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Fig. 1. Several thin-film phenomena as simulated using our proposed method. Counting from left to right: (1) surface flow on a oscillating soap bubble, (2)

pinched-off droplets between two circular rims pulling away from one another, (3) a soap bubble bursting into tiny droplets and filaments after being poked

from the right, (4) the vibrant, opal-like color pattern caused by Rayleigh-Taylor instability on a large-deforming, wet thin-film surface.

We propose a particle-based method to simulate thin-film fluid that jointly

facilitates aggressive surface deformation and vigorous tangential flows. We

build our dynamics model from the surface tension driven Navier-Stokes

equation with the dimensionality reduced using the asymptotic lubrication

theory and customize a set of differential operators based on the weakly

compressible Smoothed Particle Hydrodynamics (SPH) for evolving point-

set surfaces. The key insight is that the compressible nature of SPH, which is

unfavorable in its typical usage, is helpful in our application to co-evolve the

thickness, calculate the surface tension, and enforce the fluid incompress-

ibility on a thin film. In this way, we are able to two-way couple the surface

deformation with the in-plane flows in a physically based manner. We can

simulate complex vortical swirls, fingering effects due to Rayleigh-Taylor in-

stability, capillary waves, Newton’s interference fringes, and the Marangoni

effect on liberally deforming surfaces by presenting both realistic visual

results and numerical validations. The particle-based nature of our system

also enables it to conveniently handle topology changes and codimension

transitions, allowing us to marry the thin-film simulation with a wide gamut
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of 3D phenomena, such as pinch-off of unstable catenoids, dripping under

gravity, merging of droplets, as well as bubble rupture.
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1 INTRODUCTION

Thin films are fascinating fluid phenomena on two levels. On the

macroscopic scale, their surface-tension-driven dynamics morph

them into elegant, minimal-surface geometries such as catenoids

in an energy-optimized manner, which are captivating feats both

artistically and mathematically. When coupled with external forces

of air pressure, wind, or gravity, these tendencies create the unique

bounciness we see in soap bubbles that is satisfying to watch. On

the microscopic scale, thin films carry vibrant and delicate color

patterns that arise from the interference of light bouncing between

the varying film thicknesses, while the turbulent flows precipitate

the surface to constantly evolve and contort, thereby creating a

smoothly flowing color palette as rich as that of oil paint.

Research in computer graphics has not ceased to strive and cap-

ture the beauty that thin films bring about. Seminal previous works

[Da et al. 2015; Ishida et al. 2017; Kim et al. 2015; Saye and Sethian

2013; Zheng et al. 2009; Zhu et al. 2014] devise methods to obtain
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visually appealing simulations of surface tension driven thin-film

phenomena, focusing on the metamorphosis of thin-film surfaces.

On the other end, many works [Azencot et al. 2015a, 2014; Hill and

Henderson 2016; Huang et al. 2020; Stam 2003; Vantzos et al. 2018]

push towards the simulation of the surface tension-driven thickness

evolution on the deformed surface, which, when combined with the

optical insight in thin-film interference [Belcour and Barla 2017;

Glassner 2000; Iwasaki et al. 2004; Jaszkowski and Rzeszut 2003;

Smits and Meyer 1992] can be used to recreate the distinct beauty of

iridescent bubbles. Recently, Ishida et al. [2020] highlight the impor-

tance of integrating the two aspects in achieving enhanced richness

and plausibility; and proposes a successful method to jointly sim-

ulate surface deformation and thickness evolution. Nevertheless,

the endeavor is far from being a closed case, and it yet calls for the

realization of surface flow with more liveliness and sophistication,

surface deformation with higher frequency details, and the inte-

gration with more 3D surface tension phenomena, which together

bring a significant challenge for a simulation’s robustness, efficiency,

and versatility.

In this paper, we attempt to tackle this challenge with a particle-

based method. We represent the thin film with a set of codimension-

1 particles and devise a set of differential operators based on the

Smoothed Particle Hydrodynamics on the evolving surface. In the

full 3D simulation, the inevitable compressibility of SPH causes

volume loss that results in visual implausibilities. However, because

our simulation is principally performed on a codimension-1 surface,

the in-plane compression can be compensated by an expansion in its

codimension-direction, which grants each particle a varying thick-

ness that together outlines a curved surface in the three-dimension

space. The surface such prescribed allows for the computation of

surface-tension-related forces that the codimension-1 SPH particles

will carry out. In this way, a simulation cycle is completed with

the SPH playing a dual role: both as the initiator who forms the

curved surface with the compressible nature and the executor who

carries out the dynamics resulting from such a curved surface. Us-

ing this design, we can simulate thin-film-specific behaviors while

inheriting the SPH’s virtue of simplicity, adding little additional

cost. With the incorporation of a physically-based surface tension

model derived from the lubrication assumption, our simulation al-

gorithm effectively reproduces a wide range of phenomena such as

the Newton interference patterns, the Marangoni effect, capillary

waves, and the Rayleigh-Taylor Instability.

Our particle-based, codimensional simulation method for thin-

film surfaces bridges the mature research literature of SPH with

the point-set surface representation, a promising avenue that is not

yet thoroughly studied. Compared to mesh-based paradigms [Da

et al. 2015; Ishida et al. 2020, 2017; Zhu et al. 2014], our particle-

based system is flexible for dealing with the topology changes and

codimension transitions, which are particularly pertinent to this ap-

plication, since thin films are delicate constructions that are marked

for their tendency to disintegrate, yielding some of the most ex-

citing spectacles such as the pinching-off of the film surface into

countless filaments and droplets. To this end, our method conve-

niently implements particle sharing with an auxiliary, standard 3D

SPH solver following previous works [Akinci et al. 2013; Müller

et al. 2003]. Our particles can be directly copied from codimension-1

to codimension-0 and vise versa without any extra processing, en-

abling the realization of a variety of thin-film phenomena with 3D

components.

In summary, our contribution includes:

• A thin-film SPH simulation framework that jointly simulates

large and high-frequency surface deformation and lively in-

surface flows

• A meshless simulation framework with a set of SPH-based

differential operators to discretize the thin-film physics on a

curved, point surface

• The leverage of the SPH compressibility to couple the in-

surface thickness evolution and the surface metamorphosis

via physically-based surface tension

• A versatile particle surface representation method that con-

veniently handles topology and codimension 0-1 transition

to integrate surface and volumetric SPH simulation.

2 RELATED WORKS

Mesh-Based Dynamic Thin-Film. To precisely capture the dynamic

flow and irregular geometry of a thin film, a myriad of previous

work adopts the idea of representing a thin film using a triangle

mesh. With the thickness of a thin film coupled into the fluid sim-

ulation, modifications can be applied to the projection method of

incompressible fluid simulation to fit the requirement of simulating

flow dynamics on thin films [Ishida et al. 2020; Zhu et al. 2014]. The

vortex sheet model, which uses circulation as a primary variable,

is also a feasible option [Da et al. 2015]. Another branch of work

[Ishida et al. 2017] focuses on the surface area-minimizing effect of

surface tension. Apart from fluid simulation based on Navier-Stokes

equations, the continuum-based model can also be used for simulat-

ing highly-viscous fluid [Batty et al. 2012; Bergou et al. 2010], where

surface tension is modeled as an area-minimizing term within the

energy-optimization elastic model. These works not only propose

some computational algorithms but also studied the physical model

of dynamical thin films, thus set up a remarkable baseline for this

topic. However, they have to carefully trade-off between the ability

to drastically change the topology of thin-film and solve non-trivial

tangential flow on it.

Mesh-Based Static Thin-Film. When constraining the thin film

to a fixed shape, the complexity and challenges emerging from an

arbitrary-shaped triangle mesh can be alleviated. When the fixed

shape is a sphere, special treatments are required to perform dis-

cretization in spherical coordinates to solve the Navier-Stokes equa-

tions [Bridson 2015; Hill and Henderson 2016], or governing equa-

tions coupled with the evolution of thin-film thickness and surface

tension [Huang et al. 2020]. Beyond bubble, Azencot et al. [2015b]

further explores the flow dynamics of a thin layer of fluid sticking

to an arbitrarily shaped object. These works show drastic flow con-

vection on the surface of a fixed geometry. We seek to liberate the

fixed-surface restriction with our particle method.

