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Abstract
Birth-death stochastic processes are the foundation of many phylogenetic models and are widely1

used to make inferences about epidemiological and macroevolutionary dynamics. There are a2

large number of birth-death model variants that have been developed; these impose different3

assumptions about the temporal dynamics of the parameters and about the sampling process. As4

each of these variants was individually derived, it has been difficult to understand the5

relationships between them as well as their precise biological and mathematical assumptions.6

Without a common mathematical foundation, deriving new models is non-trivial. Here we unify7

these models into a single framework, prove that many previously developed epidemiological and8

macroevolutionary models are all special cases of a more general model, and illustrate the9

connections between these variants. This unification includes both models where the process is10

the same for all lineages and those in which it varies across types. We also outline a11

straightforward procedure for deriving likelihood functions for arbitrarily complex12

birth-death(-sampling) models that will hopefully allow researchers to explore a wider array of13

scenarios than was previously possible. By re-deriving existing single-type birth-death sampling14

models we clarify and synthesize the range of explicit and implicit assumptions made by these15

models.16

Key words: epidemiology; macroevolution; phylogenetics; birth-death processes; statistical17

inference18

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com



2 MACPHERSON ET AL.

Evolutionary, demographic, and epidemiological processes leave a footprint in the branch length19

distribution and topology of reconstructed phylogenetic trees. This insight has inspired a huge20

effort to extract information about these processes by fitting stochastic models. For example, in21

molecular epidemiology, researchers have leveraged the fact that for many viral pathogens, such22

as HIV and SARS-CoV-2, accumulate genetic diversity on the timescale of transmission23

(Drummond et al., 2003; Duffy et al., 2008). This genetic diversity can be used to reconstruct the24

evolutionary relationships between viral variants sampled from different hosts, which in turn can25

help elucidate the epidemiological dynamics of a pathogen over time (Grenfell et al., 2004; Volz,26

2012). Similarly, phylogenetic trees can provide unique insights into the variation in speciation27

and extinction rates (Morlon, 2014).28

Phylogenetic branching models can be broadly grouped into two classes. The first, based29

on Kingman’s coalescent process (Kingman, 1982), has been widely used to examine changes in30

the historical population size of pathogens (Pybus et al., 2000; Strimmer and Pybus, 2001;31

Drummond et al., 2005; Volz et al., 2009). These coalescent methods have also been applied to32

reconstruct macroevolutionary dynamics (Morlon et al., 2010). Coalescent models are well suited33

for estimating deterministic population dynamics; however, fitting highly stochastic processes,34

such as the dynamics of an emerging pathogen, is computationally intensive and in some cases35

the assumptions of the coalescent may not be appropriate (Stadler et al., 2015; Boskova et al.,36

2014; Volz and Frost, 2014). The second class of models, which are collectively referred to as37

birth-death-sampling (BDS) models (Kendall, 1948; Maddison et al., 2007; Stadler, 2009, 2010),38

is well suited for stochastic scenarios, and are thus becoming an increasingly favorable and39

popular alternative to coalescent models in epidemiology (Stadler et al., 2012) and have long40

been the foundation of most macroevolutionary studies — both for inferring speciation and41

extinction dynamics (Raup, 1985; Nee et al., 1994) and for estimating divergence times42

(Gernhard, 2008; Heath et al., 2014). As the name implies, the BDS process includes three types43

of events: birth (pathogen transmission between hosts, or speciation in a macroevolutionary44

context), death (host death or recovery, or extinction in macroevolution), and sampling (including45

fossil collection in macroevolution).46

In the context of epidemiology, BDS models have the additional property that the model47

parameters, which can be estimated from viral sequence data, explicitly correspond to parameters48

in classic structured epidemiological models that are often fit to case surveillance data. If we49

re-parameterize these models, we can describe the dynamics of the basic and effective50

reproductive ratios (R0 and Re, respectively) over time (Stadler et al., 2012, 2013) (see Box 1). A51

common research aim is to describe how the frequency of birth, death, and sampling events, and52

other derived variables such as Re, change throughout the course of an epidemic. There has been53

less work in macroevolution linking the parameters of a BDS model to those of an underlying54

more mechanistic model (but see Ezard et al., 2016) but this seems like a promising avenue for55

future development.56

As we detail below and in the Supplementary Material, there has been an astounding rise57

in the variety and complexity of BDS model variants. A key assumption in the specification of58

BDS sub-models is whether all lineages alive at some time point are exchangeable (Stadler, 2013)59

(such models are hereafter “single-type” models), meaning they diversify according to the same60

process, or if rather the diversification process is variable (“multi-type” models; e.g., Maddison61

et al., 2007; FitzJohn, 2012; Stadler and Bonhoeffer, 2013; Rasmussen and Stadler, 2019;62

Barido-Sottani et al., 2018), with lineages belonging to one of multiple possible states each63

characterized by a unique process. Each of these diversification processes can then be64

characterized by different dynamical assumptions. In the epidemiological case, these assumptions65

specify, for example, the nature of viral transmission and the sampling procedure (Stadler et al.,66

2013; Kühnert et al., 2014; Gavryushkina et al., 2014). While typically not explicitly tied to67

mechanistic evolutionary processes, there are a similar abundance of dynamical assumptions68

employed in the macroevolutionary context specifying the nature of biodiversity change through69

time (Nee, 2006; Gernhard, 2008; Morlon et al., 2011; Stadler, 2011; Morlon, 2014; Heath et al.,70
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2014; Louca, 2020).71

