IEEE TRANSACTIONS ON NETWORKING

RobustPay™: Robust Payment Routing with
Approximation Guarantee in Blockchain-based
Payment Channel Networks

Yuhui Zhang, Student Member, IEEE, and Dejun Yang, Senior Member, IEEE,

Abstract—The past decade has witnessed an explosive growth in cryptocurrencies, but the blockchain-based cryptocurrencies have
also raised many concerns, among which a crucial one is the scalability issue. Suffering from the large overhead of global consensus
and security assurance, even the leading cryptocurrencies can only handle up to tens of transactions per second, which largely limits
their applications in real-world scenarios. Among many proposals to improve the cryptocurrency scalability, one of the most promising
and mature solutions is the payment channel network (PCN), which offers the off-chain settlement of transactions with minimal
involvement of expensive blockchain operations. However, transaction failures may occur due to external attacks or unexpected
conditions, e.g., an uncooperative user becoming unresponsive. In this paper, we present a distributed robust payment routing protocol
RobustPay T to resist transaction failures, which achieves robustness, efficiency, distributedness and approximate optimization.
Specifically, we investigate the problem of robust routing in PCNs from an optimization perspective, which is to find a pair of payment
paths for a payment request, while minimizing the worst-case transaction fee, subject to the timeliness and feasibility constraints. We
present a distributed 2-approximation algorithm for this problem. Moreover, we modify the original Hashed Time-lock Contract (HTLC)
protocol and adapt it to the robust payment routing protocol to achieve robustness and efficiency. Extensive simulations demonstrate

that RobustPay™ significantly outperforms baseline algorithms in terms of the success ratio and the average accepted value.

Index Terms—Cryptocurrency, payment channel network, routing, blockchain

1 INTRODUCTION

VER the past decade, the blockchain-based cryptocur-

rencies have risen to more than $80 billion in peak cap-
ital, including Bitcoin [13], Ethereum [18], and Ripple [20].
These altcoins make use of the blockchain technology to
achieve real-time total settlement [19] of different currencies
and assets [29, 30], which is much cheaper than the current
central bank system. Nevertheless, when attempting to scale
up blockchains like Bitcoin and Ethereum, several concerns
emerge. Firstly, every participant needs to know every sin-
gle transaction to ensure a unique and synchronized global
status. This leads to high overhead and demand for local
storage. For instance, it could cost a Bitcoin user almost 20
GB (can increase to 60 GB after three years) of additional
storage each year [9]. Further, blocks can only be added
at a certain maximum rate determined by the necessary
proof-of-work computations that need to be carried out by
generating a number whose hash value that starts with a
pre-decided number of zeros. Taking the Bitcoin blockchain
as an example, the maximum number of transactions per
second (tps) is only 7 [8], which is not comparable to over
47, 000 peak tps processed by Visa [26].

The payment channel network (PCN) was proposed to
tackle the scalability issues [16]. A simple illustration of
PCN is shown in Fig. 1. PCNs can process instant and less
valuable payments without involving blockchain transac-
tions which are slow and expensive. Only the initial and
final balances of each channel are required to be regis-

This paper is an extended and enhanced version of [32]. Zhang and Yang are af-

filiated with Colorado School of Mines, Golden, CO 80401. Email:{yuhzhang,
diyang}@mines.edu. This research was supported in part by NSF grants
1717315 and 2008935. The information reported here does not reflect the
position or the policy of the federal government.

Public
Blockchain

|
Payment Channel @
Network (5] / \

O S xg>®

/

Fig. 1. Payment channel network (PCN) with a payment transaction from
A to D. The transactions are off-chain. When two parties disagree with
the transaction history, the transaction history will be published to the
blockchain for verification. The dishonest party will be penalized.

tered. Section 3 provides an in-depth discussion of the PCN
working mechanism. PCNs have been employed to develop
Bitcoin's Lightning Network [16] and Ethereum’s Raiden
Network [14]. The uniqueness of PCNs is that PCNs can
significantly lower the transaction fees than in blockchain.
It is achieved by allowing a payment sent to the recipient
through multiple hops between payment channels. In the
payment transferring process, hosts of the channels on the
route can charge fees accordingly. Therefore, the key moti-
vation is to optimize the routing in PCNs and guarantee the
success of a payment.

Several reported research works have investigated pay-
ment routing in PCNs [12, 17, 21-23, 31]. However, these
efforts either emphasize on privacy [12, 22], or underesti-
mate the importance of key realistic constraints such as the

IEEE TRANSACTIONS ON NETWORKING

208
©0.5
3

T04
203

Bo0.2

ansacstion

— 0.1
=01 10 15 20 25

Percentage of unresponsive users (%)

Fig. 2. Impact of unresponsive users on the transactions

transaction fees [12, 17, 21-23, 31]. One misconception of
the routing in PCNs is that PCNs may be treated as a con-
ventional computer ad-hoc network. In fact, the complexity
of routing in PCNs is increased by two distinct features,
which are not found in conventional ad-hoc networks. The
first distinct feature is the feasibility constraint, which
results from the fact that additional fees paid to the users
along the route have to be sent together with the payment
to the recipient. The second feature is referred to as the
timeliness constraint, which is because the tolerance on the
cooperating time in payment forwarding process of each
PCN user is different. Due to these differences between
PCNs and computer ad hoc networks, PCNs cannot apply
the algorithms for conventional routing problems directly.

Recently, Zhang et al. [33] designed an optimal algorithm
CheaPay to generate a single payment path that minimizes
the transaction fee in PCNs and satisfies both the feasibility
and timeliness constraints. However, CheaPay cannot resist
transaction failures due to unexpected conditions or external
attacks along the path. For example, some uncooperative
intermediate users on the path may become unresponsive
intentionally or unintentionally. Being unresponsive means
that the channel funds may be on hold until the HTLC
expires. A channel participant keeps funds in a channel
either to make a payment for goods or service (which now is
delayed), or to earn fees by forwarding a transaction. Since
the value of cryptocurrencies fluctuates dramatically, the
time value of money (TVM) concept in financial manage-
ment also applies to cryptocurrencies, or might contribute
more according to the historic volatility. Thus, unresponsive
users are a liability to channel participants. It is similar to
a denial of service attack, which ties up cryptocurrencies
rather than bandwidth. In order to evaluate the impact of
the unresponsive users on the transactions, we conducted
simulations on a real-world dataset from the Bitcoin Light-
ning Network [5]. The simulation result in Fig. 2 shows
that the transactions failure ratio increases by 15%, when
5% users are unresponsive. This indicates that unrespon-
sive users are indeed an issue and need to be taken into
consideration during payment routing. Therefore, PCNs are
expected to provide better robustness against transaction
failures due to unresponsive users, i.e., a payment routing
protocol satisfies robustness, if it constructs two or more
node-disjoint payment paths, where each payment path can
fulfill the payment request. A payment is transferred on
these payment paths simultaneously. If one path fulfills the
payment first, the other path(s) will be invalidated.