Level-Set Bubble and Foam. Triangle mesh is not the only data

structure for solving thin-film dynamics. When taking the air within

bubbles into consideration, the whole physical system can be easily

viewed as a two-phase fluid system. In this case, the level set on grids
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is a widely adopted tool. It can be used to model surface tension

in different fluids such as ferrofluids [Ni et al. 2020]. The multi-

phase fluid system, where bubbles are surrounded by large bulks

of water, i.e., foams [Aanjaneya et al. 2013; Albadawi et al. 2013;

Hong and Kim 2003; Kang et al. 2008; Patkar et al. 2013], can also

be conveniently simulated. Further, with a relatively symmetric

treatment to fluid and water, simulate both foams and water drops

[Hong and Kim 2005], or standalone bubbles in the air [Zheng

et al. 2009] after taking delicate care respecting to the thin of soap

film. Unfortunately, level-set immediately means that large bulks

of water and air away from the interface have to be included in the

computation, limiting the algorithm’s complexity and performance.

SPH Methods. It can be seen that all Eulerian methods will face

the dilemma between surficial flow and topology changes. There-

fore, we turn to the Lagrangian formalism, where the fluid within

a thin film is represented by particles. The most popular particle-

based fluid simulation method, Smoothed Particle Hydrodynamics

(SPH) [Brookshaw 1985; Gingold andMonaghan 1977; Koschier et al.

2019; Liu and Liu 2010; Monaghan 1992; Monaghan and Lattanzio

1985; Morris et al. 1997; Solenthaler and Pajarola 2009], where dis-

cretization formulation based on radial smoothing kernels is used

to approximate differential operators. The simplicity and high paral-

lelizability make SPH useful for interactive fluid simulation [Müller

et al. 2003], and can readily operate in conjunction with other fluid

simulation algorithms [Band et al. 2018; Cornelis et al. 2014; Ihmsen

et al. 2013]. It can also be extended to different applications such

as simulating multiphase flow, computing magnetohydrodynamics,

and blue noise sampling [Jiang et al. 2015; Price 2012; Tartakovsky

and Meakin 2005]. Recently, SPH has been used for snow [Gissler

et al. 2020], elastic solids [Peer et al. 2018], ferrofluids [Huang et al.

2019] and viscous fluids [Bender and Koschier 2016; Peer et al. 2015].

On different geometries, simulation algorithms based on SPH are

also developed [Omang et al. 2006; Tavakkol et al. 2017]. The SPH

method can also be coupled with a grid-based simulation [Losasso

et al. 2008] or rigid-body simulation [Gissler et al. 2019]. As a particle-

based method, the treatment of multi-phases, including thin films

and foams [Yang et al. 2017a,b], is straightforward in SPH. Some

works modeled surface tension with the SPH method [Akinci et al.

2013; Becker and Teschner 2007; Yang et al. 2016]. The work of Ando

and Tsuruno [2011] captures and preserves thin fluid films with par-

ticles. However, the main body of the algorithm is grid-based, and

surface tension is not shown in the physical model.

Point-Based Thin Film. The modeling of thin-film needs geometry

information, which can be implicitly given by the shape of the point

cloud. A shallow water simulation facilitated by a particle-based

height field [Solenthaler et al. 2011] inspired us to represent the film

thickness similarly. On this basis, we still need some geometrical

operators on the surface. Laplacian operator can be generalized to

codimension manifolds [Schmidt 2014] and discretized in an SPH

way [Petronetto et al. 2013]. Closest point method (CPM) [Cheung

et al. 2015; Ruuth and Merriman 2008] provides a way to approxi-

mate functions on the Cartesian space defined on manifolds, and

it thus can be used to solve PDEs on the surface, which includes

the governing equations of surface flow [Auer et al. 2012; Auer and

Westermann 2013; Kim et al. 2013; Morgenroth et al. 2020]. Other

Symbol Meaning

𝑺𝐶 center surface of soap film

𝑺+
𝐼

upper interface of soap film

𝑺−
𝐼

lower interface of soap film

ℎ distance between interfaces and center surface

𝜌 density of fluid in soap film

𝜉1, 𝜉2, 𝑧 local coordinate variables

𝒆1, 𝒆2, 𝒏 basis vectors of local frame

𝒖 velocity of fluid

𝛾 surface tension coefficient

Γ surfactant concentration

𝑢, 𝑣 tangential components of velocities on soap film

𝑤 normal component of velocities on soap film

𝜅𝑐 the curvature of center surface

𝜅ℎ the local curvature of interfaces

𝛼𝑐 diffusion coefficient of surfactant

𝛼ℎ, 𝛼𝑘 , 𝛼𝑑 pressure coefficients

Table 1. A list of symbols used in our thin-film SPH model

methods are also available, including graph Laplacian [Belkin and

Niyogi 2008], local triangular mesh [Belkin et al. 2009; Lai et al.

2013] and moving least squares [Lancaster and Salkauskas 1981;

Levin 1998; Nealen 2004; Saye 2014]. The last one is used by Wang

et al. [2020] to solve surface tension flows, and is also adopted by

our framework.

3 METHOD OVERVIEW

Overall, our thin-film SPH method is an enhanced version of a

conventional SPH solver with geometric information. We represent

the thin film by a set of codimension-1 (surface) particles with

local coordinates carried by each of them. The thickness of the film

is concurrently estimated both by a surface convolution method

resembling the computation of density in classic SPH, and also

by equations derived from the mass-conservation law. This point-

cloud representation not only allows a Lagrangian in-surface flow

simulation but also gives us the exact shape of the manifold thin

film. Simulating the thin-film deformation then becomes possible as

we can compute the mean curvature of the particle-surface using

our codimension-1 differential operators. Finally, our particle-based

data structure provides a way to naturally transit a codimension-1

thin film into a codimension-0 fluid bulk, with the latter handled

by a traditional SPH fluid solver. In the following sections, we will

provide details of this algorithm.

4 THIN-FILM GEOMETRY

We assume that a soap film is a three-layered, volumetric struc-

ture whose characteristic thickness is far less than its characteristic

length. As shown in Figure 2, we denote the upper and lower inter-

faces as 𝑆±
𝐼
, and central surface 𝑆𝐶 . We build a surface coordinate
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Fig. 3. The comparison between numerical height (left) and advected height

(right).

DΓ

D𝑡
= 𝛼𝑐∇

2
𝑠 Γ. (9)

Discarding the quantities of the magnitude𝑂 (ℎ2) and combining

(7), (8), and (9), we arrive at the our functional dynamics model:




𝜌
D𝒖

D𝑡
= 2∇𝑠 (𝜅ℎ𝛾 + ∇𝑠 · 𝒖𝑠 ) +

2𝛾

ℎ
𝜅𝑐𝒏 +

1

ℎ
∇𝑠𝛾 + 𝜇∇2

𝑠 𝒖 + 𝒇 ,

𝐷ℎ

𝐷𝑡
= −(∇𝑠 · 𝒖𝑠 )ℎ,

DΓ

D𝑡
= 𝛼𝑐∇

2
𝑠 Γ.

(10)

6 SPH DISCRETIZATION

6.1 Particle Height

The key intuition underpinning our SPH particle height model in

codimension-1 space is that each thin-film particle carries along

with a certain mass of fluid. In the regions where particles are

denser, the thin film is deemed thicker because more fluid is con-

tained per unit area on the tangential plane. This intuition can be

mathematically captured by the codimension-1 SPH framework.

Given the SPH integration of a physical quantity 𝐴 on the thin film

𝐴𝑖 =
∑

𝑗 𝑠 𝑗𝐴 𝑗𝑊𝑖 𝑗 =
∑

𝑗
𝑉𝑗

ℎ 𝑗
𝐴 𝑗𝑊𝑖 𝑗 , where 𝑠 𝑗 represents the control

area of particle 𝑗 . If we set the function 𝐴 to equal ℎ, then we obtain

the SPH integrated expression of the (half-)height field ℎ on a thin

film as:

ℎ𝑖 =
∑

𝑗

𝑉𝑗𝑊𝑖 𝑗 . (11)

In this way, the height of a particle is decided by (i) the particle

distribution near its neighborhood and (ii) the volume that each

neighboring particle carries. To view it another way, this trans-

lates the typical SPH mass density (how much mass per unit area)

[Tartakovsky and Meakin 2005] to the volume density (how much

volume per unit area), which naturally equates the concept of height

on a thin film, an correlation previously explored by Solenthaler

et al. [2011]. Note that ℎ and 𝑉 are one-sided quantities because

we assume symmetry about 𝑆𝐶 , and the half volume 𝑉𝑖 = 𝑚𝑖/𝜌𝑖
is assigned with every particle at the beginning and is conserved

throughout the simulation.

