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Abstract

Motivation: Anti-cancer drug sensitivity prediction using deep learning models for individual cell line is a significant
challenge in personalized medicine. Recently developed REFINED (REpresentation of Features as Images with
NEighborhood Dependencies) CNN (Convolutional Neural Network)-based models have shown promising results in
improving drug sensitivity prediction. The primary idea behind REFINED-CNN is representing high dimensional vec-
tors as compact images with spatial correlations that can benefit from CNN architectures. However, the mapping
from a high dimensional vector to a compact 2D image depends on the a priori choice of the distance metric and
projection scheme with limited empirical procedures guiding these choices.

Results: In this article, we consider an ensemble of REFINED-CNN built under different choices of distance metrics
and/or projection schemes that can improve upon a single projection based REFINED-CNN model. Results, illus-
trated using NCI60 and NCI-ALMANAC databases, demonstrate that the ensemble approaches can provide signifi-
cant improvement in prediction performance as compared to individual models. We also develop the theoretical
framework for combining different distance metrics to arrive at a single 2D mapping. Results demonstrated that dis-
tance-averaged REFINED-CNN produced comparable performance as obtained from stacking REFINED-CNN ensem-
ble but with significantly lower computational cost.

Availability and implementation: The source code, scripts, and data used in the paper have been deposited in

GitHub (https://github.com/omidbazgirTTU/IntegratedREFINED).

Contact: ranadip.pal@ttu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A primary objective of precision medicine for cancer is the selection
of an anti-cancer drug or a drug combination that is most effective
for the individual patient (Garnett, 2012). A multitude of methods
have been proposed to address the issue of anti-cancer drug sensitiv-
ity prediction using high-dimensional genomics or chemical drug
descriptors data, but there exists room for achieving significant im-
provement (Barretina, 2012; Chiu et al., 2020; Costello, 2014;
Romm and Tsigelny, 2020; Wan and Pal, 2014). To offer enhanced
predictive performance, numerous deep learning based models have
been introduced recently (Chang, 2018; Chiu et al., 2020;
Keshavarzi Arshadi, 2019; Liu, 2019; Xia, 2018; Yu, 2019), that
are primarily either deep neural network (DNN) or 1D convolution-
al neural network (CNN) based approaches. These methods take the
input data as a 1-D vector (Mostavi, 2020a), whereas the 2D CNN
based method reshape the 1-D vector into a 2D matrix, using some
form of lexicographic ordering, which does not preserve the
embedded pattern of the data (Mostavi, 2020b).

We developed the REFINED (REpresentation of Features as
Images with NEighborhood Dependencies) (Bazgir, 2020)
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procedure as a general unsupervised isometric mapping to convert
high-dimensional vectors into images for training CNN models.
We considered a collection of chemical descriptors associated with
a drug (or the set of gene expressions associated with a cell line)
as a d- dimensional vector of features predicting the efficacy of
the drug on a cell line. Thus for » independent drugs (or cell
lines), it is a standard univariate high dimensional regression prob-
lem. The novelty of our REFINED projection, however, is to rep-
resent the foregoing p-dimensional feature vectors (chemical
decriptors or gene expressions) as compact images where locally
adjusted Bayesian Multidimensional Scaling, (MDS) solution is
used to infer the location of each coordinate of the original high
dimensional vector on a bounded subspace of R2. The dependence
among the coordinates of the high dimensional vector induces spa-
tial association in 2D images that is then exploited by the CNN
based architecture of the predictive model. We note that
REFINED is a general framework that can be applied to any pre-
diction problem involving scalar responses and high dimensional
correlated regressors.

For illustrative purpose, we demonstrated that REFINED-CNN
model provided better predictive performance as compared to DNN
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Fig. 1. Density of distances. Kernel density estimate of between features’observed
(Euclidean) distance versus distances of projection in 2D space by the 4 DR techni-
ques in regular and log scale

or 2D random projection based CNN models in publicly available
pharmacogenomics data- the NCI60 and GDSC datasets. In the
NCI60, we used the chemical descriptors of each drug as input fea-
tures. For GDSC dataset, both gene expressions and drug descriptors
were used input features (Bazgir, 2020).

However, in the original form of REFINED, we need to choose a
distance metric a priori to define the ‘observed” distances among the
coordinates of the original high dimensional vector and, based on
that choice, choose an appropriate projection scheme. For instance,
if Euclidean (geodesic) distance is chosen to measure the distances in
ambient dimension, MDS (Isomap) is usually chosen to initialize the
dimension reduction process. In Figure 1a, we show the distribution
of Euclidean distances among chemical descriptors of drugs in ambi-
ent dimension and distribution of distances in 2D under various
choices of projection schemes for NCI-60 dataset. Observe that, dis-
tribution of projected distances obtained under local non-linear di-
mension reduction approach (LE and LLE) are very different when
Euclidean distance is chosen to measure the distance in ambient di-
mension. If a natural distance metric is not available for the problem
at hand, then, ideally, we need to obtain REFINED projections for
different distance measures (local versus global, Euclidean versus
Geodesic, etc.); obtain the predictions for each candidate distance
measure, and choose the one that produces the best cross-validated
prediction performance. Even if an a priori dissimilarity measure
among the coordinates are supplied, we need to choose an appropri-
ate projection scheme (MDS, Isomap, etc.) to begin the process of
REFINED projection and choose the best initial projection scheme
via cross-validation. Evidently, the predictive CNN needs to be fit-
ted for each candidate distance metric/initial projection schemes,
resulting in high computational cost.

