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ABSTRACT

We propose an effective and light-weight learning algorithm, Symplectic Taylor Neural Networks
(Taylor-nets), to conduct continuous, long-term predictions of a complex Hamiltonian dynamic
system based on sparse, short-term observations. At the heart of our algorithm is a novel neural
network architecture consisting of two sub-networks. Both are embedded with terms in the form
of Taylor series expansion designed with symmetric structure. The key mechanism underpinning
our infrastructure is the strong expressiveness and special symmetric property of the Taylor series
expansion, which naturally accommodate the numerical fitting process of the gradients of the
Hamiltonian with respect to the generalized coordinates as well as preserve its symplectic structure.
We further incorporate a fourth-order symplectic integrator in conjunction with neural ODEs’
framework into our Taylor-net architecture to learn the continuous-time evolution of the target
systems while simultaneously preserving their symplectic structures. We demonstrated the efficacy
of our Taylor-net in predicting a broad spectrum of Hamiltonian dynamic systems, including the
pendulum, the Lotka—Volterra, the Kepler, and the Hénon—Heiles systems. Our model exhibits
unique computational merits by outperforming previous methods to a great extent regarding the
prediction accuracy, the convergence rate, and the robustness despite using extremely small training
data with a short training period (6000 times shorter than the predicting period), small sample sizes,
and no intermediate data to train the networks.

Keywords: Machine learning, Hamiltonian system, Physics-informed neural network, Taylor series expansion

1 Introduction

Hamiltonian mechanics, first formulated by William Rowan Hamilton in 1834 [18], is one of the most fundamental
mathematical tools for analyzing the long-term behavior of complex physical systems studied over the past centuries
[46, 11]. Hamiltonian systems are ubiquitous in nature, exhibiting total energy with various forms, as seen in plasma
physics [30], electromagnetic physics [27], fluid mechanics [39], and celestial mechanics [38]. Mathematically, Hamil-
tonian dynamics describe a physical system by a set of canonical coordinates, i.e., generalized positions and gener-
alized momentum, and uses the conserved form of the symplectic gradient to drive the temporal evolution of these
canonical coordinates [19]. However, for a dynamic system governed by some unknown mechanics, it is challenging
to identify the Hamiltonian quantity and its corresponding symplectic gradients by directly observing the system’s
state, especially when such observation is partial and the sample data is sparse [15, 3, 43].

The rapid advent of machine learning (ML) techniques opens up new possibilities to solve the identification problems
of physical systems by statistically exploring their underlying structures. On the one hand, data-driven approaches
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have proven their efficacy in uncovering the underlying governing equations of a variety of physical systems, en-
compassing applications in fluid mechanics [2], wave physics [23], quantum physics [41], thermodynamics [21], and
material science [44]. On the other hand, various ML methods have been proposed to boost the numerical simula-
tion of complex dynamical systems by incorporating learning paradigms into simulation infrastructures, e.g., ordinary
differential equations [35], linear or nonlinear partial differential equations [47, 35, 32, 31, 22, 36], high-dimensional
partial differential equations [42], inverse problems [34], space-fractional differential equations [16], systems with
noisy multi-fidelity data [33], and pseudo-differential operators [10, 9], to name a few. More recently, many lines
of research have tried to incorporate physical priors into the learning framework, instead of letting the learning algo-
rithm start from scratch, e.g., embedding the notion of an incompressible fluid [29, 48], the Galilean invariance [28],
a quasistatic physics simulation [13], and the invariant quantities in Lagrangian systems [7] and Hamiltonian systems
[21, 14, 24, 51, 8, 49].

There are two critical aspects in learning and predicting the dynamics of a Hamiltonian system. The first key point is to
learn the continuous dynamic time evolution. It is impossible to control the growth of approximation error and monitor
the level of error by simply using neural networks to learn the dynamics of a system and integrating using traditional
integrators, e.g., Euler [17], Runge—Kutta [37, 26]. Secondly and also more challengingly, finding the symplectic
gradients that have symmetric structure is hard. The exact solution of a Hamiltonian system leads to a symplectic
map from the initial conditions to an arbitrary present state. Due to inaccuracies arising from the computed gradients
of a high-dimensional Hamiltonian using traditional neural networks, finding the exact structure of the symplectic
gradients from non-differentiable functions will often cause a large error. To address these two critical aspects, we
propose the following solutions. Firstly, we utilize the neural ODE (ODE-net)’s framework, introduced by Chen et
al. in 2018, [5], to obtain the continuous evolution. Drawing parallels between residual neural networks [20] and the
modeling pattern of an ODE, Chen et al. utilize continuously-defined dynamics to naturally incorporate data that arrive
at arbitrary times. The main difficulty lies in addressing the second aspect. To preserve symplectic structure while
accurately approximating the continuous-time evolution of dynamical systems, the neural networks have to fulfill two
criteria:

1. The gradients of the Hamiltonian with respect to the generalized coordinates should be symmetric.
2. The temporal integration should be symplectic.

We made two essential contributions to meet the above two criteria when processing a Hamiltonian system by incorpo-
rating a set of special computing primitives into traditional neural networks. First, to enable symmetric gradients of the
Hamiltonian with respect to the generalized coordinates, we construct neural networks that model the gradients and
preserve their symmetric structure. Due to the multi-nonlinear-layer architecture of traditional deep neural networks, it
is impossible for these networks to fulfill the symmetric property. Thus, we can only use a three-layer network with the
form of linear-activation-linear, where the weights of the two linear layers are the transpose of each other. However,
such a shallow network cannot capture the complexity of Hamiltonian systems. Therefore, in order to maintain the
expressive power of the network, we create multiple such three-layer sub-networks and combine them linearly into
the Taylor series form. As a result, our network architecture naturally preserves the symmetry of the structure while
exhibiting strong expressive power. Furthermore, to enable a symplectic preserving temporal evolution, we implement
a fourth-order symplectic integrator [12, 52] within a neural ODE-net architecture [5, 53]. This fourth-order integra-
tion step enables an explicit fourth-order symplectic mapping to preserve the canonical character of the equations of
motion in an exact manner. In other words, it preserves the property that the temporal evolution of a Hamiltonian
system yields a canonical transformation from the initial conditions to the final state [12].

Based on these two major enhancements, we propose a novel neural network model, symplectic Taylor neural net-
works (Taylor-nets), to precisely preserve the quantity and predict the dynamics of a Hamiltonian system. The Taylor-
nets consist of two sub-networks whose outputs are combined using a fourth-order symplectic integrator. Both sub-
networks are embedded with the form of Taylor series expansion and learn gradients of the position and momentum
of the Hamiltonian system, respectively. We design the sub-networks such that each term of the Taylor series expan-
sion is symmetric. The symmetric property of the terms and the fourth-order symplectic integrator ensure our model
intrinsically preserves the symplectic structure of the underlying system. Therefore, the prediction made by our neural
networks leads to a symplectic map from an initial condition to the present state of a Hamiltonian system, which is the
most fundamental feature of the exact solution of a Hamiltonian system.