The height ℎ𝑖 that is so computed will be termed the numerical

height, and we use it for all computation relevant to the dynamics

of soap bubbles, e.g., the discretization of all differential operators,

Fig. 4. Bubble oscillation: A perfect sphere ocillates under perturbations

and vortices (upper part), and an irregular bubble (lower part).

and the first equation of (10) describing the momentum evolution

of fluid. It offers a smooth surface that prevents numerical instabili-

ties, however "blurs" the height field with a mollifying kernel. To

preserve the vibrant and turbulent flow patterns originating from

the advection-diffusion evolution of the height field in (10), we in-

troduce an additional advected height ℎ̂, that actually follows the

Lagrangian evolution equation (8),

Dℎ̂

D𝑡
= − (∇𝑠 · 𝒖𝑠 ) ℎ̂, (12)

which will be used to compute the interference color for rendering.

Now we compare the two forms of height computation. The ad-

vected height is obtained by temporally integrating the flux about a

particle from the velocity field. The numerical height is obtained by

first temporally integrating the particles’ positions using the same

velocities and then estimating the volume density. The two forms

are equivalent if there are no numerical errors. In practice, they

deviate in their behavior, each with its advantages and drawbacks.

The numerical height is free from error accumulation, as it is re-

computed at each step, but it is inevitably smoothed due to the SPH

kernel convolution. The advected height can suffer from numerical

drift, but it can preserve higher-frequency details. In our system, we

use both to their advantages. We use the numerical height to com-

pute the dynamics, where smoothness is beneficial for robustness,

and we use the advected height in the color computation for more

appealing visual results. To reduce the numerical drift, we normalize

the advected height at each timestep to conserve the total volume.

As shown in Figure 3, the numerical height is much smoother and

does not preserve the flow pattern introduced by convection. We

provide further comparisons in the appendix.

6.2 Differential Operators

In our scheme, the discretization of surface differential operators,

i.e., ∇𝑠 ,(∇𝑠 ·) and ∇2
𝑠 at particle 𝑖 are obtained by projecting all of

its neighbor particles to the plane defined by its local frame 𝒆𝑖 , and

performing traditional SPH operators on that codimension-1 plane,

as shown in (13):
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Fig. 5. Bubble rupture: The bubble bursts into filaments and droplets after being "punctured" in a small region on the right. The color change on the bubble

comes as a result of the surface contraction, which increases the thickness of the thin film.




(∇𝑠 𝑓 )𝑖 =
∑

𝑗

ℎ𝑖𝑉𝑗

(
𝑓𝑖

ℎ2𝑖
+

𝑓𝑗

ℎ2𝑗

)
∇𝑠𝑊𝑖 𝑗 , (symmetric form)

(∇𝑠 𝑓 )𝑖 =
∑

𝑗

𝑉𝑗

ℎ 𝑗

(
𝑓𝑗 − 𝑓𝑖

)
∇𝑠𝑊𝑖 𝑗 , (difference form)

(∇𝑠 · 𝒖𝑠 )𝑖 =
∑

𝑗

𝑉𝑗

ℎ 𝑗
𝒖̃𝑖 𝑗 · ∇𝑠𝑊𝑖 𝑗 ,

(
∇2
𝑠 𝑓

)
𝑖
=

∑

𝑗

𝑉𝑗

ℎ 𝑗

(
𝑓𝑗 − 𝑓𝑖

) 2|∇𝑠𝑊𝑖 𝑗 |

|̃𝒓𝑖 𝑗 |
.

(13)

Distinguishing between the symmetric and difference forms of

the surface gradient operator is a common numerical technique

employed in SPH fluid simulations [Koschier et al. 2019; Müller et al.

2003]. In our discretization, we primarily use the symmetric form

to take advantage of its momentum conserving nature, with two

exceptions. One is the Marangoni force, where we want to highlight

the directional quality of the motion. The other is when treating

particles near the boundary to negate their tendencies to be pulled

towards the center due to the lack of particles on the other side.

The surface vector 𝒓̃𝑖 𝑗 in (13) is obtained by subtracting the local

normal component 𝒏𝑖 from the vector 𝒓𝑖 𝑗 = 𝒓𝑖 − 𝒓 𝑗 pointing from

particle 𝑗 to 𝑖 as 𝒓̃𝑖 𝑗 = 𝒓𝑖 𝑗 −
(
𝒓𝑖 𝑗 · 𝒏𝑖

)
𝒏𝑖 .

We further define the surface gradient ∇𝑠𝑊𝑖 𝑗 of a codimension-1

kernel scalar kernel function𝑊 =𝑊 (𝑟̃ ) as

∇𝑠𝑊𝑖 𝑗 = 𝑔−1𝑖
d𝑊

d̃𝑟

𝒓̃𝑖 𝑗

|̃𝒓𝑖 𝑗 |
. (14)

Here 𝑔𝑖 is the metric tensor at particle 𝑖 and 𝑟̃ = |̃𝒓𝑖 𝑗 |. We use the

fourth-order spline function [Tartakovsky and Meakin 2005] to

compute the numerical height ℎ𝑖 and the Spiky kernel [Müller et al.

2003] to compute all other terms to avoid clustering caused by inap-

propriate repulsive forces. Mathematically, these kernel functions

are all in 2D forms because they’re operating on a codimension-1

plane.

The velocity difference 𝒖̃𝑖 𝑗 we used for divergence operator is

different from the projection of 𝒖 𝑗 − 𝒖𝑖 to codimension-1 plane 𝒆𝑖 .

The reason arises from the insight that a streamline on the surface,

with a constant velocity rate 𝛼 (i.e., |𝒖𝑖 | = |𝒖 𝑗 | = 𝛼, 𝒖𝑖 · 𝒏𝑖 =

𝒖 𝑗 · 𝒏 𝑗 = 0 ), should yield a zero divergence. However, if we directly

project 𝒖 𝑗 to the local plane at particle 𝑖 , the deviation of normal

directions 𝒏𝑖−𝒏 𝑗 ≠ 0will incorrectly distort the project velocity rate

as |𝒖 𝑗 −
(
𝒖 𝑗 · 𝒏𝑖

)
𝒏𝑖 | ≠ 𝛼 . To avoid this numerical artifact, we imitate

the idea of the great-circle-advection algorithm used by Huang et

al. [2020]; in particular, we pass the same coordinate values from

the local frame at 𝑗 to that at 𝑖 instead of performing a projection,

as shown in Figure 6.

First, we build temporary coordinate systems
(
𝒆̃𝑖 , 𝒏̃𝑖

)
and

(
𝒆̃ 𝑗 , 𝒏̃ 𝑗

)

at local frames of 𝑖 and 𝑗 , with their normal directions unchanged,

and one tangential axis, say, 𝒆1, along the direction of 𝒓𝑖 𝑗 :

𝒏̃𝑖 = 𝒏 𝑗 , 𝒏̃ 𝑗 = 𝒏 𝑗 ,

𝒆̃𝑖
1
= 𝒆̃

𝑗
1
=

𝒓𝑖 𝑗

|𝒓𝑖 𝑗 |
,

𝒆̃𝑖
2
= 𝒏̃𝑖 × 𝒆̃𝑖

1
, 𝒆̃

𝑗
2
= 𝒏̃ 𝑗 × 𝒆̃

𝑗
1
.

(15)

Then, with the the decomposition of 𝒖 at temporary coordinates

(𝒆̃, 𝒏̃) we have

𝒖𝑖 = 𝑢𝑖 𝒆̃
𝑖
1
+ 𝑣𝑖 𝒆̃

𝑖
2
+𝑤𝑖 𝒏̃𝑖 ,

𝒖 𝑗 = 𝑢 𝑗 𝒆̃
𝑗
1
+ 𝑣 𝑗 𝒆̃

𝑗
2
+𝑤 𝑗 𝒏̃ 𝑗 .

(16)

Finally, as shown in Figure 6, we compute the actual velocity differ-

ence 𝒖̃𝑖 𝑗 used for divergence as:

𝒖̃𝑖 𝑗 =
(
𝑢 𝑗 − 𝑢𝑖

)
𝒆̃𝑖
1
+

(
𝑣 𝑗 − 𝑣𝑖

)
𝒆̃𝑖
2
. (17)

Fig. 6. Definition of 𝒖̃𝑖 𝑗 in (13). Here ®𝑛 represents normal axes, ®𝑒1 is a a unit

vector pointing from 𝑖 to 𝑗 , and ®𝑒2 is the cross product of ®𝑛 and ®𝑒1.
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Fig. 7. Half bubble: The surface-tension-driven oscillation for a half bubble

standing on a plane. In the beginning, a push toward the center is applied on

the top right region of the bubble. A vorticity confinement force is employed

to enhance the rotational motion on the bubble surface.