This flourishing of methods and models has facilitated critical insights into epidemics (du72

Plessis and Stadler, 2015; Joy et al., 2016) and the origins of contemporary biodiversity (Morlon,73

2014; Schluter and Pennell, 2017). However, this diversity of models has made it difficult to trace74

the connections between variants and to understand the precise epidemiological, evolutionary,75

and sampling processes that differ between them. Furthermore, despite their apparent similarities,76

these models have been derived on a case-by-case basis using different notation and techniques;77

this creates a substantial barrier for researchers working to develop novel models for new78

situations. And critically, it is imperative that we understand the general properties of BDS79

phylogenetic models and the limits of inferences from them (Louca and Pennell, 2020a; Louca80

et al., 2021) and this is difficult to do without considering the full breadth of possible scenarios.81

Here we address all of these challenges by unifying the whole class of phylogenetic BDS82

models. We do so by first deriving a likelihood for general single- and multi-type BDS models; in83

the general case, we do not assume anything about the functional forms (i.e., temporal dynamics)84

of the various parameters including the sampling rate through time, the possibility of sampling85

ancestors (or not), or how the process was conditioned. While such general models may be useful86

for studying the mathematical properties of BDS models as a whole (Lambert and Stadler, 2013;87

Louca and Pennell, 2020a; Louca et al., 2021), statistical inference from these models requires88

researchers to make further constraints on the process. We prove that existing BDS model variants89

are indeed sub-models of the more general case — and thereby clarify the specific assumptions90

made by different models — and provide a standardized notation and technique for deriving these91

and other sub-models that have not previously been considered in the literature.92

The single-type birth-death-sampling model93

Model Specification: The BDS stochastic process begins with a single lineage at time T94

before the present day. We note that this may be considerably older than the age of the most recent95

common ancestor of an observed sample which is given by tMRCA. While we focus primarily on96

applications to epidemiology, our approach is agnostic to whether the rates are interpreted as97

describing pathogen transmission or macroevolutionary diversification.98

In the model, transmission/speciation results in the birth of a lineage and occurs at rate99

λ(τ), where τ (0 6 τ 6 T ) is measured in units of time before the present day (τ = 0), such that100

λ can be time-dependent. We make the common assumption that lineages in the viral phylogeny101

coalesce exactly at transmission events, thus ignoring the within-host coalescent processes in the102

donor (Romero-Severson et al., 2016). Throughout, we will use τ as a a general time variable and103

t× to denote the time at which a specific event × occurs as measured in units of time before the104

present day (see Table S1). Lineage extinction, resulting from host recovery or death in the105

epidemiological case or the death of all individuals in a population in the macroevolutionary case,106

occurs at time-dependent rate µ(τ). We allow for two distinct types of sampling: lineages are107

either sampled according to a Poisson process through time ψ(τ) or binomially at very short108

intervals, which we term “concerted sampling attempts” (CSAs), where lineages at some109

specified time tl are sampled with probability ρl (~ρ denotes a vector of concerted sampling events110

at different time points). In macroevolutionary studies based only on extant lineages, there is no111

Poissonian sampling, but a CSA at the present (ρ0 > 0). In epidemiology, CSAs correspond to112

large-scale testing efforts (relative to the background rate of testing) in a short amount of time113

(relative to the rates of viral sequence divergence); for full explanation, see Appendix. We call114

these attempts rather than events because if ρ is small or the infection is rare in the population,115

few or no samples may be obtained. CSAs can also be incorporated into the model by including116

infinitesimally short spikes in the sampling rate ψ (more precisely, appropriately scaled Dirac117

distributions). Hence, for simplicity, in the main text we focus on the seemingly simpler case of118

pure Poissonian sampling through time except at present-day, where we allow for a CSA to119
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facilitate comparisons with macroevolutionary models; the resulting formulas can then be used to120

derive a likelihood formula for the case where past CSAs are included (see Appendix).121

In the epidemiological case, sampling may be concurrent (or not) with host treatment or122

behavioural changes resulting in the effective extinction of the viral lineage. Hence, we assume123

that sampling results in the immediate extinction of the lineage with probability r(τ). As with the124

CSAs, this arbitrary time dependence allows for the incorporation of Dirac spikes in any of these125

variables, for example with mass extinctions (µ) and lagerstätten in the fossil record (ψ(1 − r))126

(Magee and Höhna, 2021). Similarly, in the case of past CSAs we must include the probability, rl,127

that sampled hosts are removed from the infectious pool during the CSA at time tl. Poissonian128

sampling without the removal of lineages (r(τ) < 1) can be employed in the macroevolutionary129

case to explicitly model the collection of samples from the fossil record (such as the130

fossilized-birth-death process; Heath et al., 2014).131

For our derivation, we make no assumption about the temporal dynamics of λ, µ, ψ, or r;132

each may be constant, or vary according to any arbitrary function of time given that it is133

biologically valid (non-negative and between 0 and 1 in the case of r). Specifically, the134

time-varying functions may be any piecewise-continuous functions of time with at most finite135

number of discontinuities (see 1). Note that these functions need not be differentiable. We make136

the standard assumption that at any given time any given lineage experiences a birth, death or137

sampling event independently of (and with the same probabilities as) all other lineages. We revisit138

this assumption in Box 1 where we discus how the implicit assumptions of the single-type BDS139

process are well summarized by the diversification model’s relationship to the SIR140

epidemiological model. Our resulting general time-variable BDS process can be fully defined by141

the parameter set ΘBDS = {λ(τ), µ(τ), ψ(τ), r(τ), ~ρ}.142

In order to make inference about the model parameters, we need to calculate the143

likelihood, L, that an observed phylogeny, T, is the result of a given BDS process. With respect to144

the BDS process there are two ways to represent the information contained in the phylogeny T,145

both of which have been used in the literature, which we call the “edge” and “critical time”146

representations, respectively. We begin by deriving the likelihood in terms of the edge147

representation and later demonstrate how to reformulate the likelihood in terms of critical times.148

