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Abstract— This article presents a fully integrated gesture
and gait classification system-on-chip (SoC) for rehabilitation
application. In order to reduce the power consumption and area
cost on the analog front end, special analog-to-digital converter
(ADC)-less mixed-signal feature extraction (MSFE) circuits were
designed to directly generate eight commonly used time-domain
features to eliminate the area cost of ADC. A fully connected
neural network classifier was implemented supporting: 1) on-chip
learning to deliver user-specific training for better classification
accuracy; 2) dedicated neural network layer to support gait
classification; and 3) multi-chip data communication, which
transfers only low-dimensional features from the neural network
to minimize the communication bottleneck in a sensor fusion
environment. A 12-channel test chip was fabricated in a 65-nm
low-power process to demonstrate the proposed techniques. The
measurements show an average power of 1 µW per channel and
a 3-ms computational latency as required by the stringent reha-
bilitation requirement. In addition, the MSFE circuits achieve
3× saving of area compared with the conventional approach,
while the communication bandwidth was reduced by 100× due
to the transferring of only low-dimensional feature data from the
neural network among multiple chips.

Index Terms— Biomedical devices, edge device, inter-chip
communication, mixed-signal feature extraction (MSFE), neural
network classifier, on-chip training.

I. INTRODUCTION

THERE are approximately 2 million amputees living
in USA, and the number grows by approximately

185 000 per year [1]. The prosthetic arms and legs embedded
with real-time gesture classification capability provide a solu-
tion to bring amputees’ life back to normal [2]. For realizing
real-time gesture recognition as well as some common oper-
ations of health monitoring, multiple noninvasive sensors for
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Fig. 1. Bio-signal-based gesture and gait classification system overview with
(a) amputee with a motorized prosthetic leg [6]. (b) Use of multiple different
types of sensors on the forearm and lower arm [7]. (c) Typical classification
flow with the neural network as the classifier.

biomedical signals, such as the electrocardiogram (ECG), sur-
face electromyogram (sEMG), photoplethysmography (PPG),
and bio-impedance (Bio-Z), have been utilized to infer users’
activities or health information, such as limb movement, heart
rate, respiration rate, gait, and mood [3]–[5]. Fig. 1(a) shows
an example where an amputee was able to walk on a ramp
by wearing an sEMG controlled motorized prosthetic leg [6].
Fig. 1(b) shows a gesture signal acquisition system with sensor
fusion techniques containing 12 channels sEMG sensors on
the upper arm, 36 channels of accelerometers on the forearm,
and 22-channel strain sensor on the hand [7]. The use of
sensor fusion techniques, i.e., heterogeneous sensors such
as sEMG and accelerometers, brings enhanced classification
results compared with homogenous sensors [8]. Note that
typical sEMG has a signal level from 0 to 2 mV [9]–[11] while
the accelerometer sensors can output a large signal swing of
hundreds of millivolts to volts [12], leading to the requirement
of programmable gains at the analog front end to accommo-
date different signal conditioning. Fig. 1(c) shows the signal
propagation flow of a rehabilitation system based on a fully
connected neural network classifier. Multiple analog channel
signals pass through digital feature extraction circuits to gen-
erate the corresponding features that are further processed by a
neural network classifier for final gesture labels. All computa-
tion process needs to finish within 5–15 ms to fulfill the strin-
gent latency requirements of rehabilitation applications [13].
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In order to process the high volume of data transmitted
from the multi-channel signals used for rehabilitation appli-
cation, a powerful microprocessor is conventionally utilized,
such as the OMAP microprocessor from Texas Instrument,
Dallas, TX, USA [14]. Unfortunately, such a powerful micro-
processor consumes hundreds of milliwatts of power, leading
to a significant burden on the battery life. To extend the
battery life and the capability of biomedical devices, a grow-
ing number of developments are utilizing ultra-low-power
embedded microcontrollers to realize modern machine learn-
ing techniques. For instance, an emotion classifier based on
linear discriminator (LDA) using the STM32 microcontroller
was proposed as a low-cost solution with a power budget
of 35 mW [15]. Specially designed application-specific inte-
grated circuits (ASIC) with embedded machine learning sup-
port have also been developed. For example, a fully integrated
system-on-chip (SoC) with embedded non-linear support vec-
tor machine (SVM) for seizure detection was demonstrated,
achieving a 95% seizure accuracy rate with 1.83 μJ/Class [16].
A 16-channel fully integrated seizure detection and stimulation
SoC using extracted time-domain features was developed with
16-channel intracranial electroencephalography (iEEG) analog
front end and 8-bit successive approximation register (SAR)
analog-to-digital converter (ADC) with a power consumption
of 0.92 μW/Channel [17]. A seizure detection processor
powered by gradient-boosted decision tree with 41.2 nJ/Class
was implemented with 1 mm2 in 65-nm technology [18].
An eight-channel closed-loop neural-prosthetic SoC with lin-
ear least-square (LLS) classifier and wireless power and data
transmission capability was presented in [19]. A real-time
EEG-based emotion recognition system with a multiphase con-
volutional neural network (CNN) on-chip binary classification
processor was implemented in [20].