With the integrated design of the sub-networks symmetric structure and the fourth-order symplectic integrator, our
learning algorithm is capable of utilizing extremely limited training data to generate highly accurate predictive results
that satisfy the conservation laws in various forms. In particular, we demonstrate that the training period of our model
can be around 6000 times shorter than its predicting period (other methods have the training period 1-25 times shorter
than the predicting period [5, 14, 24]), and the number of training samples is around 5 times smaller (meaning we use
5 times fewer time-sequences as in the training process) than that used by other methods. Moreover, our method only
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requires the data collected at the two endpoints of the training period to train the neural networks, without requiring
any intermediate data samples in between the initial point and the endpoint. These improvements are crucial for
modeling a realistic, complex physical system because they minimize the requirement of training data, which are
typically difficult to obtain, and reduce training time by a significant amount. Other major computational merits of
our proposed method include its fast convergence rate and robustness. Thanks to the intrinsic structure-preserving
characteristic of our method, our model converges more than 10 times faster than the other methods and is more robust
under large noise. Overall, the contributions of our work can be summarized as below:

* We design a neural network architecture that intrinsically preserves the symplectic structure of the underlying
system and predicts the continuous-time evolution of a Hamiltonian system.

* We embed the form of Taylor series expansion into the neural networks with each term of the Taylor series
expansion designed to be symmetric.

* Our model outperforms other state-of-the-art methods regarding the prediction accuracy, the convergence
rate, and the robustness despite using small data with a short training period, small sample sizes, and no
intermediate data to train the model.

Our work is inspired by previous methodologies that incorporate the symplectic structure of a Hamiltonian system into
neural networks. Greydanus et al. first tried to enforce conservative features of the Hamiltonian system by reformu-
lating the loss function using Hamilton’s equations, known as Hamiltonian neural networks (HNNs) [14]. Based on
HNNs, many works were developed. Chen et al. developed symplectic recurrent neural networks (SRNN), which is a
recurrent HNN that relies on a symplectic integrator [6]. Toth et al. developed the Hamiltonian Generative Network
(HGN), learning Hamiltonian dynamics from high-dimensional observations (such as images) without restrictive do-
main assumptions [45]. Zhong introduced Symplectic ODE-Net (SymODEN), which adds an external control term
to the standard Hamiltonian dynamics in order to learn the system dynamics which conform to Hamiltonian dynam-
ics with control [51]. Methods like HNN, which focuses on the reformulation of the loss function, incur two main
limitations. On the one hand, it requires the temporal derivatives of the momentum and the position of the systems
to calculate the loss function, which is difficult to obtain from real-world systems. On the other hand, HNN doesn’t
strictly preserve the symplectic structure, because its symplectomorphism is realized by its loss function rather than
its intrinsic network architecture. Our model successfully bypasses the time derivatives of the datasets by incorporat-
ing an integrator solver into the network architecture. Moreover, we design our model differently by embedding a
symmetric structure into the neural networks, instead of manipulating the loss function. Thus, our model can strictly
preserve the symplectic structure.

Independently, an intrinsic way to encode the symplectic structure is introduced by Jin et al. [24]. Such neural net-
works are called Symplectic networks (SympNets), which intrinsically preserve the symplectic structure for identifying
Hamiltonian systems. Motivated by SympNets, we invent a neural network architecture to intrinsically preserve the
symplectic structure. However, our model preserves two major advantages over SympNets. First, our model is capable
of learning the continuous-time evolution of dynamical systems. Second, our model can easily be extended to N-body
systems. The parameters scale in the matrix map for training N dimensional Hamiltonian system of our model is O(1).
The number of parameters does not increase since based on the interactive models between particle pairs we only need
data collected from two bodies as the training data to predict the dynamics of many bodies. However, SympNets
require O(N?) complexity, which makes it hard to generalize to the high-dimensional N-body problems.

The structure of this paper is as follows. In section 2, we will first introduce the mathematical formulas and their
proofs that serve as the foundation of our methodology. Then, we will discuss the design of our neural networks in
Taylor series form as well as the proofs of their symplectic structure-preserving property. The next section 3 describes
the implementation details and numerical results, which compare our methodology with other state-of-the-art methods,
such as ODE-net and HNN. In section 4, we extend the application of our methodology to solve an N-body problem.
Lastly, conclusions are drawn in a section 5 with discussions of potential directions of our future research.
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2 Mathematical foundation

2.1 Hamiltonian mechanics

We start by considering a Hamiltonian system with IV pairs of canonical coordinates (i.e. N generalized positions and
N generalized momentum). The time evolution of canonical coordinates is governed by the symplectic gradient of the
Hamiltonian [19]. Specifically, the time evolution of the system is governed by Hamilton’s equations as

dg OH
dt — op’
1

dp  OH M

dt  0q’
with the initial condition

(a(to), p(to)) = (qo, Po)- (2)

In a general setting, ¢ = (q1, ¢z, -+ , qn) represents the positions and p = (p1, pe, ...pn) denotes their momentum.

Function H = H(q, p) is the Hamiltonian, which corresponds to the total energy of the system. By assuming that the
Hamiltonian is separable, we can rewrite the Hamiltonian in the form

H(g,p) =T(p) +V(q). (3)

This happens frequently in Hamiltonian mechanics, with 7" being the kinetic energy and V' the potential energy. Sub-
stituting (3) into (1) yields

dg _ IT(p)
dt op ’
)
dp __9V(g)
dt oq

This set of equations is fundamental in designing our neural networks. Our model will learn the right-hand side (r.h.s.)
of (4) under the framework of ODE-net.

One of the important features of the time evolution of Hamilton’s equations is symplectomorphism, which represents a
transformation of phase space that is volume-preserving. In the setting of canonical coordinates, symplectomorphism
means the transformation of the phase flow of a Hamiltonian system conserves the symplectic two-form

N
dpAdqg = Z (dp; Adg;), (5)

Jj=1

where A denotes the wedge product of two differential forms. Inspired by the symplectomorphism feature, we aim to
construct a neural network architecture that intrinsically preserves Hamiltonian structure.

2.2 A symmetric network in Taylor expansion form

In order to learn the gradients of the Hamiltonian with respect to the generalized coordinates, we propose the following
underpinning mechanism, which is a set of symmetric networks that learn the gradients of the Hamiltonian with respect
to the generalized coordinates.

JT (p)
op ’

oV (q)
oq ’

Tp(p, GP) -
(6)
Va(q.6,) —
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with parameters (0,, 6,) that are designed to learn the r.h.s. of (4), respectively. Here, the “—" represents our attempt
to use the left-hand side (1.h.s) to learn the r.h.s. Substituting (6) into (4) yields

dq

dt = Tp(pa ep)a
i (M
E = _‘/:I(qa 04)
Therefore, under the initial condition (2), the trajectories of the canonical coordinates can be integrated as
t
q(t) =qo + / T, (p, 0,)dt,
o ®)
p(t)=po— | Vi(q,0,)dt.
to
From (6), we obtain
0T, (p,0p) , 0°T(p)
Op op? ’ ©)
0Vy(9,0,) , 9°V(q)
Oq 0q?

