


This paper is structured as follows: the next section

presents background work on SLAM and sensor fusion.

Section III describes the calibration approach and the depth

fusion in a monocular SLAM system. Sections IV and

V analyze the experimental results and discuss extensions.

Finally, Section VI concludes the paper.

II. BACKGROUND

State-of-the-art visual odometry and SLAM systems em-

ploy two main classes of methods for estimating camera

motion. (1) Direct methods minimize the alignment er-

ror based on intensity values between images (e.g., LSD-

SLAM [9] and DSO [10]). (2) Indirect methods minimize

reprojection errors of tracked features (e.g., ORB-SLAM2 [8]

and work of Lim et al. [11]). Hybrid methods combine both

methodologies, e.g., SVO [12].

The basic sensor configuration of such methods is com-

posed of a monocular camera, which suffers from scale am-

biguity and drift [13], resulting in an incorrectly scaled map

point cloud, negatively affecting the situational awareness of

the robot, especially for control and planning.

To increase the quality of the estimates calculated by the

state estimation algorithms, it is common to fuse data from

other sensors, for example multi-calibrated cameras [14],

[15] or IMU [16]–[22]. In the underwater realm, SLAM

systems are mainly based on sonar – an exteroceptive sensor,

whose measurements will not be affected by drift, as seen

with low-end IMUs. Folkesson et al. [23] proposed the

use of a blazed array sonar for real-time feature tracking.

More recently, Richmond et al. [24] described an underwater

SLAM system for autonomous cave exploration that uses

a multi-beam sonar, an underwater dead-reckoning system

based on fiber-optic gyroscope (FOG) IMU, an acoustic

Doppler Velocity Log (DVL), and pressure-depth sensors.

Similarly, SVIn2 [25] system fused measurements from a

profiling scanning sonar together with IMU, stereo camera

images, and pressure sensor. To reliably apply many of these

systems, it is important to undergo multi-sensor calibration,

such as camera to multi-beam sonar [26] and camera to

imaging sonar [27], [28].

Instead of fusing multiple sensors, recent work integrates

fiducial markers into the environment to act as ground truth

parameters for the SLAM system, either depending solely

on the markers (SPM-SLAM [29]) or using a fusion of

keyframes and markers (UcoSLAM [30]). Other methods

[31], [32] explicitly address changes in the scene, e.g., in

illumination, by preprocessing the images. The image en-

hancement methods do not typically depend on information

from the environment or do require high-end sensors (DVL).

In our work, we consider low-cost ROVs and AUVs

not equipped with costly devices, but usually installed with

a monocular camera and a single-beam echosounder, e.g.,

BlueROV2. Our method uses a monocular SLAM system

– NO reliable high-frequency IMU is installed on the robot.

We address the problem of “how to alleviate the issue of scale

ambiguity affecting monocular SLAM with measurements

from a single-beam echosounder?”

III. APPROACH

Our proposed system – see Fig. 2 – will correct the depth

scale for a monocular SLAM system, given a camera and

an echosounder with overlapping field of view. We define

the echosounder and camera model (Section III-A) to then

enable real-time projection of the sound cone onto the image

frame. We propose a calibration and optimization procedure

to ensure proper projection (Section III-B), and we describe

the method to fuse the echosounder measurement with the

SLAM system in Section III-C.

A. Echosounder and Camera Model

To measure the distance to an object, a single-beam

echosounder emits an acoustic pulse i and listens to the

reflected pulses, recording the time of flight. The time of

flight ti of the strongest reflected pulse is used to calculate

the distance measurement mi = v · (ti/2), where v is the

sound velocity in water. Note that sound beams propagate

approximately in a cone – see Fig. 2 (right).

The echosounder returns valid measurements mi when the

distance to the object is between d0 – the known blanking

distance or the minimum distance that the sensor can reliably

detect at – and dmax – the maximum distance for the

sensor. In general, an invalid measurement occurs when the

following inequality does not hold:

d0 ≤ mi ≤ dmax (1)

Furthermore, if the echosounder’s position CtE and direc-

tion unit vector ~v with respect to the camera reference frame

{C} are known, its sound cone can be projected onto the

image frame for every new distance reading mi. The sound

cone can be approximated as a circle with the center Cci in

the camera reference frame as:

Cci = CtE +mi ·~v (2)

The radius of the circles is calculated as

ri = mi · tan(a), (3)

where a is the sonar’s known cone angle.

Then by applying a camera projection model, we can

obtain the pixel value for the center – see Fig. 2 (right).

For a pinhole camera model with camera intrinsics K, the

pixel coordinates u and v are:





u
v
1



 = K · Cci (4)

While a more complex model could be used, we approximate

the projection of the cone slice on the image with a circle.