While significant efforts have been delivered to reduce the
power and area of the SoC chip for biomedical applications,
one of the design bottlenecks is the requirement of ADC.
Especially, the area cost of ADC becomes high when a large
number of input channels are to be supported as the case
for sensor fusion applications [21]. Multiplexing ADC can
mitigate the area cost but may face additional challenges, such
as higher design complexity, increased ADC sampling rates,
and issues of channel crosstalk [16]. In addition, the analog
front-end circuits also suffer from limited dynamic range from
the low-noise amplifier (LNA) and ADC, especially under
the condition of stimulation. To extend the dynamic range,
a voltage-controlled oscillator (VCO)-based front-end ampli-
fier was previously proposed for neural recording, leading to
a significant enhancement of the dynamic range under the
influence of stimulation artifact leading to a high linear input
range of±50 mV [22]. However, in the above designs, features
still have to be extracted by a separate ASIC module. In this
work, we propose a further simplification of the architecture by
combining ADC and feature extraction circuits using mixed-
signal feature extraction (MSFE) circuits as will be described
later.

In addition to the power and area issues mentioned ear-
lier, for multi-channel sensor fusion around the human body,
the data from the multiple sensing channels need to be

transferred at the same time to the central processor or digital
classifier for gesture classification. Such a configuration may
create a communication bottleneck and routing congestion at
the central processor site. In this work, we propose to apply
the concept of near-sensor computing by embedding partial
processing at distributed sensor nodes. Only low-dimensional
data are to be transferred among the chips to significantly
reduce the communication data traffic under the sensor fusion
environment.

Furthermore, for the classification of the physiological data,
the system setting or model weights are typically calibrated or
trained offline from desktop computers [23]. However, in the
real use case, the signal level and signal features on each
channel might vary due to motion artifacts and sweat condi-
tions [24]. All these uncertainties affect the final classification
accuracy. To mitigate such issues, an online training capability
is highly desirable so that the device can update the weights
for a particular user under particular signal conditions.

To address the challenges described earlier, this work pro-
poses a fully integrated SoC integrating LNA, MSFE circuit,
and a distributed neural network classifier with on-chip train-
ing capability. The contributions of this work are highlighted
as follows.

1) This work proposes a novel ADC-less MSFE circuit that
directly extracts eight time-domain features including
mean, variance, slope absolute, zero-crossing, and his-
tograms leading to a 3× area reduction compared with
conventional ADC design [16], [22].

2) A multi-chip distributed neural network is proposed to
achieve up to 100× communication data reduction in a
three-chip usage case.

3) On-chip 8-bit training was enabled in our proposed
neural network classifier by storing training data on the
chip and performing randomized batch training with
stochastic rounding. The user-specific training allows
up to 13% improvement to the classification accuracy
compared with a generically trained global user model.

This article is an extension based on the conference presen-
tation in [25] and the earlier analysis focused presentation
in [26], which does not have a fully integrated solution, com-
plete neural network implementation with gait classification,
and online learning capability.