6.3 State Equation

With a linear formulation, the state equation which relates the

compression of particles and the pressure of fluid in a classical SPH

scheme can be written as

𝑝𝑖 = 𝛼𝑝

(
𝜌𝑖

𝜌0
− 1

)
, (18)

with 𝛼𝑝 as a constant parameter specifying the stiffness of the

feedback. In our numerical algorithm, we combine this equation of

state with the thin-film pressure we derived in the previous section

to obtain

𝑝 = 𝜅ℎ𝛾 + ∇𝑠 · 𝒖𝑠 , (19)

which suggests that the fluid pressure inside the thin film is a func-

tion of the local curvature 𝜅ℎ and velocity’s divergence on surface.

With the analogy of density 𝜌 in the classical SPH scheme and the

numerical height ℎ in ours, we acquire a final formulation of the

particle pressure as

𝑝𝑖 = 𝛼ℎ

(
ℎ𝑖

ℎ0
− 1

)
+ 𝛼𝑘𝛾𝑖 (𝜅ℎ)𝑖 + 𝛼𝑑 (∇𝑠 · 𝒖𝑠 )𝑖 . (20)

Here ℎ0 is the rest thickness of thin films, and 𝛼ℎ, 𝛼𝑘 , 𝛼𝑑 are three

constant parameters controlling the tangential incompressibility of

thin-film system. The first term administrates the weakly compress-

ibility to ensure that the particles are relatively evenly populated in

the simulation domain to ensure numerical robustness, while the

latter two terms achieve the surface-tension-driven behaviors of the

thickness evolution. Specifically, the stiffness of our system is much

lower than that of a standard SPH algorithm used for volumetric

incompressible flow simulation. Therefore, the dynamics of particles

are dominated by physical evolution instead of by the tendency to

be evenly distributed.

6.4 Force Discretization

We discretize the fluid forces in (10) using our surface SPH operators

(13). The mean curvature 𝜅𝑐 = 0.5∇2
𝑠𝑆𝐶 , where 𝑆𝐶 : 𝑧 = 𝑧 (𝑥,𝑦), is

calculated using the surface Laplacian operator

Fig. 8. Thin-film confined in a square: A gravitational pull is being rotated

periodically around the surface, expediting the formation of appealing color

patterns.

2𝜅𝑐 =

∑

𝑗

𝑉𝑗

ℎ 𝑗

(
−𝒓𝑖 𝑗 · 𝒏𝑖

) 2|∇𝑠𝑊𝑖 𝑗 |

|̃𝒓𝑖 𝑗 |
. (21)

We further introduce reviseaa vorticity confinement force [Selle

et al. 2005; Yoon et al. 2009; Zhu et al. 2010] to enhance the vortical

motion on the bubble surface. We carry the vorticity 𝜁𝑖 on every

particle 𝑖 , which is subject to a similar convection-diffusion equation

of the surfactant concentration (9). The vorticity confinement force

𝒇
𝜁
𝑖 takes the form 𝒇

𝜁
𝑖 = −

∑
𝑗 𝒓̃𝑖 𝑗 ×

(
𝜁 𝑗 𝒆

𝑗
𝑧

)
.

7 TIME INTEGRATION

Before computing the forces from the SPH discretization of (10), we

first calculate the surface tension coefficient𝛾𝑖 and the fluid pressure

𝑝𝑖 for each particle as shown in Algorithm 1. After that, we compute

all forces in Algorithm 2. Following the position update, the local

frames and metric tensors are reconstructed at every particle with

the PCA-based method [Wang et al. 2020]. Finally, the numerical

height ℎ is updated with (11). We summarize our time integration

scheme in Algorithm 3.

Algorithm 1 Compute Preliminary Variables for particle 𝑖

1: Update surface tension: 𝛾𝑖 = 𝛾0 − 𝛾𝑎Γ𝑖 .

2: for each particle 𝑗 in the neighborhood of 𝑖 do

3: Update divergence: (∇𝑠 · 𝒖𝑠 )𝑖 =
∑

𝑗
𝑉𝑗

ℎ 𝑗
𝒖̃𝑖 𝑗 · ∇𝑠𝑊𝑖 𝑗 .

4: Update local curvature: (𝜅ℎ)𝑖 =
∑

𝑗
𝑉𝑗

ℎ 𝑗

(
ℎ 𝑗 − ℎ𝑖

) 2 |∇𝑠𝑊𝑖 𝑗 |

|𝒓̃𝑖 𝑗 |
.

5: end for

6: Update pressure:

𝑝𝑖 = 𝛼ℎ

(
ℎ𝑖
ℎ0

− 1

)
+ 𝛼𝑘𝛾𝑖 (𝜅ℎ)𝑖 + 𝛼𝑑 (∇𝑠 · 𝒖𝑠 )𝑖 .

7.1 Codimension Transition

Under certain circumstances, the codimension-1 thin filmwill shrink

or rupture into volumetric droplets. We capture this phenomenon

with the criteria that (𝜅𝑐 )𝑖 > 𝜅0 or 𝑛𝑖 < 2. Here 𝜅0 is a constant

depending on the setup of the scene, and 𝑛𝑖 is the number of neigh-

bors within the SPH kernel radius. The first criterion checks if the

particle still lives on a relatively even surface, and the second checks
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retain its shape. We calculate the pressure inside the bubble 𝑝𝑏 with

the ideal gas equation 𝑝𝑏𝑉𝑏 = 𝛼𝑝 , where 𝛼𝑝 = 𝑛𝑅𝑇 is a constant

number. The volume of closed bubble 𝑉𝑏 is given by a sum with

pyramid volume formula 𝑉𝑏 =
∑
𝑖
1

3

𝑉𝑖
ℎ𝑖

(𝒏𝑖 · 𝒙𝑖 ), with 𝒙𝑖 the vector

pointing from the gravity center of all particles on the bubble to

particle 𝑖 . Afterwards, an external force 𝒇ext =
𝑝𝑎−𝑝𝑏
2ℎ

𝒏 is added to

all particles.

7.3 Particle Reseeding

During the evolution of soap films, the total area of films may be

enlarged from the boundary. For example, a commonway to produce

bubbles is to blow air into a circle soap film on a ring soaked with

soap water, and as the bubble forms, new portions of soap film are

replenished from the ring.

Our algorithm includes a reseeding step for every iteration to

implement this feature. At the end of every time step, every fixed

boundary particle 𝑖 is checked with its nearest non-boundary neigh-

bor particle 𝑗 , and if 𝒓𝑖 𝑗 > threshold, a new particle 𝑘 is reseeded at

𝒓𝑘 =
𝒓𝑖+𝒓 𝑗
2

+ 𝝈 , with a random perturbation 𝝈 . The perturbation

term alleviates artifacts emerging from regular patterns in the dis-

tribution of newly-generated particles. The mass of a new particle

𝑘 inherits from 𝑚𝑘 = 𝑚 𝑗 , and 𝒖𝑘 =
𝒖 𝑗

2
. While adding particles

to SPH solvers can undermine the physical consistency and cause

visible artifacts if not treated carefully, we note that in our case, this

reseeding step only takes place near the boundary and is viewed as

the physical process of fluid flowing from the boundary, so no mass

or momentum redistribution is performed.

7.4 Boundary Treatment

For our various examples that involve interaction with circular or

square solid rims, it is necessary to devise appropriate boundary

handling methods. The task is twofold: First, the particles should not

penetrate the solid boundary. Second, a particle should behave con-

sistently when its neighborhood is under-sampled near the bound-

ary. For the first task, we correct the velocities of particles that

are going to penetrate the solid boundary defined by an implicit

boundary (e.g., the solid ring in the Newton ring example). For the

second task, we adopt a geometric compensation method illustrated

in Figure 12. For a particle 𝑃 with its neighborhood 𝐶 truncated by

the boundary, we find the nearest neighboring particle 𝐵 that is on

the boundary, take its mirrored point with respect to particle 𝑃 as

𝐵′, and draw the secant 𝑆 across 𝐵′ perpendicular to 𝐵′ − 𝑃 . All

neighboring points sampled within the circular segment defined by

𝐶 and 𝑆 are counted twice. If the boundary is a straight line, this

method would precisely łclone-stampž a part of the sampled region

to fill up the empty region. Otherwise, the cloned region would not

fill the empty region perfectly, then we estimate the unsampled area

and adjust the compensation accordingly.