In this paper, we investigate the robust payment rout-
ing by constructing two node-disjoint payment paths for a

2

payment request in PCNs. A robust payment routing has
a number of distinct characteristics, thus it is expected to
satisfy a set of desired properties. First, a robust payment
routing protocol is expected to minimize the worst-case
transaction fee, which is referred to as optimization, since
it constructs more than one node-disjoint payment paths
to resist transaction failures. As for NP-hard problems, we
can only seek for approximate optimization. Secondly, a
robust payment routing protocol should satisfy efficiency,
ie., to minimize the routing and payment latency incurred
by transn'uttmg a payment through multiple payment paths
simultaneously. Finally, a robust payment routing should
satisfy distributedness, as no central administrative opera-
tor exists in PCNs. Even if such an operator exists, it would
not be trusted.

In face of these challenges, we propose RobustPay™, a
robust payment routing protocol that satisfies robustness,
approximate optimization, efficiency and distributedness.
Specifically, we investigate the problem of robust payment
routing in PCNs from an optimization perspective. This
problem is referred to as the Maximum Transaction Fee
Minimization (MTFM) problem: minimizing the maximum
transaction fee of a pair of node-disjoint paths to transfer a
payment from the sender to the recipient, while guarantee-
ing that both the timeliness and feasibility constraints are
satisfied for each involved payment channel on this pair
of node-disjoint paths. Meanwhile, we design an HTLC
mechanism providing more flexible choices and security to
users and adapt it to the robust payment routing protocol.
The main contributions of this paper are:

s To the best of our knowledge, we are the first to
consider the robust payment routing protocol, which
provides resistance to transaction failures in PCNs.

+ We investigate important design goals of payment
routing in PCNs, which are robustness, efficiency,
distributedness and approximate optimization.

o« We propose RobustPay*, a distributed Robust
Payment routing protocol against transaction failures
in PCNs. RobustPay™ consists of three stages: Pay-
ment Path Construction, HTLC Establishment and
Payment Forwarding.

e We enhance the robustness for payment routing in
PCNs by constructing two node-disjoint paths for
a payment request and achieve approximate opti-
mization by designing a distributed 2-approximation
algorithm to minimize the worst-case transaction fee.

e We also modify the original HTLC protocol and
adapt it to RobustPay™ to guarantee efficiency.

« Extensive simulations demonstrate that RobustPay™
not only minimizes the worst-case transaction fee,
but also achieves superior success ratio and average
accepted payment value over baseline algorithms.

The remainder of the paper is organized as follows. In
Section 2, we provide a brief literature review of related
work. In Section 3, we present the background and system
overview of PCNs. In Section 4, we formally describe the
system model, outline the design goals and give the problem
formulation. In Section 5, we illustrate the robust payment
routing protocol RobustPay™, demonstrate the design of the
routing algorithm and analyze the properties. In Section 6,

IEEE TRANSACTIONS ON NETWORKING

®3(H, 2,7.01)
W\
,\0:1_’ _>-.._,,@ﬁ5,
\\?{‘. \ T L 4 : ‘.{)
@\ ’.’ K ® R .. ' 0/

. NG
; 2 (DH s a hash of R *

Fig. 3. Hashed time-lock contract (HTLC). The sender A sends a pay-
ment of 7 to the recipient D via B and C with an HTLC tolerance of 3.
Assume that the transaction fee charged by each user is 0.01. Circled
numbers represent the sequence of the operations.

we test and validate the performance of RobustPay* by
comparing it to baseline algorithms. We summarize this
paper in Section 7.

2 RELATED WORK

Up to now, there are only limited efforts on studying the
routing problems in PCNs. Three years ago, one of the pio-
neering decentralized routing algorithms for PCNs, known
as Flare [17]. In this algorithm, there is a routing table on
each node, formed by the adjacent nodes that are close
in hop distance and paths to a list of beacon nodes. The
privacy-reserving routing problem was studied by Mala-
volta [12]. He developed SilenWhisper, which is a routing
scheme based on Landmark Routing [27]. In SilenWhisper,
the landmark that is passed by all paths may result in
unnecessarily long paths. Furthermore, this approach can
violate decentralization, which is the only intention of using
the blockchain system. SpeedyMurmurs [22] used an im-
proved algorithm based on embedding-based path discov-
ery [15]. In this way, the weakness of SilentWhisper could
be overcome and improved in terms of success ratio, delay
of payment, overhead, length of path, and stabilization.
Rohrer et al. [21] sketched the payment flow as multiple
paths adding up together to make use of the available
capacities in the network in an efficient way. Following
Rohrer’s path, Yu et al. [31] outlined a scattered algorithm,
which improved the success ratio of payment and reduced
the system overhead. However, all the previous studies
either concentrate on the privacy [12, 22] or simplifying
the problem without taking into account the hop-dependent
constraints [12, 17, 21, 22, 31].

Recently, Bagaria et al. [6] devised a technique that con-
structs redundant payment paths free of counterparty risk.
However, this solution was designed for multi-path routing
schemes without considering optimal routing. Zhang et
al. [33] proposed CheaPay to minimize the transaction fee
of a payment path, while considering the timeliness and
feasibility constraints. But CheaPay did not provide robust-
ness to payment routing in PCNs, including responses to
transaction failures due to unexpected conditions, e.g., an
uncooperative user becoming unresponsive.

3 BACKGROUND AND SYSTEM OVERVIEW

In this section, we provide the necessary background on
permissionless blockchains and present an overview of our
payment channel network system.

3.1 Decentralized Ledger

Cryptocurrencies like Bitcoin [13], Ethereum [18], and Rip-
ple [20] are based on the blockchain technology, which is
an append-only decentralized ledger of transactions shared
among mutually distrusted entities. However, the consensus
algorithm (e.g. proof-of-work in Bitcoin) that guarantees the
unique global state requires large local storage, due to the
high levels of data replication and computational power for
adding a block containing transactions to the blockchain.
Scalability Issue. The main concern of decentralized
blockchains is that every peer needs to be aware of all
transaction of all other peers to not be vulnerable to double-
spending. Bitcoin currently only supports up to 7 transac-
tions per second [8] which is not comparable to over 47, 000
peak tps processed by Visa [26]. Therefore, the blockchain-
based cryptocurrencies cannot scale for wide-spread use.

3.2 Payment Channel

To overcome the scalability issue, off-chain approaches have
been proposed to eliminate the need to commit each indi-
vidual transaction to the blockchain. The use of payment
channels is one way to realize the off-chain approach. Two
users establish a payment channel by each depositing a cer-
tain amount into a joint account and adding this transaction
to the blockchain.

Now a transaction between them is essentially a chan-
nel balance update agreed upon by them. A channel is
protected by multi-signature smart contracts, which ensure
validity, nonequivocality and non-repudiation of the on-
going transactions. When one party publishes an obsolete
balance history to reverse settled transactions or to double-
spend, the contract guarantees that the dishonest party is
punished by granting all its remaining channel balance to
the other party. This economically prevents an adversary
from utility gain via dishonest behaviors. When the channel
closes because either it is not needed anymore or the deposit
is depleted, a closing transaction will be broadcast to the
blockchain and will send deposited amount to each user
according to the most recent balance.

3.3 Payment Channel Network

Unfortunately, payment channel alone cannot solve the scal-
ability issue. Requiring everyone to create a payment chan-
nel with everyone else results in a large amount of on-chain
transactions broadcast to the blockchain. In order to enable
payments between any two users, payments can be routed
through multiple hops of channels in the payment channel
network (PCN) formed by users connected by payment
channels. This, however, can lead to issues that a user denies
performing payment transfer after receiving a preceding
one, or the recipient denies receiving the payment.