The rest of this article is organized as follows. The LNA
and the ADC-less MSFE circuits are introduced in Section II.
Section III presents the analysis of the overall scheme of
the proposed distributed neural network classifier. The SoC
top-level architecture and implementation are shown in Sec-
tion IV. Section V presents the measurement results and
analysis of the proposed SoC. A comparison with related
works is given in Section VI and followed by the conclusion
in Section VII.

II. LNA AND MIX SIGNAL FEATURE

EXTRACTION CIRCUIT

A. Low Noise Amplifier

To support direct sensing of biomedical signals such as
sEMG signals from patients, an LNA was implemented in
this work. Typical EMG signals have an amplitude in the

Authorized licensed use limited to: Northwestern University. Downloaded on September 20,2021 at 19:30:45 UTC from IEEE Xplore.  Restrictions apply. 



878 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 3, MARCH 2021

Fig. 2. (a) LNA design with common-mode feedback and differential-
to-single conversion at the second stage amplifier. (b) Simulated input
impedance of the LNA. (c) Resistance of pseudoresistors with different
voltages applied across terminals.

range of 0–2 mV, and the frequency band is from 20 to
500 Hz, according to [9]. The output requirement of the
LNA is defined by the requirement from the following MSFE
circuits (described in Section II-B) with a full-scale range of
around 200 mV and centered around 400 mV and requires a
minimum 43-dB gain. When dry electrodes are used, large
tissue-electrode impedance from 1 to 5 M� requires high
input impedance [27] and a higher amplifier gain. Hence,
the LNA was designed with capacitive coupling for high input
impedance. Meanwhile, a bypass circuit was also added to
support large external signals from non-biological signals, e.g.,
analog signals from an accelerometer, gyroscope, and so on,
to enable the support of sensor fusion technology [21].

Fig. 2(a) shows the schematic of LNA that contains a
fully differential LNA in series with a gain-programmable
differential-input-single-ended output amplifier, which is
slightly different from conventional fully differential design for
driving ADC [28]. The use of a differential-input-single-ended
output amplifier is driven by the need of the MSFE cir-
cuits. Metal–oxide–metal (MOM) capacitor and PMOS-based
pseudoresistors are used for bandwidth control. Simulation
in Fig. 2(b) shows the capacitive coupling provides high input
impedance from 3 G� to 41 M� in 7–500 Hz to support the
high impedance by dry electrodes, and the signal attenuation
is lower than 1 dB at 500 Hz when the 5-M� electrode

impedance was considered. The feedback capacitors with a
conjunction of the PMOS pseudoresistors deliver the lower
bound of the passband to around 7 Hz. Simulation results
in Fig. 2(c) show that the resistance of four series-connected
PMOS pseudoresistor only varies by 10% within the target
working region from +100 to −100 mV across the two
terminals. A common-mode feedback amplifier (CMFB) was
implemented in the first stage of LNA and helped to achieve
a common-mode rejection ratio (CMRR) of −90 dB at
60 Hz [29] with 25-dB gain. The tunable capacitor in the
second-stage amplifier supports a 3-bit programmable gain
step with a total gain of 32 dB, which is adequate to support
the signal ranges from EMG and ECG. The input-referred
noise is simulated at 9 μVrms, which is also sufficient for
EMG and ECG classification applications. The dc level at
the output stage is defined by an on-chip generated reference
voltage to fulfill the input requirement of the MSFE circuit.
The use of single-end output at the second stage leads to
small degradation of CMRR of 6 dB. In addition, to support
sensor fusion, large external signals can be directly connected
to MSFE bypassing the LNA. The LNA is working under 1-V
supply with the first and second stages consuming 240 and
80 nW, respectively. The area of LNA for each channel
is 0.035 mm2, which is mainly determined by the MOM
capacitors and similar to related works [30].

B. ADC-Less MSFE Circuits

The conventional analog front end normally implements an
ADC to convert the analog signal into the digital domain
for further processing. However, the area and power cost of
an ADC is significant. In this work, we proposed an MSFE
circuit, which replaces both conventional ADC and digital
feature extraction circuits.

Fig. 3(a) and (b) shows the proposed MSFE circuit diagram
and operating waveforms of each type of circuits, respectively.
Each analog channel extracts eight corresponding time-domain
features: mean, variance, slope absolute value, zero crossing,
and four histograms from four voltage levels [32]. All fea-
ture circuits only contain simple VCO, multiplexers (MUXs),
comparators, and digital counters. Each feature counters and
accumulators update and clear in every 100-ms period.