Since limited guidelines are available to identify an appropriate
choice of distance metric/initial projection schemes in an unsuper-
vised setting, multiple REFINED-CNNGs have to be fitted regardless,
resulting in the availability of an ensemble of REFINED-CNNG.
Therefore, a model averaging could be performed which can im-
prove upon the best single REFINED-CNN prediction. The goal of
this study is to investigate the performance of such ensemble learn-
ers. We illustrate the advantages of three different ensemble meth-
ods: (i) model stacking, (ii) image stacking and (iii) integrated-
REFINED (iREFINED) over the foregoing best single REFINED-
CNN predictions. Our key contribution here is the theoretical and

methodological development of iREFINED-CNN that produces pre-
dictive performance comparable to REFINED-CNN model stacking,
but at a considerably lower computation cost. We apply this meth-
odology on NCI60 and NCI-ALMANAC datasets to compare the
performance of iREFINED-CNN with several competing methods.
Figure 2 illustrates the framework utilized to train each deep CNN
model.

2 Materials and methods

In its original form, REFINED is an unsupervised technique that
projects from R? to a compact subspace of R?, d >> 2. These images
are then passed on to a CNN to obtain supervised prediction. Thus,
using REFINED images to train a CNN (REFINED-CNN) is, broad-
ly, a 2-step process. This offers an opportunity to deploy ensemble
learning in various different ways. In this article, we investigate
three such ensembling approaches. We begin with briefly describing
the process of creating REFINED images [for more details we direct
the audience to Bazgir (2020)]. Next, we describe three ensemble
learning approaches we used in this study. Finally, for the sake of
completeness, we define the CNN architectures and Bayesian opti-
mization framework that we utilized to select the CNNs’ hyper-
parameters.

2.1 REFINED CNN

REFINED maps high dimensional vectors to mathematically justifi-
able images for training CNN models. It first uses a user-specified
distance metric to obtains the initial pairwise distance matrix for the
features in their original space. Then uses Bayesian multidimension-
al scaling (BMDS) to project the features in 2D that approximately
preserve pairwise feature distances in the original space. The result-
ing initial feature map is then subjected to hill-climbing algorithm
with the constraint that each pixel can contain at most one feature.
The hill-climbing algorithm essentially provides local adjustements
to arrive at a locally optimal configuration which does not produce
more distortion as compared to the automorphic solution that
BMDS produces. The REFINED algorithm, therefore, uses all the
samples to arrive at a set of coordinates that are used to map the fea-
tures into the target 2D space. Once these locations are fixed, the
value of each feature, associated with a particular sample, provide
the intensity at the pixel reserved for that feature. For each sample,
the algorithm thus produces unique REFINED image associated
with the feature vector for that sample.

By using different initial distance metric to estimate feature dis-
similarity, or choosing different projection schemes to initialize
REFINED procedure, different REFINED images could be obtained
and consequently the REFINED-CNN’s predictive performance
vary across the foregoing choices. As shown in (Bazgir, 2020),
REFINED CNN initialized with MDS provides better prediction
error as compared to Isomap (Tenenbaum, 2000), Locally linear
embedding (LLE) (Roweis and Saul, 2000) and Laplacian eigenmaps
(LE) (Belkin and Niyogi, 2003) on the NCI60 dataset. Therefore, in
absence of a natural measure to identify feature dissimilarities and
project them to target 2D space, REFINED-CNN needs to be
trained for different choices of distance metrics and initial projection
schemes.

2.2 Model stacking

An immediate consequence of having REFINED-CNN being trained
on different choices of distance metrics and initial projection
schemes is that we have at our disposal several outputs from the
CNN predictive model each associated with a different choice we
made a priori. Clearly, a linear combination of these predictions,
with linear weights estimated from a separate validation set, produ-
ces the REFINED-CNN model stacking. More precisely, let y, be
the prediction of a REFINED-CNN associated with the choice of a
distance metric (or projection scheme) a = 1,2, ... A. Then, the final
prediction REFINED-CNN model stacking Y is given by the linear
regression equation
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Fig. 2. Illustration of three ensemble learning approaches in this study. (I) is stacking four different REFINED CNN models to achieve the ultimate prediction. (II) is
REFINED-CNN image stacking model that stack images in the z-direction prior CNN modeling and (III) is integrated REFINED CNN model that integrates all the created

REFINED images into one image and then trains a CNN model

A
Yi=Y 9. +b+e (1
a=1

where 7y, is the linear weight associated with the choice a, b is the
intercept term and e is the error. MLE for regression coefficient
could be estimated if the ¢ is non-Gaussian, but following (Costello,
2014; Wan and Pal, 2014) we simply use the least square solutions
for the regression coeffcients. (Kondratyuk, 2020) recently showed
that, in the context of CNN predictions, ensemble of models usually
provide better performance than a single candidate model. We there-
fore use the model stacking approach to benchmark the perform-
ance of other candidate models.

2.3 Image stacking

Evidently, in model stacking approach (1), for each choice a, pro-
ducing the REFINED images I,,, separate CNNs need to be trained.
Since computational cost associated with CNN training is consider-
ably more than producing I,, one immediate avenue to reduce com-
putation cost is to concatenate the REFINED images {I1,5,...,Ia}
to produce a 3D tensor for each sample. This 3D tensor can be
passed on to the CNN architecture to train a single CNN model
using all the images produced by candidate choices. The resulting
3D convolution blocks essentially learns to extract features from the
tensors via the back propagation process (Ji et al., 2013; Maturana
and Scherer, 2015). This approach gets rid of the linearity assump-
tion in (1) and model averaging is done implicity. Additionally, it
requires training of a single CNN thereby reducing the computation
cost significantly. In the context of this study, a graphical represen-
tation of anti-cancer drug sensitivity prediction with 3D convolution
blocks is shown in Figure 2.