The r.h.s of (9) are the Hessian matrix of 7" and V respectively, so we can design T),(p, 8,,) and V,(q, ;) as symmetric
mappings, that are

an(p,Op) _ an(p,ep) g
op _{ op ’ (10)

and

(1)

OVa(a.0,) _ [9Va(a.0,)]"
dq oq '

Due to the multiple nonlinear layers in the construction of traditional deep neural networks, it is impossible for these
deep neural networks to fulfill (10) and (11). Therefore, we can only use a three-layer network with the form of
linear-activation-linear, where the weights of the two linear layers are the transpose of each other, and in order to still
maintain the expressive power of the networks, we construct symmetric nonlinear terms, as same as the terms of a
Taylor polynomial, and combine them linearly. Specifically, we construct a symmetric network T}, (p, 8,) as

M
T,(p,6,) = (ZAiTofioAi—BiTofioBi> op+b, (12)

i=1

where ‘o’ denotes the function composition, A; and B; are fully connected layers with size Nj, x N, bis a N dimen-
sional bias, M is the number of terms in the Taylor series expansion, and f; is an element-wise function, representing
the ™ order term in the Taylor polynomial

1 .
filw) = 7o', (13)

Figure 1 plots a schematic diagram of T,(p, 6,,) in Taylor-net. The input of T},(p, 8,) is p, and 8,, = (A;, B;,b).
We construct a negative term B! o f; o B; following a positive term AT o f; o A;, since two positive semidefinite
matrices with opposite signs can represent any symmetric matrix.

To prove (12) is symmetric, that is it fulfills (10), we introduce theorem 2.1.
Theorem 2.1. The network (12) satisfies (10).
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Figure 1: The schematic diagram of T},(p, 8,) in Taylor-net.

Proof. From (12), we have

OT,(p,6,) <

=Y ATA?A, - BI'APB; 14
S ; TA {A7B;, (14)
with
d
A# = diag df , (15)
dx
r=A,;op
and
d
AP = diag d4f (16)
dx
rz=B,op
It’s easy to see that (14) is a symmetric matrix that satisfies (10). O

In fact, T,,(p, 0,) in (10) and V, (g, 8,) in (11) satisfy the same property, so we construct V; with the similar form as

M
V:I(q,eq)_<ZC’iTofioCi—DiTofioDi>oq—l—d. (17)

i=1
Here, C;, D;, and d have the same structure as (12), and (C;, D;, d) = 6,.

2.3 Symplectic Taylor neural networks

Next, we substitute the constructed network (12) and (17) into (8) to learn the Hamiltonian system (4). We employ
ODE-net [5] as our computational infrastructure. Here we briefly introduce the essential idea of ODE-net for com-
pleteness. Under the perspective of viewing a neural network as a dynamic system, we can treat the chain of residual
blocks in a neural network as the solution of an ODE with the Euler method. Given a residual network that consists of
sequence of transformations

hit1 = hi + f(he, 01), (18)
the idea is to parameterize the continuous dynamics using an ODE specified by a neural network:
dh(t
PO _ i 1.0). (19)

Inspired by the idea of ODE-net, we design neural networks that can learn continuous time evolution. In Hamiltonian
system (4), where the coordinates are integrated as (8), we can implement a time integrator to solve for p and g. While
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Algorithm 1 Integrate (8) by using the fourth-order symplectic integrator
Input: qo, Po, t(), t, At,
F/ in (20) and F} in (21) with j = 1,2, 3,4;
Output: q(t),p(t)
n = floor|[(t — to)/At];
fori =1,n
(k27k2) = (Pi-1,qi-1);
forj=1,4 ‘
074170 = FY 41 b )
en((ik-;, ki) = F(t)~' )", At),
(Pi,qi) = (kéa k;‘);
end
q(t) = qu, p(t) = pu.

ODE-net uses fourth-order Runge—Kutta method to make the neural networks structure-preserving, we need to imple-
ment an integrator that is symplectic. Therefore, we introduce Taylor-net, in which we design the symmetric Taylor
series expansion and utilize the fourth-order symplectic integrator to construct neural networks that are symplectic to
learn the gradients of the Hamiltonian with respect to the generalized coordinates and ultimately the temporal integral
of a Hamiltonian system.

For the constructed networks (12) and (17), we integrate (8) by using the fourth-order symplectic integrator [12].
Specifically, we will have an input layer (go, po) at t = ¢ and an output layer (g, pn) at t = to + ndt. The recursive

relations of (q;,p;),i = 1,2,-- -, n, can be expressed by the algorithm 1. The input function in algorithm 1 are
F/(p,q,dt) = (p,q + ¢;T,(p, 6,)dt), (20)
and
with
1 1-21/3
Cl =C = 72(2 — 21/3), Cy = C3 = 72(2 — 21/3)’ (22)
1 21/3
h=b=sm R h=0

The derivation of the coefficients ¢; and d; can be found in [12, 50, 4]. Relationships (20) and (21) are obtained
by replacing 0T (p)/dp and OV (q)/0q in the fourth-order symplectic integrator with deliberately designed neural
networks T),(p, 6,,) and V,(q, 8,), respectively. Figure 2 plots a schematic diagram of Taylor-net which is described
by algorithm 1. The input of Taylor-net is (qo, po), and the output is (g, , pr). Taylor-net consists of n iterations of
fourth-order symplectic integrator. The input of the integrator is (g;—1, p;—1), and the output is (g;, p;). Within the
integrator, the output of T}, is used to calculate g, while the output of V; is used to calculate p, which is signified
by the shoelace-like pattern in the diagram. The four intermediate variables ¢ - - - t3 and k - - - k; indicate that the
scheme is fourth-order.

By constructing the network T},(p, 8,,) in (12) that satisfies (10), we show that theorem 2.2 holds, so the network (20)
preserves the symplectic structure of the system.

Theorem 2.2. For a given dt, the mapping Fg(:7 dt) : RPNV — R2N in (20) is a symplectomorphism if and only if
the Jacobian of T), is a symmetric matrix, that is, it satisifies (10).

Proof. Let

(tp, ty) = F} (kp, kg, dt). (23)
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Figure 2: The schematic diagram of Taylor-net. The input of Taylor-net is (qo, po), and the output is (gy,, p,, ). Taylor-
net consists of n iterations of fourth-order symplectic integrator. The input of the integrator is (g;—1,pi—1), and the
output is (g;, p;). The four intermediate variables tg e tf) and kg e k:f; show that the scheme is fourth-order.