The “mean” feature circuits consist of a VCO and a counter
that accumulate the pulses of the VCO to provide an average
count in the 100-ms sampling windows. The “variance” feature
fetches the mean feature VCO clock with another fixed-
frequency reference VCO in conjunction with a bidirectional
counter to accumulate the distance to the reference frequency
over time. The “slope absolute” feature uses a bi-directional
counter, which compares the difference in voltage at every
1-ms window. The result of the absolute value of this differ-
ence is accumulated over 100-ms windows. A clock gating
circuit was added into VCOs and the MUXs to prevent glitches
during input transition and counts update. The “histogram”
features contain four bins and use clocked comparators to
count the number of times the voltage falls within a bin. The
“zero-crossing” feature is similar to the histogram with bin
threshold set to the reference voltage. The input voltage range
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Fig. 3. MSFE circuits in this work. (a) Schematic of mean, variance,
slop absolute, and histogram circuits. (b) Operation waveforms of mean,
variance, slope absolute, histogram, and zero-crossing features. (c) Normalized
mean feature counts with ideal counts. (d) Normalized variance feature
counts with ideal counts. (e) Feature extraction area cost comparison between
the conventional digital feature extraction circuit and the proposed MSFE
circuit.

of all VCOs was set to around 300–500 mV by adjusting
the gain and output reference voltage level on the LNA. The
output clock frequency is around 20–100 kHz to provide a high
sampling rate for signals. Note that the output voltage level
and range of LNA was determined by the requirements of the
feature extraction circuits. The VCO-based feature extraction
circuits exhibit a tradeoff between power and the total number
of bits of the extracted features. A higher voltage level will
cause the VCO to run at a higher speed with more power
consumption. A lower voltage will cause a too small number
of counts, hence losing precision in feature extraction. The
simulation shows a voltage range between 300 and 500 mV
provides an adequate tradeoff between power and precision.

Fig. 3(c) and (d) shows the normalized simulation results
of the VCO-based mean and variance feature counts versus
the ideal counts, respectively. The simulation curves on both
features show distortion, which comes from VCOs working in
the subthreshold region. However, the neural network classifier
can reduce most of the impact from the VCO distortion by
applying distorted feature characteristics during the training
process. Our analysis shows less than 1% accuracy impact
from the feature distortion compared with the conventional
ADC-based solution. The comparison is made with a reference
setup using an 8-bit ADC sampling at 2 kHz with ideal feature
extraction results feeding into a neural network classifier under
ten different users from the Ninapro database.

Due to the asynchronous nature of MSFE circuit, a hand-
shaking scheme was implemented to avoid capturing an erro-
neous transitional value by the digital back-end classifier. The
neural network classifier first sends out a request signal to the
MSFE circuits to stop its internal counters at the end of the
sampling window. After all the counters are properly latched
internally, the MSFE circuits send back a ready signal to notify
the neural network to capture the new feature data and release
the request signal for the next sampling window.

Fig. 3(e) shows the area cost comparison of the conventional
digital feature extraction circuit with the proposed mixed
feature extraction circuit in each feature in a 65-nm technol-
ogy. The proposed feature extraction circuits lead to a 2×
area saving on slope absolute feature and 6× area saving on
variance feature.

Overall, the proposed 12-channel MSFE circuits occupy
0.01 mm2/channel and 46 nW/channel. It leads to more than
3× area saving and power saving compared to prior work with
conventional ADC circuits [16]. Note that the MSFE circuits
serve the purpose of conventional ADC and the digital feature
extraction circuits. Hence, a comparison with ADC in prior
work is not an exact apple-to-apple comparison.

III. NEURAL NETWORK CLASSIFIER

To classify the user’s gesture based on physiological signals
measured from the analog front end, we implemented a
neural network classifier following the results from MSFE
circuits. Different from prior work with inference only oper-
ation [16], [23], [31], the implemented classifier contains
special features including: 1) online training that is powered
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Fig. 4. Impact of layer numbers of the fully connected neural network on
(a) classification accuracy and (b) corresponding weight memory size.

by stochastic rounding, random batch processing, and on-chip
feature SRAM for training data storage; 2) distributed neural
network computation supporting low dimensional data transfer
for the chip to chip communication; and 3) an additional layer
to support gait classification applications.