3.4 Hashed Time-Lock Contract (HTLC).

To address these issues, the Hashed Time-Lock Contract
(HTLC) mechanism has been introduced [16], as shown
in Fig. 3. The recipient first generates a random value R
and sends its hash H to the sender. The sender, as well
as any intermediate user, includes H in the transaction
contract, such that the transferred payment can be claimed

IEEE TRANSACTIONS ON NETWORKING

by the transferee only when the secret R is provided to the
transferor. In addition, each transaction is restricted by an
HTLC tolerance, such that if the transferor does not receive
R within the HTLC tolerance, the transferred fund will
be refunded to the transferor after the HTLC expires. The
unit of the HTLC tolerance, denoted by 4§, is the worse-
case bound on time for one on-chain transaction. Every user
in the payment path sets a tolerance, which is a smaller
HTLC tolerance in the outgoing payment channel than that
in the incoming payment channel. For example, in Lightning
Network, the tolerance is set as the number of hops until the
recipient [16]. As an example, the HTLC (H, 2, 7.01) from B
to C in Fig. 3 means that C' can receive a payment of 7.01
from B if C can provide the preimage of H within 24. This
mechanism ensures that a user can pull the payment from
its predecessor after its payment has been pulled by its suc-
cessor. Note that the HTLC tolerance time is not the time of
payment routing, which is fast when users are cooperative
and responsive. In addition to the payment to the recipient,
an HTLC also includes the transaction fees charged by the
intermediate nodes for transferring the sender’s payment.
The fees are significantly lower than blockchain transaction
fees largely due to the time-value of locking up funds in the
channel, as well as paying for the chance of channel close
on the blockchain.

3.5 Challenges

The main challenge of the routing in PCNs is that PCN’s can-
not be treated as a conventional computer ad-hoc network.
In fact, the complexity of routing in PCNs is increased by
two distinct features, which are not found in conventional
ad-hoc networks. The first distinct feature is the feasibility
constraint, which means different balance requirements on
different channels. It is resulted from that fees paid to
the users along the route have to be sent together with
the payment to the targeted recipient, during the payment
transferring process. The second feature is referred to as the
timeliness constraint, which cannot be found in computer
ad hoc networks. The reason is that the tolerance on the
cooperating time in payment forwarding process of each
PCN user is different. The tolerance is judged by the number
of hops to the recipient. Due to these differences between
PCNs and computer ad hoc networks, PCNs cannot apply
the algorithms for conventional routing problems directly.

4 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and the
payment model, outline the desired design goals and give a
precise problem formulation.

4.1 Network Model

A PCN can be represented as a directed graph G = (V, £),
where V is the set of nodes, and £ is the set of edges. Each
node v; € V represents a user, who has a cryptocurrency
account and establishes at least one payment channel with a
peer user. Each edge e = (v;,v;) € £ represents a payment
channel, where v; is the fransferor and v; is the transferee.
Each edge is associated with several attributes. First, each
edge (v;,vj) € £ has a transaction fee f; j, denoting the

(4.65,0.02,5) .90
3

6.0 .

10 @

{qu
@ 3 Q____-av
(3:,0 (s.os.om 2)
"y ./6,‘1\
,J'\‘l

Fig. 4. Example of PCN. Each payment channel is associated with 3
attributes (channel balance, transaction fee, HTLC tolerance) .

amount of value charged by v; for transferring a payment
to v;. For notational convenience, we let f;; = 0. Second,
each edge (v;,v;) € € has a channel balance b; ;, denoting
the amount of the remaining balance that v; can transfer to
v;. Third, each edge (v;, vj) € £ also has an HTLC tolerance
7i,j, denoting the maximum time v; would wait for the
secret R from v;. Note that we omit the transmission time in
PCNSs, because it is negligible compared to the transaction
time on blockchain. For simplicity, we assume the set £ only
contains edges with positive balances at any time. An edge
with zero balance is removed from the graph. In addition,
we define an (i, j) path as a simple path from v; to v;.

We assume that each user only has local knowledge
on all its incoming and outgoing edges, including their
transaction fees, balances and HTLC tolerances. In general,
each user cannot know the transaction fee, balance or HTLC
tolerance of any remote edge, due to network asynchrony
and dynamics.

4.2 Payment Model

A payment request is denoted by R = (vs, v, a), where v,
and v; are the sender and recipient respectively, and a is
the amount of the payment to be transferred. A payment
request R is performed via a number of transactions through
different channels, organized as an (s, t) path p denoted by a
sequence vg — vy — ... — vr, Where vg = v, and vy, = v;.
Here we abuse the notation (v;, vi+1) € p to represent that
a channel (v;,vi41) is involved in a payment path p. We
use a transaction fee function Fj(I,m) to denote the total
transaction fee from v; to v, on a payment path p, where
0<l<m<L:

Z 1 f! Ji41s Uy = Vg,
F,(l = =141 1
p(1m) {Zs: fz,t-‘rl: v ?é Vg. &

For a payment path, all the payment channels are called in-
volved channels (ICs), and all the users except the sender and
the recipient along the payment path are called intermediate
users (IUs).

4.3 Design Goals

Now we propose the following desirable design goals that
a payment routing protocol should satisfy.

+ Robustness: A payment routing protocol satisfies
robustness, if it generates two or more node-disjoint
payment paths, where each of them can fulfill the
payment request individually. In PCNs, a node may

IEEE TRANSACTIONS ON NETWORKING

become unresponsive due to external attacks, unex-
pected conditions or uncooperative behaviors, which
leads to transaction failures. If the routing protocol
generates only a single path for a payment request,
it fails when a node on this path becomes unrespon-
sive. In order to resist such transaction failures, it is
necessary to generate more than one node-disjoint
payment paths to transfer a payment, where no
common intermediate user is shared on both paths.
The payment is forwarded on these payment paths
simultaneously. If one path fulfills the payment first,
the other path(s) will be invalidated.

+ Approximate Optimization: A payment routing pro-
tocol satisfies optimization, if it minimizes the worst-
case transaction fee for a payment request. Since a
robust payment routing protocol constructs two or
more payment paths, where each payment path can
fulfill the payment request, it is necessary to min-
imize the maximum transaction fee of these node-
disjoint payment paths. However, this optimization
problem could be NP-hard due to the distinct char-
acteristics in PCNs. Sometimes we can only strive to
achieve approximate optimization. We will discuss
the NP-hardness of this problem in Section 4.4.

« Efficiency: A payment routing protocol satisfies ef-
ficiency, if it minimizes the routing and payment
latency incurred by transmitting a payment through
more than one path simultaneously. In the robust
payment routing, only one payment path will be
used to fulfill the payment request, and the other
payment path(s) will be invalidated. Thus, it is neces-
sary to guarantee that this payment path introduces
the minimum latency.

» Distributedness: A payment routing protocol satis-
fies distributedness, if it dose not rely on a central-
ized trusted party. Centralized routing is subject to
a single point of failures upon external attacks and
hence cannot be trusted by users. Instead, users need
to communicate with each other and conduct local
computations to find routes for payments.