From (20), we have

dt, A dt, = dk, A dk,+
N

1 T, (k. 0,)

L dt p\Fp, Yp

5 2 ° ok,

0T, (ky.0,) (24)

ok,

dky|s A dieg |-

I,m=1 l,m m,l

Here A|; ,,, refers to the entry in the [-th row and m-th column of a matrix A, x|; refers to the [-th component of vector
x. From (24), we know that dt,, A dt, = dk, A dk, is equivalent to

8TP (kp ’ OP)
ok,

_ 0T, (kyp, 0p)
Ok,

=0, YI,m=1,2,---,N, 25)

m,l

l,m

which is (10). O

Similar to the theorem?2.2, we can find the relationship between F,z and the Jacobian of Vj,. The proof of 2.3 is omitted
as it is similar to the proof of the theorem?2.2.

Theorem 2.3. For a given dt, the mapping F,g(:, sdt) : RV — R2N jn (21) is a symplectomorphism if and only if
the Jacobian of Vy is a symmetric matrix, that is, it satisifies (11).

Suppose that $; and P, are two symplectomorphisms. Then, it is easy to show that their composite map 2 o P; is
also symplectomorphism due to the chain rule. Thus, the symplectomorphism of the algorithm 1can be guaranteed by
the theorems 2.2 and 2.3.

3 Numerical methods and results

This section discusses the details of our implementation, including the numerical method to generate training data, the
construction of the neural networks, and the predictions for arbitrary time points on a continuous timeline.

3.1 Dataset Generation

To make a fair comparison with the ground truth, we generate our training and testing datasets by using the same
numerical integrator based on a given analytical Hamiltonian. In the learning process, we generate Ny,q;y, training
samples, and for each training sample, we first pick a random initial point (go, po) (input), then use the symplectic
integrator discussed in section 2.1 to calculate the value (g,, p,) (target) of the trajectory at the end of the training
period T3,4in. We do the same to generate a validation dataset with Nyq7idation = 100 samples and the same time span
as Tyrqin and calculate the validation 10ss Lyq1idation along the training loss L4y to evaluate the training process. In
addition, we generate a set of testing data with Ny.,; = 100 samples and predicting time span 7},,¢q;c; that is around
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6000 times larger and calculate the prediction error €, to evaluate the predictive ability of the model. For simplicity,
we use (P, §n) to represent the predicted values using our trained model.

We remark that our training dataset is relatively smaller than that used by the other methods. Most of the methods, e.g.
ODE-net [5] and HNN [14], have to rely on intermediate data in their training data to train the model. That is the dataset

is[(g6”p0”): (@1, p1), - (@i, Pl ) (s, P ey where (g1, p1) - (g1, Py ) are m—Linter-
mediate points collected within T4y, in between ( q(gs) , pés)) and ( a?,p% ). On the other hand, we only use two data

Ntrain
points per sample, the initial data point and the end point, and our dataset looks like (qés) , pés)), (qgf) , pgf)) ,

s=1
which is n — 1 times smaller the dataset of the other methods, if we do not count (qés)7 p((f)). Our predicting time

span Tp,cqict is around 6000 times the training period used in the training dataset T},.q;, (as compared to 10 times in
HNN). This leads to a 600 times compression of the training data, in the dimension of temporal evolution. Note that
we fiX T}y.qin and T)yrcqice in practice so that we can train our network more efficiently on GPU. One can also choose
to generate training data with different 73,4, for each sample to obtain more robust performance.

3.2 Test Cases

We consider the pendulum, the Lotka—Volterra, the Kepler, and the Hénon—Heiles systems in our implementation.

Pendulum system The Hamiltonian of an ideal pendulum system is given by

1
H(g,p) = 5p2 —cos (q). (26)

We pick a random initial point for training (go, po) € [-2,2] x [—2,2].

Lotka—Volterra system For a Lotka—Volterra system, its Hamiltonian is given by

H(g,p) =p—e€"+2¢—e. 27
Similarly, we pick a random initial point for training (qg, po) € [—2,2] X [-2,2].

Kepler system Now we consider a eight-dimensional system, a two-body problem in 2-dimensional space. Its
Hamiltonian is given by

1
VE+ @ +add+43

where (¢1,¢2) and (p1, p2) are the position and momentum associated with the first body, (¢1,¢2) and (ps, ps) are
the position and momentum associated with the second body. We randomly pick the initial training point (qo, po) €
[—3, 3] x [-2, 2], and enforce a constraint on the initial (g1, ¢2) and (p1, p2) so that they are at least separated by some
distance Ly = 4. This is to avoid having infinite force immediately.

1
H(qap) = H(Qlaq27q31q47p17p27p37p4) = _(pi +p% +p§ +p421) - (28)

2

Hénon-Heiles system Lastly, we introduce a four-dimensional Hénon—Heiles system, which is a non-integrable
system. This kind of chaotic system is generally hard to model. Its Hamiltonian is defined as

1 1 @
H(g,p) = H(q1,q2,p1,p2) = 5(17? +p3) + 5((1? + @)+ (Ga — 32), (29)

The random initial point for training is (go, po) € [—0.5,0.5] x [—0.5,0.5].

3.3 Training settings and ablation tests

For all four systems, we use the Adam optimizer [25]. We choose the automatic differentiation method as our backward
propagation method. We have tried both the adjoint sensitivity method, which is used in ODE-net [5] and the automatic
differentiation method. Both methods can be used to train the model well. However, we found that using the adjoint
sensitivity method is much slower than using the automatic differentiation method considering the large parameter
size of neural networks. Therefore, we use the automatic differentiation method in our implementation. The detailed
derivation of adjoints formulas under the setting of Taylor-net and the prediction result can be found in A.
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Table 1

Set-up of problems.
Problems Pendulum Lotka-Volterra Kepler Hénon—Heiles
Hamiltonian (26) 27 (28) 29)
Tirain 0.01 0.01 0.01 0.01
Toredict 207 207 207 10
Nirain 15 25 25 25
Epoch 100 150 50 100
Learning rate 0.002 0.003 0.001 0.001
step_size 10 10 10 10
vy 0.8 0.8 0.8 0.8
M 8 8 20 12
Ny, 16 8 8 16
Lirain 2.75 x 107° 2.37 x 107° 7.29 x 1075 9.24 x 10~
Lyatidation 1.39 x 1074 6.73 x 107 6.41 x 107 9.44 x 10~

All A; and B; in (12) are initialized as A;, B; ~ N(0,+/2/[N = Nj, = (i + 1)]), where N is the dimension of the
system and N}, is the size of the hidden layers. The loss function is

Nirain
1 ~(s s ~(s s
Lirain = 50— > 1B =P 1 + 11457 = 47 (30)
rawn s=1

The validation loss Lyqiidation 1S the same as (30) but with dataset different from the training dataset. We choose
L1 loss, instead of Mean Square Error (MSE) loss because L1 loss performs better in all cases given in Table 1. We
conduct the ablation test on these problems to compare the validation loss after convergence with different training
loss functions in the training process. Figure 14 shows the comparison of validation losses with different training loss
functions in the training process of different problems validated by L1 loss function. Figure 15 shows the comparison
of validation losses with different training loss functions in the training process of different problems validated by
MSE loss function. We observe that for all problems, the validation loss with L1 is smaller than that with MSE after
convergence. We believe the better performance of L1 may be due to MSE loss’s high sensitivity to outliers. Hence,
we choose to use L1 loss as our training loss function.

