning, has been pervasive in a variety
of application domains, such as social networks (Young and
Scheinerman 2007; Girvan and Newman 2002; Wasserman and
Faust 1994), brain connectomics (Priebe et al. 2017; Tang et al.
2019), political science (Ward, Stovel, and Sacks 2011), com-
puter networks (Neil et al. 2013; Rubin-Delanchy, Adams, and
Heard 2016), etc. Due to the high-dimensional nature and the
complex structure of graph data, classical statistical methods
typically begin with finding a low-dimensional representation
for the vertices in a graph using a collection of points in some
Euclidean space, referred to as latent positions of the vertices.
These latent positions are further used as features for subse-
quent inference tasks, such as vertex clustering (Sussman et al.
2012) and classification (Sussman, Tang, and Priebe 2014; Tang,
Sussman, and Priebe 2013), regression (Mele et al. 2019), and
nonparametric graph testing (Tang et al. 2017b).

Hoff, Raftery, and Handcock (2002) proposed the latent
position graphs to formalize the idea of latent positions: Each
vertex i in the graph is assigned a Euclidean vector xi ∈ R

d,
and the occurrence of an edge linking vertices i and j is a
Bernoulli random variable with success probability κ(xi, xj),
where κ : Rd × R

d → [0, 1] is a symmetric link function. In
this work, we study the random dot product graphs (Young and
Scheinerman 2007), a particular class of latent position graphs
taking the link function to be the dot product of latent positions:
κ(xi, xj) = xiTxj. Random dot product graphs are of special
interest due to the following two reasons: First, the adjacency
matrix of a random dot product graph can be viewed as the
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sum of a low-rank matrix and a mean-zero noise matrix, which
facilitates the use of low-rank matrix factorization techniques
for statistical inference; Second, random dot product graphs
are sufficiently flexible as they can approximate general latent
position graphs with symmetric positive definite link functions
when the dimension d of the latent positions grows with the
number of vertices at a certain rate (Tang, Sussman, and Priebe
2013). The readers are referred to the survey article Athreya
et al. (2018a) for a thorough review on the recent development
of random dot product graphs.

Low-rank matrix factorization methods, or more precisely,
spectral-based methods, have been broadly used for estimating
latent positions for random dot product graphs due to the low
expected rank of the observed adjacency matrix. Sussman, Tang,
and Priebe (2014) proposed to estimate latent positions using
the eigenvectors associated with the top d eigenvalues of the
adjacency matrix. The resulting estimator is referred to as the
adjacency spectral embedding (ASE). Asymptotic characteriza-
tion of the global behavior of the ASE for all vertices have
been established, including the consistency (Sussman, Tang, and
Priebe 2014) and the limit of the sum of squares error (SSE)
(Tang et al. 2017a) as the number of vertices goes to infinity.
Locally, for each vertex, Athreya et al. (2016) proved that the
distribution of the corresponding row of the ASE converges
to a mean-zero multivariate normal mixture distribution after
proper scaling and centering, up to an orthogonal transfor-
mation, as the number of vertices goes to infinity. Another
popular spectral-based method is the Laplacian spectral embed-
ding (LSE), which computes the eigenvectors of the normalized
Laplacian matrix of the adjacency matrix associated with the top
d eigenvalues (Rohe, Chatterjee, and Yu 2011). The asymptotic
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theory of the LSE has also been established (Sarkar and Bickel
2015; Tang and Priebe 2018). Notably, Tang and Priebe (2018)
showed that each row of the LSE converges to a mean-zero
multivariate normal mixture distribution after proper scaling
and centering, up to an orthogonal transformation. These the-
oretical studies of the spectral-based methods lay a solid foun-
dation for the development of subsequent inference tasks, such
as vertex clustering (Sussman et al. 2012; Rohe, Chatterjee, and
Yu 2011; Sarkar and Bickel 2015), vertex classification (Sussman,
Tang, and Priebe 2014; Tang, Sussman, and Priebe 2013), testing
between graphs (Tang et al. 2017a, 2017b), and parameter esti-
mation in latent structure random graphs (Athreya et al. 2018b).

Despite the great success of the spectral-based methods for
random dot product graphs, it was pointed out in Xie and
Xu (2019) that they are formulated in a low-rank matrix fac-
torization fashion, whereas the Bernoulli likelihood informa-
tion contained in the sampling model has been neglected. A
fundamental question remains open: whether or not the adja-
cency/Laplacian spectral embedding is optimal for estimating
latent positions (or the transformation of them) due to the
negligence of the likelihood information? In this article, we
prove the suboptimality of the ASE by showing that the asymp-
totic covariance matrix of each row of the ASE is suboptimal.
We propose a novel one-step procedure for estimating latent
positions, and show that for each vertex, the corresponding
row of the proposed one-step estimator (OSE) converges to a
multivariate normal distribution after

√
n-scaling and centering

at the underlying true latent position, up to an orthogonal
transformation. More importantly, the corresponding asymp-
totic covariance matrix is the same as the maximum likelihood
estimator (MLE) as if the rest of the latent positions are known,
provided that the procedure is initialized at an estimator sat-
isfying the approximate linearization property, which will be
defined later. This phenomenon of the OSE is referred to as the
local efficiency, the formal definition of which is provided in
Section 3. In particular, we show that the efficient covariance
matrix is no greater than the asymptotic covariance matrix of
the corresponding row of the ASE in spectra. We also provide an
example where the difference between the efficient covariance
matrix and the asymptotic covariance matrix of the ASE has at
least one negative eigenvalue. Besides, the local efficiency for
each vertex, the proposed OSE for latent positions has a smaller
SSE than that of the ASE globally for all vertices as well.

The general one-step procedure, which finds a new estimator
via a single iteration of the Newton-Raphson update given a

√
n-

consistent initial estimator, has been applied to M-estimation
theory in classical parametric models to produce an efficient
estimator (Van der Vaart 2000). Even when the MLE does not
exist (e.g., Gaussian mixture models), the OSE could still be
efficient. This motivates us to extend the one-step procedure
from classical parametric models to efficient estimation in high-
dimensional random graphs, because neither the existence nor
the uniqueness of the MLE for random dot product graphs
has been established. Unlike the ASE, the proposed one-step
procedure takes both the low-rank structure of the mean matrix
and the likelihood information of the sampling model into
account simultaneously. This work represents, to the best of
our knowledge, the first effort in the literature addressing the
efficient estimation problem for random dot product graphs.

Moreover, we prove the asymptotic suboptimality of the
widely adopted LSE by applying the one-step procedure to con-
struct an estimator for the population version of the LSE and
showing that it dominates the LSE in the following sense: Locally
for each vertex, the corresponding row of the new estimator
converges to a mean-zero multivariate normal distribution after
proper scaling and centering, up to an orthogonal transforma-
tion, and the asymptotic covariance matrix is no greater than
that of the corresponding row of the LSE in spectra; Globally
for all vertices, it yields a SSE no greater than that of the LSE.

Recently, there has been substantial progress on generalized
random dot product graphs (Rubin-Delanchy et al. 2017), which
fall into the category of general latent position graphs as well but
allow for a more general link function than random dot product
graphs. The link function of a generalized random dot product
graph is of the form κ(xi, xj) = xiTIp,qxj, where Ip,q is a diagonal
matrix with p ones and q minus ones on its diagonals and p, q are
nonnegative integers such that p + q = d. This class of random
graphs include a broad class of popular network models (e.g.,
mixed-membership stochastic block models). We remark that
the theory and method established in this work can be extended
to generalized random dot product graphs as long as p, q are
either provided or can be estimated consistently.