In this way, we only need to compute another point on the

cone slice using the radius ri, by projecting it on to the

image and determining the circle in the image plane passing

through that point, with center (u, v).
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Algorithm 1 Depth ratio calculation

Input: list of current visual feature points fj and corresponding 3-D map points

Fv , echosounder measurement mi, current camera pose CTW in the world {W}
reference frame, camera-echosounder extrinsic CtE , ~v
Output: Depth ratio di

/*Find the closest feature point to the cone*/

1: Wxs = ∞
2: for (every fj ,Wxj in Fv ) do

3: if ( in projected cone(fj ,mi,CtE ,~v ) ) then

4: if (dist to cam(Wxj ,CTW ) < dist to cam(Wxs,CTW ) ) then

5: Wxs = Wxj

6: end if

7: end if

8: end for

/*Find new depth estimate of the visual point matching echosounder reading*/

9: dm = argmin
W xs

(‖CTW · [Wx
T
s 1]T − [Ct

T
E 1]T ‖ − mi)

2

10: return di = dm/‖Wxs − W tC‖

to the echosounder model should be corresponding to the

measurement. The new depth estimate dm of the found map

point Wxs is calculated by optimizing its position along the

line of camera view to fit with the echosounder’s reading

(Line 9) and the ratio is calculated according to the current

map point depth (Line 10).

IV. EVALUATION AND APPLICATION

In this section, we illustrate the steps for collecting and

applying echosounder measurements. First, our ESCalibr1

application is operated to help collect echosounder data for

calculating its position and direction vector with respect

to the camera. This is followed by details on integrating

echosounder extrinsic and measurements into a SLAM sys-

tem for image frame projection and depth scale correction.

Finally, we will display how the echosounder’s measure-

ments and the image feature points can be used with our

image color enhancement method [6].

While our methodology for fusing echosounder measure-

ments can be applied to any indirect based monocular SLAM

system, we modified monocular ORB-SLAM2 [8], a real-

time keyframe-based SLAM system that has shown good

performance in underwater datasets [3], [5]. The optimized

extrinsic from the calibration step are used to match feature

points detected from ORB-SLAM2 and to adjust the corre-

sponding depth values with the echosounder readings.

All experiments and data collection were performed in

a swimming pool or in the Caribbean Sea. We used the

BlueROV2, its installed Ping echosounder2, and either the

Sony IMX322LQJ-C camera3 (included in the BlueROV2)

or the Sony IMX273 camera4 (installed for separate perfor-

mance evaluation). The former camera – used in the pool –

has a resolution of 5 MP, a horizontal field of view (FOV)

of 80°, and a vertical FOV of 64°. While, the latter camera

– used in the sea – has a resolution of 1.6 MP, a horizontal

1https://github.com/dartmouthrobotics/escalibr
2https://bluerobotics.com/learn/

ping-sonar-technical-guide/
3https://www.bluerobotics.com/

store/sensors-sonars-cameras/cameras/

cam-usb-low-light-r1/
4https://www.flir.com/products/blackfly-s-usb3/

?model=BFS-U3-16S2C-CS

Fig. 3: Black glass sphere (left) and GUI (right).

Fig. 4: The echosounder’s position CtE (red x) and direction

vector ~v (green line) are calculated via the optimization pro-

cess described in Equation (5), based on the measurements

mi and the 3-D points Cxi of the detected sphere (blue dots).

FOV of 96°, and a vertical FOV of 72°. The echosounder

has a maximum range of 30m and a cone angle a of 30°.

A. ESCalibr: Echosounder and Camera Calibration

For experimental setup, we suspended a black glass sphere

with a diameter of 25.4 cm into the water at an arbitrary

depth. We observed that the thin rope, which holds the sphere

in water, is undetectable by the echosounder. Fig. 3 (left)

presents the simple setup needed for data collection.

We use our ESCalibr application to help us visualize

what the robot sees, the current echosounder reading and

confidence level (if applicable), and the amount of data points

collected so far at different distances. The GUI, snapshot

seen in Fig. 3 (right), also allows us to see in real time the

sphere detection and results from 3D point calculation. After

a period of time, the user can end the application and save

the data of collected detection points.

Fig. 4 displays 4000 data points collected over 3 runs that

were detected with high confidence level. The echosounder’s

hand-measured position is (−0.17 cm, 0.08 cm, 0.09 cm).

After calibration, the position CtE became (−0.166 cm,

0.101 cm, −0.049 cm), shown as a red x, with a direction

vector ~v of 〈0.080,−0.146, 0.963〉, shown as a green line.