The details of the parameters we set and some other important quantities can be found in Table 1. To show the
predictive ability of our model, we pick T),-cqict = 207 for the pendulum, the Lotka—Volterra and the Kepler problems.
For the Hénon—Heiles problem, we pick T},.cqic: = 10 because of its chaotic nature. We pick 15 as the sample size for
the pendulum problem and 25 for other problems since we find that small Ny,.4;,,’s are sufficient to generate excellent
results. More discussions about N4 can be found in section 3.6. The epoch parameter represents the number of
epochs needed for the training loss to converge. step_size indicates the period of learning rate decay, and 7 is the
multiplicative factor of learning rate decay. These two parameters decay the learning rate of each parameter group by
v every step_size epochs, which prevents the model from overshooting the local minimum. The dynamic learning
rate can also make our model converge faster. M indicates the number of terms of the Taylor polynomial introduced
in the construction of the neural networks (12). Through experimentation, we find that 8 terms can represent most
functions well. Therefore, we pick M = 8 for the pendulum and the Lotka-Volterra problems. For more complicated
systems, like the Kepler and the Hénon—Heiles systems, we choose M = 20 and M = 12, respectively.

Ny, the dimension of hidden layers, is a parameter that needs to be carefully chosen. We conduct the ablation test on
the pendulum, the Lotka—Volterra, the Kepler, and the Hénon—Heiles problems to compare the validation loss using
different N;,. Figure 3 shows the results of the test. From figure 3(a), it can be seen that the validation loss after
convergence for the pendulum problem drops significantly after increasing N}, from 8 to 16 and then stays relatively
similar with higher N},. Therefore, we choose to use 16 as N}, for the pendulum problem. Following the same logic,
we choose 8, 8, and 16 as IV, for the Lotka—Volterra, the Kepler, and the Hénon—Heiles problems. Notice that N}, for
the lower-dimensional problem, namely, the pendulum problem, is larger than N}, for the higher dimensional problem,
the Kepler problem. This is because, for the higher-dimensional problem, the degree of freedom is actually more
limited. This is due to the prior knowledge that the forces between objects are the same.
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Figure 3: Comparisons of validation losses with different IV, in the training process for (a) the pendulum, (b) the
Lotka—Volterra, (c) the Kepler, and (d) the Hénon—Heiles problems.
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Figure 4: Comparisons of validation losses with different d¢ in the training process. (a), (b), and (c) are trained based
on different time spans 73,4, = 0.01, 0.1, and 0.2, respectively.

Another vital parameter that is not mentioned in Table 1 is the integral time step At in the sympletic integrator. Notice
that the choice of At largely depends on the time span T;.;,. Figure 4 compares the validation losses generated by
various integral time steps At based on fixed dataset time spans T},.4:, = 0.01, 0.1 and 0.2 respectively in the training
process. For the concern of gradient vanishing or exploding, notice that when the number of iterations n is big, which
is when At is small, we did not observe these issues, as shown in 4(a), where the smallest At is 10~*. Since we
embed the structure of residual networks in our symplectic integrator, there should not be the problem of vanishing
gradient. It is clear that the validation loss converges to a similar degree with various At based on fixed T};q;, = 0.01
and T},qin = 0.1 1in 4(a) and (b), while it increases significantly as At increases based on fixed Ti,.qin = 0.02 in 4(c).
Thus, we need to be careful when choosing n, or At, for the dataset with larger time span T}, 4;r,.

We record the training loss for all the problems at the epochs specified above. It is worth noticing that the training
loss of our model is at 10~5 order of magnitude and below, which indicates our model’s ability to fit the training data.
As we can see from figure 5, the prediction results using Taylor-net match perfectly with the ground truth for all three
systems, even though the T}, = 0.011is 20007 times shorter than the T}y, cq4ic¢ = 207 in figure 5 (a) and (b), and 1000
times shorter in figure 5 (c). In particular, our model predicts the dynamics of the chaotic system, the Hénon—Heiles
system (29) extremely well, which regular neural networks fail to do. The results indicate the compelling predictive
ability of our model. This can be seen more clearly in 3.5 when we compare Taylor-net with other methods.
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Figure 5: Prediction result using Taylor-net for (a) the pendulum, (b) the Lotka—Volterra, and (c) the Hénon—Heiles
problems. For better visualization, we set the initial points as (a) (qo, o) = (1,1), (b) (go, o) = (1,1), and (c)
(go,po) = (]0,0],[0.5,0.5]). The prediction results using Taylor-net match perfectly with the ground truth for all
three systems, even though the T}, 4y, is 20007 times shorter than the T}, ¢qice in (a) and (b), and 1000 times shorter
in (¢). Tyrain = 0.01 and Tjyrcqice = 207 in (a) and (b), and T},q5, = 0.01 and T}preqice = 10 in ().
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Figure 6: Mean of Ly,,;, using Taylor series vs. using ReLU for (a) the pendulum, (b) the Lotka—Volterra, and (c)
the Kepler problems. We train each model until L4, converges and average Li,qq, for (a) every 10 epochs for
the pendulum problem, (b) every 10 epochs for the Lotka—Volterra problem, and (c) every 5 epochs for the Kepler
problem.

3.4 Taylor series vs. ReLLU

In order to evaluate the performance of using Taylor series as the underlying structure of Taylor-net to ensure non-
linearity, we also implement the most commonly used activation function, ReLU and compare the training loss with
our current model. We construct the neural networks as (12) with parameters specified in Table 1, except we use
fi(z) = max(0, x) instead. The experimental results show that the neural networks perform better with Taylor series
than with ReLU in the pendulum, the Lotka—Volterra, and the Kepler problems. We can observe from figure 6 that
in all three problems the loss of using ReLU is larger than the loss of using Taylor series after the loss converges. In
the pendulum problem, the mean of loss after convergence from 100 epochs to 300 epochs using the Taylor series is
8.878 x 10~°, while that of using ReLU is 8.348 x 10~4, which is 10 times larger than the mean of loss using Taylor
series. The difference in the Lotka—Volterra problem is even more obvious. The mean of loss from 100 epochs to 300
epochs using the Taylor series is 7.832 x 10~°, while that of using ReL.U is 4.782 x 10~3. In the Kepler problem,
the mean of loss from 40 epochs to 100 epochs using the Taylor series is 2.524 x 10~%, while that of using ReLU
is 8.408 x 10~%. In all three problems, the Taylor series performs undoubtedly better than ReLU. Thus, the results
clearly show that using the Taylor series gives a better approximation of the dynamics of the system. The strong
representational ability of the Taylor series is an important factor that increases the accuracy of the prediction.