Although this technique offers computational benefits, it still
requires generation of ‘A’ REFINED images. More importantly,
since each I, is created independently for each choice, and because
locations are not uniquely identifiable in BMDS solution, there is no
guarantee that a particular feature will occupy the same coordinate
in each I,,a=1,2,...,A. Consequently, when the images are con-
catenated, a particular coordinate often does not correspond to an

unique feature across I, thereby severely affecting CNN’s ability to
extract features from the input tensors. Lack of coordinate-specific
association of pixel intensities across I, also potentially impacts the
predictive performance of the CNN.

To partially address the lack of uniqueness in feature locations
across REFINED images, we stack the feature maps extracted by the
convolution layers instead of stacking the raw REFINED images.
Toward that end, for each REFINED image, we design the convolu-
tion layer under different choices of the number and size of kernels.
By allowing the kernel sizes to vary across REFINED images we can
potentially capture the impact of distance metrics defined over dif-
ferent scale, i.e. the global versus local nature of MDS/Isomap and
LE/LLE, respectively. The feature maps extracted by these convolu-
tion layers are then concatenated and passed on to the dense
layers. The details of the feature map stacking is provided in
Supplementary Section S4 of Supplementary Information.

Regardless, to fully alleviate this context-specific non-uniqueness
problem, we need to enforce the condition that location of each fea-
ture remains same for all input REFINED images. The integrated
REFINED methodology arises when this condition is enforced to
infer the location of each feature.

2.4 Integrated REFINED

Consider the predictor matrix X ={x;},i=1,2,...,mj=
1,2,...,p with x; being the value of the jth feature for the ith sam-
ple. The goal of REFINED was to obtain the location of the features
in a compact subset of R?, more specifically in [0,1]% In the follow-
ing formulation, we assume each choice of initial distance metric is
uniquely associated with a projection scheme leading to a total of A
choice of distance metric-projection schemes pairs. Let dj, be the
observed distance between the jth and the kth feature obtained using
the distance metric 2 and J;; be the unknown Euclidean distance be-
tween these two features in unit square. Hence,

O = /> (s — sk,,)z, where s is now 2D coordinate system denot-
ing the unique location of the features j and k in unit square
obtained by synthesizing dj,,a=1,2,...,A. Our goal is to
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estimate s; € [0, 1]* that remains invariant for all candidate distance
metric.

Under the assumption of truncated normal distribution of dj.,
(Oh and Raftery, 2001), the data model associated with the distance
metric a is given by dj, ~ N(Jj,62)I(djt, > 0). For the location
process, we specify a spatial Homogeneous Poisson Process (HPP)
with constant intensity /= p/[0,1]* which essentially distributes
locations of p predictors randomly in an unit square. Since this
corresponds to complete spatial randomness, an alternative specifi-
cation of location process is given by s={si,s2,...,5,} ~
Uniform([0,1]*) (Chandler, 2013). The advantage of this HPP speci-
fication for the location process is outlined in (Bazgir, 2020).

Let d, = [djt,], j,k=1,2,...,p be the collection of m:{i)
distances obtained under the metrica and d = [dy, d>, ..., da] b the
total number of distances in the dataset. Let & be the collection of
Euclidean distances in the unit square that needs to be inferred after
imposing the invariance of s. Then under the assumption of condi-
tional independence, the full data model is then given by

s e S () ) m )

where ®(.) is the usual standard normal cdf. At the process level, we
have

slp ~ Uniform([0,1]%) 3)

Finally, we impose the same prior for ¢*=[0},03,

03] fid InverseGamma(o, §) witha > 2, b > 0.
Under this specification, the full conditional of posterior of s is
given by

n(sld, 62) o €7 2ok V(é/rg’fr“)z.e* 25 o) (4)

dy
2
011

A A
where V=37 (,17&31%0 = > 2 They key observation is that, the
a=1" a=1

location parameter of the conditional posterior of s is the weighted
average of the observed distances obtained from each distance met-
ric under consideration, with the weights being a function of the pre-
cision associated with the distribution of observed distances. The
details of the derivation of (4) is relegated to Supplementary Section
$1.1 of Supplementary Information.

If, on the other hand, we posit a log-normal distribution for dj ,
(Bakker and Poole, 2013), the data model associated with the dis-
tance metric 4 is given by log(dj,) ~ N(log(5j), 62). Retaining the
HPP specification of location process and independent Inverse

Gamma priors for 62, the posterior conditional of s is given by

—
@0

n(5|d,0'2) o 67%2/>k V(o —F )2 (5)

. A
where J7, = log (9), and d5 = 3 %. Further simplification
a=1 a

—s

dio > Walogdia
o —

of the location parameter in (5) yields W o where

W, = Gl% Clearly, the location parameter is the weighted geometric

mean of (djgq, ..., dj) with the weight being a function of precision
associated with the distributional specification of d_,. Detailed deri-
vations of (5) is offered in Supplementary Section S1.2 of
Supplementary Information.