In the edge representation, the phylogeny is summarized as a set of edges in the mathematical149

graph that makes up the phylogeny, numbered 1-11 in Figure B1C, and the types of events that150

occurred at each node. We define ge(τ) as the probability that the edge e which begins at time se151

and ends at time te gives rise to the subsequently observed phylogeny between time152

τ, (se < τ < te) and the present day. The likelihood of the model for the observed tree is then, is153

by definition gstem(T ): the probability density that the stem lineage (stem = 1 in Figure B1c)154

gives rise to the observed phylogeny from the origin, T , to the present day. We find that it is more155

intuitive to derive the likelihood in terms of the edge representation, as we show below; from this156

it is straightforward to derive the critical times formulation which results in mathematical157

simplification. Below we present our five-step technique for the derivation of the tree likelihood.158

Step 1. Deriving the Initial Value Problem (IVP) for ge(τ): We derive the IVP for the likelihood159

density ge(τ) using an approach first developed by Maddison et al. (2007). We begin by deriving160

the recursion equation for ge by considering all the possible events that could occur along edge e161

between time τ and τ + ∆τ assuming that that ∆τ is small enough such that at most one event is162

likely to occur.163
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ge(τ + ∆τ) ≈ (1 − λ(τ)∆τ)(1 − µ(τ)∆τ)(1 − ψ(τ)∆τ) × ge(τ)
︸ ︷︷ ︸

nothing happens

+λ(τ)∆τ(1 − µ(τ)∆τ)(1 − ψ(τ)∆τ) × 2ge(τ)E(τ)
︸ ︷︷ ︸

birth event

+µ(τ)∆τ(1 − λ(τ)∆τ)(1 − ψ(τ)∆τ) × 0
︸ ︷︷ ︸

death event

+ψ(τ)∆τ(1 − λ(τ)∆τ)(1 − µ(τ)∆τ) × 0
︸ ︷︷ ︸

sampling event

+O(∆τ 2).

(1)164

Here, E(τ) is the probability that a lineage alive at time τ leaves no sampled descendants at the165

present day. We will examine this probability in more detail below. Assuming ∆τ is small, we can166

approximate the above recursion equation as the following difference equation.167

∆ge(τ) ≈ −(λ(τ) + µ(τ) + ψ(τ))∆τge(τ) + 2λ(τ)ge(τ)E(τ)∆τ + O(∆τ 2). (2)168

By the definition of the derivative we have:169

dge(τ)

dτ
= −(λ(τ) + µ(τ) + ψ(τ))ge(τ) + 2λ(τ)ge(τ)E(τ). (3)170

Equation (3) is known as the Kolmogorov backward equation of the BDS process (Feller, 1949;171

Louca and Pennell, 2020b). Beginning at time se, the initial condition of ge depends on which172

event occurred at the beginning of edge e.173

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

(1 − r(se))ψ(se)ge1(se) ancestral sampling event

ψ(se)r(se) + ψ(se)(1 − r(se))E(se) terminal sampling event

ρ0 se = 0, extant sample

(4)174

Together Equations (3) and (4) define the initial value problem for ge(τ) as a function of the175

probability E(τ).176

Because the likelihood density ge is the solution to a linear differential equation with177

initial condition at time se, we can express its solution as follows:178

ge(τ) = Ψ(se, τ)ge(se), (5)179
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where the auxiliary function, Ψ, is given by:180

Ψ(se, τ) = exp
[∫ τ

se

2λ(x)E(x) − (λ(x) + µ(x) + ψ(x)) dx
]

. (6)181

This function, Ψ(s, t), maps the value of ge at time s to its value at t, and hence is known as the182

probability “flow” of the Kolmogorov backward equation (Louca and Pennell, 2020b).183

Step 2. Deriving the IVP for E(τ): We derive the IVP for E(τ) in a similar manner as above,184

beginning with a difference equation.185

E(τ + ∆τ) = (1 − λ(τ)∆τ)(1 − µ(τ)∆τ)(1 − ψ(τ)∆τ) × E(τ)
︸ ︷︷ ︸

nothing happens

+λ(τ)∆τ(1 − µ(τ)∆τ)(1 − ψ(τ)∆τ) × E(τ)2

︸ ︷︷ ︸

birth event

+µ(τ)∆τ(1 − λ(τ)∆τ)(1 − ψ(τ)∆τ) × 1
︸ ︷︷ ︸

death event

+ψ(τ)∆τ(1 − λ(τ)∆τ)(1 − µ(τ)∆τ) × 0
︸ ︷︷ ︸

sampling event

.