3.5 Predictive ability and robustness
Now, to assess how well our method can predict the future flow, we compare the predictive ability of Taylor-net with

ODE-net and HNN. We apply all three methods on the pendulum problem, and let T},.qi, = 0.01 and T)y.cqice = 207.
We evaluate the performance of the models by calculating the average prediction error at each predicted points, defined

12
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Table 2
Comparison of €, for the pendulum problem without noise, with noise 1,02 ~ N(0,0.1), and with noise 01,02 ~

N(0,0.5).

Methods Taylor-net HNN ODE-net
€p, without noise 0.213 0.377 1.416
€p, With noise o1, 02 ~ N (0,0.1) 1.667 2.433 3.301
€p, With noise o1, 02 ~ N(0,0.5) 1.293 2.416 27.114
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Figure 7: Prediction error eént) at different ¢ from ¢t = 0 to ¢t = 207 for the pendulum problem (a) without noise, (b)

with noise o1, 09 ~ N(0,0.1), and (¢) with noise 01,02 ~ N(0,0.5). In the figure, ¢ = n;At, where At = 0.01.

ez(f”) is the prediction error at the nffh predicted point among the total Ny = T)preqict/At predicted points. We use

Tirain = 0.01, Tyrqin = 0.5 and T},45n, = 1 to train the model in (a), (b), and (c), respectively.
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where N, represents the testing sample size specified in section 3.1 and Ny = Ty cqict /At with At = 0.01. After
experimentation, we find that Taylor-net has stronger predictive ability than the other two methods. The first row of
Table 2 shows the average prediction error of 100 testing samples using the three methods over T},;.cq;.¢ Wwhen no noise
is added. The prediction error of HNN is almost double that of Taylor-net, while the prediction error of ODE-net is

about 7 times that of Taylor-net. To analyze the difference more quantitatively, we made several plots to help us better

compare the prediction results. Figure 7 shows the plots of prediction error eént) against t = nyAt over Tpredict for

all three methods. In figure 8, we plot the prediction of position ¢ against time period for all three methods as well
as the ground truth in order to see how well the prediction results match the ground truth. From figure 8 (a), we can
already see that the prediction result of ODE-net gradually deviates from the ground truth as time progresses, while the
prediction of Taylor-net and HNN stays mostly consistent with the ground truth, with the former being slightly closer
to the ground truth. The difference between Taylor-net and HNN can be seen more clearly in figure 7 (a). Observe that
the prediction error of Taylor-net is obviously smaller than that of the other two methods, and the difference becomes
more and more apparent as time increases. The prediction error of ODE-net is larger than HNN and Taylor-net at the
beginning of T},¢q4;c; and increases at a much faster rate than the other two methods. Although the prediction error
of HNN has no obvious difference from that of Taylor-net at the beginning, it gradually diverges from the prediction
error of Taylor-net.

Additionally, in figure 9, we plot the numerically solved ground truth, Taylor-net, HNN, and ODE-net calculated
Hamiltonian for the pendulum problem. Figure 9 shows that the Taylor-net preserves the Hamiltonian relatively
successfully, while ODE-net diverges away from the ground truth quickly. Although the predicting result of HNN
does not seem to drift away from the ground truth, the divergent amplitude of HNN is greater than that of Taylor-
net. Note that our model strictly preserves the symplectic structure, which is a geometric structure that cannot be
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Figure 8: Prediction results of position g from ¢ = 0 to ¢ = 207 for the pendulum problem using Taylor-net, HNN,
and ODE-net (a) without noise, (b) with noise o1, 2 ~ A(0,0.1), and (c) with noise o1, 02 ~ N (0,0.5). For all the
models, we set the initial point as (go, po) = (1,1). We use Tirqin = 0.01, Tirgin = 0.5 and Tyyqi, = 1 to train the
model in (a), (b), and (c), respectively. All the methods are trained until the Lyq1idation cONverges.
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Figure 9: Prediction results of Hamiltonian H from ¢ = 0 to ¢ = 127 for the pendulum problem (a) without noise, (b)
with noise o1, 02 ~ N(0,0.1), and (c) with noise o1, 02 ~ N(0,0.5).
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Figure 10: Prediction results of position g and momentum p from ¢ = 0 to ¢ = 20. (a) with noise o1, o2 ~ N (0,0.1)
and (b) with noise 01,02 ~ N(0,0.5) in training process. We use Tyqin = 0.5 and Tyqs, = 1 to train the model in
(a) and (b) respectively. All the methods are trained until the L,qidqtion converges. In (a), we only plot the result of
ODE-net until ¢ = 47 because the result beyond that will further diverge from the ground truth and cannot be fit into
the graph. For the same reason, we only plot the result of ODE-net until ¢ = 7 in (b).

quantitatively calculated and plotted. Since the symplectic structure is preserved, the Hamiltonian predicted by our
model is much closer to the ground truth.

In real systems, it is almost impossible to collect data without noise. Therefore, with noisy data, the robustness of
neural networks is particular important. Instead of using (g, p») to train the model, we add some random noise to
the true value so that it becomes (g,, + o1, p,, + 02). We test three models on two cases with small and large noises.
We add noise o1, 02 ~ N(0,0.1) in the case of small noise and o1, o2 ~ A(0,0.5) in the case of large noise. We use
Tirain = 0.5 and T},4i, = 1 to train the model in the cases of small and large noises respectively. In both cases, we

use 50 samples and make prediction over T).cqict = 207.

Figure 10 shows the predicted p versus g using different methods. From figure 10 (a), we find that Taylor-net discovers
the unknown trajectory successfully, while ODE-net diverges from the true value quickly. Although the predicting
result of HNN does not seem to drift away from the true dynamics, it does not fit the true trajectory as well as the
prediction made by Taylor-net. The difference becomes clearer as we increase the noise. From figure 10 (b), we
observe that Taylor-net still makes predictions that are almost consistent with the true trajectories, while ODE-net
completely fails to do so. Moreover, the prediction made by HNN is much worse than in the case of small noise, while

the performance of Taylor-net remains as good as the previous case.

This can be more clearly seen from figure 7 (b) and (c). We can see that ez(,nt) of Taylor-net is consistent in both cases

of small and large noises, while ez(f”) of HNN and ODE-net increase significantly and exhibit more fluctuation. It

is worth noticing that in figure 7 (c), e,(,nt) of HNN becomes smaller towards the end of T}, cqict. However, it is not
because the performance of HNN becomes better, but rather due to the fact that the predicted flow of HNN is off by
one period of motion, which can be seen from figure 8§ (c). The second and third rows of Table 2 also give an overview
on how the prediction error €, over T},.cqic¢ Of the three methods differ. From figure 8 (b) and (c), we can clearly
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Figure 11: (a) At 100 epochs, Lyaiidation as a function of sample size ranging from Nyy.qin, = 1 t0 Nipgin = 25. The
Lyatidation 18 averaged over 50 trials. (b) Prediction results of position g and momentum p from ¢ = 0 to ¢ = 27 from
t = 0to t = 207 using trained models after 1 epoch.

observe that the amplitude of predicted q using ODE-net increases as ¢ increases, and the amplitude of predicted g
using HNN is slightly larger or smaller than that of the ground truth from the beginning. In contrast, due to the intrinsic
symplectic structure of Taylor-net, the amplitude of predicted g using Taylor-net is inconsistent with the ground truth,
without changing in time. Additionally, it is obvious that the predicted g using Taylor-net has the smallest phase shift
among the three methods.