4.4 MTFM Problem Formulation

Following the desirable design goals that are outlined
above, we consider the Maximum Transaction Fee Mini-
mization (MTFM) problem for routing in PCNs. To formally
formulate our studied problem, we introduce the following
necessary concepts.
Timeliness Constraint: A payment path p = vg — v1 —
. — vy, satisfies timeliness constraint, if the payment
request can be successfully fulfilled within the HTLC toler-
ance of each IC, i.e., 7; ;41 > L—1,Vi € [0, L —1]. Timeliness
guarantees the commitment of honest processing at any IC.
Feasibility Constraint: A payment path p = vo — v1 —
. — v satisfies feasibility constraint, if the payment
request can be successfully transferred through each IC.
Specifically, the balance b; ;11 of € = (v;,vi+1) should be
at least the payment amount a plus the accumulation of
transaction fees paid to the IUs that follow v; on the path,
i.e., b§,§+1 > a+ Fp(% +]_, L), Vi e [O,L —]_].
Apparently, a single payment path cannot guarantee
robustness, since some uncooperative IUs on the path may

5

decide to become unresponsive or suffer from external
attacks. In order to avoid such a transaction failure, we
can establish a pair of node-disjoint payment paths, where
either payment path can fulfill the given payment request.
Since either payment path can be used to transfer a pay-
ment, it is necessary to guarantee optimization, which is to
minimize the maximum transaction fee of the pair of node-
disjoint payment paths, while still guaranteeing timeliness
and feasibility constraints. Towards this goal, we consider
the following optimization problem in PCNs:

Maximum Transaction Fee Minimization (MTFM):
Given a payment request R = (v,, v, a), find a pair of
timely and feasible node-disjoint payment paths, either of
which can fulfill R, such that the maximum transaction fee
of these two payment paths is minimized.

The MTEM problem can be proved NP-hard by reduc-
tion from the Min-Max 2-path problem, which has been
proved to be NP-complete in [11].

Theorem 1. The MTFM problem is NP-hard.

Thus, we can only strive to achieve an approximation
solution for the MTFM problem.

5 A DISTRIBUTED ROBUST PAYMENT ROUTING
PRoTOCOL IN PCNs

In this section, we present the design of RobustPay*. We
first provide the high-level overview and intuition behind
RobustPay™ and then follow the design goals that are
outlined in Section 4.3 to design RobustPay™ in detail.

5.1 Design Rationale and Challenges

A payment transaction failure occurs, if there are external
attacks or unexpected conditions along the payment path.
Thus, we provide robustness in payment routing by con-
structing a pair of node-disjoint payment paths, such that if
a transaction failure occurs on one payment path, the other
payment path can still fulfill the given payment request.
Specifically, we design a distributed algorithm derived from
the Suurballe’s Algorithm [24] for the min-sum 2-path prob-
lem. To apply the Suurballe’s Algorithm that was originally
designed for centralized systems, we need to address sev-
eral challenges. The first one is to transform the Suurballe’s
Algorithm into a distributed algorithm, where each node
only has local knowledge. Second, the timeliness and feasi-
bility constraints need to be taken into consideration.

In order to support robust payment routing, the original
HTLC [16] needs modification, since it was originally de-
signed for routing on a single payment path. This may cause
a potential problem that the recipient claims the payment
on both paths. To adapt the HTLC mechanism to robust
payment routing, we need to modify the current HTLC
protocol carefully to satisfy efficiency as well as off-chain
security.

We address these challenges in the following subsections
and design the RobustPay* protocol that users are expected
to follow.

IEEE TRANSACTIONS ON NETWORKING

TABLE 1
Main notations
Notation Meaning
fii amount of transaction fee of channel (v;, v;)

b, ; amount of remaining balance of channel (v;, v;)
Ty HTLC tolerance of channel (v;, v;)
Ifj‘:

set of v;'s transferees

OUT ; set of v;'s transferors
I'*(i,j) minimum transaction fee of the h-(i, j) TFM path
Ni(i,j) v's outgoing transferees of rk(i, 5)
vy auxiliary node of v;

5.2 Payment Path Construction

The first stage is to construct two payment paths for a
payment request, such that either payment path can fulfill
the payment request, and there is no intermediate user (IU)
shared on both payment paths. Such two payment paths are
referred to as a pair of node-disjoint payment paths. If a
transaction failure occurs on a payment path due to unex-
pected conditions, the other payment path can still work to
fulfill the transaction. In this section, we design and analyze
RobustPay*, a distributed approximation algorithm that
determines a pair of node-disjoint payment paths.

5.2.1 Design Rationale

Before we formally describe the design of RobustPay™,
we introduce the main notations in Table 1 and necessary
definitions in the following.

(z, j)-TFM path [33]: A payment path is an (i, 7}-TFM
path, if it satisfies the following conditions: 1) this payment
path satisfies both the timeliness and feasibility constraints;
2) this payment path has the minimum transaction fee
among all payment paths from v; to v;.

h-(, 7) TFM path: [33] A payment path is an h-(z, j) TFM
path, if it satisfies the following conditions: 1) the length of
this payment path is no more than h; 2) this payment path
satisfies both the timeliness and feasibility constraints; 3)
this payment path has the minimum transaction fee among
all payment paths from v; to v;.

(¢, 7)-MTEM path pair: A pair of payment paths is an
(2, 7)-MTEM path pair, if it satisfies the following conditions:

1) these two payment paths satisfy both the timeliness
and feasibility constraints;

2) these two payment paths do not share any common
intermediate user (IU);

3) the maximum transaction fee of these two payment
paths is the minimum among all pairs of payment
paths from v; to v;.

Our algorithm RobustPay™ is based on the distributed
Suurballe’s Algorithm [24], which was originally designed
to minimize the total cost of two disjoint paths in a central-
ized system. Specifically, we design RobustPay™ by imple-
menting CheaPay [33], which generate a single (7, 7)-TFM
path in PCNs. RobustPay™ algorithm consists of five stages:
initialization, first routing, graph transformation, second
routing and pair generation. In the initialization stage, the
algorithm splits a node v; into two nodes v; and v;» by cre-
ating an auxiliary edge (v;, v-) and reassigning all outgoing
edges on v; as outgoing edges on v;r, because the Suurballe’s

Algorithm [24] was originally designed for finding a pair

6
TABLE 2
Example of Routing Table before Node Splitting
i J
A B|C|D|FE|F
T"(i,5) 0]ooc || 0] o
Nh(i! j) A - - A -
number of hops | 1 - - 1 -
feasible v - _ 7 _

of edge-disjoint payment paths. In the first routing stage,
the algorithm gives an (s, t)}-TFM path by revoking Chea-
Pay [33], which is an optimal distributed algorithm that
minimizes the transaction fee of a payment path in PCNs
while considering the timeliness and feasibility constraints.
Note that this path is not one the two payment paths
for final payment transaction. In the graph transformation
stage, the algorithm transforms G to a residual graph. In
the second routing stage, the algorithm outputs an (s, t)-
TEM path in the residual graph, similarly to the first routing
stage. In the pair generation stage, the algorithm generates
a pair of node-disjoint payment paths by discarding the
reversed edges in the second payment path from both
payment paths and reconstructing the remaining edges.

Currently, source routing is utilized in the Lightning
Network [5], where the sender node is responsible for cal-
culating the entire path, from the sender to the recipient. To
do so, the sender node needs to download a snapshot of the
PCN topology to learn each channel’s transaction fee and
HTLC tolerance. Because the channel balance information is
not public due to privacy concerns and varies over time due
to dynamics, the transactions may fail as the actual balances
on the channels may not satisfy the payment. Therefore,
RobustPay* does not adopt source routing. Instead, each
node makes distributed routing decisions based on a dis-
tributed Bellman-Ford style algorithm. In this setting, a node
checks the balance availability with its neighbors during the
stage of payment path construction.