Observe that, (4) and (5) imply that one of the ways to fix the co-
ordinate associated with each feature across I, is to enforce a com-
mon 6(.) for data model associated with each distance metric. The
methodoligical benefits of iREFINED are twofold: (i) feature-specif-
ic coordinates s can be estimated using standard BMDS solutions
without explicitly specifying a composite dissimilarity measure (lin-
ear combination of initial distances either in original scale or in log
scale) at the outset, and (ii) if a linear combination of the candidate
distance metrics is utilized to obtain the initial dissimilarity measure

MDS Isomap LLE LE

Fig. 3. Correlation between distances. Kendall’s t among the distances estimated in
2D by each DR technique and their geometric and arithmetic means

at the outset, Bayesian non-metric MDS can be performed with a
suitable choice of a monotonic non-linear function g(.) that connects
the observed dissimilarities with ¢ in the following way d ~
N(g(5(.)),e>)I(d(.) > 0) (Oh and Raftery, 2001). The fact that the
composite dissimilarity measure may not be proper metric is accom-
modated by an explicit non-metric BMDS formulation. The compu-
tational benefit of iREFINED-CNN is obvious, it requires a single
REFINED projection obtained from the estimates of s given by (4)
or (§) which is subjected to the foregoing hill-climbing algorithm to
arrive at single REFINED image which is then passed on to a single
CNN. Consequently, regardless of the number of choice of initial
distance metrics (and the associated initial projection schemes),
iREFINED-CNN only requires a single full-blown training
operation.

3 Application

We apply the methodologies developed in the previous section on
two publicly avaiable datasets: (i) NCI60 dataset consists of drug
responses observed after application of more than 52 000 unique
compounds on 60 human cancer cell lines (Shoemaker, 2006), (ii)
NCI-ALMANAC dataset consisting over 5000 pairs of more than
100 drug responses on 60 human cancer cell lines (Holbeck, 2017).
In both scenarios, we use the chemical descriptors of drugs as fea-
tures to predict cell-line specific drug responses. Below we offer brief
description of each dataset, outline individual REFINED projection
schemes to formulate the iREFINED procedure and describe the
CNN architecture.

3.1 Data description

NCI60: The US National Cancer Institute (NCI) screened more than
52 000 unique drugs on around 60 human cancer cell lines. The
drug responses are reported as average growth inhibition of 50%
(GI50) across the entire NCI cell panel (Gerson et al., 2018)
(Shoemaker, 2006). All the chemicals have an associated unique
NSC identifier number. We used the NSC identifiers to obtain the
chemical descriptors associated with each drug. This information
was supplied to PaDEL software (Yap, 2011) to extract relevant fea-
tures for each one of the foregoing chemicals. Chemicals with more
than 10% of their descriptor values being zero or missing were dis-
carded. To ensure availability of enough data points for training
deep learning models, we selected 17 cell lines with more than 10
000 drugs tested on them. Each drug was described with 672 fea-
tures. To incorporate the logarithmic nature of dose administration
protocol, we calculated the normalized negative-log concentration
of GI50s (NORMLOGGIS50). The drug response distribution for
three illustrative cell lines are shown in Supplementary Figure S1 of
Supplementary Information.

We considered four distance metric and associated projection
schemes—MDS, Isomap, LE and LLE—to initialize the REFINED
process. To investigate if these four techniques produce similar
ordering of the pairwise distances between features, we calculated
the following Kendall’s rank correlation coefficients t(R(dj,),
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Fig. 4. Different REFINED images. REFINED images created using 4 DR technique
including MDS, Isomap, LLE, LE and arithmetic and geometric average of them as
initialization step at the first row before applying the hill climbing. The second Row

represents the REFINED images after applying the hill climbing algorithm on each
initialization step
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R(djpw)), Vj,k=1,2,...,p,anda #a =1,2,3,4 where R(dj.,) is
the rank of the distance between features j and k obtained from the
projection technique a. Figure 3 shows the heat map of the foregoing
rank correlations. Evidently, there is a strong agreement between
MDS and Isomap. But only moderate level of association between
the global techniques and local techniques. However, the distribu-
tion of observed Euclidean distance in log-scale in Figure 1b shows
better agreement with the logarithm of projected distances, across
both local and global dimension reduction schemes indicating the
viability of log-normal specification of the data model in the fore-
going iREFINED technique. Furthermore, Supplementary Table S8
shows the Kullback-Liebler divergence between observed Euclidean
distance and projected distances in both original scale and log-scale.
Observe that, on an average, the KL divergence in log-scale is
smaller than that in the original scale, indicating that the log-normal
specification offers some protection against misspecification of the
initial projection scheme.

While the first four panels of Figure 4 show the REFINED
images of drug chemical descriptors created under various initializa-
tions for cell line SNB_78, last two panels show the corresponding
iREFINED images under log-normal and truncated normal specifi-
cations, respectively.

NCI-ALMANAC: The NCI-ALMANAC is ‘A Large Matrix of
Anti-Neoplastic Agent Combinations’ dataset (Holbeck, 2017) pro-
vides systematic evaluation of over 5000 pairs of 104 FDA-approved
anticancer drugs were scanned against a panel of 60 human tumor
cell lines (from NCI60) to discover those with enhanced growth in-
hibition or cytotoxicity profiles (Yang, 2020). Combination activity
was reported as a ‘ComboScore’ that quantifies the advantage of
combining two drugs (Tavakoli and Yooseph, 2019). Normalized
growth percentage of ComboScore distribution for three cell lines
selected randomly from NCI-ALMANAC dataset are shown in
Supplementary Figure S2 of Supplementary Information. For each
drug we used the same chemical descriptors obtained for NCI60
dataset using the NSC identifiers.