3.6 Training sample size and convergence rate

Besides the strong predictive ability and robustness, we also want to highlight the significantly small Ny,.4;, and the
fast convergence rate of our approach. In a complex physical system, the cost of acquiring data is high. Our model
can learn from the dataset that contains less than 15 samples and still generate validation 10oss Lq4idation that is below
10~% In figure 11 (a), we plot the L,qiidation as a function of sample size using Taylor-net, HNN, and ODE-net.
To make a fair comparison, we average the values of Lyq1idation Over 50 trials. We can observe that the L, q1idation
for Taylor-net at 1 sample is around 5 times smaller than the Ly 41idation for ODE-net and the Lyq1idation for HNN.
Although there are some fluctuations in L.qidation due to small Niyqin, the Lygiidation for Taylor-net converges at
around 10 samples, while the L, qjidation for HNN is still decreasing. Although the Lygiidation for ODE-net also
converges around 10 samples, the value of its Lyq1idation 1S 10 times larger than that the Ly qiidation for Taylor-net.

Because of the intrinsically structure-preserving nature of our model, our model can well predict the dynamics of the
underlying system even when it is trained for only a few epochs. In figure 11 (b), we plot the prediction results from
t = 0 to t = 207 using Taylor-net, HNN, and ODE-net after only 1 epoch of training. The prediction results made by
HNN and ODE-net completely fail to match the true flow, while Taylor-net predicts the truth to a level that can never
be achieved using HNN and ODE-net at such a small number of epochs.

We summarize the main traits and performance of the three methodologies in Table 3. We already emphasized enough
that our model utilizes physics prior through constructing neural networks that intrinsically preserve the symplectic
structure. Due to our model’s structure-preserving ability, it can make accurate predictions with a very small training
dataset that does not require any intermediate data. We also want to mention that HNN and ODE-net both require the
analytical solutions of the temporal derivatives to train their models, which are often not obtainable from real systems.
Moreover, besides the qualitative differences, we also compare the three methods quantitatively. In the pendulum
problem, we fix the sample size to be 15 and find Taylor-net only needs 100 epochs for L4, to converge, while
HNN and ODE-net need 1000 epochs and 7000 epochs respectively. We also test how many samples Taylor-net,
HNN, and ODE-net need for L,qiidation to decrease to 10~%. Notice that we train Taylor-net, HNN, and ODE-net
until convergence, which is for 100, 1000, and 7000 epochs respectively. Taylor-net only needs 15 samples and 100
epochs of training to achieve Lyqiidation ~ 10~4, while HNN needs 50 samples and 1000 epochs and ODE-net needs
50 samples and 7000 epochs. If we train HNN and ODE-net for 100 epochs in the same manner as Taylor-net, their
Lyatidation Will never reach 1074,
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Table 3

Comparison between Taylor-net, HNN, ODE-net. v represents the method preserves such property.
Methods Taylor-net HNN ODE-net
Utilize physics prior v v Partially
Preserve symplectic structure v Partially
No need for intermediate training data v
No need for analytical solution of derivative v
Number of epochs until Ly, converges* 100 1000 7000
Sample size needed for Lyqiidgation ~ 1074 # 15 50 50

*In the pendulum problem with sample size 15
#1In the pendulum problem, train each model until convergence

4 High-dimensional systems

We want to extend our model into higher-dimensional dynamical systems. Let’s consider a more complicated system,
a multidimensional N-body system. Its Hamiltonian is given by

Nbody

1 1
Hap)=5 > Ipl* - > 0t (33)
=1

)
1<i< 5Ny 195~ Gl
where Nyoqy i the number of bodies in the system, and Ny,q, X (dimension of space) = N.

In a two-dimensional space, consider a system with Np,q, > 2 bodies. The cost of collecting training data from all
Niody bodies may be high, and the training process may be time inefficient. Thus, instead of collecting information
from all Ny,q, bodies to train our model, we only use data collected from two bodies as training data to make a
prediction of the dynamics of Ny,q, bodies. This is based on the assumption that the interactive models between
particle pairs with unit particle strengths m = 1 are the same, and their corresponding Hamiltonian can be represented

as network 7:[9 (z;, ), based on which the corresponding Hamiltonian of N4, particles can be written as [1, 40]

Nyody
MHo= > mymiHo(z;, mr). (34)
ij=1
We embed (34) into the symplectic integrator that includes m; to obtain the final network architecture.

The setup of N-body problem is similar to the previous problems. The training period is Tiyqn, = 0.08 and the
prediction period is Typeqict = 2m. Similar to the setup of previous problems, the learning rate is decaying every 10
epochs. Learning rate, v, ¢, step_size, and M are the same as the setup of Kepler problem in Table 1, except we use
40 samples to train our model. The training process takes about 100 epochs for the loss to converge. In figure 12,
we use our trained model to predict the dynamics of a 3-body system and a 6-body system. In both cases, our model
can predict the paths accurately, with the predicted paths in the 3-body system matching the true paths perfectly. The
success of these tasks shows the strong generalization ability of our model. Based on our experiments, our model can
be applied to problems with a larger scale, for example, to predict the motions of hundreds of bodies.

5 Conclusion

We present Taylor-nets, a novel neural network architecture that can conduct continuous, long-term predictions based
on sparse, short-term observations. Taylor-nets consist of two sub-networks, whose outputs are combined using a
fourth-order symplectic. Both sub-networks are embedded with the form of Taylor series expansion where each
term is designed as a symmetric structure. Our model is able to learn the continuous-time evolution of the target
systems while simultaneously preserving their symplectic structures. We demonstrate the efficacy of our Taylor-net in
predicting a broad spectrum of Hamiltonian dynamic systems, including the pendulum, the Lotka—Volterra, the Kepler,
and the Hénon—Heiles systems.

We evaluate the performance of using the Taylor series as the underlying structure of Taylor-net by comparing it with
the most used activation function, ReLU. The experimental results show that the neural networks perform better with
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Figure 12: Predicted position g and momentum p from ¢t = 0 to t = 27 (a) for 3 bodies and (b) for 6 bodies. In both
(a) and (b), the training period is T},.qin, = 0.08, and the prediction period is T cqict = 2. We use the same trained
model to make the predictions in (a) and (b), which is trained for 100 epochs.

Taylor series than with ReL.U in the pendulum, the Lotka—Volterra, and the Kepler problems. In all three systems, the
training loss of using the Taylor series is 10 to 100 times smaller than that of using ReLU. The strong representation
ability of the Taylor series is an important factor that increases the accuracy of the prediction.