(7)186

By the definition of a derivative we have:187

dE(τ)

dτ
= − (λ(τ) + µ(τ) + ψ(τ))E(τ) + λ(τ)E(τ)2 + µ(τ),

E(0) =1 − ρ0,

(8)188

where ρ0 is the probability a lineage is sampled at the present day. The initial condition at time 0189

is therefore the probability that a lineage alive at the present day is not sampled. Given an190

analytical or numerical general solution to E(τ), we can find the likelihood by evaluating191

gstem(T ), as follows.192

Step 3. Deriving the expression for gstem(T ): Given the linear nature of the differential equation193

for ge(τ) and hence the representation in Equation (5)), the likelihood gstem(τ) is given by the194

product over all the initial conditions times the product over the probability flow for each edge.195

gstem(T ) = ρN0

0
︸︷︷︸

extant
tips

I∏

i=1

λ(xi)

︸ ︷︷ ︸

births

n∏

j=1

[ψ(yj)(1 − r(yj))E(yj) + ψ(yj)r(yj)]

︸ ︷︷ ︸

extinct tips

×
m∏

k=1

ψ(zk)(1 − r(zk))

︸ ︷︷ ︸

ancestral samples

∏

e∈T

Ψ(se, te)

︸ ︷︷ ︸

edges

.

(9)196
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where xi, yj and zk are the times at which individual birth, terminal sampling and ancestral197

sampling events occur as we elaborated below.198

Step 4. Representing gstem(T ) in terms of critical times: Equation (9) can be further simplified by199

removing the need to enumerate over all the edges of the phylogeny (the last term of Equation (9))200

and writing L in terms of the tree’s critical times (horizontal lines in Figure B1). The critical201

times of the tree are made up of three vectors, ~x, ~y, and ~z, as well as the time of origin T . The202

vector ~x gives the time of each birth event in the phylogeny and has length I = N0 + n− 1 where203

N0 is the number of lineages sampled at the present day and n is the number of terminal samples.204

Unless noted otherwise the elements of vector ~x are listed in decreasing order, such that205

x1 > x2 > ...xI and hence x1 is the time of the most recent common ancestor tMRCA. The vector206

~y gives the timing of each terminal sample and hence has length n whereas vector ~z gives the207

timing of each ancestral sample and has length m. With respect to the BDS likelihood then the208

sampled tree is summarized by T = {~x, ~y, ~z, T}. We note that the critical times only contain the209

same information as the edges as a result of the assumptions of the BDS process but are not210

generally equivalent representations of T.211

As a result of the linear nature of ge(τ) it is straightforward to rewrite the likelihood in212

Equation (9) in terms of the critical-time representation of the sampled tree. Defining213

Φ(τ) = Ψ(0, τ) = exp
[∫ τ

0
2λ(x)E(x) − (λ(x) + µ(x) + ψ(x)) dx

]

, (10)214

the probability flow Ψ can be rewritten as the following ratio:215

Ψ(s, τ) =
Ψ(0, τ)

Ψ(0, s)
=

Φ(τ)

Φ(s)
. (11)216

This relationship allows us to rewrite the likelihood by expressing the product over the edges as217

two separate products, one over the start of each edge and the other over the end of each edge218

which in turn allows us to rearrange and cancel terms to obtain an alternative likelihood219

expression. Edges begin (value of te) at either: 1) the tree origin, 2) a birth event resulting to two220

lineages, or 3) an ancestral sampling event. Edges end (values of se) at either: 1) a birth event, 2)221

an ancestral sampling event, 3) a terminal sampling event, or 4) the present day. Hence we have:222

gstem(T ) = Φ(T )
︸ ︷︷ ︸

root

×

(

ρ0

✟✟✟Φ(0)

)N0

︸ ︷︷ ︸

extant tips

×
I∏

i=1

λ(xi)
Φ(xi)✁

2

✟✟✟Φ(xi)
︸ ︷︷ ︸

births

×
n∏

j=1

ψ(yj)

Φ(yj)
[(1 − r(yj))E(yj) + r(yj)]

︸ ︷︷ ︸

extinct tips

×
m∏

k=1

✟✟✟✟Φ(zk)

✟✟✟✟Φ(zk)
ψ(zk)(1 − r(zk))

︸ ︷︷ ︸

ancestral samples

.

(12)223

Note Φ(0) = 1. While Equations (9) and (12) are numerically identical, the critical time224

expression is more convenient for application as it requires numerically evaluating only a single225

function Φ(τ) as given by Equation (10).226

Step 5. Conditioning the likelihood: While Equation (12) is equal to the basic model likelihood227

for the phylogeny T, it is often appropriate to condition the tree likelihood on the tree exhibiting228

some property, for example the condition there being at least sampled lineage. Imposing a229
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condition on the likelihood is done by multiplying by a factor S. Various conditioning schemes230

are considered in section 1 and listed in Table S3 with the value of S ranging in complexity from a231

constant to a general function of the model parameters. The resulting likelihood expression for the232

general BDS model is:233

L (ΘBDS, S|~x, ~y, ~z,N0) =SρN0

0 Φ(T )
I∏

i=1

λ(xi)Φ(xi)

×
n∏

j=1

ψ(yj)

Φ(yj)
[(1 − r(yj))E(yj) + r(yj)]

m∏

k=1

ψ(zk) (1 − r(zk))

(13)234

Many existing models are special cases of this general BDS model235

A large variety of previously published BDS models in epidemiology and macroevolution236

are special cases of the general model presented here (for a summary of the models we237

investigated see Table S2; proofs in Supplemental Material). Indeed, we can obtain the likelihood238

of these models by adding mathematical constraints (i.e., simplifying assumptions) to the terms in239