RobustPay+ establishes HTLCs after the payment path
construction stage. Thus, collateral is not locked during path
construction. Indeed, it is possible that transactions may
fail due to dynamic balance change in the PCN. Although
the main goal of this work is to resist transaction failures
due to unresponsive nodes, RobustPay+ can also mitigate
transaction failures caused by dynamic balance change. This
is because RobustPay™ establishes a pair of node-disjoint
paths that are guaranteed to be edge-disjoint. Even if there
are edge failures along one path due to the dynamic change
between the payment path construction stage and the pay-
ment forwarding stage, the other path can still be used for
the payment transaction.

5.2.2 Design of RobustPay™

In this section, we describe the details of RobustPay*, which
is illustrated in Algorithms 1, 2 and 3.

The initialization stage is shown in RobustPay*-Init
(Algorithm 1). RobustPay™-Init splits a node v; into two
nodes by creating an auxiliary node vy and reassigning
all outgoing edges on v; as outgoing edges on v;:. We use
IN; and OUT; to denote the set of v;’s ingoing transferors
and the set of v;"s outgoing transferees, respectively (Lines 1
and 2). Thus, v; is vy's transferor, and vy is v;’s transferee

IEEE TRANSACTIONS ON NETWORKING

TABLE 3
Example of Routing Tables After Node Splitting
i J
A BI]C|DJFE]F
TR (i, 5) 0 | oo|oo| 0| oo
Nh (i! j) A’ - - A’ -
number of hops | 2 - - 2 -
feasible v - - v -
i 7
A7 BITC[DJTFETF
T (i, 5) 0 | oo|oo| 0| oo
Nh (i!! J) A’ - - A’ -
number of hops | T - - 1 -
feasible v - - v -

(Lines 3 and 4). An auxiliary edge (v;, v;) connects v; and
v;r. Because there is no constraint to transfer a payment from
v; to its auxiliary node vy, we set f; = 0, 7,7 = oo,
and b; # = oo (Line 5). In order to reassign all outgoing
edges on v; as outgoing edges on v, RobustPay*-Init adds
edges to connect vy and v;’s transferees (Lines 6 to 11) and
removes edges that connect v; and v;’s transferees. We shall
run Algorithm 1 to initialize the node splitting for each node
v; € V. Tables 2 and 3 show the example of routing tables
that are stored on v; before and after node splitting.

The first routing stage revokes CheaPay [33] to find an
(s,t)-TEM path pk in G. Note this path is not one of the
two payment paths for the final payment transaction. A
transaction fee table {I'(z, j) }», ¢V is generated on each node
v;, which stores the transaction fees of the (i, j)-TFM paths.
Therefore, RobustPay™ can reuse the transaction fee table
{I'(s,1)}v, ey for graph transformation in the next stage.

The graph transformation stage is shown in
RobustPayt-Trans (Algorithm 2). RobustPay™-Trans
transforms the original graph to a residual graph by
reusing the transaction fee table {I'(s,i)}y,,cy obtained
from the previous stage. First, v; requests I'(s,) from its
transferor along the (s, z)-TFM path (Lines 1 to 3). Then, v;
modifies the transaction fee of each edge (7, j) by replacing
fij by fi; = frj —I(s,3) + I(s,7') (Lire 5). Also, if
the modified transaction fee of an edge on path p}? is 0,
RobustPay*-Trans reverses the edge direction (Lines 6 to 8).

The final stage is shown in RobustPay*-Output (Al-
gorithm 3). RobustPay*-Output outputs the (s,#)-MTFM
path pair. First, RobustPay™-Output runs RobustPay*-Init
to initialize the auxiliary node vy on each node v; € V.
Second, RobustPay*-Output revokes CheaPay to generate
an (s,t)-TFM path in G. Third, RobustPay*-Output runs
RobustPay*-Trans on each node v; € V to transform the
original graph to a residual graph G,. Then, RobustPay*-
Output revokes CheaPay again to generate an (s,t)-TFM
path in G,. Finally, RobustPay*-Output outputs the (s, t)-
MTFM path pair by discarding the reversed edges in the
second payment path from both payment paths and recon-
structing the remaining edges.

5.2.3 Analysis of RobustPay™

In this subsection, we analyze the approximation ratio of
RobustPay* as follows.

Theorem 2. RobustPay* outputs a 2-approximation solution
to the MTFM problem.

Algorithm 1: RobustPay*-Init

Input: a network G = (V, £), anode v;.
Output: a node v; and an auxiliary node vy
1 TN ; < the set of v;s transferor nodes;
2 OUT; < the set of v;'s transferee nodes;
3 Create an auxiliary node vy/;
a OUT,; + OUT; U{vy }; OUT y + B; IN + {v; };
5 fii < 0; 7y < 00; by g 4 00;
6 forv; € OUT; do
7 firg « fiji fiy < oc;
8
9

Tit 5 — Ti,gr Tij — 0,

bi’,.j — bg',j; bg',j — 0;
10 OUT; + OUT \{v;}; OUT i + OUT i+ U {v;};
1 end
12 return vy

Algorithm 2: RobustPay+-Trans

Input: a network G = (V, £), anode v;.
Output: a residual graph G;.

1 for vy € IN; do

2 | Request I'(s, 7) along the (s, 7)-TFM path;
3 end

4 forv; € OUT i do

5 fg‘f,g — fi’,j — F(S,j) + F(S, Z’);

6 | if fyj == 0and (vy,v;) € pk then

7 | fiir < 0; fir j + oo;

8 end

9 end

10 return G,

Proof. We first prove that RobustPay™ outputs an optimal
solution to the following Min-Sum Transaction Fee (MSTF)
problem: Given a payment request R = (vs,v;,a) and a PCN
G = (V, &), find a pair of timely and feasible node-disjoint paths,
either of which can fulfill R, such that the summation transaction
fee of these two paths is minimized.

Because RobustPay™ is designed based on a distributed
version of the Suurballe’s Algorithm [24], RobustPay™* out-
puts an optimal solution to the MSTF problem.

Let {p},p5} be the pair of paths in an optimal solution
to the MTFM problem and OPT = max{Fp;, F,: }. Let
{p1,p2} be the pair of paths generated by RobustPay™.
Thus, we can get

2max{Fp:, Fps} > Fpr + Fps
> Fp, + Fp,
> ma.x{Fpl, sz}a
20PT > Qmax{Fp;,Fpa} > max{Fp,, Fp, }.

Therefore, RobustPay™ outputs a 2-approximation solution
to the MTFM problem. |

We now analyze the message complexity of RobustPay*.
First, RobustPay*-Init builds O(|V|) auxiliary nodes, where
|[V| is the total number of nodes. Second, RobustPay™ calls
CheaPay once, whose message complexity is O(|V|%|€]).
Then RobustPay*-Trans sends messages along each (s, 1)-
TFM path. Therefore, RobustPay*-Trans exchanges O(|£|)

IEEE TRANSACTIONS ON NETWORKING

Algorithm 3: RobustPay+-Output

Input: a network G = (V, £), a payment request
R = (ve, v, a).
Output: a payment path pp.
1 ph — 0;p% < 0;
2 for v; € V do Init(G, v;);
3 ph + CheaPay(G, R);
4 forv; € V do Trans(G, v;);
5 p% <+ CheaPay(G, R);
6 for (v;,v;) € p% do
7 | if (vj,v:) € pk then
s | | pr+ pr\{(v,v)} PR < PE\{(vi,v)))
9 end
10 end
11 Reconstruct the remaining edges of plg, p% ;
12 return p}z, p2R

messages on each node. RobustPay*-Output’s message com-
plexity is dominated by CheaPay and RobustPay*-Trans on
each node, which is O(|V|?|€|). In total, the overall message
complexity of RobustPay™ is O(|V|?|£]).