CNN architecture: We had two different CNN architectures;
one for modeling the NCI60, and another for NCI-ALMANAC
dataset. The REFINED CNN used to model NCI60 dataset, con-
tains two convolutional and two fully connected (FC) hidden layers
where each followed by a batch normalization (BN) and ReLu acti-
vation function layer. Each ReLu activation after the FC layers was
followed by a dropout layer to avoid overfitting.

The REFINED CNN models of NCI-ALMANAC dataset, which
predict the ComboScore of two drugs, contain two input as two dif-
ferent drugs in two arms. Each arm contains two convlotional layers
followed by a BN and ReLu activation layer. The two arms’ output
then concatenated and flattened as a 1-D vector as an input of two
sequential FC layers, each followed by a BN, ReLu activation func-
tion and a dropout layer.

The hyper-parameters of both these CNN models, i.e. learning
rate, decay rate, decay step of the adam optimizer, number of ker-
nels, kernel size, stride size per each convolutional layer and number
of nodes per each fully connected layer, were optimized using
Bayesian optimization framework (Bazgir, 2021; Bergstra, 2013)
which sequentially queries a posterior model for hyper-parameter ®
derived from a sequence of surrogate models.

The hyper parameters of the CNN were optimized, for each
dataset, using the training and validation set of only one cell line
(HCC-2998). Then the model was trained and tested on each cell
line independently. In the test phase, for each cell line, we held out a
separate set of drugs in the NCI60 and separate set of drug pairs in
the NCI-ALMANAC dataset.

4 Results

Several competing models were trained on the foregoing NCI60 and
NCI-ALMANAC dataset. Each model was fitted separately on the
drug-response data for each cell line. For each cell line, the data was
randomly partitioned into training, validation and test sets. Training
set consisted of 80% of the sample, 10% of the samples were used
for validation and the remaining 10% formed the test set to evaluate
the out-of-sample predictive performance of the competing models.
To ensure direct comparability, the training, validation and test
datasets remained same for all competing models.

A total of 11 models (A summary description of the baseline
models are shown in Supplementary Table S1 of Supplementary
Information.) were considered: (i) Ensemble REFINED-CNN model
stacking, (ii) Ensemble REFINED CNN-image stacking model, (iii)
iREFINED-CNN, with both weighted arithmetic mean and
weighted geometric mean construction, (iv) individual REFINED
CNN with MDS, Isomap, LLE and LE projections, (v) DeepSyenrgy
(Preuer, 2018), (vi) (Xia, 2018) approach, (vii) Gradient Boosting
Machine (Friedman, 2002), (viii) Random Forests (Ho, 1995), (ix)
Support Vector Regression (Drucker, 1997), (x) Kernelized Bayesian
Multitask Learning (KBMTL) (Génen and Margolin, 2014) and (xi)
Elastic Nets (Zou and Hastie, 2005). We only applied the
DeepSyenrgy (Preuer, 2018) and the (Xia, 2018) approaches on the
NCI-ALMANAC dataset, as they are designed for drug combination
therapy modeling. We emphasize that all the competing models
were independently used for prediction task. Although, GBM, SVR,
RF, KBMTL could be used as non-linear/model-free stacking devices
to combine the output of different individual REFINED CNNs, we
did not pursue that that avenue here.

Several performance measures were used to assess the adequacy
of the proposed models and compare their predictive performances.
Below we describe the metrics used to evaluate the model
performance:

1. Normalized root mean square error of prediction (NRMSE):
The customary root mean squared error of prediction (RMSPE)
of a given model was normalized by the RMSPE with sample
mean as the predictor. We use NRMSE to implicitly compare all
the models with respect to the baseline intercept-only model.
The NRMSE formula is given by:

NRMSEofamodel =

where then, is the size of test-set, y, ¥ and y are the observed drug

response, mean of the drug responses obtained from the non-test set,

and predicted drug responses obtained from the model under

consideration.

2. Normalized mean absolute error (NMAE): In addition to
NRMSE, we use NMAE (7) so that model comparison can be
performed without being severely impacted by large outliers.

p
> lyi =il
NMAE = :}— (7)
> lyi =7l
i=1
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For both NRMSE and NMAE, smaller values indicate better pre- Table 1. NCI60 results
dictive performance. Model NRMSE  NMAE  PCC B
3. Pearson correlation coefficient (PCC) between the predicted and ode 1as
target values: PCC quantifies linear association between the pre- REFINED-CNN model 0.702 0.653 0.710  0.489
dicted and target drug responses. Model with PCC closer to 1 stacking
would be preferred. iREFINED-CNN-AM 0.715 0.630 0.706 0.461
4. Bias reduction: We use the method described in (Bazgir, 2020; iREFINED-CNN-GM 0.722 0.635 0.705  0.446
Song, 2015) to compute model bias. A simple linear regression is REFINED'CNN image 0.775 0.679 0.655  0.509
performed between residuals (ordinate) and predicted values stacking .
(abcissa) in the test set. The angle (0) between the best fitted re- SREFINED W¥th Isomap 0.787 0.716 0.644 0.509
. R . . . sREFINED with LE 0.788 0.720 0.644 0.504
gression line and abscissa is used as a measure for ablas. An un- SREFINED with LLE 0.795 0.759 0625 0511
biased model is expected to produce an angle of 0 . Therefore, SREFINED with MDS 0.778 0.709 0.650  0.488
models with smaller value of 0 is preferred. KBMTL (Génen and 0.856 0.768 0.547  0.733
5. Model improvement: We introduce a novel measure for model Margolin, 2014)
improvement that uses Gap statistics (Tibshirani, 2001) to per- XGBoost (Friedman, 2002) 0.842 0.806 0.513  0.781
form a formal hypothesis test. First, we paired each model with SVR (Drucker, 1997) 0.870 0.806 0.525  0.755
a null model [see (Costello, 2014) for the construction of null RF (Ho, 1995) 0.880 0.846 0.486  0.816
EN (Zou and Hastie, 2005) 0.976 0.942 0.287 0.968