Equation (13). Our work thus not only provides a consistent notation for unifying a multitude of240

seemingly disparate models, it also provides a concrete and numerically straightforward recipe for241

computing their likelihood functions. We recognize that there are many valid approaches for242

deriving tree likelihoods for BDS models with share many similarities with our own (e.g., Nee243

et al., 1994; Maddison et al., 2007; Gernhard, 2008; Morlon et al., 2011; Lambert and Stadler,244

2013; Lambert, 2018; Laudanno et al., 2020; Louca and Pennell, 2020b) and do not claim ours is245

superior to these; however, we have found our technique to be intuitive and flexible. We have246

implemented the single-type BDS likelihood in the R package castor (Louca and Doebeli,247

2018), including routines for maximum-likelihood fitting of BDS models with arbitrary248

functional forms of the parameters given a phylogeny and routines for simulating phylogenies249

under the general BDS models (functions fit_hbds_model_on_grid,250

fit_hbds_model_parametric and generate_tree_hbds).251

Figure 1 summarizes the simplifying assumptions that underlie common previously252

published BDS models; these assumptions generally fall into four categories: 1) assumptions253

about the functional form of birth, death, and sampling rates over time, 2) assumptions pertaining254

to the sampling of lineages, 3) the presence of mass-extinction events, and 4) the nature of the255

tree-conditioning as given by S. Here we provide a brief overview of the type of256

previously-invoked constraints which are consistent (or not) with our unified framework; for full257

details on each specific case, we refer readers to the Supplementary Material. While we illustrate258

these constraints within the single-type context, analogous assumptions can be made within the259

multi-type context examined in the following section.260

In regards to rate assumptions, many early BDS models (Stadler, 2009, 2010; Stadler261

et al., 2012) assumed that the birth, death, and sampling rates remained constant over time. This262

is mathematically and computationally convenient since an analytical solution can easily be263

obtained for E(τ). In the epidemiological case, holding λ constant, however, implies that the264

number of susceptible hosts is effectively constant throughout the epidemic and/or that the265

population does not change its behavior over time; this is an unrealistic assumption given seasonal266

changes or changes in response to the disease itself. As such, this assumption is only really valid267

for small time periods or the early stages of an epidemic. This is useful for estimating the basic268

reproductive number, R0, of the SIR model (Box 1) but not for the effective reproductive number269

Re at later time points (Stadler et al., 2012).270

A similarly tractable, but more epidemiologically relevant, model is known as the271

“birth-death-skyline” variant (Stadler and Bonhoeffer, 2013; Gavryushkina et al., 2014), in which272
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rates are piecewise-constant functions through time (like the constant rate model, there is also an273

analytical way to calculate the likelihood of this model; see Appendix). The BDS skyline model274

has been implemented under a variety of additional assumptions in the Bayesian phylogenetics275

software BEAST2 Bouckaert et al. (2019). The BDS skyline model has also been extended by276

Kuhnert et al. (Kühnert et al., 2014) to infer the the parameters of an underlying stochastic SIR277

model. In this case the diversification model parameters ΘBDS are random variables that emerge278

from stochastic realizations of the epidemiological model given by ΘSIR, see Equation (B1).279

Finally, the birth-death skyline model with piecewise constant rates can also be applied in the280

macroevolutionary case when no sampling occurs through time, ψ(τ) = 0 (Stadler, 2011).281

In addition to imposing constraints on the temporal variation in the rates, previously282

derived sub-models have considered a variety of different assumptions about the nature of the283

sampling process. Most notably, in macroevolutionary studies, sampling of molecular data284

typically occurs only at the present day (Stadler, 2009, 2011; Morlon et al., 2011) whereas past285

Poissonian sampling can be introduced to include the sampling of fossil data (Heath et al., 2014).286

In epidemiology, concerted sampling at the present day is likely biologically unrealistic (Stadler287

et al., 2012), though in some implementations of the models, such a sampling scheme has been288

imposed. These concerted sampling attempts prior to the present day as well as mass extinction289

events can be incorporated via the inclusion of Dirac distributions in the sampling and death290

rates, respectively. Finally, previous models often multiply the likelihood by a factor S in order to291

condition on a particular observation (e.g., observing at least one lineage or exactly N0 lineages),292

enumerate indistinguishable trees (e.g., accounting for possible orientations or unlabeled trees)293

(Gavryushkina et al., 2013, 2014; Stadler, 2009), or to reflect known uncertainties. The294

“fossilized-birth-death” likelihood derived by Heath et al. (2014) for example, includes a factor295

that reflects the uncertainty in the attachment and placement of fossils on the macroevolutionary296

tree. This fossilized-birth-death process has been used to estimate divergence times and to model297

lineage diversification (Gavryushkina et al., 2017; Landis et al., 2021). Variants of the298

fossilized-birth-death process, for example including mass extinction events, are feasible and can299

be derived using our approach. We also note that models similar to the time-variable300

fossilized-birth-death process have been developed for cases when phylogenetic data is not301

available (i.e., when only including fossil occurrence data; see Silvestro et al., 2014; Lehtonen302

et al., 2017); we have not investigated how these models relate to our generalized BDS model but303

we speculate that it would be possible to also bring these models into a common framework with304

those that we have discussed. The Supplementary Material demonstrates how these sub-models305

can be re-derived by either imposing the necessary constraints on the general likelihood formula306

given in Equation (13) or, alternatively, by starting from the combinations of assumptions and307

using the five-step procedure outlined above.308

The multi-type birth-death-sampling model309

A common extension of the single-type diversification models explored above is to310

consider cases where the diversification rates (λ, µ, ψ) and probabilities (r, ρ) vary among311

lineages as a function of a categorical “lineage type”. This lineage type can be defined in terms of312

specific (Maddison et al., 2007; Rasmussen and Stadler, 2019) or unspecified traits (Beaulieu and313