We adopt this geometric compensation method in place of typical

boundary particle method for two reasons: first, the relative posi-

tions of the boundary particles to the fluid particles must change as

the surface deforms, which adds complication to the traditional ways

with multiple layers of boundary particles.

Fig. 11. The Newton Interference pattern. The upper two pictures are from

our simulation and the lower two pictures shows a real-world experiment

[Gaulon et al. 2017]. In the right column, elevation(horizontal) vs. thickness

(vertical) graphs are displayed. Compared with the experimental result, our

simulation can generate visually realistic color fringes. As shown in the

right figures, the thickness profile generated by our simulation matches

the one measured in the real experiment. Overlaid in the top-right figure

is the analytical profile (blue curve) predicted according to Couder et al.

[1989]; the proximity of it with our simulation results (yellow dots) further

confirms our simulation result.

Fig. 12. Illustration of the compensation

method to treat boundary.

Secondly, we encour-

age the spatial variance

of particle density with

low stiffness, so having

boundary particles with

fixed volume or mass

would not do justice. For

example, if the particles

congregate along the

border, we would want

the area near the border

to rise in height/density,

in which case this adaptive clone-stamp strategy is useful as it pre-

serves the state of the fluid. This mirroring approach to enable large

density variation is inspired by Keiser et al. [2006]; the dynamic and

adaptive nature is also similar to the Ghost SPH approach [Schechter

and Bridson 2012].

8 THIN-FILM VISUALIZATION

The color in all of our simulations is computedwith the CIE Standard

Illuminant D65, a standard illuminant that represents the average,

open-air illumination under daylight. Given the discretized spec-

tral power distribution, we compute the reflection, refraction, and
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Fig. 15. Droplet Marangoni Effect: Four drops of soap solution is deposited onto the thin film. After the soap solutions is absorbed by the surface, the surface

tension of the the impacted area would be lowered, which enables more high-frequency deformation to be observed. Moreover, the droplets induce local

non-zero gradients of surface tension, causing the particles to move towards the high surface tension region, which is known as the Marangoni effect. The

color change in the surface would reflect such movements.

and tiny droplets. The mechanism for bubble bursting is general

to the bubble’s shape and dynamics. The shown example directly

follows the bubble oscillation example depicted in the upper part

of Figure 4. The rupture animation is displayed at 0.1× speed of

the oscillation animation. A feature that separates our animation

from the existing ones is that our method models the change in the

bubble’s hue due to surface contraction. As one can see in Figure

5, the bubble’s color changes from green to purple, providing an

extra layer of richness than if such phenomenon is modeled by a

volumetric SPH solver only.

Large-Deforming Thin Films with Rims. In Figure 8, a thin film is

confined in a square rim, and we apply a large gravitational pull

whose direction circulates periodically around the surface. On the

surface, we seed 20 random vortices and perform a slight perturba-

tion to the volume of particle 𝑉𝑖 as well as density 𝜌𝑖 with Perlin

noise, which reflects in the initial color pattern. The rotating force

causes the particles to perform in-plane and out-of-plane motions

alternatively, forming appealing color patterns and surface mor-

phology. In Figure 9, we use a circular rim to contain a thin film and

recreates on it the R-T instability, a beautiful, classic flow pattern

that can be captured by SPHmethod [Solenthaler and Pajarola 2008].

Unlike the oscillating bubble example, where we desire the bouncy

feeling, here, we set the surface tension coefficient low to give the

film a soft and mellow feeling, with plenty of high-frequency mo-

tions. In addition to the downward gravity, we apply a large external

force 𝑭𝑒𝑥𝑡 = 𝛽 [(cos𝛼, sin𝛼, 0) + (0, cos 2𝛼, sin 2𝛼)], in which 𝛽 is

the scalar of force strength and 𝛼 = 2𝜋𝑡/𝑇 where 𝑡 is the simulation

time and 𝑇 is the period. We initialize the film so that the upper

half has a density 4 times as large, and the lower half has a height

1.5 times as large, reflected in the color difference. Under gravity,

the heavier top moves down, and the height difference tends the

bottom to move up, countering each other and evolve into various

finger-like patterns. Besides the flow on the surface, the aggressive

deformation of the surface itself is also reflected by the color. For

example, the stretched parts are visibly darker than the rest of the

thin film.

Thin-film Dripping with Circular Rim. As shown in Figure 14,

we initialize the thin film as a half-sphere. Particles under gravity

tend to fall down, and under surface tension tend to contract. When

the tip of the thin film contracts, some particles transform from

codimension-1 to codimension-0, separating from others and drops

down, forming droplets under the surface tension modeled by our

auxiliary volumetric SPH solver.

Catenoid. Consider two rims connected by a thin soap film are

pulled away from each other. The thin film will try to shrink under

the area minimizing tendency, forming a catenoid, as have been

validated numerically in Appendix B. Figure 13 shows the rendered

result our simulation. After the separation between the two rims

exceeds the Laplace limit, no more catenoids can sustain. Then,

the membrane would further contract and collapse into a droplet

in the center. As in the figure, our system can accurately simulate

the surface-tension-driven deformation while considering the color

changes due to the surface elongation.

Droplet Marangoni Effect. In the previous examples, we showcase

the transition from surface particles to volumetric particles. As

shown in Figure 15, we highlight the reverse process by releasing

four drops of soap solution with high surfactant concentration Γ

to the thin film with low surfactant concentration. As the droplets

impact the film, they are transformed as codimension-1 particles

and blend into the surface, significantly reducing the local surface

tension of the thin film. The response is twofold: first, the reduced

surface tension can tolerate higher surface curvature; therefore, one

can observe more high-frequency vibrations of the surface; secondly,

a soapy droplet would significantly increase the soap concentration

at the impact location, thereby creating a zone with low surface

tension. Thus, a nonzero gradient of surface tension would occur at

the perimeter of this zone, pointing outwards, pushing particles out,

a phenomenon known as the Marangoni effect. As this happens,

more particles will cluster at the outskirt of the low surface tension

zone, resulting in an increase in film thickness, which is reflected in

the color change.

10 PERFORMANCE

Our algorithm benefits from the intrinsic parallelizability of the

particle method and thus is highly efficient. All parts in Algorithm

1, 2 and 3 are implemented in parallel with OpenMP for multi-core

processors. However, the codimension transition takes a linear time

complexity because it needs to move particles between the surface
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and volumetric solvers. The performance of all scenes is displayed

in Table 2 in Appendix B.

11 DISCUSSION AND FUTURE WORKS

We propose a novel particle-based, thin-film simulation framework

that jointly facilitates large surface deformation and lively in-surface

flows. Our dynamic model is based on the surface-tension-driven 3D

Navier-Stokes equations simplified under the lubrication assump-

tion. We devise a set of differential operators on curved point-set

surfaces that are discretized by SPH. Our key insight lies in that the

compressible nature of SPH, which tends to create artifacts in its typ-

ical usage, can be leveraged to our benefit by defining an evolving

height field ℎ that enables the incorporation of the surface tension

model into the thin-film fluid. Due to the particle-based nature,

our method easily handles codimension transitions and topology

changes and conveniently integrates an auxiliary 3D SPH solver to

simulate a wide gamut of visually appealing phenomena simulta-

neously featuring surface and volumetric characteristics, such as

the pinch-off of catenoids, dripping from a thin film, the merging of

droplets, as well as bubble rupture.

The main limitation of the proposed algorithm is its incapability

of dealing with surfaces carrying non-manifold intersections. In the

future, we seek to extend it to simulate the interaction of complex

bubble clusters that form a network of plateau borders. Then, the

dilemma between particle density variation required for interesting

color patterns and relatively even distribution of particles needed for

the SPH framework limits our system in recreating color fields with

a steep gradient, which may be alleviated by adopting the adaptive

kernels. We also look forward to exploring more dynamic interac-

tions with solid boundaries, e.g. activated by boundary deformation,

intrusion, or even inter-crossing.

The codimension transition is another challenging topic, for the

criterion must be carefully chosen. If the transition happens too

easily, the thin film can easily break because a hole of volumetric

particles appears somewhere. If it’s too hard, the thin film will form

unnatural sharp corners instead of turning to the volumetric SPH

solver. Due to the lack of adaptivity, the simulation of pinch-off is

affected by subjectively defined parameters more or less, which we

think is a possible direction for future improvement. On the other

hand, adding and deleting particles during the reseeding step has

been a long-standing and difficult problem in conventional SPH

simulation, which might cause physical quantity inconsistency. Our

thin-film SPH model alleviated this problem thanks to its compress-

ible nature and low stiffness coupling density and pressure on the

particle thin film, although the volumetric particles in the simula-

tion (in particular when the codimension transition occurs) could

still suffer from such inconsistencies when transferring mass and

momentum between the thin film.