model]. Then bootstrap samples were drawn from the drug re-
sponse values of the test set along with their corresponding pre-
dicted values for each model. The null model, using the
distribution of drug responses in the training set, is then used to
predict drug response sampled from the test set. The process is
repeated for 10 000 times and a distribution of NRMSE,
NMAE, PCC and Bias, is made for each model along with the
null model. For each candidate model, the bootstrapped distri-
bution of each metric is paired with the corresponding distribu-
tions obtained from the null models.

A model is deemed to provide significant statistical improvement
over the null model if each performance metric is stochastically bez-
ter than its counterpart obtained from the null model. Therefore, we
concatenated the bootstrap replicates of performance metrics under
the candidate model and null model and formally tested for the pres-
ence of at least two clusters using gap statistics in a completely un-
supervised fashion. If gap statistics identified presence of at least 2
clusters, we performed K-means clustering. Ideally, the clustering
procedure should be able to distinguish replicates coming from null
model and candidate model. Hence, an adequate model will produce
little overlap between the clusters associated with the candidate
model and those associated with the null model. Additionally, all
models were subjected to a robustness analysis (Costello, 2014),
where we calculated how many times each ensemble REFINED
model outperforms other competing models in 10 000 repetition of
bootstrap sampling process (Bazgir, 2020).

We calculated 95% confidence interval for each of the foregoing
performance metrics using a pseudo Jackknife-after-Bootstrap confi-
dence interval generation approach (Efron, 1979). Multiple boot-
strap sets were drawn from the test samples and then the model
performance metrics calculated resulting in a distribution for each
metric which was used to calculate the confidence interval for a
given cell line for NCI60 and NCI-ALMANAC datasets (Bazgir,
2020).

4.1 Results for NCI60

First, we report the performance of the nine candidate models, aver-
aged over 17 cell lines, in Table 1. Observe that, although we
expected that REFINED-CNN model stacking will perform best, it
was not uniformly better in terms of all the evaluation metrics. Two
variants of iREFINED-CNN produced better performance with re-
spect to NMAE and Bias reduction. The REFINED-CNN image
stacking performed uniformly worse as compared to the remaining
ensemble REFINED models. One of the reasons for this worse per-
formance could be the inability of image stacking approach to ex-
tract appropriate features across the REFINED images. However,
all the ensemble variants uniformly outperformed single projection
based REFINED models and other popular machine learning
models considered here. The Supplementary Tables S9-S11 of

Note: Comparison of performance of proposed approaches, single pro-
jection based REFINED (sREFINED) and state-of-the-art methods on NCI60
dataset. The bold values indicate best performance.

Supplementary Information details the performance of each model
with respect to the foregoing metrics for different cell lines.
The 95% confidence interval for all the models per each cell line are
provided in Supplementary Figures S3-S6 of Supplementary
Information.

In terms of improvements in prediction, we observe that
REFINED-CNN model stacking decerased NRMSE, NMAE and
bias by 7-9%, 6-9% and 1-2%, respectively, as compared to single
REFINED model. The former ensemble model also increased the
PCC by 6-9% as compared to the latter. Integrated REFINED
decerased NRMSE, NMAE and bias by 6-8%, 7-12% and 3-4%,
respectively, and increased PCC by 5-8% as compared to single
REFINED model. However, REFINED-CNN image stacking merely
decerased NRMSE, NMAE and bias by 1-3%, 2-7% and 0-1%, re-
spectively, and increased PCC by 1-3% as compared to single
REFINED model, indicating its inability to compete favorably with
the previous two ensembling approached.

Turning to robustness analysis to compare integrated REFINED
and REFINED-CNN model stacking models with other single
REFINED CNN models, we observe that REFINED-CNN model
stacking offers better performance in terms of (i) NRMSE between
73 and 80% of the times, (ii) NMAE 71-81% of the times, (iii) PCC
68-76%o0f the times and (iv) Bias 48-56% of the times (see
Supplementary Tables $23-S26). The integrated REFINED, on the
other hand, produced better performance in terms of (i) NRMSE be-
tween 70 and 78% of the times, (ii) NMAE 77-87% of the times,
(iii) PCC between 67 and 75% of the times and (iv) Bias 55-63% of
the times on average as compared to other single REFINED CNN
models (see Supplementary Tables $15-S22). The Gap statistics also
indicate that the out-of-sample performance metrics produced by
REFINED-CNN model stacking and integrated REFINED are, on
average, well distinguishable from the null model (see
Supplementary Tables S27-S30 of Supplementary Information).
Furthermore, higher values of the Gap statistics associated with en-
semble models as compared to those associated with single
REFINED-CNN models indicate higher degree of separation of the
performance metrics clusters associated with ensemble models from
the null model as compared to the single REFINED-CNN versions.
The NRMSE, NMAE, PCC and Bias distribution of all the eight
models along with the null model are plotted for three randomly
chosen cell lines of the NCI60 dataset in Supplementary Figures S11
to S22 of Supplementary Information.