The remaining part of the article is structured as follows.
We review the background on random dot product graphs
and present the limit theorem for the ASE (modified theorem
from Athreya et al. 2016) in Section 2.1. The theory for the
maximum likelihood estimation of a single latent position with
the rest of the latent positions being known, which motivates
us to pursue the efficient estimation task, is established in Sec-
tion 2.2. Section 3 elaborates on the proposed one-step proce-
dure for estimating the entire latent position matrix, establishes
its asymptotic theory, and shows that it dominates the ASE as
the number of vertices goes to infinity. In Section 4, we apply
the proposed one-step procedure to construct an estimator for
the population version of the LSE, and show that it dominates
the LSE asymptotically. Section 5 demonstrates the usefulness
of the proposed one-step procedure via numerical examples and
the analysis of a real-world Wikipedia graph data. We conclude
the article with a discussion in Section 6.
Notations: The d × d identity matrix is denoted by Id and the
vector with all entries being 1 is denoted by the boldface 1. We
define the notation [n] to be the set of all consecutive positive
integers from 1 to n: [n] := {1, 2, . . . , n}. The symbols � and
� mean the corresponding inequality up to a constant, that is,
a � b (a � b) if a ≤ Cb (a ≥ Cb) for some constant C >

0, and we denote a � b if a � b and a � b. The shorthand
notation a ∨ b denotes the maximum value between a and b,
namely, a∨b = max(a, b) for any a, b ∈ R. We use the notation
O(n, d) to denote the set of all orthonormal d-frames in R

n, that
is, O(n, d) = {U ∈ R

n×d : UTU = Id}, where n ≥ d, and
write O(d) = O(d, d). The notation ‖x‖ is used to denote the
Euclidean norm of a vector x = [x1, . . . , xd]T ∈ R

d, that is,
‖x‖ = (

∑d
k=1 x2

k)
1/2. For any two vectors x = [x1, . . . , xd]T and

y = [y1, . . . , yd]T inR
d, the inequality x ≤ y means that xk ≤ yk

for all k = 1, 2, . . . , d. For any two positive semidefinite matrices
�1 and �2 of the same dimension, the notation �1 
 �2 (�1 �
�2) means that �2 −�1 (�1 −�2) is positive semidefinite, and
we say that �1 is no greater (no less) than �2 in spectra. For
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any rectangular matrix X, we use σk(X) to denote its kth largest
singular value. For a matrix X = [xik]n×d, we use ‖X‖2 to denote
the spectral norm ‖X‖2 = σ1(X), ‖X‖F to denote the Frobenius
norm ‖X‖F = (

∑n
i=1

∑d
k=1 x2

ik)
1/2, and ‖X‖2→∞ to denote the

two-to-infinity norm ‖X‖2→∞ = maxi∈[n](
∑d

k=1 x2
ik)

1/2.

2. Preliminaries

2.1. Background on Random Dot Product Graphs

Denote X = {x = [x1, . . . , xd]T ∈ R
d : x1, . . . , xd > 0, ‖x‖ <

1} the space of latent positions, and X n = {X = [x1, . . . , xn]T ∈
R

n×d : x1, . . . , xn ∈ X }. For any δ ∈ (0, 1/2), denote X (δ) the
set of all x ∈ X such that xTu ∈ [δ, 1−δ] for all u ∈ X (δ). Given
an n × d matrix X = [x1, . . . , xn]T ∈ X n and a sparsity factor
ρn ∈ (0, 1], a symmetric and hollow (i.e., the diagonal entries are
zeros) random matrix A = [Aij]n×n ∈ {0, 1}n×n is said to be the
adjacency matrix of a random dot product graph on n vertices
[n] = {1, 2, . . . , n} with latent positions x1, . . . , xn, denoted by
A ∼ RDPG(X), if Aij ∼ Bernoulli(ρnxiTxj) independently,
1 ≤ i < j ≤ n. We refer to the matrix X as the latent
position matrix. Namely, the distribution of A can be written as
pX(A) = ∏

i<j(ρnxiTxj)
Aij(1 − ρnxiTxj)

1−Aij . When ρn ≡ 1
for all n, the resulting graph is dense, in the sense that the
expected number of edges E(

∑
i<j Aij) grows quadratically in

n, and when ρn → 0 as n → ∞, the corresponding graph is
sparse, namely, the expected number of edges is subquadratic in
n (E(

∑
i<j Aij) = o(n2)).

The goal of this work is to estimate the latent positions
x1, . . . , xn, which are treated as deterministic parameters. In
some cases, the latent positions x1, . . . , xn are considered as
latent random variables that are independently sampled from
some underlying distribution F on X (see, e.g., Athreya et al.
2016; Sussman, Tang, and Priebe 2014; Tang et al. 2017b; Tang
and Priebe 2018). For deterministic latent positions, we require
that there exists some cumulative distribution function F on X ,
such that

sup
x∈X

|Fn(x) − F(x)| → 0 as n → ∞, (1)

where Fn(x) = (1/n)
∑n

i=1 1{xi ≤ x}. Condition (1) is similar
to the case where xi’s are random in the following sense: When
x1, . . . , xn are independent random variables sampled from F,
the Glivenko-Cantelli theorem asserts that (1) holds with prob-
ability one with respect to the randomness of the infinite iid
sequence (xi)

∞
i=1.

Remark 1. The latent position matrix X can only be identified
up to an orthogonal transformation since for any orthogonal
matrix W ∈ O(d) and i, j ∈ [n], xiTxj = (Wxi)T(Wxj).
Furthermore, for any d′ > d and any latent position matrix
X ∈ R

n×d, there exists another matrix X′ ∈ R
n×d′ , such that

RDPG(X) and RDPG(X′) yield the same distribution of A. The
latter source of nonidentifiability can be avoided for large n by
requiring the second moment matrix � = ∫

X xxTF(dx) to be
non-singular (Tang and Priebe 2018).

Random dot product graphs have connections with the sim-
plest Erdős-Rényi models and the popular stochastic block

models. When F(dx) = δp(dx), the resulting random dot
product graph coincides with an Erdős-Rényi graph, with
(Aij)i<j being independent Bernoulli(p2) random variables.
When F(dx) = ∑K

k=1 πkδνk(dx) for ν1, . . . , νk ∈ X and∑K
k=1 πk = 1, there exists a function τ : [n] → [K] such

that (1/n)
∑n

i=1 1{τ(i) = k} → πk for all k = 1, 2, . . . , K
as n → ∞. Denoting B = [Bkl]K×K := [νk

Tν l]K×K and
xi = ντ(i), i ∈ [n], we see that Aij follows Bernoulli(Bτ(i)τ (j)) =
Bernoulli(xiTxj) for i < j independently, where i, j ∈ [n]. In
this case, the random dot product graph RDPG(X) with X =
[x1, . . . , xn]T becomes a stochastic block model with a positive
semidefinite block probability matrix B and a cluster assignment
function τ .

To estimate the latent positions, Sussman, Tang, and Priebe
(2014) proposed to solve the least-square problem

X̂(ASE) = arg minX∈Rn×d‖A − XXT‖2
F. (2)

The resulting solution X̂(ASE) to Equation (2) is referred to as the
ASE of A into R

d. Note that E(A) is a positive semidefinite low-
rank matrix modulus the diagonal entries and ‖A − XXT‖2

F =∑n
i=1

∑n
j=1(Aij − xiTxj)2 is exactly the empirical squared-error

loss. Hence, the problem (2) becomes a naive empirical risk
minimization problem if we regard X̂(ASE) as an estimator for
ρ

1/2
n X, and the solution to Equation (2) can be conveniently

computed (Eckart and Young 1936): X̂(ASE) is the matrix of
eigenvectors associated with the top d eigenvalues of A, scaled
by the square roots of these eigenvalues.

Sussman, Tang, and Priebe (2014) proved that X̂(ASE) =
[̂x(ASE)

1 , . . . , x̂(ASE)
n ]T is a consistent estimator for ρ

1/2
n X globally

for all vertices: (1/n)‖X̂(ASE)Wn −X‖2
F converges to 0 in proba-

bility as n → ∞ for a sequence of orthogonal (Wn)
∞
n=1 ⊂ O(d).

Furthermore, for each fixed vertex i ∈ [n], the asymptotic
distribution of x̂(ASE)

i after proper scaling and centering has been
established (Athreya et al. 2016; Tang and Priebe 2018) in the
case where x1, . . . , xn

iid∼F. The setup in this work is slightly dif-
ferent since we posit that the latent positions are deterministic.
To distinguish between an arbitrary element X ∈ X n and the
ground truth, we denote X0 the true latent position matrix that
generates the observed adjacency matrix A.

We modify the limit theorem of the ASE originally presented
in Athreya et al. (2016) to accommodate the deterministic setup
for x01, . . . , x0n and summarize the results in the following
theorem. In the current framework, the proof technique for the
asymptotic normality of the rows of the ASE is very different
from that presented in Athreya et al. (2016) and Tang and Priebe
(2018). The proof of Theorem 1 is deferred to supplementary
material.

Theorem 1. Let A ∼ RDPG(X0) with a sparsity factor ρn
and condition (1) hold for some X0 = [x01, . . . , x0n]T ∈ X n.
Suppose either ρn ≡ 1 for all n or ρn → 0 but (log n)4/(nρn) →
0 as n → ∞, and denote ρ = limn→∞ ρn. Let X̂(ASE) =
[̂x(ASE)

1 , . . . , x̂(ASE)
n ]T be the ASE defined by (2). Denote

� =
∫
X

xxTF(dx),

�(x) = �−1
[∫

X

{
x1

Tx
(
1 − ρx1

Tx
)}

x1x1
TF(dx1)

]
�−1,
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and assume that � and �(x) are strictly positive definite for all
x ∈ X . Then, there exists a sequence of orthogonal matrices
(W)∞n=1 = (Wn)

∞
n=1 ⊂ O(d), such that

‖X̂(ASE)W − ρ
1/2
n X0‖2

F
a.s.→
∫
X

tr{�(x)}F(dx), (3)

and for any fixed index i ∈ [n],
√

n(WT̂x(ASE)
i − ρ

1/2
n x0i)

L→ N(0, �(x0i)). (4)

In the rest of the article, we drop the subscript n in Wn for
notational simplicity and make the convention that the orthog-
onal alignment matrix W implicitly depends on n.