A. Analysis of Neural Network Classifier

Since the neural network classifier and associate SRAM will
occupy large area to support neural network operation and
weight storage, it is crucial to optimize the classifier’s structure
to save considerable silicon cost. The main optimization is
based on the tradeoff between area, computation latency,
classification accuracy, and power. In this design, an 8-bit
precision was used, which shows only a small accuracy loss
compared to the floating points model in the inference task.

Fig. 4 shows the quantized 8-bit classification accuracy
results and the corresponding weight memory requirement
with a different number of layers neural networks applied to
the Ninapro database [7]. As shown in Fig. 4(b), the three-layer
setting shows the optimum point setting with no significant
accuracy improvements by adding additional layers, which
will require an additional 21% weights memory overhead.
Based on this analysis, a neural network with three layers is
implemented.

B. Distributed Neural Network Architecture

As described in Section I, in the sensor fusion environment,
many heterogeneous sensors and analog channels might work
collaboratively to feed data into a classifier for a better
classification result. These sensors and electrodes might be
placed around the human body at various locations and sent
back into a central classifier, leading to a communication bot-
tleneck from a large number of channels around the classifier.
A solution to reduce the communication data traffic is to
reduce the data size by preprocessing all the incoming signals
locally. It is possible to divide a fully connected neural network
and place all the SoCs near the sensors to process signals
locally and then transfer the internal calculation results to the
main SoC to finish final processing works.

Fig. 5(a) shows the proposed distributed neural network
architecture in a three SoC working scenario. Each individual
neural processor is identical and supports 12 input channels
and has four fully connected layers with the first three layers
for gesture classification and the last layer for gait classi-
fication. Each hidden layer has 24 neurons, and the output
and gait layers have 18 neurons each. When working in

Fig. 5. (a) Neural network architecture used in this work in a three SoCs
working scenario. (b) Single-user inference accuracy with different numbers
of distributed processors.

single-processor mode, all the incoming signals are converted
into features and passed through all layers within the single
chip to generate a classification label. In the multi-chip mode,
all incoming features in all processors pass through their local
hidden layer first. Then, the lower dimensional data are sent
to the global output layer through a communication channel
to generate the final collaborative classification result.

As shown in Fig. 5(a), in our neural network, the input
and hidden layers are only connected locally instead of fully
connected across chips. This connection reduction reduces
the data transferring among the chips. Fig. 5(b) shows the
classification accuracy with the number of distributed chips
changed from single chip to five chips. Due to the reduction
of some neural network connections, a small loss of accuracy
in the neural network was observed compared to the fully
connected neural network. An accuracy loss of about 2%
is observed on a three-chip distributed scheme. A five-chip
distributed network can be supported in this design due to the
accuracy drop and the limited total SRAM space for the output
layer’s weight. This structure allows decentralized routing at
classifiers avoiding signal congestion at the digital back end
and reducing the communication traffic significantly. In an
example of a 36 analog input channels system, the raw sensor
data from an 8-bit, 2-kHz sampling rate ADC to the centralized
neural network in every second can be calculated as 36 Ch ×
2 kHz × 8 bit = 576 kbit. By applying the proposed near sen-
sor SoC, all input signals are turned into low-dimensional data
by MSFE circuits and distributed neural networks. The total
data traffic per second is 1 s/100 ms × 24 neurons× 3 SoCs ×
8 bit = 5.76 kbit, which is reduced by 100× compared to the
conventional scheme, which transmits the raw data.