In addition to intra-REFINED comparisons, we compare our
REFINED-based approaches with state-of-the-art models including:
Kernelized Bayesian Multitask Learning (KBMTL) (Goénen and
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Margolin, 2014), Gradient Boosting Machine (Friedman, 2002),
Random Forests (Ho, 1995), Support Vector Regressor (Drucker,
1997) and Elastic Nets (Zou and Hastie, 2005). The average per-
formance of all the models on NCI60 dataset are provided in Table
1. Observe that, on average, REFINED-based models significantly
outperforms the competing non-REFINED models. The same trend
is observed for most cell-lines as well. The detailed results including
performance of each model for each cell line is provided in
Supplementary Table S11 of Supplementary Information.

4.2 NCI-ALMANAC
In this section, we compare the performance of the foregoing three
ensemble REFINED-CNN approaches with 4 single REFINED-
CNN methods utlizing different projection schemes along with 6
non-REFINED predictive methods. Since this dataset offers informa-
tion about responses for drug combinations, our predictors consist
of two set of PaDel chemical descriptors representing two drugs for
each cell line. The response consists of the ‘ComboScore” for each
drug pair. We used the REFINED approach to generate the images
corresponding to the drug descriptors for each drug compound in
the NCI-ALMANAC dataset.

Considering pairing 2 drugs with D (~more than 100) unique
NSCs for each cell line, then the total number of samples for model-

ing each cell line is <§> pairs in the dataset, which is close to SK.

For each cell line, we randomly divided the dataset into 80% train-
ing, 10% validation and 10% test sets, where each set covariates
contains 672 chemical drug descriptors per each drug. REFINED-
CNN model stacking and integrated REFINED CNN model outper-
forms all other four single REFINED CNN models whereas
REFINED-CNN image stacking under-performs them in average.
The REFINED-CNN model stacking and integrated REFINED
CNN model achieve improvement over single REFINED CNN mod-
els in the range of: 7-10% and 2-5% for NRMSE; 8-12% and 1-
5% for NMAE; 2-3% and 1-2% for PCC; 6-12% and 1-4% for
Bias. The 95% confidence interval for all the models per each cell
line are provided in Supplementary Figures S7-S10 of
Supplementary Information.

Robustness analysis reveals REFINED-CNN model stacking
offers better performance as compared to single REFINED-CNN
version with respect to all performance metrics. The former pro-
duced lower NRMSE between 88 and 90% of times, lower NMAE
between 93 and 95% of times, higher PCC between 83 and 86% of
times, and lower Bias 78-89% of the times. Detailed results are pre-
sented in Supplementary Tables $39-S42 of Supplementary
Information. Integrated REFINED also outperformed the single-
REFINED variants in considerable proportion of times. The former
lowered NRMSE between 53 and 68% of times, NMAE between 52
and 69% of times and Bias between 43 and 77% of the times, while
increased PCC between 45 and 62% of times. The average results of
the robustness analysis for each metric of the integrated REFINED
are provided in Supplementary Tables S31-S38 of Supplementary
Information.

Gap statistics results are provided in Supplementary Tables S43—
S46 of Supplementary Information. These results follow the trend
observed in the NCI60 datasets with REFINED-CNN model stack-
ing and integrated REFINED CNNs performing considerably better
as compared to the single REFINED variants. The Gap statistics dis-
tribution plots per NMRSE and NMAE metrics of each model
paired with the null model along with their corresponding cluster
centroids for three randomly selected cell lines are provided in
Supplementary Figures S23-S34 of Supplementary Information.

We further compare the performance of our proposed
approaches with state-of-the-art models including: DeepSyenrgy
(Preuer, 2018), (Xia, 2018), Gradient Boosting Machine (Friedman,
2002), Random Forests (Ho, 1995), Support Vector Regressor
(Drucker, 1997) and Elastic Nets (Zou and Hastie, 2005). The aver-
age performance of the models on NCI-ALMANAC dataset are pro-
vided in Table 2. The detailed results including performance of each
model for each cell line is provided in Supplementary Table S14 of

Table 2. NCI-ALMANAC results

Model NRMSE NMAE PCC Bias
REFINED-CNN model 0.420 0.361 0.907  0.168
stacking
iREFINED-CNN-AM 0.479 0.431 0.893  0.275
iREFINED-CNN-GM 0.474 0.427 0.892  0.248
REFINED-CNN image 0.561 0.524 0.856  0.362
stacking
sREFINED with Isomap 0.508 0.470 0.887  0.227
sREFINED with LE 0.489 0.443 0.884  0.238
sREFINED with LLE 0.522 0.486 0.884  0.284
sREFINED with MDS 0.514 0.474 0.877  0.259
Xie et al. (2018) 1.574 1.295 0.435  0.991
DeepSynergy (Preuer, 1.109 1.058 0.176 0.929
2018)
XGBoost (Friedman, 2002) 0.518 0.680 0.859 0.327
RF (Ho, 1995) 0.525 0.679 0.851  0.290
SVR (Drucker, 1997) 0.561 0.675 0.830  0.255
EN (Zou and Hastie, 2005) 0.618 0.758 0.789  0.428

Note: Comparison of performance of proposed approaches, single pro-
jection based REFINED (sREFINED) and state-of-the-art methods on NCI-
ALMANAC dataset. The bold values indicate best performance.