2.2. Motivation: Efficiency in Estimating a Single Latent
Position

Theorem 1 suggests the following two properties of the ASE:
Globally for all vertices, X̂(ASE) is a consistent estimator for
ρ

1/2
n X0; Locally, for each fixed vertex i ∈ [n], the distribution

of the ith row x̂(ASE)
i of X̂(ASE) after

√
n-scaling and center-

ing at ρ
1/2
n x0i, converges to a mean-zero multivariate normal

distribution with covariance matrix �(x0i), up to a sequence
of orthogonal transformations. Nevertheless, it remains open
whether the results of Theorem 1 are optimal. In this work,
we will propose an estimator X̂ for X0 that dominates the ASE
asymptotically in the following sense: Globally for all vertices,
it yields a smaller asymptotic SSE ‖X̂W − ρ

1/2
n X0‖2

F than (3);
Locally for each fixed vertex i ∈ [n], the corresponding row of
X̂, after

√
n-scaling and centering at ρ

1/2
n x0i, also converges to a

mean-zero multivariate normal distribution, up to a sequence
of orthogonal transformations, but the asymptotic covariance
matrix is no greater than �(x0i) in spectra.

Before elaborating on the estimator for the entire latent
position matrix X0, we begin with the problem of estimating
a single latent position x0i when the rest of the latent posi-
tions are known. The theory established herein motivates the
development of the proposed efficient estimation procedure.
Specifically, for a fixed i ∈ [n], we estimate x0i via the MLE,
assuming that the rest of the latent positions {x0j : j ∈ [n], j �= i}
are known. For simplicity, we assume that the sparsity factor
ρn ≡ 1 for all n in this subsection. The result is summarized
in the following theorem.

Theorem 2. Let A ∼ RDPG(X0) for some X0 =
[x01, . . . , x0n]T ∈ X n with ρn ≡ 1 for all n, and condition (1)
hold. Suppose that there exists some constant δ > 0 such that
(x0j)

n
j=1 ⊂ X (δ). Let i ∈ [n] be fixed and consider the problem

of estimating x0i where {x0j : j ∈ [n], j �= i} are known. Further
assume that x0i is in the interior of X (δ), and for any x ∈ X (δ),
define G(x) = ∫

X x1x1
T{xTx1(1 − xTx1)}−1F(dx1). Then the

maximum likelihood estimator x̂(MLE)
i = arg maxx∈X (δ)�A(x)

is consistent for x0i, where �A(x) is the log-likelihood function:
�A(x) = ∑

j �=i{Aij log(xTx0j) + (1 − Aij) log(1 − xTx0j)}.
Furthermore, the following asymptotic normality holds:

√
n(̂x(MLE)

i − x0i)
L→ N(0, G(x0i)

−1). (5)
Furthermore, �(x)− G(x)−1 is always positive semidefinite for
all x ∈ X (δ).

Remark 2. Recall that the cumulative distribution function F
is defined on X . Note that under the conditions of Theorem 2,
(x0j)

n
j=1 ⊂ X (δ) for a constant δ that does not depend on n.

Therefore, the cumulative distribution function F can be further
restricted to the compact subset X (δ) of X , and G(x) can be
written as

∫
X (δ)

x1x1
T{xTx1(1 − xTx1)}−1F(dx1) alternatively.

Remark 3. Although the definition of G(x) given in Theorem 2
is with regard to the case where ρn ≡ 1 for all n, we remark that
it can also be generalized to the case where the sparsity factor
ρn → 0 as n → ∞ (see Equation (9) in Section 3).

Although the inequality �(x) � G(x)−1 is not strict, we
will present an example where there exists at least one negative
eigenvalue of G(x0i)−1 − �n(x0i) in Section 3. The conclusion
of this example is that the ASE is inefficient for estimating
the latent position x0i for vertex i when the rest of the latent
positions are known, in contrast to the efficiency of the MLE.
The notion of efficiency in estimating a single latent position
of a random dot product graph model is slightly subtle, as this
special case does not belong to the classical (iid) parametric
models. Here, we make the convention that the notion of effi-
ciency is taken in analogy to the case of parametric models.
Namely, we say an estimator x̂(Eff)

i is asymptotically efficient
for estimating a single latent position vector x0i, if

√
n(̂x(Eff)

i −
x0i)

L→ N(0, G(x0i)−1). We will see in Section 3 that when all the
latent positions are unknown, we can still construct an estimator
X̂ = [̂x1, . . . , x̂n]T, such that for each vertex i,

√
n(WT̂xi −

ρ
1/2
n x0i)

L→ N(0, G(x0i)−1) still holds up to a sequence of
orthogonal alignment matrices (W)∞n=1 = (Wn)

∞
n=1 ⊂ O(d).

3. Efficient Estimation via a One-step Procedure

The inefficiency of the ASE, indicated by �(x0i) � G(x0i)−1,
is due to the fact that the ASE is a least-square estimator not
depending on the likelihood function of the sampling model. In
contrast, the maximum likelihood estimator x̂(MLE)

i utilizes the
Bernoulli likelihood function, and this is a main factor for the
asymptotic efficiency. For estimating the entire latent position
matrix X, one strategy that takes advantage of the likelihood
information is the maximum likelihood method. Unfortunately,
when all latent positions are unknown, random dot product
graphs belong to a curved exponential family rather than a
canonical exponential family, and neither the existence nor the
uniqueness of the MLE of random dot product graphs has
been established. As pointed out in Bickel and Doksum (2015),
properties of the MLE in curved exponential families are harder
to develop than the canonical ones. Therefore, we seek another
approach to find an estimator that is asymptotically equivalent
to the MLE. Recall that when {x0j : j ∈ [n], j �= i} are known,
the MLE for x0i is a solution to the estimating equation

�n(x) := 1
n

n∑
j �=i

(Aij − xTx0j)x0j

xTx0j(1 − xTx0j)
= 0.

Then, given an “appropriate” initial guess of the solution x̃i,
we can perform a one-step Newton-Raphson update to obtain
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another estimator x̂(OS)
i that is closer to the zero of the estimat-

ing equation �n (see, e.g., Section 5.7 of Van der Vaart 2000):

x̂(OS)
i = x̃i +

⎧⎨⎩ 1
n

n∑
j �=i

x0jx0jT

x̃iTx0j(1 − x̃iTx0j)

⎫⎬⎭
−1

⎧⎨⎩ 1
n

n∑
j �=i

(Aij − x̃iTx0j)x0j

x̃iTx0j(1 − x̃iTx0j)

⎫⎬⎭ . (6)

In the case of estimating x0i with the rest of the latent positions
being known, the requirement for x̃i is that it is

√
n-consistent

for x0i, and the resulting OSE x̂(OS)
i is as efficient as the maxi-

mum likelihood estimator x̂(MLE)
i . This result is summarized in

the following theorem, which is a variation of Theorem 5.45 of
Van der Vaart (2000).

Theorem 3. Let A ∼ RDPG(X0) for some X0 =
[x01, . . . , x0n]T ∈ X n with ρn ≡ 1 for all n, and assume that
the conditions of Theorem 2 hold. Consider the problem of
estimating x0i with {x0j : j ∈ [n], j �= i} being known. Let x̃i
be a

√
n-consistent estimator of x0i, i.e.,

√
n(̃xi −x0i) = OP0(1).

Then
√

n(̂x(OS)
i − x0i)

L→ N
(
0, G(x0i)−1).

The above result motivates us to generalize the OSE (6) to the
case where the latent positions x01, . . . , x0n are all unknown. Let
X̃ = [̃x1, . . . , x̃n]T ∈ R

n×d be an initial estimator X̃ for X0. An
intuitive choice for generalizing the one-step updating scheme
(6) to the case of unknown (x0j)j �=i is to substitute the unknown
x0j by the initial estimator x̃j for all j �= i in (6). We define the
following one-step estimator X̂ = [̂x1, . . . , x̂n]T for X0:

x̂i = x̃i +
⎧⎨⎩ 1

n

n∑
j=1

x̃j̃xjT

x̃iT̃xj(1 − x̃iT̃xj)

⎫⎬⎭
−1

⎧⎨⎩ 1
n

n∑
j=1

(Aij − x̃iT̃xj)̃xj

x̃iT̃xj(1 − x̃iT̃xj)

⎫⎬⎭ , i = 1, 2, . . . , n. (7)

In this case, we require that the initial estimator X̃ =
[̃x1, . . . , x̃n] satisfies a finer condition than the

√
n-consistency

requirement, referred to as the approximate linearization prop-
erty.