B. Depth Extraction and Adjustment

To validate the calibration extrinsic and the depth scale

correction accuracy, we set up a pyramid of boxes with

fiducial markers – acting as ground truth targets – and

move the BlueROV2 to different view points. See Table I

for the results of 10 runs, half with the hand-measured (b)

values and half with the calibrated (c) extrinsic values. The
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View 1 View 2 View 3

Tag ID 3 6 8 1 2 5 6 0 5 7
a 0.461 0.469 0.435 0.846 1.025 0.705 0.719 0.777 0.825 0.777
b 0.363 0.334 0.380 0.329 0.464 0.363 0.311 0.400 0.934 0.240
c 0.169 0.174 0.161 0.645 0.742 0.537 0.578 0.158 0.158 0.161

TABLE I: Depth scale error in Root Mean Square Error (m).

a: Regular Monocular ORB-SLAM2. b: Adjusted with hand-

measured echosounder extrinsic. c. Adjusted with calibrated

echosounder extrinsic.

Fig. 5: Trajectory results of the robot circling a reef rock.

Red: Monocular ORB-SLAM2 [8] implementation. Green:

Monocular ORB-SLAM2 and echosounder integration.

calibrated values provided the best results, except for View

2. The fault most likely occurred while calculating the depth

scale ratio. If a bad map point – e.g., a new corner appeared

and assumed to be near – is chosen, then the effect ripples

through the rest of the map points. Otherwise, hand-measured

parameter values provide decent results as well.

We also conducted an experiment to evaluate the results

after loop-closing. Here, the robot circled around a reef rock,

identical to what is depicted in Fig. 6. As illustrated in Fig. 5,

the SLAM and echosounder integration results in a trajectory

of the same form as the regular SLAM implementation, but

its scale is much larger, and corresponding to the actual

size of the reef rock. This heavily implies that without the

echosounder integration, the robot “thinks” it is closer to the

(actually larger) rock than it is in reality.

C. Application: Image Enhancement

Our proposed method can be applied to robotic vision-

based applications, such as our image enhancement

method [6] (see the paper for further details). This method

depends on the availability of image depth information,

or distance values between the camera and the objects of

interest in the scene. One distance value is not enough,

as it will not accurately color correct parts of the image,

especially when foreground objects are shaped uniquely

or are at different locations in the scene. In this case,

ORB-SLAM2 feature points with adjusted depth values can

provide additional needed data.

Fig. 6 shows the steps to apply depth values to our image

enhancement process [6] and results: (a) is the raw undis-

torted image seen by the robot. In parallel, ORB-SLAM2

detects features in the scene, as in (b). Here, we estimate

the depth values in the regions between the feature points

by applying the Voronoi diagram. With monocular ORB-

SLAM2, the system may randomly set the scene with low

(c) or high (d) depth scale estimates, which leads to under-

or over-enhancement, respectively. On the other hand, our

approach (e) with SLAM and echosounder integration shows

the best results, with more detail and no over-correction.

Image enhancement is one possible application for our

system. Other underwater robotic operations include obstacle

avoidance, exploration, and scene reconstruction.

V. DISCUSSION AND FUTURE STEPS

The jointly calibrated system of single-beam echosounder

and monocular camera yields much potential to under-

water tasks, especially when integrated with SLAM algo-

rithms. While the proposed method was tested with ORB-

SLAM2 [8], it will be beneficial to analyse it with other

SLAM systems. Other extensions include system integration

with a more suitable IMU or stereo camera.

Currently, the sonar’s reading is matched with the closest

map point in its sound cone, which is misleading if the

chosen point is on a parallel plane, like a wall or floor, not

detectable by the sonar. To account for these false positives,

one could add measurement uncertainty to the map points.

Furthermore, while the echosounder was shown to improve

the depth scale during SLAM operation, we would like to

also extend its capabilities to mitigate drift. We plan to

integrate the echosounder readings into the map optimization

phase to ensure that adjustments in keyframes also take into

account of the sonar values.

While the proposed system was applied to image enhance-

ment, it would be interesting to extend it to other underwater

robotic tasks, like autonomous object avoidance or tracking.

VI. CONCLUSION

We presented a new method for integrating a low-cost

single-beam echosounder and monocular camera together to

improve SLAM and underwater robotic tasks, such as image

enhancement. This paper provides analyses on experiments

in a pool and in the sea to show the feasibility of this new

design, as well as a discussion on accuracy improvements
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(a) (b) (c) (d) (e)

Fig. 6: Image enhancement [6] with SLAM depth estimates. (a) Raw. (b) ORB-SLAM2 output. (c) Enhanced with low

SLAM depth estimates. (d) Enhanced with high SLAM depth estimates. (e) Enhanced by proposed method.

and future steps. In broad sense, mounting inexpensive sen-

sors on low-cost ROVs and AUVs will effectively augment

their autonomy, increasing their applicability in many fields.
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