Fig. 6 shows the communication protocol of the proposed
distributed deep neural network. There are three shared wires
include a global clock, a data signal, and a sampling window
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Fig. 6. Communication protocol for the distributed neural network.

signal across all neural processors. Each processor is assigned
a unique chip ID, which also defines the master and slave
relationship. The master chip is responsible for providing a
sampling window signal and data line signal to synchronize
all other processors. The classification sequence starts at the
rising or falling edge of the sampling windows signal. All
processors start to process the received features in the last
sampling window to their local layer and sequentially transmit
their local hidden layer neuron output by following the order
of chip ID. The sender processor transmits data signals at
the rising edge of the global clock, whereas all receivers
latch data signal at the falling edge. In the end, the master
processor will proceed with all the received data to the output
neural layer to finish the final classification. For a three-chip
network that supports 36 input channels, after each sampling
window, the total communication and computation time can
be finished within 3 ms under a 0.6-V supply, meeting the
stringent latency requirement from rehabilitation.

C. On-Chip Learning by Stochastic Rounding and
Randomized Batch Processing

In most existing systems, the neural network training
process was performed on an external computer with floating
point. However, the classifier is sensitive to the users’ signal
characteristics and the location of the sensors. A capability of
on-chip learning allows user-specific training and adaptation
to the change of sensor placement on the body. This work
proposed a low-precision on-chip learning scheme by applying
stochastic rounding and randomized batching training to the
backpropagation training process. Algorithm 1 describes the
stochastic rounding operation implemented in this work. When
the higher precision weight difference during backpropaga-
tion is lower than the preset threshold, the least significant
bit (LSB) of the new weight will be randomly flipped. The
random numbers are provided by a 32-bit linear feedback shift
register (LFSR) as a pseudorandom number generator on the
chip. Our analysis of neural network training shows adequate
randomness from the simple LFSR circuits. Fig. 7 shows
the gesture classification accuracy comparison in the Ninapro
database. The accuracy loss of 8-bit training was reduced from
22% without stochastic rounding to only 2% with stochastic

Fig. 7. Comparison of classification accuracy with and without stochastic
rounding with different precisions of the neural work. Accuracy using global
users’ generic weights from floating-point training is also shown in compari-
son with user-specific training.

Algorithm 1 Stochastic Rounding
Procedure Stochastic_Rounding(delta_input_list,
random_number, random_threshold, delta_threshold,
delta_output_list)

1. foreach delta_input ∈ delta_input_list do
2. if abs(delta_input) < delta_threshold then
3. if random_number < rand_threshold then
4. Temp_value←round (delta_input)
5. delta_output_list←FLIP_LSB(Temp_value)
6. else
7. delta_output_list←round(delta_input)
8. end if
9. else

10. delta_output_list←round(delta_input)
11. end if
12. end for
13. return delta_output_list //return new output delta

rounding rendering a significant saving of the chip area due
to the 8-bit implementation.

Fig. 7 also shows the benefit of user-specific training, which
can lead to 12% accuracy improvements compared to using
a generic weight for the classification from ten users data
set from the Ninapro database (referred to as “global user
model”). To support the user-specific on-chip learning, a large
amount of data points is required to be saved on chip and
then randomly processed during training. However, it is very
expensive to have all the training data stored in on-chip
SRAM. Fig. 8(a) shows the memory space occupation by
the number of samples with the corresponding classification
accuracy. In this design, an on-chip training SRAM was used
to store extracted feature values from up to 256 input samples
at one time, which reduces the memory size by 128× by
trading off 3% classification accuracy. During the training
process, the neural network randomly selects input samples
using the on-chip LFSR-based random number generator. For
each batch of 256 samples, the chip runs for six epochs. Each
epoch contains randomly fetched samples for 256 times. The
overall accuracy after four batches of training achieves around
82%, which is close to the target training accuracy. Compared
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Fig. 8. Tradeoff of user-specific on-chip training. (a) Memory cost versus
batch size. (b) Accuracy versus batch size.

Fig. 9. Top-level chip architecture of the gesture classification SoC.

with offline user-specific training in floating point, due to
the limited data points in each running batch, lower training
precision, and limited running epochs, 1%–3% accuracy drop
was observed on user-specific online training compared with
ideal floating-point offline training. However, online training
helps mitigate artifacts, such as electrode displacement or
sweat conditions.