5.3 HTLC Establishment

A Hashed Time-Locked Contract (HTLC) is a script that
permits a designated party (the transferee) to spend funds
by disclosing the preimage of a hash. It also permits a
second party (the transferor) to spend the funds after a
timeout is reached, in a refund situation. The original HTLC
introduced in [16] was designed for payment routing in a
single payment path. In the HTLC, the on hold payment
is refunded to the transferor, only if the transferee does
not provide the preimage of H within the HTLC tolerance.
However, the HTLC does not provide the transferee with
flexible choices to cancel a transaction before the expiration.
Even if the transferee decides to cancel a transaction, it can
only wait until the expiration of the HTLC.

To adapt the HTLC protocol to RobustPay™, we modify
the original HTLC to provide more flexible choices as fol-
lows: If the transferee does not provide the preimage of H
within the HTLC tolerance, or if the transferee cancels the
transaction before the preimage of H is provided, the on
hold payment in the HTLC is refunded to the transferor.
A potential problem is that the recipient may claim the
payment on both paths. In order to prevent this double-
claim issue, we improve the HTLC by using two separate
secrets on two payment paths, inspired by Boomerang [6].
However, we cannot directly apply Boomerang. Because
Boomerang cannot prevent the sender from reverting both
payments, since it only guarantees that the sender can revert
all payments, if the recipient claims more than one payment.
Thus, we modify it to prevent the double-reverting issue,
such that only one of the payment paths is randomly se-
lected to be reversible. With this modification, the sender
can revert the payment on the reversible path by providing
the secret of the irreversible path, if the recipient claims the
payment twice by producing secrets on both paths.

The script of the modified HTLC takes the following
form, and the modification of the HTLC is highlighted:

OP_IF
OP_IF
[HASHOP] (digest) OP_DROP OP_DUP
OP HASH160 (buyer pubkey hash)
OP _ELSE
(num) [TIMEOUTOP]| OP_EQUALVERIFY
OP DUP OP_ HASH160 (seller pubkey hash)
OP _ENDIF
OP NOTIF
[CANCELOP] (digest) OP. DROP OP_DUP
OP HASH160 (seller pubkey hash)
OP_ELSE
(num) [TIMEOUTOP] OP DROP OP DUP
OP HASH160 (buyer pubkey hash)
OP ENDIF
OP EQUALVERIFY
OP_CHECKSIG

A simple illustration of the modified HTLC is shown in
Fig. 5. Such a modification on HTLC can provide flexible
choices for PCN users and security for senders. We formally
give the following security guarantee:

Theorem 3. RobustPay™ guarantees that the recipient cannot
claim the payment twice, and the sender cannot revert both

payments.

Proof. Let {p;,p>} be a pair of node-disjoint payment paths
generated by RobustPay™. Without loss of generality, let
p; be the irreversible path, and let p; be the reversible
path. Let Ry and Ry be the preimages for the recipient
to claim the payments on p; and ps, respectively. Assume
that the recipient claims the payments on both p; and ps by
providing R; and R». This indicates the sender knows both
R, and Rj. By providing R; on ps, the sender can revert
the payment transaction on ps. Thus, it guarantees that the
recipient cannot claim the payment twice, and the sender
cannot revert both payments. [|

5.4 Payment Forwarding

After the payment path construction and the HTLC estab-
lishment processes, the sender can forward the payment
to the recipient via the constructed payment paths. Once
one of the two payment paths successfully transfers the
payment to the recipient, the other payment path should
be invalidated. If the recipient tries to claim the payment on
the second path, the sender can revert the payment on the
first path. A simple illustration of the payment forwarding is
shown in Fig. 6. Two node-disjoint payment paths have been
constructed in the previous stage, where A is the sender and
D is the recipient. An HTLC has been created on each IC on
both payment paths. Since D receives the HTLC from G
on the lower (red) payment path earlier, D provides the
preimage of H to C' and receives the payment from C.
Therefore, the upper (green) payment path is invalidated.
D can choose to cancel the transaction from C to D. The on
hold payment in the HTLC between C and D is refunded to
C. So are the rest on hold payments in the HTLCs on the ICs
along the upper (green) payment path. If the D tries to claim
the payment on the upper (green) path, the A can revert the
payment on the lower (red) path by providing the preimage
of H, which indicates that the payment has be claimed. This
guarantees that the payment cannot be double claimed.

IEEE TRANSACTIONS ON NETWORKING

Example Commitment Transaction
with an HTLC output

Outputs:

0. RSMC Alice & Bob 0.4

1. Bob 0.5

2. "Naive/Insecure” HTLC 0.1

l("'\ m
HTLC: Execution path 2
“Cancel”

HTLC: Execution path 3
“Timeout™

HTLC: Execution path 1
“Delivery”

Alice can redeem (.1 in
3 days, if Bob did not
respond within 3 days

Alice can redeem 0.1 if
Bob sends cancellation
within 3 days

Bob can redeem 0.1 if he
produces the preimage of
H, within 3 days

| nLockTime 3 days

L]

HTLC: Execution path 4
“Revert”

Alice can redeem 0.1 if
she produces the preimage
of H, within 4 days

Fig. 5. Modified hashed time-lock contract (HTLC). Alice sends a pay-
ment of 0.1 to the Bob via B and C with an HTLC tolerance of 3. Note
that there are two possible spends from an HTLC output. If Bob can
produce the preimage of H; within 3 days, Bob can redeem path 1. If
Alice can produce the preimage of H> after Bob produces the preimage
of H within 4 days, Alice can redeem path 4. If Alice sends cancellation
before Bob can produce the preimage of H; within 3 days, Alice can
redeem path 2. After 3 days, Alice is able to redeem path 3, if there is
no response from Bob.

(H,,2,7.01)

p
7 DN
"‘-
6:;‘\

r d
fgn
R, v -~ R,
,\.
2 B
£ . .

4
(Hy H,. 3, ?02} (H,. H,. 2 ?01)

H, is a hash of R,

H, is a hash ol R,

___‘ —--. ;

Fig. 6. Payment Forwarding in RobustPay*. The sender (A) sends a
payment of 7 to the recipient (D). Two node-disjoint payment paths
ae A —+ B —+C s Dand A - E -+ F - G — D. HTLGCs
are established on both payment paths simultaneously, from A to D,
sequentially. The upper (green) path is not reversible, and the lower (red)
path is reversible. D provides the preimage of H to G on the lower (red)
payment path and refunds C on the upper (green) payment path.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of RobustPay ™.
As we surveyed in Section 2, there is no existing payment
routing protocol that satisfies robustness, optimization, ef-
ficiency or distributedness in payment channel networks.
Therefore, we demonstrate the performance of RobustPay™
by comparing it to CheaPay [33] and baseline algorithms.