Definition 1 (Approximate linearization property). Given
A ∼ RDPG(X0) with a sparsity factor ρn, where
X0 = [x01, . . . , x0n]T ∈ X n, an estimator X̃ = [̃x1, . . . , x̃n]T is
said to satisfy the approximate linearization property, if for all n,
there exists an orthogonal matrix W = Wn ∈ O(d) and an n×d
matrix R̃ = [R̃1, . . . , R̃n]T with ‖R̃‖2

F = OP0((nρn)−1(log n)ω)

for some ω ≥ 0, such that

WT̃xi − ρ
1/2
n x0i

= ρ
−1/2
n

n∑
j=1

(Aij − ρnx0i
Tx0j)ζ ij + R̃i, i = 1, 2, . . . , n,

(8)

where {ζ ij : i, j ∈ [n]} is a collection of vectors in R
d with

supi,j∈[n] ‖ζ ij‖ � 1/n.

The approximate linearization property describes that the
deviation of the estimator X̃ from X0 can be approximately con-
trolled by a linear combination of the centered Bernoulli ran-
dom variables (Aij −ρnx0iTx0j)i<j. It has been shown in Athreya
et al. (2016),Tang and Priebe (2018), and Tang et al. (2017a) that
the ASE satisfies the approximate linearization property (8) with
ω = 0 and ζ ij being the jth row of X0(X0TX0)−1, and hence,
X̂(ASE) can be chosen to be an initial estimator for the one-step
procedure in practice. Another initial estimator satisfying the
approximate linearization property will be given in Theorem 7
using the Laplacian spectral embedding.

We present the complete procedure for obtaining the OSE (7)
initialized at the ASE in Algorithm 1.

Algorithm 1 One-step procedure initialized with the ASE
1: Input: The adjacency matrix A = [Aij]n×n and the embed-

ding dimension d.
2: Step 1: Compute the eigen-decomposition of the adjacency

matrix:

A =
n∑

i=1
λ̂îuîui

T,

where |̂λ1| ≥ |̂λ2| ≥ . . . ≥ |̂λn|, and ûiTûj = 1(i = j) for
all i, j ∈ [n].

3: Step 2: Compute the ASE

X̃ = X̂(ASE) =
d∑

k=1
|̂λk|1/2ûk

and write X̃ = [̃x1, . . . , x̃n]T ∈ R
n×d.

4: Step 3: For i = 1, 2, . . . , n, compute

x̂i = x̃i +
⎧⎨⎩ 1

n

n∑
j=1

x̃j̃xjT

x̃iTx̃j(1 − x̃iTx̃j)

⎫⎬⎭
−1 ⎧⎨⎩ 1

n

n∑
j=1

(Aij − x̃iTx̃j )̃xj

x̃iTx̃j(1 − x̃iTx̃j)

⎫⎬⎭ .

5: Output: The OSE X̂ = [̂x1, . . . , x̂n]T.

The notion of efficiency for random dot product graphs
becomes less clear when the number of unknown latent posi-
tions grows with the number of vertices. This is because in
random dot product graphs, the dimension of the parameter
space X n grows with the number of vertices, and the definition
of the efficiency for classical iid parametric models does not
apply. To this end, we introduce the notion of local efficiency
for random dot product graphs. The idea is that any row of the
estimator X̂ has the same asymptotic covariance matrix with that
of the MLE as if the rest of the latent positions are known.

Definition 2 (Local efficiency). Let A ∼ RDPG(X0) with a
sparsity factor ρn for some X0 = [x01, . . . , x0n]T ∈ X n,
x01, . . . , x0n ∈ X (δ) for some δ > 0 that does not depend
on n, and either ρn ≡ 1 or ρn → 0. Denote ρ =
limn→∞ ρn. Assume the condition (1) holds. An estimator
X̂(Eff) = [̂x(Eff)

1 , . . . , x̂(Eff)
n ]T is said to be a locally efficient

estimator for X0, if there exists a sequence of orthogonal align-
ment matrices (W)∞n=1 = (Wn)

∞
n=1, such that for all i ∈ [n],
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√
n(WT̂x(Eff)

i −ρ
1/2
n x0i)

L→ N(0, G(x0i)−1), where G is a matrix-
valued function G : X (δ) → R

d×d defined by

G(x) =
∫
X

x1x1
T

xTx1(1 − ρxTx1)
F(dx1). (9)

Theorems 4 and 5, which are the main technical results of
this article, establish the asymptotic behavior of the one-step
estimator (7). In particular, Theorem 5 shows that the OSE X̂
is locally efficient.

Theorem 4. Let A ∼ RDPG(X0) with a sparsity factor ρn for
some X0 = [x01, . . . , x0n]T ∈ X n. Assume that condition (1)
holds, and there exists some constant δ > 0 that is independent
of n such that (x0i)

n
i=1 ⊂ X (δ). Denote X̂ = [̂x1, . . . , x̂n]T

the OSE defined by Equation (7) initialized at an estimator
X̃ = [̃x1, . . . , x̃n]T that satisfies the approximate linearization
property (8). Denote Gn(x) = (1/n)

∑n
j=1 x0jx0jT{xTx0j(1 −

ρnxTx0j)}−1 for any x ∈ X (δ). If either ρn ≡ 1 for all n or ρn →
0 but (log n)2(1∨ω)/(nρ5

n) → 0 as n → ∞, then there exists a
sequence of orthogonal matrices (W)∞n=1 = (Wn)

∞
n=1 ⊂ O(d)

such that

WT̂xi − ρ
1/2
n x0i

= 1
n√

ρn

n∑
j=1

(Aij − ρnx0iTx0j)

x0iTx0j(1 − ρnx0iTx0j)
Gn(x0i)

−1x0j

+ R̂i, i = 1, . . . , n, (10)

where ‖R̂i‖ = OP0(n−1ρ
−5/2
n (log n)(1∨ω)) and

∑n
i=1 ‖R̂i‖2 =

OP0((nρ5
n)−1(log n)2(1∨ω)).

Theorem 5. Let A ∼ RDPG(X0) with a sparsity factor ρn for
some X0 = [x01, . . . , x0n]T ∈ X n. Assume that the conditions
of Theorem 4 hold, and denote ρ = limn→∞ ρn. Let X̂ =
[̂x1, . . . , x̂n]T be the OSE (7) based on an initial estimator X̃
that satisfies the approximate linearization property. Then there
exists a sequence of orthogonal matrices (W)∞n=1 = (Wn)

∞
n=1 ⊂

O(d) such that as n → ∞,∥∥∥X̂W − ρ
1/2
n X0

∥∥∥2

F

P0→
∫
X

tr
{

G(x)−1} F(dx), (11)

and for each fixed i ∈ [n],
√

n(WT̂xi − ρ
1/2
n x0i)

L→ N(0, G(x0i)
−1), (12)

where G(x) is given by Equation (9).

Since we have already shown that �(x0i) � G(x0i)−1 for all
i ∈ [n], it follows that

‖X̂W − ρ
1/2
n X0‖2

F − ‖X̂(ASE)W − ρ
1/2
n X0‖2

F
P0→∫

X
tr{�(x) − G(x)−1}F(dx) ≥ 0,

and hence we conclude that the OSE X̂ improves the ASE X̂(ASE)

globally for all vertices asymptotically. Furthermore, for every
fixed vertex i ∈ [n], the ith row of the OSE x̂i is locally efficient by
definition, and the corresponding asymptotic covariance matrix
is no greater than that of the corresponding row of the ASE in
spectra.

Remark 4. Theorem 4 has the following implication: when the
graph is dense (ρn ≡ 1 for all n), one can apply the one-
step procedure multiple times, and the resulting estimator still
satisfies the approximate linearization property and has the
same asymptotic behavior as given by Theorem 4. This multi-
step updating strategy is of practical interest for more accurate
estimation when the sample size is insufficient for asymptotic
approximation.

Proofs sketch for Theorems 4 and 5. The key to the proofs of
Theorems 4 and 5 is formula (10). From here, we can apply the
logarithmic Sobolev concentration inequality to (10) (see, e.g.,
Boucheron, Lugosi, and Massart 2013, sec. 6.4) to show that
‖X̂W − ρ

1/2
n X0‖2

F converges in probability to its expectation,
which is exactly the quantity on the right-hand side of Equation
(11). The asymptotic normality (12) of x̂i can be obtained by
directly applying the Lyapunov’s central limit theorem to

1√nρn

n∑
j=1

(Aij − ρnx0iTx0j)

x0iTx0j(1 − ρnx0iTx0j)
Gn(x0i)

−1x0j,

which is a sum of independent random variables. For Equation
(10), by construction of the OSE (7) and a Taylor expansion
device, we have,

WT̂xi − ρ
1/2
n x0i = 1

n√
ρn

n∑
j=1

(Aij − ρnx0iTx0j)

x0iTx0j(1 − ρnx0iTx0j)
Gn(x0i)

−1x0j

+ (WT̃xi − ρ
1/2
n x0i) + Gn(x0i)

−1Ri1

+ oP0(n−1/2),

where Ri1 = −Gn(x0i)(WT̃xi −ρ
1/2
n x0i)+oP0(n−1/2). Thus, we

obtain that

WT̂xi − ρ
1/2
n x0i = 1

n√
ρn

n∑
j=1

(Aij − ρnx0iTx0j)

x0iTx0j(1 − ρnx0iTx0j)
Gn(x0i)

−1x0j

+ oP0

(
n−1/2) .