O’Meara, 2016) or trait combinations (FitzJohn, 2012) (for reviews of these models see Morlon,314

2014; Ng and Smith, 2014). Representing these lineage types as colours at nodes and along315

branches of the tree, we first extend the the single-type model above by deriving the likelihood of316

a fully coloured tree with topology T where the states along all edges of the phylogeny are known317

as given by C. The resulting likelihood is an extension of the likelihood first developed by318

Barido-Sottani et al. (2018), where the diversification rates and probabilities are allowed to vary319

arbitrarily through time. To illustrate that our derivation is indeed quite general, we follow the320

model developed (independently) by Magnuson-Ford and Otto (2012) and Goldberg and Igić321
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(2012), where the state of lineages can change either anagenetically, with a lineage of type a322

mutating to a type b at rate γa,b(τ) or cladogenetically, with a lineage of type a giving rise to a323

daughter lineage of type b at rate λa,b(τ). Lineages go extinct at a state-dependent rate µa(τ) and324

are sampled at rate ψa(τ). As in the single-type model, upon sampling lineages are removed from325

the population with probability ra(τ) whereas all lineages alive at the present day are sampled326

with a probability ρa(τ). As discussed in depth by Goldberg and Igić (2012), the other discrete327

variations of state-dependent diversification models (FitzJohn et al., 2009; Goldberg et al., 2011;328

FitzJohn, 2012) fall out as special cases of this model. (See Ng and Smith, 2014, Caetano et al.,329

2018, and Louca and Pennell, 2020b for further discussion of the connection between multi-type330

models.)331

We use the five-step technique specified above for the single-type case to derive the332

probability of observing a given coloured tree under a general multi-type model (see333

supplementary material). We first derive the initial value problem for the probability ge,a(τ) that334

an edge e of type a in the tree at time τ gives rise to the subsequently observed phylogeny. The335

edge e here refers not to an edge in the topological tree, but to a segment of the tree all of one336

state between birth, sampling, or mutation events.337

dge,a(τ)

dτ
= −

(
∑

b

λa,b(τ) + µa(τ) + ψa(τ) +
∑

b

γa,b(τ)

)

ge,a(τ) +
∑

b

ιa,bλa,b(τ)ge,a(τ)Eb(τ)

ge,a(se) =







λa,b(se)ge1,a(se)ge2,b(se) birth event a → a+ b

(1 − ra(se))ψa(se)ge1,a(se) ancestral sampling event

ra(se)ψa(se) + (1 − ra(se))ψa(se)Ea(se) terminal sampling event

(γa,b(se) + λa,bEa) ge1,b(se) mutation/hidden birth event a → b

ρa sampled at present day

(14)338

Equation (16) distinguishes between multiple types of birth events as pictured in Figure S1. Birth339

events may be symmetric, with both daughter lineages inheriting the parental type. The340

exchangeability of the resulting daughter lineages is reflected in the indicator variable ιa,b which341

takes on value of 2 if a = b and 1 otherwise. In contrast asymmetric birth events the resulting342

daughter lineages differ in type due to caldogenetic change. Importantly the differential equation343

for ge,a is linear and hence has a known general solution ge,a = ge,a(se)Ψ(se, τ). As in the344

single-type model Ψ(se, τ) is the probability flow (Louca and Pennell, 2020b) mapping the345

probability ge,a from the initial state at time se to the probability at time τ .346

An analogous initial value problem can be derived for the probability Ea(τ), that a lineage347
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of type a alive at time τ leaves no observed descendants in the sampled tree.348

dEa(τ)

dτ
= −

(
∑

b

λa,b(τ) + µa(τ) + ψa(τ) +
∑

b

γa,b(τ)

)

Ea(τ)

+
∑

b

λa,b(τ)Ea(τ)Eb(τ) + µa(τ) +
∑

b

γa,b(τ)Eb(τ)

Ea(0) =1 − ρa

(15)349

This is a non-linear differential equation and must be solved numerically. Given the solution of350

ge,a and Ea the likelihood for the fully coloured tree is characterized by a series of critical times:351

first, ~xa,b the times at which a lineage of type a gives birth to a lineage of type b, ~ya the ages of tip352

samples of type a, ~za the ages of ancestral samples of type a, and ~wa,b the times at which lineages353

are observed to transition events from type a to type b. The resulting likelihood is given by:354

L(ΘMBDS|T,C) =S × Φc∗(T ) ×

[
A∏

a=1

ρNa

a

]

×





A∏

a=1

A∏

b=1

Ia,b∏

i=1

λa,b(xa,b,i)Φb(xa,b,i)





×





A∏

a=1

Ja∏

j=1

[ψa(ya,j)(1 − ra(ya,j))Ea(ya,j) + ψa(ya,j)ra(ya,j)]
1

Φa(ya,j)