On the animation side, the level of sophistication in the color

pattern that our simulation generates is not quite at the level of

real-world verisimilitude. That is because our displayed particles

are exactly the ones used for the simulation, which is inevitably

limited in the number. In the future, we may further investigate the

possibility of using our SPH system as a background simulation, on

top of which a larger number of tracker particles are advected, to

make for visualization of improved richness and fidelity. Finally, we

hope to customize a set of rendering algorithms that can directly

take advantage of the geometric representation and computation

tools we have already developed for the simulation to allow more

consistent and physically accurate visual results.

ACKNOWLEDGMENTS

We thank all the anonymous reviewers for their constructive com-

ments. We acknowledge the funding support from NSF 1919647 and

Dartmouth UGAR. We credit the Houdini Education licenses for the

video rendering.

REFERENCES
Mridul Aanjaneya, Saket Patkar, and Ronald Fedkiw. 2013. A monolithic mass tracking

formulation for bubbles in incompressible flow. J. Comput. Phys. 247 (2013), 17ś61.
Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension

and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1ś8.
A Albadawi, DB Donoghue, AJ Robinson, DBMurray, and YMCDelauré. 2013. Influence

of surface tension implementation in volume of fluid and coupled volume of fluid
with level set methods for bubble growth and detachment. International Journal of
Multiphase Flow 53 (2013), 11ś28.

Ryoichi Ando and Reiji Tsuruno. 2011. A particle-based method for preserving fluid
sheets. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on
computer animation. 7ś16.

Stefan Auer, Colin B Macdonald, Marc Treib, Jens Schneider, and Rüdiger Westermann.
2012. Real-time fluid effects on surfaces using the closest point method. In Computer
Graphics Forum, Vol. 31. Wiley Online Library, 1909ś1923.

Stefan Auer and Rüdiger Westermann. 2013. A Semi-Lagrangian Closest Point Method
for Deforming Surfaces. In Computer Graphics Forum, Vol. 32. Wiley Online Library,
207ś214.

Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela Ben-Chen.
2015a. Functional thin films on surfaces. In Proceedings of the 14th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 137ś146.

Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela Ben-Chen.
2015b. Functional thin films on surfaces. In Proceedings of the 14th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 137ś146.

Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela Ben-
Chen. 2014. Functional fluids on surfaces. In Computer Graphics Forum, Vol. 33.
Wiley Online Library, 237ś246.

Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and
Matthias Teschner. 2018. Pressure boundaries for implicit incompressible SPH. ACM
Transactions on Graphics (TOG) 37, 2 (2018), 1ś11.

Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete
viscous sheets. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1ś7.

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free sur-
face flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 209ś217.

Laurent Belcour and Pascal Barla. 2017. A practical extension to microfacet theory for
the modeling of varying iridescence. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1ś14.

Mikhail Belkin and Partha Niyogi. 2008. Towards a theoretical foundation for Laplacian-
based manifold methods. J. Comput. System Sci. 74, 8 (2008), 1289ś1308.

Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace operator from
point clouds in R d. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, 1031ś1040.

Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and
viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2016),
1193ś1206.

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.
2010. Discrete viscous threads. ACM Transactions on graphics (TOG) 29, 4 (2010),
1ś10.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.
L. Brookshaw. 1985. A Method of Calculating Radiative Heat Diffusion in Particle

Simulations. Publications of the Astronomical Society of Australia 6, 2 (1985), 207ś210.
Ka Chun Cheung, Leevan Ling, and Steven J Ruuth. 2015. A localized meshless method

for diffusion on folded surfaces. J. Comput. Phys. 297 (2015), 194ś206.
Jean-Marc Chomaz. 2001. The dynamics of a viscous soap film with soluble surfactant.

Journal of Fluid Mechanics 442 (2001), 387ś409.
Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP

for incompressible fluids. In Computer Graphics Forum, Vol. 33. Wiley Online Library,
255ś262.

ACM Trans. Graph., Vol. 40, No. 4, Article 110. Publication date: August 2021.



Thin-Film Smoothed Particle Hydrodynamics Fluid • 110:13

Y Couder, JM Chomaz, and M Rabaud. 1989. On the hydrodynamics of soap films.
Physica D: Nonlinear Phenomena 37, 1-3 (1989), 384ś405.

Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles
sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films
and foams. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1ś9.

C Gaulon, C Derec, T Combriat, P Marmottant, and F Elias. 2017. Sound and Vision:
Visualization of music with a soap film, and the physics behind it. (2017).

Robert A Gingold and Joseph J Monaghan. 1977. Smoothed particle hydrodynamics: the-
ory and application to non-spherical stars. Monthly notices of the royal astronomical
society 181, 3 (1977), 375ś389.

Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias Teschner.
2020. An implicit compressible SPH solver for snow simulation. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 36ś1.

Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019.
Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Transactions
on Graphics (TOG) 38, 1 (2019), 1ś13.

Andrew Glassner. 2000. Soap bubbles: part 2. IEEE Annals of the History of Computing
20, 06 (2000), 99ś109.

David J Hill and Ronald D Henderson. 2016. Efficient fluid simulation on the surface of
a sphere. ACM Transactions on Graphics (TOG) 35, 2 (2016), 1ś9.

Jeong-MoHong and Chang-Hun Kim. 2003. Animation of bubbles in liquid. In Computer
Graphics Forum, Vol. 22. Wiley Online Library, 253ś262.

Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 915ś920.

Libo Huang, Torsten Hädrich, and Dominik L Michels. 2019. On the accurate large-scale
simulation of ferrofluids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1ś15.

Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu Jiang, and
Matthias B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on
Spherical Bubbles. ACM Transactions on Graphics 39, 4 (2020). https://doi.org/"10.
1145/3386569.3392094"

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. 2013. Implicit incompressible SPH. IEEE transactions on visualization and
computer graphics 20, 3 (2013), 426ś435.

Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan.
2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Transactions
on Graphics 39, 4, Article 31 (2020), 31:1ś31:11 pages. https://doi.org/"10.1145/
3386569.3392405"

Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017.
A hyperbolic geometric flow for evolving films and foams. ACM Transactions on
Graphics (TOG) 36, 6 (2017), 1ś11.

Kei Iwasaki, Keichi Matsuzawa, and Tomoyuki Nishita. 2004. Real-time rendering
of soap bubbles taking into account light interference. In Proceedings Computer
Graphics International, 2004. IEEE, 344ś348.

Dariusz Jaszkowski and Janusz Rzeszut. 2003. Interference colours of soap bubbles. The
Visual Computer 19, 4 (2003), 252ś270.

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue
noise sampling using an SPH-based method. ACM Transactions on Graphics (TOG)
34, 6 (2015), 1ś11.

Myungjoo Kang, Barry Merriman, and Stanley Osher. 2008. Numerical simulations for
the motion of soap bubbles using level set methods. Computers & fluids 37, 5 (2008),
524ś535.

Richard Keiser, Bart Adams, Philip Dutré, Leonidas J Guibas, and Mark Pauly. 2006.
Multiresolution particle-based fluids. Technical Report/ETH Zurich, Department of
Computer Science 520 (2006).

Namjung Kim, SaeWoon Oh, and Kyoungju Park. 2015. Giant soap bubble creation
model. Computer Animation and Virtual Worlds 26, 3-4 (2015), 445ś455.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for
liquid surfaces. ACM Transactions on Graphics (TOG) 32, 2 (2013), 15.

M. Kness. 2008. ColorPy-A Python package for handling physical descriptions of color
and light spectra. (2008).

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed
Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and
Solids. In Eurographics 2019 - Tutorials, Wenzel Jakob and Enrico Puppo (Eds.). The
Eurographics Association.

Rongjie Lai, Jiang Liang, and Hongkai Zhao. 2013. A local mesh method for solving
PDEs on point clouds. Inverse Problems & Imaging 7, 3 (2013).

Peter Lancaster and Kes Salkauskas. 1981. Surfaces generated by moving least squares
methods. Mathematics of computation 37, 155 (1981), 141ś158.

David Levin. 1998. The approximation power of moving least-squares. Mathematics of
computation 67, 224 (1998), 1517ś1531.

MB Liu and GR Liu. 2010. Smoothed particle hydrodynamics (SPH): an overview and
recent developments. Archives of computational methods in engineering 17, 1 (2010),
25ś76.

Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-way coupled
SPH and particle level set fluid simulation. IEEE Transactions on Visualization and
Computer Graphics 14, 4 (2008), 797ś804.