IV. SOC ARCHITECTURE

Fig. 9 shows the overall top-level architecture of the imple-
mented gesture and gait classification SoC. In each chip, a total
of six differential-input single-end output LNAs are integrated.
The external analog sensor signals can also be directly sent
into mixed feature extraction circuits. The MSFE circuits
generate eight time-domain features per analog channel with
a total of 96 features. In the bypass mode, a total of 12 analog
single-ended channels are supported. The 8-bit neural network
classifier contains 4 fully connected layers with 12 neurons in
the input layer, 24 neurons in the hidden layer and 18 neurons
in the output layer. In addition, another 18 neurons are added
at the last layer for gait classification.

The weight SRAM stores the weights for all neurons and
up to 256 feature data can be stored for on-chip training.
Global data, global clock, and sampling window data line
are used for chip-wise communication up. The LFSR-based

Fig. 10. Die photograph and specification.

Fig. 11. Measured SoC power breakdown in inference mode.

Fig. 12. Power breakdown at different digital supply voltages in inference
mode. Power is reported as duty-cycled average power.

pseudorandom number generator is used to support on-chip
stochastic rounding and randomized batch training.

V. MEASUREMENT RESULT AND ANALYSIS

The proposed gesture classification SoC was fabricated
in 65-nm low-power CMOS technology. Fig. 10 shows the
die photograph and chip specifications. The total area is
3.24 mm2. The analog module, including LNA and feature
extraction circuits, works at a supply voltage of 1 V, while all
other digital modules, including neural network and SRAMs,
work down to 0.6 V. The power breakdown in this setting
was shown in Fig. 11 for a single-processor mode on the
inference task. The total power was measured to be 12.31 μW
where neural network and SRAM dominate 80% of total
power consumption, whereas the analog front-end and feature
extraction circuits consume the rest 20% of total power. The
average power per channel is 1.1 μW/channel in total.

Fig. 12 shows the power scaling with digital supply volt-
ages. The digital power consumption scales with the supply
voltage with a tradeoff on the computation latency. The power
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Fig. 13. Inference completion time in three distributed working schemes
with various digital supply voltages.

Fig. 14. (a) Measured lower limb EMG signals after LNA. (b) Measured
LNA ac gain.

Fig. 15. Testing setup. (a) Setup for replaying recorded database. (b) Real
demonstration on human arm with dry electrode arm band.

of the neural network and SRAM was reduced by 2× from
0.9 to 0.6 V. Fig. 13 shows the inference completion time
versus the digital voltage applied. Three processors’ operation
can be finished within 3 ms when all processors are working
at 0.6 V, meeting the latency requirement for rehabilitation.

Fig. 14(a) shows the measured lower limb EMG signal when
dry electrodes were applied at the LNA gain setting of 46 dB.
Fig. 14(b) shows the measured gain plot of the LNA, which
shows the lower −3-dB bandwidth at around 7 Hz and 3 kHz,
which are sufficient to cover most frequency components in
EMG and ECG signals according to [9]–[11].

Fig. 15(a) shows the measurement setup when a digi-
tally recorded database is used. All recorded gesture signals
from multiple databases were reproduced by a USB-DA12-
8A digital-to-analog converter (DAC) and sent into the chip.
Fig. 15(b) shows the coin battery-powered demonstration setup
with six-channel dry electrode attached to SoC LNA input.

Fig. 16. Measured inference waveforms showing sampling window signal
(top) with classification output label signal (bottom) during single SoC
inference mode.

Fig. 17. Measured data signal and global clock signal for three-chip
operations.

User-specific gestures have been correctly classified from this
demonstration setup.

Fig. 16 shows the measured waveforms of the sampling
window signal and classification output signals on a single
processor. Overlapped 200-ms windows were used for each
inference task. More specifically, in every 100 ms, the feature
extraction results were sampled using rising or falling edge
of sampling window signal to collect partial feature values
that were combined with feature values from the previous
100 ms to form the new feature data for classification. The
output label signals from the neural network computation were
generated with less than 5-ms latency after the toggling of the
sampling window signals at every 100 ms. Since the feature
would only be available after each sampling window, the
system computation latency was measured after each sampling
window is finished.