The detailed technical derivation of Equation (10) is deferred to
supplementary material.

Remark 5. Theorem 5 asserts that the OSE X̂ dominates the
ASE under the density condition (nρ5

n)−1(log n)2(1∨ω) → 0
as n → ∞. When the graph is dense, that is, ρn ≡ 1 for all
n, it is easy to show that this condition holds. When ρ−1

n is
a polynomial of log n, indicating that the graph is moderately
sparse, this condition still holds. This condition starts to fail
when the graph becomes very sparse, for example, ρ−1

n � nt for
some t ≥ 1/5, in which case a broad range of statistical inference
tasks become challenging due to the weak signal.

Remark 6. Theorem 4 requires that the sparsity factor ρn is
lower bounded by n−1/5 times a polynomial factor of log n. This
causes the average expected degree to grow at a polynomial rate
of n, and the resulting graph is considered as moderately sparse.
In contrast, Theorem 1 only requires ρn to be lower bounded
by n−1 times a polynomial factor of log n, and this results in the
average expected degree to grow at a polynomial rate of log n,
which is a sparser regime than that required by Theorem 4. The
stronger density assumption that the average expected degree
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is a polynomial factor of n is essential for the proof strategy
employed in this work. Nevertheless, we remark that the proof
strategy is standard (see, e.g., Section 5.7 of Van der Vaart
2000). In fact, the stronger density assumption stems from the
Lipschitz continuity of the Hessian of the average log-likelihood
function, which is guaranteed by the continuity of the third
derivatives. This is referred to as the classical conditions for
M-estimators (see, e.g., Van der Vaart 2000, sec. 5.6). Further
discussion of the sparsity condition for the one-step estimator
(7) is provided in Supplementary Material.

Theorem 5 claims that the asymptotic covariance matrix of
any fixed row of the OSE (7) is no greater than that of the
ASE in spectra. The following example shows that there exist
situations where G(x0i)−1 −�(x0i) contains at least one strictly
negative eigenvalue. This implies that the OSE dominates the
ASE asymptotically.

Example 1. (Two-block stochastic block model). Consider the
following two-block stochastic block model, which has also
been considered in Tang and Priebe (2018). Let F = π1δp+π2δq
be the distribution on (0, 1) giving rise to the latent positions
x01, . . . , x0n via (1), where p, q ∈ (0, 1) and p �= q. This results
in an n × n adjacency matrix A drawn from RDPG(X0) with
X0 = [x01, . . . , x0n]T ∈ R

n×1. Let τ : [n] → {1, 2} be a cluster
assignment function such that τ(i) = 1 if x0i = p, τ(i) = 2 if
x0i = q, and denote

B =
[

p2 pq
pq q2

]
.

Then the distribution of A can be also regarded as a stochastic
block model with a block probability matrix B and a cluster
assignment function τ . Let X̂(ASE) = [̂x(ASE)

1 , . . . , x̂(ASE)
n ]T be

the ASE and X̂ = [̂x1, . . . , x̂n]T be the OSE satisfying the condi-
tions of Theorem 4. Using formulas (4) and (12), we obtain:

√
n(̂x(ASE)

i − p)
L→ N

(
0, �(p)

)
if x0i = p,

√
n(̂x(ASE)

i − q)
L→ N

(
0, �(q)

)
if x0i = q,

where �(p) = π1p4(1−p2)+π2pq3(1−pq)

(π1p2+π2q2)2 , �(q) =
π1p3q(1−pq)+π2q4(1−q2)

(π1p2+π2q2)2 , and

√
n(̂xi − p)

L→ N
(
0, G(p)−1) if x0i = p,

√
n(̂xi − q)

L→ N
(
0, G(q)−1) if x0i = q,

where G(p) = π1p2

p2(1−p2)
+ π2q2

pq(1−pq)
, G(q) = π1p2

pq(1−pq)
+ π2q2

q2(1−q2)
.

By Cauchy–Schwartz inequality, we see that G(p)−1 ≤ �(p) and
G(q)−1 ≤ �(q) for all p, q ∈ (0, 1), and in particular, G(p)−1 =
�(p) if and only if q = (1 − p2)/p, and G(q)−1 = �(q) if and
only if q = (1/2)(

√
p2 + 4 − p) (recall that p �= q). Namely,

the asymptotic variance of the OSE is strictly smaller than
that of the ASE for almost every (p, q) pair in (0, 1)2\{(p, q) :
p = q}. The comparison of variances between the ASE and
the OSE is further visualized in Figure 1 through the relative
improvements of the variances {�(p) − G(p)−1}/G(p)−1 and
{�(q) − G(q)−1}/G(q)−1 for different values of p and q.

4. Application to Estimating the Laplacian Matrix

Instead of directly analyzing the adjacency matrix A, another
broadly adopted technique for statistical analysis on random
graphs is based on the normalized Laplacian of A (Rohe, Chat-
terjee, and Yu 2011; Sarkar and Bickel 2015). Formally, given
a matrix M with nonnegative entries and positive row sums,
the normalized Laplacian of M, denoted by L(M), is defined
by (diag(M1))−1/2M(diag(M1))−1/2, Here, for a vector z =

Figure 1. Relative improvements of the one-step estimator variances {�(p) − G(p)−1}/G(p)−1 and {�(q) − G(q)−1}/G(q)−1 for different values of p, q ∈ (0, 1) in
Example 1. The cluster assignment probabilities are set to π1 = 0.6 and π2 = 0.4. Note that all the variances G(p)−1, G(q)−1, �(p), �(q) depend on both p and q.
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[z1, . . . , zn]T ∈ R
n, diag(z) is the n × n diagonal matrix with

z1, . . . , zn being its diagonal entries. We follow the definition of
the normalized Laplacian adopted in Tang and Priebe (2018) in
contrast to the combinatorial Laplacian diag(M1) − M that has
been applied to graph theory (Merris 1994). The (i, j) entry of
the normalized Laplacian matrix L(A) can be interpreted as the
connection between vertices i and j normalized by the square
roots of the degrees of the two vertices.

Recall that the edge probability matrix ρnXXT is positive
semidefinite low-rank when A ∼ RDPG(X) with a sparsity
factor ρn. Similarly, the normalized Laplacian of ρnXXT is also
a positive semidefinite low-rank matrix: L(ρnXXT) = YYT,
where Y = [y1, . . . , yn]T ∈ R

n×d, and yi = xi(
∑n

j=1 xiTxj)−1/2.
Following the same spirit of the formulation of the ASE through
Equation (2), one can analogously define the Laplacian spectral
embedding (LSE) X̆ of A into R

d by solving the least-square
problem (Rohe, Chatterjee, and Yu 2011)

X̆ = arg minY∈Rn×d‖L(A) − YYT‖2
F. (13)

Since the LSE X̆ is an estimator for Y, we refer to the n×d matrix
Y as the population LSE. The estimator X̆, which is the LSE of
A into R

d, is also referred to as the sample LSE as opposed to
the population LSE Y. Alternatively, the population LSE can be
viewed as a transformation Y = Y(X) of the latent position
matrix X defined by

Y(X) = [y1(X), . . . , yn(X)]T,

yi = xi√∑n
j=1 xiTxj

, i = 1, . . . , n. (14)

The asymptotic results for the (sample) LSE in random dot
product graphs with independent and identically distributed
latent positions x01, . . . , x0n have been established in Tang and
Priebe (2018). In the context of the deterministic latent positions
framework adopted in this work, we provide the analogous
results for the LSE in Theorem 6. The proof is deferred to
Supplementary Material.

Theorem 6. Let A ∼ RDPG(X0) with a sparsity factor ρn for
some X0 = [x01, . . . , x0n]T ∈ X n ⊂ R

n×d, where x01, . . . , x0n
satisfy (1). Suppose either ρn ≡ 1 for all n or ρn → 0 but
(log n)4/(nρn) → 0 as n → ∞, and denote ρ = limn→∞ ρn.
Let X̆ = [x̆1, . . . , x̆n]T be the LSE of A into R

d defined by
Equation (13). Define the following quantities:

Y0 = Y(X0), μ =
∫
X

xF(dx), �̃ =
∫
X

xxT

xTμ
F(dx),

�̃(x) =
(

�̃
−1 − xμT

2μTx

)[∫
X

{
xTx1(1 − ρxTx1)

μTx(μTx1)2 x1x1
T
}

F(dx1)

]
(

�̃
−1 − xμT

2μTx

)
T.