Joe J Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy
and astrophysics 30, 1 (1992), 543ś574.

Joseph J Monaghan and John C Lattanzio. 1985. A refined particle method for astro-
physical problems. Astronomy and astrophysics 149 (1985), 135ś143.

Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020.
Efficient 2D simulation on moving 3D surfaces. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 27ś38.

Joseph P Morris, Patrick J Fox, and Yi Zhu. 1997. Modeling low Reynolds number
incompressible flows using SPH. J. Comput. Phys. 136, 1 (1997), 214ś226.

Matthias Müller, David Charypar, and Markus H Gross. 2003. Particle-based fluid
simulation for interactive applications.. In Symposium on Computer animation. 154ś
159.

Metin Muradoglu and Gretar Tryggvason. 2008. A front-tracking method for compu-
tation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 4 (2008),
2238ś2262.

Andrew Nealen. 2004. An as-short-as-possible introduction to the least squares,
weighted least squares and moving least squares methods for scattered data approx-
imation and interpolation. URL: http://www. nealen. com/projects 130, 150 (2004),
25.

Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2020. A level-set method for
magnetic substance simulation. ACM Transactions on Graphics (TOG) 39, 4 (2020),
29ś1.

M Omang, Steinar Bùrve, and Jan Trulsen. 2006. SPH in spherical and cylindrical
coordinates. J. Comput. Phys. 213, 1 (2006), 391ś412.

Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A hybrid
Lagrangian-Eulerian formulation for bubble generation and dynamics. In Proceedings
of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 105ś
114.

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An implicit
SPH formulation for incompressible linearly elastic solids. In Computer Graphics
Forum, Vol. 37. Wiley Online Library, 135ś148.

Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit
viscosity formulation for SPH fluids. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1ś10.

Fabiano Petronetto, Afonso Paiva, Elias S Helou, DE Stewart, and Luis Gustavo Nonato.
2013. Mesh-Free Discrete LaplaceśBeltrami Operator. In Computer Graphics Forum,
Vol. 32. Wiley Online Library, 214ś226.

Daniel J Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. J.
Comput. Phys. 231, 3 (2012), 759ś794.

Steven J Ruuth and Barry Merriman. 2008. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys. 227, 3 (2008), 1943ś1961.

Robert Saye. 2014. High-order methods for computing distances to implicitly defined
surfaces. Communications in Applied Mathematics and Computational Science 9, 1
(2014), 107ś141.

Robert I Saye and James A Sethian. 2013. Multiscale modeling of membrane rearrange-
ment, drainage, and rupture in evolving foams. Science 340, 6133 (2013), 720ś724.

Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 1ś8.

Frank Schmidt. 2014. The laplace-beltrami-operator on riemannian manifolds. In
Seminar Shape Analysis.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for
smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910ś914.

Brian E Smits and Gary W Meyer. 1992. Newton’s colors: simulating interference
phenomena in realistic image synthesis. In Photorealism in Computer Graphics.
Springer, 185ś194.

Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus
Gross. 2011. SPH based shallow water simulation. (2011).

Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. (2008).
Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible

SPH. In ACM SIGGRAPH 2009 papers. 1ś6.
Jos Stam. 2003. Flows on surfaces of arbitrary topology. ACM Transactions On Graphics

(TOG) 22, 3 (2003), 724ś731.
Alexandre M Tartakovsky and Paul Meakin. 2005. A smoothed particle hydrodynamics

model for miscible flow in three-dimensional fractures and the two-dimensional
RayleighśTaylor instability. J. Comput. Phys. 207, 2 (2005), 610ś624.

Sasan Tavakkol, Amir Reza Zarrati, and Mahdiyar Khanpour. 2017. Curvilinear
smoothed particle hydrodynamics. International Journal for Numerical Methods in
Fluids 83, 2 (2017), 115ś131.

Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. 2018. Real-time viscous thin films.
ACM Transactions on Graphics (TOG) 37, 6 (2018), 1ś10.

Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface
tension flow using moving-least-squares particles. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 42ś1.

Jian Jun Xu, Zhilin Li, John Lowengrub, and Hongkai Zhao. 2006. A level-set method
for interfacial flows with surfactant. J. Comput. Phys. 212, 2 (2006), 590ś616.

ACM Trans. Graph., Vol. 40, No. 4, Article 110. Publication date: August 2021.



110:14 • Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, Bo Zhu

Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and
Kun Zhou. 2016. Enriching SPH simulation by approximate capillary waves.. In
Symposium on Computer Animation. 29ś36.

Tao Yang, Jian Chang, Ming C Lin, Ralph R Martin, Jian J Zhang, and Shi-Min Hu.
2017a. A unified particle system framework for multi-phase, multi-material visual
simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1ś13.

Tao Yang, Ralph R Martin, Ming C Lin, Jian Chang, and Shi-Min Hu. 2017b. Pairwise
force SPH model for real-time multi-interaction applications. IEEE transactions on
visualization and computer graphics 23, 10 (2017), 2235ś2247.

Jong-Chul Yoon, Hyeong Ryeol Kam, Jeong-Mo Hong, Shin Jin Kang, and Chang-Hun
Kim. 2009. Procedural synthesis using vortex particle method for fluid simulation.
In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1853ś1859.

Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2009. Simulation of bubbles. Graphical
Models 71, 6 (2009), 229ś239.

Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codi-
mensional surface tension flow on simplicial complexes. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 1ś11.

Bo Zhu, Xubo Yang, and Ye Fan. 2010. Creating and preserving vortical details in sph
fluid. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2207ś2214.

A MOMENTUM EQUATION AT CENTER SURFACE

The normal and tangential components of (6) are




𝑝 − 𝑝𝑎 + 2𝜅±𝛾 = 2𝜇𝒏± · (∇𝑢) · 𝒏± +𝑂 (ℎ2),

𝒕±𝑥 · (∇𝑠±𝛾) = 𝜇𝒕±𝑥 · [∇𝒖 + (∇𝒖)𝑇 ] · 𝒏± +𝑂 (ℎ2),

𝒕±𝑦 · (∇𝑠±𝛾) = 𝜇𝒕±𝑦 · [∇𝒖 + (∇𝒖)𝑇 ] · 𝒏± +𝑂 (ℎ2),

(22)

respectively. Using (3), we obtain




𝒕±𝑥 · (∇𝑠±𝛾)

= (𝒆𝑥 ∓ 𝒆𝑦 × ∇𝑠ℎ) · (∇𝑠𝛾 ± ∇𝑠ℎ𝒆𝑧 · ∇𝛾 ± 𝒆𝑧∇𝑠ℎ · ∇𝛾) +𝑂 (ℎ2)

= 𝒆𝑥 · ∇𝑠𝛾 +𝑂 (ℎ2),

𝒕±𝑦 · (∇𝑠±𝛾)

= (𝒆𝑦 ± 𝒆𝑥 × ∇𝑠ℎ) · (∇𝑠𝛾 ± ∇𝑠ℎ𝒆𝑧 · ∇𝛾 ± 𝒆𝑧∇𝑠ℎ · ∇𝛾) +𝑂 (ℎ2)

= 𝒆𝑦 · ∇𝑠𝛾 +𝑂 (ℎ2) .

(23)

Substituting (3) and (23) into (22) yields




𝑝 − 𝑝𝑎 + 2(±𝜅𝑐 + 𝜅ℎ)𝛾 =

2𝜇 (±𝒆𝑧 − ∇𝑠ℎ) · (∇𝑢) · (±𝒆𝑧 − ∇𝑠ℎ) +𝑂 (ℎ2),

𝒆𝑥 · ∇𝑠𝛾 =

𝜇 (𝒆𝑥 ∓ 𝒆𝑦 × ∇𝑠ℎ) · [∇𝒖 + (∇𝒖)𝑇 ] · (±𝒆𝑧 − ∇𝑠ℎ) +𝑂 (ℎ2),

𝒆𝑦 · ∇𝑠𝛾 =

𝜇 (𝒆𝑦 ± 𝒆𝑥 × ∇𝑠ℎ) · [∇𝒖 + (∇𝒖)𝑇 ] · (±𝒆𝑧 − ∇𝑠ℎ) +𝑂 (ℎ2) .