Supplementary Information. Once again we observe the REFINED
variants are outperforming other competing non-REFINED models
for most cell lines.

5 Discussion

Based off (Kondratyuk, 2020; Matlock, 2018), this study developed
different ensemble learning methods for REFINED-CNN predictive
methodology. Our results show that standard linear stacking of mul-
tiple single REFINED-CNN improves the prediction performance as
compared to the best single REFINED CNN model. To reduce the
computational cost associated with linear stacking of multiple
REFINED-CNN without significantly impacting its predictive ac-
curacy, we proposed the integrated REFINED technique. Since each
projection scheme captures a different embedded pattern of the
data, the ensembling approach, associated with the integreated
REFINED technique, provides a mathematical way to connect these
patterns to reveal a more holistic picture. Robustness is achieved in
the sense that model performance is no longer crucially dependent
on the a priori choice of the distance metric or the initial projection
scheme. Furthermore, this technique offers a way to combine metric
and non-metric initial dissimilarity measures via a suitable specifica-
tion of the probability model for the observed distances. The inte-
grated REFINED also offers an heuristic advantage because we can
choose the probability models for observed distances by empirically
observing the observed distance histograms. Different probability
models for different distance metrics could be combined by the
iREFINED technique to obtain the appropriate distance averaging
scheme. We proved here that weighted arithmetic and geometric
means turn out to be appropriate averaging schemes for common
choices of distribution of observed distances.

Through the application on both NCI60 and NCI-ALMANAC
datasets, we have established the superior performance of the
ensembling techniques. We benchmarked the performance of inte-
grated REFINED with REFINED-CNN model stacking to reveal
that the former produces comparable results in predicting drug sen-
sitivity summary metrics (for example, NLOGGI50 and
ComboScore) at a fraction of computation cost associated with the
latter. Table 3 reveals computational time for REFINED-CNN
model stacking is almost four times more than that for the integrated
REFINED approach. We also observed that the integrated
REFINED performed uniformly better than the REFINED image
stacking model indicating the need to fix the location of feature in
the set of REFINED images obtained via different projection
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Table 3. Execution time comparison

Steps iREFINED-CNN REFINED-CNN model stacking
MDS 7s 7s

Isomap 21s 21s

LE 23s 23s

LLE 28s 28s

NMDS + DA 47s -

Hill climbing 8 min and 23 's 33min and 32

CNN 2hand 17min and 36s 9h and 10 min and 24 s

LR - 1s

Total 2hand 28 min and 25s 9h and 45 min and 19s

Note: Comparing execution time of each step of integrated REFINED
CNN model and REFINED-CNN model stacking trained on HCC_2998 cell
line data of NCI60 dataset.

schemes. We also proved that integrated REFINED emerges as a re-
sult of the constraint that requires the location of features, in the
project 2D plane, must remain invariant under different projection
schemes thereby offering an intuitive interpretation of the
iREFINED technique.

Of course, neither the REFINED-CNN model stacking nor inte-
grated REFINED-CNN guarantees better performance as compared
to the best single REFINED-CNN in each instance. An intuitive way
to decide whether these ensembling approaches should be deployed
is to assess the amount of distortion induced by each individual
REFINED scheme. If it appears that particular projection is produc-
ing significantly lower distortion, we recommend fitting a
single REFINED-CNN associated with that projection scheme. If,
on the other hand, the distortions are similar, ensembling is advised.
A formal investigation into this conjecture is a future avenue for
research.

Our REFINED based architecture has two major pharmacologic
implications. First, if we wish to predict the efficacy of a drug on a
tumor, a rich class of regressors will consist of both numerical and
image variables. The set of numeric regressors consists of (i) the
chemical descriptors of the drugs, and (ii) molecular characteristics
of tumor that offer a genome wide profile of the tumor. The image
regressors consist of histopathology images that capture the inherent
heterogeneity of tumors. The REFINED technique offers a solution
to this regression-on-multi-type data problem. Our technique con-
verts all non-image regressors to legitimate images which are then
processed through CNN algorithm to generate prediction. The inte-
grated REFINED-CNN technique, developed herein, indicates that
the prediction can be made robust by combining different distance
metrics. Consequently, as multi-modal data collection protocols be-
come more prevalent in the realm of pharmacogenomics, the general
REFINED technique (particularly iREFINED) offers a methodology
where fairly standard image based deep learning techniques can be
utilized to analyze such multi-type data.

Second, we observe a high accuracy out-of-sample prediction
performance of our model in NCI-ALMANAC data. This empirical
predictive reliability indicates that integrated REFINED-CNN can
be utilized to optimize the efficacy of a drug combination treatment
regime. More specifically, given an initial choice of drug, say D;,,
this technique can identify a set of drugs, from a given list of drugs,
that are synergistic to D,,,;; in the following sense. We can keep D;,,;,
fixed at one of the arms of the network and allow the other arm
scan through the foregoing list of drugs to predict ‘ComboScores’.
Our bootstrapped-based inferential methodology, that enabled us to
generate the intervals for NRMSE, NMAE, PCC and bias (see
Supplementary Figures S7-510 of Supplementary Information), can
then be utlized to generate confidence intervals about the predicted
ComboScores. This procedure can thus identify whether there exists
a drug (in the list) that can be paired with D,,,;; to achieve significant
increase in efficacy. An exploration into this line of investigation
will be conducted in future.
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