Then there exists a sequence of orthogonal (W)∞n=1 =
(Wn)

∞
n=1 ⊂ R

d×d such that as n → ∞,

nρn‖X̆W − Y0‖2
F

a.s.→
∫

tr{�̃(x)}F(dx). (15)

Furthermore, assume the graph model falls into one of the
following two regimes:

(i) Dense regime: ρn ≡ 1 for all n;
(ii) Sparse stochastic block model regime: ρn → 0 with

(log n)4/(nρn) → 0 as n → ∞, and there exists K ≥ d
linearly independent ν1, . . . , νK ∈ X and a probability
vector [π1, . . . , πK] with

∑K
k=1 πk = 1, such that F(dx) =∑K

k=1 πkδνk(dx). Namely, the random dot product graph
coincides with a stochastic block model.

Then for any fixed i ∈ [n],

nρ
1/2
n (WTx̆i − y0i)

L→ N(0, �̃(x0i)). (16)

The LSE can be applied to construct another initial estimator
that satisfies the approximate linearization property. This is
given in the following theorem.

Theorem 7. Let A ∼ RDPG(X0) with a sparsity factor ρn
for some X0 = [x01, . . . , x0n]T ∈ X n ⊂ R

n×d, where
x01, . . . , x0n satisfy Equation (1). Suppose either ρn ≡ 1
for all n or ρn → 0 but (log n)4/(nρn) → 0 as n →
∞, and denote ρ = limn→∞ ρn. Let X̆ be the LSE of
A into R

d defined by Equation (13). Then the estimator
X̃ = diag(

∑n
j=1 A1j, . . . ,

∑n
j=1 Anj)1/2X̆ satisfies the approxi-

mate linearization property.

Similar to the ASE, the LSE is also a least-square type esti-
mator and does not involve the likelihood function. Therefore,
to estimate the population LSE Y0 = Y(X0) using the Bernoulli
likelihood information, we propose the following one-step esti-
mator Ŷ for Y0 based on the OSE X̂ = [̂x1, . . . , x̂n]T defined in
(7) and an initial estimator X̃ = [̃x1, . . . , x̃n]T that satisfies the
approximate linearization property (8):

Ŷ = [̂y1, . . . , ŷn]T, ŷi = x̂i√∑n
j=1 x̂iT̃xj

, i = 1, 2, . . . , n.

(17)

In matrix form, we can write Ŷ = {diag(X̂X̃T1)}−1/2X̂. The
likelihood information is thus absorbed into Ŷ through the OSE
X̂. We characterize the global and local behavior of the OSE Ŷ
for the population LSE via the following two theorems.

Theorem 8. Let A ∼ RDPG(X0) with a sparsity factor ρn for
some X0 = [x01, . . . , x0n]T ∈ X n. Assume that the conditions
of Theorem 4 hold. Denote Ŷ = [̂y1, . . . , ŷn]T the OSE for
the population LSE defined by (17), and μn = (1/n)

∑n
i=1 x0i.

Then there exists a sequence of orthogonal matrices (W)∞n=1 =
(Wn)

∞
n=1 ⊂ O(d) such that

√
n(WT̂yi − y0i) = ρ

−1/2
n

1√
μnTx0i

(
Id − x0iμn

T

2μnTx0i

)
(

WT̂xi − ρ
1/2
n x0i

)
+ R(L)

i , i = 1, 2, . . . , n,

where ‖R(L)
i ‖ = OP0((nρ2

n)−1(log n)1∨ω) and
∑n

i=1 ‖R(L)
i ‖2 =

OP0

(
(nρ4

n)−1(log n)2(1∨ω)
)
.

Theorem 9. Let A ∼ RDPG(X0) with a sparsity factor ρn for
some X0 = [x01, . . . , x0n]T ∈ X n. Assume the conditions of
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Theorem 8 hold. Denote Ŷ = [̂y1, . . . , ŷn]T the OSE for the
population LSE defined by Equation (17), and

G̃(x) = 1
(μTx)

(
Id − xμT

2μTx

)
G(x)−1

(
Id − xμT

2μTx

)
T

for any x ∈ X (δ), where μ = ∫
X xF(dx) and G(·) is defined

in Equation (9). Then, there exists a sequence of orthogonal
matrices (W)∞n=1 = (Wn)

∞
n=1 ⊂ O(d) such that

nρn
∥∥ŶW − Y0

∥∥2
F

P0→
∫
X

tr
{

G̃(x)
}

F(dx), (18)

and for each fixed i ∈ [n],

nρ
1/2
n (WT̂yi − y0i)

L→ N(0, G̃(x0i)). (19)

Furthermore, for any x ∈ X (δ), �̃(x) − G̃(x) is always positive
semidefinite, where the formula for �̃(·) is given in Theorem 6.

Remark 7. The key difference between the assumption of The-
orem 8 for the one-step estimator for the population LSE and
that of Theorem 6 for the (sample) LSE is that, under the sparse
regime (ii), we drop the requirement that F is a finite mixture
of point masses and F is allowed to be a general distribution
function on X n, at the cost of a stronger density assumption
(log n)2(1∨ω)/(nρ4

n) → 0.

In Section 3, it is shown that the OSE X̂ dominates the ASE
X̂(ASE) for estimating X0 asymptotically. Similarly, since �̃(x) �
G̃(x) for all x ∈ X (δ), it follows that locally for a fixed vertex
i, the OSE Ŷ improves the LSE X̆ asymptotically in terms of a
smaller asymptotic covariance matrix in spectra. In addition,

nρn‖X̆W − Y0‖2
F − nρn‖ŶW − Y0‖2

F
P0→∫

X
tr{�̃(x) − G̃(x)}F(dx) ≥ 0.

Namely, the OSE Ŷ also improves the LSE X̆ globally for all
vertices in terms of the SSE ‖ŶW − Y0‖2

F.

5. Numerical Examples

5.1. A Latent Curve Random Graph Example

In this subsection, we consider a random dot product graph
whose latent positions are generated from a curve. Consider
a graph with n vertices and latent dimension d = 1.
The latent position x0i for the ith vertex is set to x0i =
0.8 sin {π(i − 1)/(n − 1)} + 0.1, where i ∈ [n]. Let X0 =
[x01, . . . , x0n]T and suppose an adjacency matrix A is generated
from RDPG(X0). The four estimators involved are the ASE
X̂(ASE), the one-step estimator X̂ initialized at the ASE (OSE-
A), the LSE X̆, and the OSE Ŷ for the population LSE (OSE-L).
We focus on the following objectives:

(i) Comparison between the ASE and the OSE-A, and the
comparison between the LSE and the OSE-L. We evaluate

the performance of these estimates by computing their
SSEs:

SSEASE = inf
W∈{±1} ‖X̂(ASE)W − X0‖2

2,

SSEOSE−A = inf
W∈{±1} ‖X̂W − X0‖2

2,

SSELSE = inf
W∈{±1} ‖X̆W − Y0‖2

2,

SSEOSE−L = inf
W∈{±1} ‖ŶW − Y0‖2

2.

(ii) Performance of the vertex-wise confidence intervals (CIs)
for the latent positions and the population LSE. The vertex-
wise CIs can be derived from Theorems 5 and 9. Let X̂ =
[̂x1, . . . , x̂n]T be the OSE-A. By Theorem 5,

√
n(|̂xi| −

x0i)
L→ N(0, G(x0i)−1), where G(x0i) = ∫

x1{x0i(1 −
x0ix1)}−1F(dx1). To compute a 1 − α confidence interval
for x0i, we need to estimate G(x0i) using X̂ because neither
x0i nor the function form of G is accessible from the data.
Specifically, let Ĝ(̂xi) = (1/n)

∑n
j=1 x̂j{̂xi(1 − x̂îxj)}−1.