6.1 Environment Setup

We implemented and modified a simulator for PCNs [33] to
model the transaction arrivals and settlements. Transactions
are serial and routed according to the routing algorithms, if
the timeliness and feasibility constraints are satisfied on the
generated payment paths. The locked funds are unavailable

9

for use by any node on the payment path. When a payment
transaction is settled, these funds are released. The simulator
supports payment transactions through a queue of pending
payments. The queue is periodically polled to check if
the transactions can progress further. The HTLC tolerance
parameter is specified on each channel independently by the
transferor on this channel, which represents the maximum
time that the transferor is willing to wait for the preim-
age to confirm a transaction. Because the preimage is sent
backwards from the recipient, the HTLC timeout parameter
indicates the maximum distance (the number of hops) from
a node to the recipient. Thus, the HTLC timeout parameter
is at channel level rather than at a source-destination pair
level. Since the HTLC timeout information is public in the
Lightning Network, we use the real data in the simulation.
We obtained a real-world PCN topology from the Bit-
coin Lightning Network [5]. In particular, we crawled a
snapshot topology of the Lightning Network on July 14,
2020 [4]. To crawl the Lightning Network, we ran the Bitcoin
Core daemon (bitcoind) [1], built a c-lightning [3] node on
mainnet, and connected it to an existing Lightning node [2].
The network consists of 5,622 nodes and 65,628 channels.
We used a real-world transaction dataset sampled from the
path-based transaction network Ripple [20, 22]. To evaluate
the impact of the network size, we extracted connected in-
duced subgraphs. We assume that the transaction fees of all
payment channels are distributed uniformly at random over
(0, 1]. We compare RobustPay™ to the following algorithms:

« CheaPay [33]: It finds a single payment path that
minimizes the total transaction fee, while satisfying
both the timeliness and feasibility constraints.

« Cheapest: First, it finds a payment path that min-
imizes the total transaction fee. Second, it finds a
node-disjoint path that minimizes the total trans-
action fee by removing the intermediate node in
the first path. Then, it checks if both paths satisfy
both the timeliness and feasibility constraints. If both
constraints are satisfied, the payment is accepted.
Otherwise, the payment is rejected.

» Widest: First, it finds a payment path that maximizes
the minimize channel balance on a path. Second, it
finds a node-disjoint path that maximizes the min-
imize channel balance on a path by removing the
intermediate node in the first path. Then, it checks if
both paths satisfy both the timeliness and feasibility
constraints. If both constraints are satisfied, the pay-
ment is accepted. Otherwise, the payment is rejected.

6.2 Performance Metrics

We use the following metrics for performance evaluation:

e Success ratio: The percentage of accepted payment
requests.

¢ Average maximum transaction fee: Average max-
imum transaction fee of the pair of paths over all
acoepted payment requests.

o Average accepted payment: Average payment over
all acoepted payment requests.

IEEE TRANSACTIONS ON NETWORKING

10

10 #*RobustPay* 7CheaPaySChaapast&Widest 10 #RobustPay*7CheaPaySCheapest&Widest I~ 40+ #*RobustPay “7CheaPayE Cheapest&Widest
a._‘_‘_‘—*_'_'_'_‘_‘—'—*—-—* 3 E e - - a
7 — - = s} = - * v

208 7€ a A, A A A
o E B35¢ -4
=06r = B =
w é 4 [= %
804l S 4f 80
go- ° &30 ;‘B\Eﬂ\ﬂ
@ i]

0.2} & 2 -

0““““‘-‘,‘— A £ — < o — S 8 25 : : : '
50 100 150 200 250 50 100 150 200 250 < 50 100 150 200 250

MNumber of nodes MNumber of nodes Number of nodes

(a) Success ratio

(b) Average maximum transaction fee

(c) Average accepted payment

Fig. 7. Impact of number of nodes on RobustPayt, CheaPay, Cheapest, and Widest.

:

:

:

Average number of messages

150 200 250
Number of nodes

100

80

Fig. 8. Message complexity of RobustPay

6.3 Evaluation of RobustPay ™

Fig. 7 shows success ratios, average maximum transaction
fees and average accepted payments of RobustPay*, Chea-
Pay, Cheapest and Widest.

Fig. 7(a) shows the comparison of success ratios
achieved by RobustPay™, CheaPay, Cheapest and Widest.
RobustPay* outperforms other algorithms, due to its ro-
bustness, timeliness, and feasibility guarantees. CheaPay
gives a lower success ratio than RobustPay ™, because Chea-
Pay generates a single path and does not provide robust-
ness. We can witness the growing gap between RobustPay™
and Cheapest, which indicates that focusing only on min-
imizing the total transaction fee without considering the
timeliness and feasibility constrains decreases the success
ratio significantly. Widest describes how well an algorithm
can do without taking into account the minimization of
maximum transaction fee, timeliness or feasibility con-
straint. As expected, Widest gives the worst success ratio,
because Widest only focuses on maximizing the minimum
channel balance on a path, which possibly makes the path
non-timely or infeasible. All algorithms have dropping suc-
cess ratios with more nodes. This is because although the
number of nodes increases, the percentage of paths that sat-
isfy both the timeliness and tolerance constraints decreases.

Fig. 7(b) shows the comparison of the average maxi-
mum transaction fees achieved by RobustPay®, CheaPay,
Cheapest and Widest. Cheapest gives a slightly lower av-
erage maximum transaction fee than RobustPay™, because
Cheapest has a much lower success ratio and intends to
accept paths with low transaction fees. We can witness the
gap between RobustPay® and CheaPay, which indicates
that RobustPay* sacrifices a little bit of transaction fee min-
imization for robustness. Widest gives the highest average
maximum transaction fee, because Widest only focuses on

maximizing the minimum channel balance on a path, but
ignores minimizing the transaction fee.

Fig. 7(c) shows the comparison of average accepted pay-
ments achieved by RobustPay*, CheaPay, Cheapest and
Widest. RobustPay™ outperforms the other algorithms in
terms of the average accepted payment, due to its robust-
ness, timeliness, and feasibility guarantees. CheaPay gives a
slightly lower average accepted payment than RobustPay™,
because CheaPay does not provide robustness. The aver-
age accepted payment of Widest drops with more nodes,
because the minimum channel balances of paths decrease.

We also evaluate the convergence speed of RobustPay*.
The result is shown in Fig. 8. We can observe that the
average number of messages increases with the the number
of nodes. Since RobustPay* implements a variant of the
distributed Suurballe’s Algorithm [24], which is based on
the distributed Bellman-Ford Algorithm [7, 10], RobustPay*
has the growing trend of message complexity similar to that
of Bellman-Ford.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigated the robust payment routing
protocol to resist payment transaction failures in PCNs. We
first suggested a set of crucial design goals for payment rout-
ing, which are referred to as robustness, efficiency, distribut-
edness and approximate optimization. Following these de-
sign goals, we presented a distributed robust payment rout-
ing protocol RobustPay* consisting of three stages: Pay-
ment Path Construction, HTLC Establishment and Payment
Forwarding. For Payment Path Construction, RobustPay*
achieved robustness by constructing two payment paths,
where either payment path can fulfill the payment request.
To guarantee approximate optimization, we formulated the
Maximum Transaction Fee Minimization (MTFM) problem
and presented a distributed 2-approximation algorithm
RobustPay*. Moreover, we modified the original HTLC
protocol to provide efficiency and robustness and adapted
it to the robust payment routing protocol. Extensive simula-
tions demonstrated that RobustPay™ achieved outstanding
success ratio and average acceptance value compared to
baseline algorithms.