(24)

Further, we substitute the component-wise forms of ∇𝑠ℎ and ∇𝒖

into (24) as




𝑝 − 𝑝𝑎 + 2(±𝜅𝑐 + 𝜅ℎ)𝛾 =

2𝜇

(
𝜕𝑤

𝜕𝑧
∓

𝜕ℎ

𝜕𝑥

𝜕𝑢

𝜕𝑧
∓

𝜕ℎ

𝜕𝑦

𝜕𝑣

𝜕𝑧

)
+𝑂 (ℎ2),

𝜕𝛾

𝜕𝑥
=

𝜇

[
±
𝜕𝑤

𝜕𝑥
− 2

𝜕ℎ

𝜕𝑥

(
𝜕𝑢

𝜕𝑥
−

𝜕𝑤

𝜕𝑧

)
−

𝜕ℎ

𝜕𝑦

(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

)
±

𝜕𝑢

𝜕𝑧

]
+𝑂 (ℎ2),

𝜕𝛾

𝜕𝑦
=

𝜇

[
±
𝜕𝑤

𝜕𝑦
− 2

𝜕ℎ

𝜕𝑦

(
𝜕𝑣

𝜕𝑦
−

𝜕𝑤

𝜕𝑧

)
−

𝜕ℎ

𝜕𝑥

(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

)
±

𝜕𝑣

𝜕𝑧

]
+𝑂 (ℎ2) .

(25)

Suppose the tangential velocity is even along the local z-coordinate.

Similar to the idea of asymptotic expansion [Chomaz 2001], we take

the Taylor expansion of 𝒖𝑠 as




𝑢 = 𝑢 (𝑧 = 0) +
𝜕2𝑢

𝜕𝑧2

����
𝑧=0

𝑧2 +𝑂 (ℎ4),

𝑣 = 𝑣 (𝑧 = 0) +
𝜕2𝑣

𝜕𝑧2

����
𝑧=0

𝑧2 +𝑂 (ℎ4),

(26)

and with the solenoidal condition, we obtain

𝜕𝑤

𝜕𝑧
= −∇𝑠 · 𝒖𝑠 = −∇𝑠 · 𝒖𝑠 (𝑧 = 0) +𝑂 (ℎ2). (27)

Combining (26) and (27), as well as using the boundary conditions

(25), we obtain




𝑝 = 𝑝𝑎 − 2[𝜅ℎ𝛾 + ∇𝑠 · 𝒖𝑠 (𝑧 = 0)] −
2

ℎ
𝛾𝜅𝑐𝑧 +𝑂 (ℎ2),

𝜕2𝑢

𝜕𝑧2

����
𝑧=0

=
1

ℎ

𝜕𝛾

𝜕𝑥
+𝑂 (ℎ2),

𝜕2𝑣

𝜕𝑧2

����
𝑧=0

=
1

ℎ

𝜕𝛾

𝜕𝑦
+𝑂 (ℎ2) .

(28)

Then, we substitute (28) into (5) to obtain the momentum equation

at 𝑧 = 0:

𝜌
𝐷𝒖

𝐷𝑡
+𝑂 (ℎ2) =

2∇𝑠 (𝜅ℎ𝛾 + ∇𝑠 · 𝒖𝑠 ) +
2𝛾

ℎ
𝜅𝑐𝒏 +

1

ℎ
∇𝑠𝛾 + 𝜇∇2

𝑠 𝒖 + 𝒇 .

(29)

B NUMERICAL VALIDATION AND PERFORMANCE

TABLE

To evaluate the accuracy of our algorithm, we perform a set of

numerical tests concerning the main key elements in our algorithm

in both the geometric and dynamic computations. We will compare

our simulation results with both the ones derived from analytic

equations and real-life experiments.

Mean Curvature. The centerpiece of computing the surface ten-

sion behaviors is the estimation of mean curvature 𝜅 , which relates

to the pressure jump across the air-fluid interface via the Young-

Laplace equation Δ𝑝 = −𝛾𝜅.
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Table 2. Performances of Different Scenes. A in table is a 128-core 3.1GHz AMD Ryzen Threadripper 3990X workstation, B in table is a 4-core 2.8GHz Intel(R)

Core(TM) laptop, and C is a 6-core 2.6GHz Intel(R) Core(TM) laptop.

Figure Description Number of Particles Computational Resource FPS* Time / Frame (Avg.)

Figure 11 Thickness Profile 5,154~5,785† Laptop C with 6 Cores 10 1.409s

Figure 4 (Upper) Oscillating Bubble (Sphere Bubble) 163,842 Server A with 16 Cores 50 10.65s

Figure 4 (Lower) Oscillating Bubble (Irregular Bubble) 24,578 Server A with 128 Cores 50 0.225s

Figure 7 Oscillating Bubble (Half Bubble) 86,013 Server A with 32 Cores 50 9.6s

Figure 5 Bubble Rupture 163,842 Server A with 128 Cores 50 10.92s

Figure 8 Large-Deforming Thin Films (Square) 58,081 Server A with 128 Cores 5 15.48

Figure 9 Large-Deforming Thin Films (Circular) 126,282 Server A with 128 Cores 10 13.575s

Figure 14 Thin-Film Dripping 5,185~5501† Server A with 16 Cores 50 9.74s

Figure 13,17 Catenoid 4,968~5,542† Laptop C with 6 Cores 300 0.883s

Figure 15 Droplet Marangoni Effect 8,173 Laptop C with 6 Cores 50 2.01s

Figure 16 Mean Curvature Validation 10,000 Laptop C with 6 Cores 10 0.35s

Figure 19 Numerical Height Validation 5154 Laptop C with 6 Cores 10 0.774s

Figure 18 Capillary Wave Validation 1,000 Laptop B with 4 Cores 50 0.02s
† The number of particles increases throughout the simulation due to particle reseeding, the two numbers listed in the table are the number of particles at the first and last frame.
* The number of frames per second for simulation. For example, FPS=50 means the time step of a frame Δ𝑡 = 0.02𝑠 . We take CFL condition number𝐶 = 0.1, so a frame may consist
of multiple time iterations depending on 𝑣max , and the simulation time of a frame is subject to it.

Fig. 16. Estimated Mean Curvature using our codimension-1 differential op-

erators vs. the analytical ground truth. From top to bottom are respectively:

the sphere, the torus, and the trigonometric surface.

Our method computes the mean curvature 𝜅𝑐 of the center sur-

face, which are curved 3D surfaces defined by the particles using

codimension-1 planar operators. To verify the correctness and ro-

bustness of our method under various surface geometries, we com-

pute the mean curvature of three different shapes: a sphere with

𝑅 = 1; a torus

(𝑥,𝑦, 𝑧) = 𝑅
(
(𝑐 + cos

−1 (𝑣)) cos(𝑢), sin−1 (𝑣), (𝑐 + cos
−1 (𝑣))𝑠𝑖𝑛(𝑢)

)

with 𝑐 = 0.8, 𝑎 = 0.3, 𝑢 ∈ [0, 2𝜋), 𝑣 ∈ [0, 2𝜋), and a surface defined

by 𝑦 = 0.1 (3 sin(𝑥) + 2 cos(𝑧) + 4 sin(2𝑥 + 𝑧)) with 𝑥, 𝑧 ∈ [0, 2𝜋).

To highlight the robustness of our algorithm, we initialize the

sample particles from a uniform random distribution to rehearse

the scenarios where particles are unevenly distributed in simulation.

In Figure 16, we plot the numerical and analytical estimations of

mean curvature on the left two columns and the error between them

on the right column. We can see that overall, our algorithm does

well in estimating the mean curvature for all kinds of surfaces. The

error is mostly gathered on the edges due to insufficiently sampled

neighborhoods, a shortcoming common to SPH methods [Koschier

et al. 2019].

Minimal Surface. The dynamics of thin-film are marked by its

tendency to form minimal surfaces under the surface tension, which

constantly contracts the surface to minimize the area locally. When

two rings are connected by a continuous soap film, and gravity is

ignored, the soap film between them will form the catenoid ÐÐ

a minimal surface formed by rotating a catenary. The analytical

definition of a catenoid is given by

(𝑥,𝑦, 𝑧) =
(
𝑐 cosh

( 𝑣
𝑐

)
cos𝑢, 𝑣, 𝑐 cosh

( 𝑣
𝑐

)
sin𝑢

)
.

The way that soap-film catenoids are typically formed is by gradu-

ally pulling the parallel rims apart. If we let 𝐷 denote the diameter

of the rims, and let 𝑑 denote the separation between them, then an

analytical catenoid can be solved for when 𝑑
𝐷 < 0.66274.

The constant 0.66274 is the approximation of the Laplace limit,

which is the value 1

sinh𝑢
for u satisfying𝑢 = coth𝑢,𝑢 > 0. As a result,

until this critical condition is met, we can obtain a corresponding

analytical catenoid to compare and contrast for every point cloud

in our simulation.
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