Then a 1 − α confidence interval for x0i is given by(
|̂xi| − qz(1 − α/2)√

Ĝ(̂xi)n
, |̂xi| + qz(1 − α/2)√

Ĝ(̂xi)n

)
, (20)

where qz(1 − α/2) is the 1 − α/2 quantile of the standard
normal distribution. Similarly, the asymptotic normality
n(|̂yi| − y0i)

L→ N(0, G̃(x0i)) from Theorem 9 can be
employed to construct a 1 − α confidence interval for
the coordinate y0i of the population LSE Y0, where ŷi is
the ith coordinate of Ŷ. The corresponding asymptotic
variance can be estimated by {4μ̂̂xiĜ(̂xi)}−1, where μ̂ =
(1/n)

∑n
j=1 x̂j. Therefore, a 1 − α confidence interval for

y0i is given by(
|̂yi| − qz(1 − α/2)√

4n2μ̂̂xiĜ(̂xi)
, |̂yi| + qz(1 − α/2)√

4n2μ̂̂xiĜ(̂xi)

)
. (21)

(iii) Performance of the hypothesis testing as a subsequent
inference task. We consider testing hypothesis H0 : A ∼
RDPG(X0) against HA : A ∼ RDPG(Xε), where
Xε = [X0, ε1], 1 is the n-dimensional vector of all
ones, and ε ∈ {0.001, 0.002, . . . , 0.01}. To compare the
impact of the ASE and OSE-A on hypothesis testing, we
let TASE = infW∈{±1} ‖X̂(ASE)W − X0‖2

F and TOSE-A =
infW∈{±1} ‖X̂W−X0‖2

F be the test statistics associated with
them. The goal is to explore the powers of TASE and TOSE-A
as functions of ε.

For Objectives (i) and (ii), we draw 1000 independent adja-
cency matrices from RDPG(X0) as Monte Carlo replicates.
Regarding objective (i), we compute the SSEs across the 1000
Monte Carlo replicates and present the boxplots of SSEASE −
SSEOSE−A and nSSELSE − nSSEOSE−L in Figures 2 (a) and
(b), respectively. We can see clearly that, for each realization,
SSEOSE−A < SSEASE and SSEOSE−L < SSELSE with large prob-
ability. The difference between SSEASE and SSEOSE−A and that
between SSELSE and SSEOSE−L are both statistically significant
at level α = 0.01. These results support the theory developed
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in Sections 3 and 4. In terms of objective (ii), we construct the
vertex-wise 95% confidence intervals for both X0 and Y0 based
on each realization of the adjacency matrix, and compute the
corresponding empirical coverage probabilities for each vertex
i ∈ [n]. The results are visualized in Figures 2 (c) and (d),
respectively. The empirical coverage probabilities concentrate
near the nominal coverage probability. We also randomly select
one realization of the adjacency matrix and visualize the vertex-
wise CIs for [x01, . . . , x0n]T and [y01, . . . , y0n]T in Figures 2 (e)
and (f), respectively, which further consolidate the asymptotic
normality of the rows of the OSE-A and the OSE-L developed
in Sections 3 and 4.

For objective (iii), we need to determine the null distribu-
tions of the test statistics TASE and TOSE. We compute these

null distributions using a Monte Carlo simulation with 1000
independent replicates. The rejection regions for level α tests
based on TASE and TOSE−A are RASE := {A : TASE > qα(ASE)}
and ROSE−A := {A : TOSE−A > qα(OSE-A)}, where qα(ASE)

and qα(OSE-A) are the (1 − α)-quantiles of the distributions
of TASE and TOSE−A under the null hypothesis, respectively.
We then compute the powers of the two test statistics under
different values of ε ∈ {0.001, 0.002, . . . , 0.01} using a Monte
Carlo simulation with 1000 independent replicates and report
the results in Table 1. Due to the improvement of the OSE-A over
the ASE, we see clearly that the test based on TOSE−A is more
powerful than that based on TASE, which shows the usefulness
of the proposed OSE-A for hypotheses testing as a subsequent
inference task.

Figure 2. Numerical results for Subsection 5.1: Panels (a) and (b) are the boxplots of SSEASE − SSEOSE−A and nSSELSE − nSSEOSE−L across 1000 Monte Carlo replicates,
respectively; Panels (c) and (d) are the coverage probabilities of the vertex-wise confidence intervals for the latent positions X0 = [x01, . . . , x0n]T and the population LSE
Y0 = [y01, . . . , y0n]T, respectively, and the red horizontal lines correspond to the nominal 95% coverage probability; Panels (e) and (f ) are the realizations of the vertex-wise
95% confidence intervals for X0 = [x01, . . . , x0n]T and Y0 = [y01, . . . , y0n]T from a single draw of A, respectively.

Table 1. Power comparison of TASE and TOSE for Section 5.1.

ε 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Power of TASE 0.111 0.097 0.109 0.096 0.122 0.156 0.181 0.288 0.428 0.613
Power of TOSE 0.154 0.137 0.156 0.157 0.208 0.261 0.317 0.437 0.582 0.744



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

5.2. Comparison With the Method of Maximum Likelihood

This subsection aims at comparing the proposed one-step pro-
cedure with the ASE, and a local MLE for the random dot
product graph. Although neither the existence nor the unique-
ness of the MLE for the random dot product graph has been
established, it is always possible to compute a local maximizer of
the log-likelihood function using optimization algorithms. We
first provide a simple block-coordinate descent method for find-
ing a local maximizer of the log-likelihood function and then
implement the algorithm in two concrete simulated examples.
The goal is to compare the performance of the resulting estimate
with the ASE and the OSE in terms of both the SSEs and the
computation time.

Let A ∼ RDPG(X) with sparsity factor ρn = 1 and
let �A(x1, . . . , xn) denote the log-likelihood function of X =
[x1, . . . , xn]T. A potential local maximizer of �A can be found
using the block-coordinate ascent algorithm in Algorithm 2.
Note that within each iteration, Algorithm 2 requires an exact

Algorithm 2 Block-coordinate ascent maximum likelihood
1: Input: The adjacency matrix A = [Aij]n×n and the embed-

ding dimension d.
2: Step 1: Compute the ASE X̂(ASE)

3: Step 2: Initialize X̂(0) = X̂(ASE) and set t = 0.
4: Step 3: While not converged
5: For i = 1, 2, . . . , n

x̂(t+1)
i ←− arg maxxi�A

(̂
x(t+1)

1 , . . . , x̂(t+1)
i−1 , xi, x̂(t)

i+1, , . . . , x̂(t)
n

)
.

End For
6: Set t ←− t + 1.
7: End While
8: Output: X̂(t) = [̂x(t)

1 , . . . , x̂(t)
n ]T.

line search along each xi direction for all i = 1, . . . , n. This
step can be implemented using the Matlab function fmincon
conveniently.

We next implement Algorithm 2 to Example 1 with p = 0.6,
q = 0.4, F(dx) = 0.6δp(dx) + 0.4δq(dx), and n = 300. The
same experiment is repeated for 1000 independent Monte Carlo
replicates. We report the computation times for the ASE X̂(ASE),
the OSE initialized at the ASE X̂, and the local maximum likeli-
hood estimate (MLE) X̂(MLE) for a single realization in Table 2.

We also compute the SSEs of the three estimates: SSEASE =
minW∈{±1} ‖X̂(ASE)W − X0‖2

F, SSEOSE = minW∈{±1} ‖X̂W −
X0‖2

F, and SSEMLE = minW∈{±1} ‖X̂(MLE)W − X0‖2
F. The aver-

age SSEs of these estimates across 1000 Monte Carlo replicates
are tabulated in Table 2, together with the standard errors.
Figure 3 visualizes SSEASE − SSEOSE, SSEASE − SSEMLE, and
SSEOSE −SSEMLE in the three panels, respectively. In particular,
SSEOSE−SSEMLE is mild in this example in contrast to SSEASE−
SSEOSE. These numerical results suggest that the improvement
from the ASE to the OSE is more significant than the improve-
ment from the OSE to the MLE in terms of the SSEs, whereas
the computation cost of the MLE is much higher than that of
the OSE and that of the ASE.

We finally consider a simulated example with a comparatively
small sample size, which sheds some light to future research
direction concerning the method of maximum likelihood in
finite-sample problems. The setup is similar to the example
in Subsection 5.1. Namely, we consider a 1-dimensional ran-
dom dot product graph whose latent positions are given by
x0i = 0.8 sin {π(i − 1)/(n − 1)} + 0.1, i ∈ [n]. The number
of vertices n is set to 30, and we generate an adjacency matrix
A ∼ RDPG(X0), where X0 = [x01, . . . , x0n]T. We compute the
ASE, the proposed OSE, and a local MLE using Algorithm 2.
We repeat the experiment for 1000 independent Monte Carlo
replicates. The computation times for obtaining the ASE, the
OSE, and the MLE for a single realization are reported in Table 3,
together with the average SSEs and the corresponding standard

Table 2. Computation time and error comparison for Section 5.2: The latent posi-
tions are set as in Example 1 with p = 0.6, q = 0.4, and the number of vertices is
n = 300.

Method ASE OSE-A MLE

Computation time in Matlab 0.008057 sec 0.01882 sec 26.1634 sec
SSE = infW∈{±1} ‖̂XW − X0‖2

F 0.7178 0.7040 0.7030
Standard error for SSE 0.0019 0.0018 0.0018

Table 3. Computation time and error comparison for Section 5.2: The latent posi-
tions are set to x0i = 0.8 sin{π(i − 1)/(n − 1)} + 0.1, i = 1, . . . , 30.