One future direction that we can work on is to im-
prove privacy in payment routing. As studied in [25, 28],
attackers can discover a large portion of channel balances
by systematically probing for payment paths. The attack
experiments have been conducted in the current LN setting

IEEE TRANSACTIONS ON NETWORKING

that adopts source routing. Therefore, a higher degree of
privacy is desired for routing in PCNs. On the one hand,
If an external attacker could probe intermediate channel
balances, it would break the relationship anonymity and
channel balance privacy. On the other hand, knowing chan-
nel balances would allow senders to avoid trying routes and
thus improve transaction success ratio. Thus, it is worth
studying the trade-off between routing efficiency and pri-
vacy in PCNs as the future work.

REFERENCES

[1] “Bitcoin Core daemon (bitcoind).” [Online]. Available: https:
/ / github.com/ bitcoin/bitcoin/

[2] “Bitstamp’s Lightning Network node.” [Online]. Available:
https:/ /www.bitstamp.net/lightning-network-node/

[3] “clightning Daemon.” [Online]. Available: https:/ /github.com/
ElementsProject/lightning/ tree /master/lightningd /

[4] “Lightning Network Dataset.” [Online]. Available: https://
people.mines.edu/djyang/research/ project-pcn/

[5] “The Lightning Network.” [Online]. Available: https://lightning.
network,/

[6] V.Bagaria, J. Neu, and D. Tse, “Boomerang: Redundancy improves
latency and throughput in payment networks,” arXiv preprint
arXiv:1910.01834, 2019.

[7] R Bellman, “On a routing problem,” in Quarterly of applied mathe-
matics, vol. 16, no. 1, 1958, pp. 87-90.

[8] K Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentral-
ized blockchains,” in FC. Springer, 2016, pp. 106-125.

[9] C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in 555.
Springer, 2015, pp. 3-18.

[10] L. R Ford Jr, “Network flow theory,” RAND CORP SANTA
MONICA CA, Tech. Rep., 1956.

[11] C-L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity
of finding two disjoint paths with min-max objective function,”
Discrete Applied Mathematics, vol. 26, no. 1, pp. 105-115, 1990.

[12] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silen-
tWhispers: Enforcing security and privacy in decentralized credit
networks.” in IACR Cryptology ePrint Archive, 2016, pp. 1054-1071.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
Working Paper, 2008.

[14] R. Network. [Online]. Available: https://raiden.network/

[15] C. H. Papadimitriou and D. Ratajczak, “On a conjecture related to
geometric routing,” in Theoretical Computer Science, vol. 344, no. 1.
Elsevier, 2005, pp. 3-14.

[16] J. Poon and T. Dryja, “The bitcoin lightning network:
Scalable off-chain instant payments,” 2016. [Online]. Available:
lightning.network/lightning-network- paper.pdf

[17] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osun-
tokun, “Flare: An approach to routing in lightning network,” in
Whitepaper, 2016.

[18] E. Project. [Online]. Available: https://www.ethereum.org/

[19] E Reid and M. Harrigan, “An analysis of anonymity in the bitcoin
system,” in Security and privacy in social networks. Springer, 2013,
pp. 197-223.

[20] Ripple. [Online]. Available: https:/ /www.ripple.com/

[21] E. Rohrer, J.-E Laf3, and E Tschorsch, “Towards a concurrent and
distributed route selection for payment channel networks,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2017, pp. 411-419.

[22] S. Roos, P. Moreno-Sanchez, A. Kate, and L Goldberg, “Settling
payments fast and private: Efficient decentralized routing for
path-based transactions,” in NDSS, 2017.

[23] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and
P. Viswanath, “Routing cryptocurrency with the spider network,”
in Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
2018, pp. 29-35.

[24] J. W. Suurballe and R. E. Tarjan, “A quick method for finding
shortest pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325~
336, 1984.

[25] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski,
“Probing channel balances in the lightning network,” arXiv
preprint arXiv:2004.00333, 2020.

11

[26] M. Trillo, “Stress test prepares visanet for the most wonderful time
of the year (2013),” 2013.

[27] P. E Tsuchiya, “The landmark hierarchy: a new hierarchy for
routing in very ltaiarge networks,” in SIGCOMM, vol. 18, no. 4.
ACM, 1988, pp. 35-42.

[28] G. van Dam, R A. Kadir, P. N. Nohuddin, and H. B. Zaman, “Im-
provements of the balance discovery attack on lightning network
payment channels,” in IFIP International Conference on ICT Systems
Security and Privacy Protection. Springer, 2020, pp. 313-323.

[29] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “Enforcing private
data usage control with blockchain and attested off-chain contract
execution,” arXiv preprint arXiv:1904.07275, 2019.

[30] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of dis-
tributed consensus protocols for blockchain networks,” arXiv
preprint arXiv:1904.04098, 2019.

[31] R Yu, G. Xue, V. T. Kilari, D. Yang, and]. Tang, “CoinExpress:
A fast payment routing mechanism in blockchain-based payment
channel networks,” in ICCCN. IEEE, 2018, pp. 1-9.

[32] Y. Zhang and D. Yang, “Robustpay: Robust payment routing pro-
tocol in blockchain-based payment channel networks,” in ICNP.
IEEE, 2019.

[33] Y. Zhang, D. Yang, and G. Xue, “Cheapay: An optimal algorithm
for fee minimization in blockchain-based payment channel net-
works,” in ICC. IEEE, 2019.

Yuhui Zhang (S’16) received the B.S. degree
from Sun Yat-sen University, Guangzhou, China,
in 2011. She is currently working toward the
Ph.D. degree in Computer Science at Colorado
School of Mines, Golden, CO, USA. Her main
research interests lie in the areas of blockchain,
game theory, location privacy, and crowdsourc-

ing.

i

Dejun Yang (M'13-SM'19) received the B.S. de-
gree in computer science from Peking University,
Beijing, China, in 2007 and the Ph.D. degree in
computer science from Arizona State University,
Tempe, AZ, USA, in 2013.

Currently, he is an Associate Professor of
computer science with Colorado School of
Mines, Golden, CO, USA. His research interests
include Internet of things, networking, and mo-
bile sensing and computing with a focus on the
application of game theory, optimization, algo-
rithm design, and machine learning to resource allocation, security and
privacy problems.

Prof. Yang has served as the TPC Vice-Chair for Information Systems
for IEEE International Conference on Computer Gommunications (IN-
FOCOM) and currently serves an Associate Editor for the |IEEE Internet
of Things Journal. He has received the IEEE Communications Society
William R. Bennett Prize in 2019 (best paper award for IEEE/ACM
Transactions on Networking and |EEE Transactions on Network and
Service Management in the previous three years), Best Paper Awards
at the |IEEE Global Communications Conference (2015), the IEEE In-
ternational Conference on Mobile Ad hoc and Sensor Systems (2011),
and the IEEE International Conference on Communications (2011 and
2012), as well as a Best Paper Award Runner-up at the IEEE Interna-
tional Conference on Network Protocols (ICNP) (2010).