×

[
A∏

a=1

Ka∏

k=1

ψa(za,k)(1 − ra(za,k))

]

×





A∏

a=1

A∏

b6=a

La,b∏

l=1

[γa,b(wa,b,l) + λa,b(wa,b,l)Ea(wa,b,l)]
Φb(wa,b,l)

Φa(wa,b,l)





(16)355

Here S is an arbitrary form of conditioning as in Equation (13) and Φa(τ) = Ψa(τ, 0), a complete356

list of notation is given in Table S4.357

Equation (16) gives the likelihood of a fully coloured tree, the tree topology plus the state358

along each branch and at each node in the tree. This likelihood is a generalization of that presented359

by Barido-Sottani et al. (2018; 2020). Maximizing Equation (16) while incrementally adding and360

removing changes in state along the branches of the tree can be used to identify clades with361

distinct diversification parameters. This method can be used, for example, to identify transmission362

clusters within a disease outbreak (Barido-Sottani et al., 2018). This likelihood is distinct from363

but related to post-traversal likelihood methods developed to infer state-dependent diversification364

rates given the known state of sampled lineages (e.g., Maddison et al., 2007; Magnuson-Ford and365

Otto, 2012; Stadler and Bonhoeffer, 2013). Specifically, these methods give the likelihood366

L (ΘMBDS|T,C•) where C• = {Cρ,Cy,Cz} is the state of present-day, Cρ, past Cy, and ancestral,367

Cz, sampled lineages. The relationship between the numerically obtained post-traversal likelihood368

and the closed-form fully coloured likelihood (Equation (16)) is given by:369

L (ΘMBDS|T,C•) =
L (ΘMBDS|T,C∗)

Pr(C∗|T,C•,ΘMBDS)
. (17)370

Here C∗ is one specific colouring of the tree T (e.g., a maximum parsimony ancestral state371
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reconstruction) that is consistent with the observed states. We include Equation (17) as it clarifies372

the relationship between these two different approaches that have been used to calculate373

multi-type likelihoods in phylogenetics. Whether or not this is useful for inference is an open374

question as Pr(C∗|T,C•,ΘMBDS) is challenging to compute (the details of which are beyond the375

scope of the present paper).376

Concluding remarks377

In this paper we have unified a broad class of BDS models that have been widely used378

both in epidemiology and macroevolution. And in doing so, we have also presented a379

standardized notation and approach that can be used both for deriving the various sub-models that380

have previously been studied as well as novel combinations of assumptions about the model381

parameters. The unification of these models clarifies the connections between BDS variants,382

facilitates the development of new variants tailored to specific scenarios, and provides a structure383

for understanding how results depend on model assumptions (Kirkpatrick et al., 2002; Lafferty384

et al., 2015; Louca and Pennell, 2020a). And importantly, given the recent discovery of385

widespread non-identifiability in birth-death processes fit to extant-only (Louca and Pennell,386

2020a) and serially-sampled (Louca et al., 2021) phylogenetic data, there is a critical need to387

explore a much broader range of BDS models than were previously considered and the388

mathematical generalization presented here will be enable this.389
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Box 1: The connection between BDS and SIR models390

The single-type BDS model is intimately related to the SIR compartmental model used in391

classic theoretical epidemiology. This connection illustrates the explicit and implicit assumptions392

of the general BDS model and its sub models. Here we define the SIR epidemiological model,393

discuss how it can inform and be informed by these diversification models, and examine the394

shared assumptions of the two frameworks.395

The SIR model:396

The SIR model partitions the host population via infection status into susceptible (S),397

infected (I), and recovered (R) hosts. Infection of susceptible hosts occurs at a per-capita rate βI .398

Infected hosts may recover (at rate γ), die of virulent cases (at rate α), or be sampled (at rate ψ).399

The cumulative number of sampled hosts is represented in the SIR model (Figure B1 top) by I∗.400

Upon sampling, infected hosts may be treated and hence effectively recover with probability r.401

Hosts that have recovered from infection exhibit temporary immunity to future infection which402

wanes at rate σ. The special case of the SIR model with no immunity (the SIS model) is obtained403

in the limit as σ → ∞. In addition to these epidemiological processes, the SIR model includes404

demographic processes, such as host birth (rate B) and death from natural causes (rate δ). While405

not shown explicitly in the figure, these epidemiological and demographic rates may change over406

time as a result of host behavioural change, pharmaceutical and non-pharmaceutical407

interventions, or host/pathogen evolution.408

The BDS Model:409

The BDS model follows the number of sampled and unsampled viral lineages over time,410

analogous to the I and I∗ classes of the SIR model. A key element of general BDS model is that411

birth and death rates may vary over time. This time dependence may be either continuous412

(Morlon et al., 2011; Rabosky and Lovette, 2008b) or discrete (Stadler, 2011; Stadler and413

Bonhoeffer, 2013; Gavryushkina et al., 2014; Kühnert et al., 2014) Although arbitrarily414

time-dependent, the birth, death, and sampling rates in the general BDS model are assumed to be415

diversity-independent, analogous to the assumption of density-dependent transmission (pseudo416

mass action) in the SIR model (Keeling and Rohani, 2008). Incorporating such diversity417

dependence into macroevolutionary models has been shown to increase the accuracy of extinction418

rate estimates and are necessary to accurately capture the saturation of diversity (Etienne et al.,419