Fig. 17 shows the measured global clock signal and the
global data signal shared by three distributed processors dur-
ing the inference process. In the beginning, all processors
processed the extracted features locally in the local hidden
layer. The processors then sequentially sent out the internal
results to the master processor to finish the inference process.
As shown in Fig. 17, in this measurement, the inference task
from three processors completed within 3 ms.

The on-chip training process starts with initial weights
trained using a global user database, which can achieve only
around 69% accuracy. The 256 user-specific data samples
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TABLE I

COMPARISON TABLE WITH RELATED WORKS

Fig. 18. User-specific on-chip training accuracy with single batch running
for six epochs (top) and measured training iteration clock signal (bottom).

of extracted features were loaded into the on-chip training
memory for each batch of training data. Fig. 18 shows the
accuracy rate and measured training iteration clock signal.
In each training epoch, 256 iterations of forward and backward
propagation were proceeded, which takes about 6 s. After

each training epoch until the sixth epoch, the classification
accuracy can increase to 77%. By apply another 3 batches with
a total of 24 epochs, the single-user classification accuracy can
achieve 82%, which is 13% higher than the accuracy from the
global user weights. The training power consumption versus
supply voltage with a tradeoff of training time in every training
iteration is shown in Fig. 19, and the training time of every
iteration takes near 0.1 s when the neural network is working
at 0.6 V with a power consumption of 46 μW. To reduce the
total training time, a faster training speed can be achieved to
18 ms per iteration by consuming 600-μW power at a digital
voltage setting at 0.9 V. Note that power consumption is based
on a continuous operation without duty cycling.

Fig. 20 shows the accuracy comparison between the
floating-point neural network and our 8-bit neural network
quantized from user-specific offline-trained floating-point
weights across different databases in various applications. The
“USC-HAD” database [30] is for gait processing, whereas
the “Ninapro” database [7] is for gesture classification. The
“Rehab” database, which includes 20 amputee patients’ data,
is from our collaborator hospital, Shirley Ryan Ability Lab,
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Fig. 19. On-chip training runtime per iteration and power consumption with
various digital supply voltages.

Fig. 20. Accuracy across various data set. Ninapro [7] and Rehab are for
gesture classification. USC-HAD is for gait classification [30].

Chicago, IL, USA. The results show that the quantized
user-specific classification only has around 2% accuracy loss
compared to the floating-point trained neural network.

VI. COMPARISON AND DISCUSSION

Several related works for biomedical signal classification
applications are compared in Table I with regard to analog
front end and digital back end. The LNA and MSFE circuits in
this work show significant benefits of smaller area and power
per channel compared with conventional analog-to-digital con-
version topology, such as SAR ADC and VCO-based ADC.
Comparing work in [16] for EEG seizure detection, since
the signal amplification requirement such as bandwidth, noise
figure is less stringent for EMG signal, and an 18× area saving
was achieved on LNA. More than 3× area saving and power
saving was achieved on ADC with the MSFE circuits in this
work. For the digital back end, deep neural network classi-
fiers for ECG authentication and mood detection applications
were proposed previously [23], [31]. An SVM-based seizure
detection classifier was designed in [16], and an LLS-based
seizure detection classifier was built in [19]. The computation
latency in those prior works [16], [19], [23] was in the
order of seconds, which is sufficient for seizure detection
applications but is not sufficient to support the millisecond
fast response requirement from rehabilitation applications in
this work. In addition, only this work supports on-chip training
and multi-chip networking scheme among these works.

VII. CONCLUSION

In this work, a gait and gesture classification SoC for reha-
bilitation applications is presented. Low-power area-efficient
LNA was implemented to support sEMG with dry electrodes

as well as different sensing devices, such as accelerometers.
An ADC-less MSFE circuit was implemented to directly
extract eight time-domain features, which lead to about 3×
area saving compared with conventional schemes. A distrib-
uted neural network architecture with gait classification was
proposed to help reduce 100× communication traffic when
multiple SoC chips are used for classification. User-specific
online training was also enabled by integrating on-chip SRAM,
stochastic rounding, and randomized batch learning. A test
chip was fabricated in 65-nm low-power CMOS technology
and achieved about 1 μW/channel with a 3-ms computa-
tional latency after signal sampling, which meets the stringent
requirement of rehabilitation applications.
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