Moreover, we compare Taylor-net with other state-of-art methods, ODE-net and HNN, to access its predictive ability
and robustness. We observe that the prediction error of Taylor-net over the prediction period is half of that of HNN and
one-seventh of that of ODE-net. The predictions made by HNN and ODE-net also diverge from the true flow much
faster as time increases. Additionally, to test the robustness of our model, we implement two testing cases with small
and large noises. We add noise 01,02 ~ AN(0,0.1) in the case of small noise and o1, 02 ~ N (0,0.5) in the case of
large noise. In the first case, Taylor-net discovers the unknown trajectory successfully, while ODE-net diverges away
from the true value quickly. Although the predicting result of HNN does not seem to drift away from the true dynamics,
it does not fit the true trajectory as well as the prediction made by Taylor-net. The prediction error of Taylor-net is
about two-thirds and half of that of HNN and ODE-net respectively. The difference becomes clearer as we increase
the noise. We observe that Taylor-net still makes predictions that are almost consistent with the true trajectories, while
ODE-net completely fails to do so. Moreover, the prediction made by HNN is much worse than in the case of small
noise, while the performance of Taylor-net remains as good as the previous case. The prediction error of Taylor-net is
about half and one-twentieth of that of HNN and ODE-net respectively.

Additionally, we highlight the small training sample size and the fast convergence rate of our model. Under the same
setting, HNN and OED-net need 5 times more samples than our model does to achieve the same validation loss, and
their models take 10 times and 70 times more epochs to converge. We also test our model under only 1 epoch of
training, the prediction results made by HNN and ODE-net completely fail to match the true flow, while Taylor-net
predicts the truth to a level that is incomparable with HNN and ODE-net. Compared with HNN and OED-net, our
model exhibits its unique computational merits by using small data with a short training period (6000 times shorter
than the predicting period), small sample sizes, and no intermediate data to train the networks while outperforming
others regrading the prediction accuracy, convergence rate, and robustness to a great extent.

Towards the end of our work in section 4, we discussed the N-body system, which is a high-dimensional Hamil-
tonian system whose underlying governing equations are non-differentiable. In our future works, we will continue
to explore solving this kind of high-dimensional problems, using some essential ideas of Taylor-nets with potential
modifications. An other interesting direction will be to design a different neural network architecture with the same
structure-preserving ability to learn the dynamics of non-separable Hamiltonian systems.
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A Adjoint Method

Apply the chain rule to the gradients of loss function and consider the two neural networks T, (p, 6,,) and V,(q, 8,)
under the framework of neural ODEs, we obtain the following sets of equations:
OL 0L dq(t1)

00, 0q(t;) do
P " P (35)

oL oL dp(t)
90, 9p (L) db,

t1
p(t1) :—/ V,(q,6,)dt + po
to

where L is the loss function, and g (¢1), p (t1), qo, and pg are g and p at t; and ¢, respectively.
Let b,(t) = dq (t) /d6, and by(t) = dp (t) /d6,, we derive the following equations:

dq(t)/t T, | T,
b,(t) = a0, /. aep—i— op b,(1)| dr

dby(t) _ % %b (1)
= dt 06, 9dp "

(36)

(37)

L TO N A
bq(t)— doq - " aoq + 8(] bq(T) dr

(38)

Given b, and b,, we can rewrite the gradients of loss function as
oL 0L
96,  0q(t1)

by (1), (39)

and oL OL
00, ~ op(a) """ “w

However, the scale for solving differential equations of b, and b, is too large. We therefore rewrite b, and b, as

! oT,
b,(t) = Pp(t)/ P,(r)"t Z2dr, 41)
to 00,
and .
bu(t) = ~By(0) [ Pyr) St @)
to 00,
Substitute b, and b, into (37), (38), (39), and (40), we obtain two sets of equations:
oL oL h oT,
— =—"P,t P,(t)"' ZEdt
80}7 aq(tl) P( 1)/160 P( ) aop ) (43)
APt T,
. op PV
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and

oL oL t1 L0V,

- =———" _P.(¢ P, —14¢,

aeq ap( ) Q( 1) ' q() (90
dP,(t) 9V,

dt  Ogq o Fa®)-

However, the scale for solving P, and P, is still too large. We now consider the adjoint states a,(t) and a4 (?):

oL oL
t) = ———P,(t1)P,(t) ! t) =
ap( ) 3q(t1) P( 1) P( ) ) ap( 1) 3q(t1)’
and oL oL
t) = P,(t)P,(t)" ! t1) = .
ay(t) = oy PP an(tn) = 5o
We can then rewrite the gradient of loss function regarding to 6, as
dL h oT,
W(t1) | Py pdt —Ldt.
de, aq t1 ! / /t ap(t )ae

Similarly, the gradient of loss function regarding to 8, can be derived with the result differs by the sign

dL h oV,
d—eq__/t (1) 7g, 4

We now want to derive the derivative of a,(t) and a4 (t). The derivative of a,,(t) can be derived as follows

da, 0L AP, (1)

at 6q(t1)P”(t1) dt

The derivative of a4(t) can be found in a similar manner. We obtain that

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(G

(52)

da, oV,
o - w05
Combine the results we found in (45), (46), (47), (48), (49), and (50), we obtain the sets of equations that are our final
result
oL h oT,
— = dt,
00, /to ()5 00,
da, oT,
P —ap(t)%,
oL
ap(t1) = dq(t1)’
OL /tl )%
— = a,(t)=1dt,
00, to 1 00,
da, v,
T aq(t)a—q7
oL
aq(t) = op(t1)
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Figure 13: Prediction result of the pendulum problem using adjoint method as backward propagation
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Figure 14: Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka—
Volterra, (c) the Kepler, and (d) the Hénon—Heiles problems validated by L1 loss function. The red dashed lines
represent the networks trained by L1 loss function; the blue solid lines represent the networks trained by MSE loss

function.

Using (51) and (52), we calculate the gradients of loss function in the backward propagation.

Figure 13, shows the prediction result of the pendulum problem using the adjoint method as our backward propagation
method. We can see that the prediction result matches the ground truth well. However, training using the adjoint
sensitivity method is about 30 percent slower than training using the automatic differentiation method due to higher

time complexity.
B Loss function ablation test
We conduct the ablation test on the pendulum, the Lotka—Volterra, the Kepler, and the Hénon—Heiles problems to

compare the validation loss after convergence with different training loss functions in the training process. Figure 14
shows the comparison of validation losses with different training loss functions in the training process of different
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Figure 15: Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka—
Volterra, (c) the Kepler, and (d) the Hénon—Heiles problems validated by MSE loss function. The red dashed lines
represent the networks trained by L1 loss function; the blue solid lines represent the networks trained by MSE loss

function.

problems validated by L1 loss function. Figure 15 shows the comparison of validation losses with different training
loss functions in the training process of different problems validated by MSE loss function. We observe that for all
problems, the validation loss with L1 is smaller than that with MSE after convergence. The better performance of L1
may be due to MSE loss’s high sensitivity to outliers. This explains why we choose L1 loss function as our training

loss function.
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