Method ASE OSE-A MLE

Computation time in Matlab 0.004213 sec 0.001644 sec 0.209708 sec
SSE = ‖̂XW − X0‖2

F 0.4449 0.6260 0.4062
Standard error for SSE 0.0041 0.0079 0.0039

Figure 3. Numerical results for Section 5.2: The boxplots of SSEASE − SSEOSE, SSEASE − SSEMLE, and SSEOSE − SSEMLE across 1000 Monte Carlo replicates; The latent
positions are set as in Example 1 with p = 0.6, q = 0.4, and the number of vertices is n = 300.
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Figure 4. Numerical results for Section 5.2: The boxplots of SSEASE − SSEOSE, SSEASE − SSEMLE, and SSEOSE − SSEMLE across 1000 Monte Carlo replicates; The latent
positions are set as x0i = 0.8 sin{π(i − 1)/(n − 1)} + 0.1, i = 1, . . . , 30.

errors across 1000 Monte Carlo replicates. We also visualize
SSEASE − SSEOSE, SSEASE − SSEMLE, and SSEOSE − SSEMLE in
the three panels of Figure 4, respectively. Observe that in this
example, with a relatively small number of vertices n = 30,
the OSE does not provide improvement over the ASE, whereas
the MLE shows significant improvement over the ASE as well
as the OSE. The practical performance of the MLE for finite-
sample problems is also inspiring for designing a multiple-step
procedure that repeats the one-step update multiple times for
finding a local MLE. This interesting direction is deferred to
future work. Another implication of this experiment is that
the practitioners are not recommended to apply the one-step
procedure for network data with comparatively small vertices.
Instead, it is recommended that a local MLE is used over the
one-step estimate and the ASE.

5.3. Wikipedia Graph Data

We finally apply the proposed one-step procedure to a real-
world Wikipedia graph dataset, which is available at http://
www.cis.jhu.edu/~parky/Data/data.html. The Wikipedia graph
dataset consists of an adjacency matrix among n = 1382
Wikipedia articles that are within two hyperlinks of the article
“Algebraic Geometry,” and these articles are further manually
labeled according to one of the following 6 descriptions: people,
places, dates, things, math, and category. To determine a suitable
embedding dimension d for the random dot product graph
model, we follow the ad hoc approach of Zhu and Ghodsi (2006)
and computes

d̂ = arg maxd=1,2,...,q

{ d∑
k=1

log f (σk(A); μ̂1, σ̂ 2)

+
q∑

k=d+1
log f (σk(A); μ̂2, σ̂ 2)

⎫⎬⎭ ,

where f (x; μ, σ 2) = (2πσ 2)−1/2 exp
{−(x − μ)2/(2σ 2)

}
is the normal density with mean μ and variance σ 2,
μ1 = 1

d
∑d

k=1 σk(A), μ2 = 1
p−d

∑p
k=d+1 σk(A), σ̂ 2 =

(d−1)s2
1+(p−d−1)s2

2
p−2 , s2

1, s2
2 are the sample variances of {σk(A)}d

k=1
and {σk(A)}q

k=d+1, respectively, and q is an upper bound for the

Table 4. Wikipedia Graph Data: Rand indices of the GMM-based clustering algo-
rithm applied to the ASE, the LSE, the OSE-A, and the OSE-L, respectively, with the
number of clusters being 6, in comparison with the corresponding manual labels.

Method ASE LSE OSE-A OSE-L

Rand Index 0.7429 0.7350 0.7413 0.7538

Table 5. Wikipedia Graph Data: Rand indices of the GMM-based clustering algo-
rithm applied to the ASE, the LSE, the OSE-A, and the OSE-L, respectively, with the
number of clusters being 2, in comparison with the corresponding one-versus-all
manual labels for the class “Dates”.

Method ASE LSE OSE-A OSE-L

Rand Index 0.5289 0.5097 0.5432 0.5313

embedding dimension. Here, we select q = 50 as a conservative
upper bound, resulting in d̂ = 11.

We next compute the ASE, the LSE, the OSE-A, and the OSE-
L, with the embedding dimension d = 11, and then apply
the GMM-based clustering algorithm to these estimates, with
the number of clusters being 6. We next compare the similarity
between the manually assigned 6 class labels and these clustering
results by computing the respective Rand indices, which are tab-
ulated in Table 4. The results show that the one-step procedure
for the population LSE outperforms the rest of the competitors,
as it provides the clustering result that is most similar to the
original class label assignment among the four methods.

Besides evaluating the performance of the overall clustering
for the 6 manually assigned labels, we also focus on the com-
parison of the article class “Dates” against the rest of the articles
specifically. We apply the GMM-based clustering algorithm to
the aforementioned four estimates again, but with the number
of clusters being 2, and tabulate the Rand indices in Table 5.
We can see that the proposed one-step procedure improves the
clustering accuracy as well when we focus on the comparison
between the article class “Dates” against the rest of the labels.
The scatterplots of the first-versus-second dimension of the
four estimates are visualized in Figure 5, along with the cluster-
specific 95% empirical confidence ellipses in dashed lines.

6. Discussion

In the context of stochastic block models, Gao et al. (2017) pro-
posed a vertex clustering approach that improves the solution

http://www.cis.jhu.edu/~parky/Data/data.html
http://www.cis.jhu.edu/~parky/Data/data.html
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Figure 5. Wikipedia graph data: The scatterplots of the first-versus-second dimension of the four estimates. The scatter points are colored according to whether the articles
are in the class “Dates” or the others. The 95% empirical cluster-specific confidence ellipses are displayed by the dashed lines.

provided by the ASE and/or the LSE. The algorithm in Gao
et al. (2017) starts from the clustering solution of the ASE/LSE
and then refines the cluster assignment of each vertex through
the maximization of a penalized Bernoulli likelihood function,
where the cluster memberships of the rest of the vertices are
fixed at their most recent values. This approach is similar to our
one-step procedure for estimating the latent positions in spirit,
as both methods are implemented in a vertex-by-vertex opti-
mization fashion with a warm start solution (i.e., the ASE/LSE
or the cluster assignment given by them). Our method differs
from the method of Gao et al. (2017) in that the proposed
one-step procedure aims at maximizing the Bernoulli likelihood
function with regard to the continuous-valued latent positions
and takes the gradient information of the likelihood function
into account, whereas Gao et al. (2017) focused on estimating
cluster memberships of vertices, and no gradient information is
available due to the discrete nature of the variables of interest.

We assume that the embedding dimension d for the random
dot product graph is known throughout the article. The pro-
posed one-step procedure is also valid when the true dimension

d for the underlying sampling model is unknown. In this case,
the method proceeds by first finding the ASE into R

d′ for some
d′ ≥ 1 and d′ < d (i.e., when the dimension is under-estimated)
and then computing the OSE based on d′. Our Theorems 5 and
9 still hold and can be easily proved as suggested by Tang and
Priebe (2018). On the other hand, leveraging Bayesian meth-
ods when the dimension d is unknown is a promising future
direction in light of the recent progress in Bayesian theory and
methods for low-rank matrix models with undetermined rank
(Bhattacharya and Dunson 2011; Rocková and George 2016)
and network models (Caron and Fox 2017; Xie and Xu 2019;
Geng, Bhattacharya, and Pati 2019).

We have shown that the one-step procedure produces an
estimator enjoying fascinating asymptotic properties both glob-
ally for all vertices and locally for each vertex. Nevertheless, for
problems with comparatively small sample sizes, we have also
shown in a simulation example that the OSEs do not necessarily
provide us with better numerical results compared to the clas-
sical adjacency/Laplacian spectral embedding. Instead, we have
also observed that the method of maximum likelihood, which
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is implemented in a block-coordinate ascent algorithm, pro-
vides practical improvement over the ASE. Since the one-step
procedure only implements a single iteration of the Newton–
Raphson algorithm with the observed Hessian matrix replaced
by the negative Fisher information matrix, we hope to develop
an iterative algorithm for finding a local MLE by repeating the
one-step procedure multiple times until convergence. Such an
iterative algorithm can be implemented in conjunction with
the regularization of the Fisher information matrix and back-
tracking procedure for finding suitable step sizes to achieve
faster convergence (Nocedal and Wright 2006). Furthermore,
developing a scalable version of such an algorithm will be highly
desirable in the presence of big data and extremely large net-
works. It will also be useful to explore the statistical properties
of the estimator obtained by the iterative algorithm, and to
establish its theoretical guarantee. We defer these research topics
to future work.
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The supplementary material contains a comprehensive list of notations,
the proofs of the technical results in Sections 2, Section 3, and Section 4,
the behavior of the OSE for positive-definite stochastic block models,
further discussion regarding sparse graph models, and additional simulated
examples.
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