2012). While some forms of diversity-dependence in diversification rates may be incorporated420

implicitly capturing deterministic diversity dependence as time dependence (Rabosky and421

Lovette, 2008a), stochastic diversity-dependence (Etienne and Rosindell, 2012) goes beyond the422

scope of the BDS models considered here.423

The single-type BDS model assumes all viral lineages are exchangeable - this has several424

implications. First, all viral lineages are epidemiologically identical hence all mutations between425

them are neutral. Incorporating non-neutral genetic variation requires a multi-type approach as in426

Equation (16). Second, transmission is independent of lineage age. In the macroevolutionary427

case, such age-dependence has been suggested to reflect niche differentiation in novel species428

(Hagen et al., 2015) and in the epidemiological case may reflect adaptation towards increased429

transmissibility following a host species-jumping event. Third, lineage exchangeablity is reflected430

in the absence of an exposed (E) class in the SIR model in which hosts can, for example, transmit431

infections but not be sampled or vice versa. Finally, the single-type BDS model assumes all432

lineages are sampled at random and does not include sub-models with non-random representation433

of lineages (Stadler et al., 2012).434
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Model Connections435

Given their shared model assumptions, the single-type BDS model can be constrained436

explicitly to reflect an underlying SIR epidemic by setting the viral birth rate equal to the437

per-capita transmission rate of the infectious class λ(τ) = βS(τ) and the viral death rate to the438

infectious recovery or removal rate µ(τ) = γ + δ + α, whereas the sampling rate ψ(τ) is identical439

across models (Figure B1a). While constraining the birth, death, and sampling rates in this440

manner can be used to parameterize compartmental models (Kühnert et al., 2014) doing so is an441

approximation assuming independence between the exact timing of transmission, recovery or442

removal from population, and sampling events in the SIR model and birth, death, and sampling443

events in the diversification model. The resulting tree likelihood in terms of the compartmental444

model is given by:445

Pr(T|ΘSIR) = Pr(T|ΘBDS)
︸ ︷︷ ︸

BDS likelihood

P (ΘBDS|ΘSIR)
︸ ︷︷ ︸

SIR process

. (B1)446

While they are not sub-models of the general BDS process, likelihood models have been447

developed that capture the full non-independence of viral diversification and epidemiological448

dynamics for the SIR model specifically (Leventhal et al., 2012) and in compartmental models in449

general (Vaughan et al., 2019). The connection between the BDS process and SIR450

epidemiological models can also be used after the diversification rates are inferred to estimate the451

basic and effective reproductive rates (Stadler et al., 2012; Stadler and Bonhoeffer, 2013).452

Specifically, the effective reproductive rate at time τ before the present day is given by453

Re(τ) = λ(τ)
µ(τ)+r(τ)ψ(τ)

. Although the SIR model is a useful epidemiological model for is454

simplicity, realistically modelling epidemic dynamics requires far more complex compartmental455

models. As reflected by their shared structure, the application of the single-type BDS model is456

restricted, however, to the assumptions of the SIR model alone and further methodological457

advances in multi-type modelling are necessary for direct inference for the larger class of458

epidemiological models.459
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Appendix: Adding assumptions to the general model470

In this appendix, we demonstrate how one can obtain the likelihood of sub-models with471

different sets of assumptions by applying constraints to the general likelihood. There are four472

classes of assumptions that are commonly applied in epidemiological and macroevolutionary473

studies. First, researchers can make assumptions about the functional form of the birth, death, and474

sampling rates. Here we address two such unique assumptions: i) Birth, death, and sampling rates475

are constant (see 1, , , ); and ii) birth, death, and sampling rates are piecewise-constant functions476

of time (see 1 and ). The cases where birth, death, and sampling rates are defined by a stochastic477

or deterministic SIR model are mathematically analogous to the cases of the piecewise-constant478

and general time-variable models respectively. All additional constraints imposed will depend on479

the exact compartmental model used and hence we will not discuss them in detail in this section.480

The second major class of assumptions pertains to sampling. There are four such sampling481

assumptions: i) sampling happens only at the present day as in a birth-death model (see 1 and , , )482

or as implemented in the “Birth Death Skyline Contemporary” prior in the BDSKY package in483

BEAST2; ii) the absence of concerted present-day sampling (see 1 and ); iii) the inclusion of484

ancestral samples with sampled descendants (, and ); and iv) concerted sampling attempts (CSA)485

during which all lineages are sampled with a given probability (see 1 and ). The third assumption486

class considers the presence of mass extinction events (see 1 and ). The fourth and final major487

class of assumptions deal with the conditioning of the likelihood. The various conditioning488

schemes are explored in below and summarized in Table S3.489

Rate assumptions490

Constant rates491

• Model Assumptions: Constant diversification rates: λ(t) = λ, µ(t) = µ, ψ(t) = ψ, and492

constant removal probability r(t) = r.493

• The IVP for ge(τ ):494

dge(τ)

dτ
= − (λ+ µ+ ψ)ge(τ) + 2λge(τ)E(τ)

ge(se) =







λge1(se)ge2(se) birth event giving rise to edges e1 and e2

ψ(1 − r)ge1(se) ancestral sampling event

ψr + ψ(1 − r)E(se) terminal sampling event

ρ0 se = 0, edge sampled at present day

495

• The IVP for E(τ):496

dE(τ)

dτ
= −(λ+ µ+ ψ)E(τ) + λE(τ)2 + µ E(0) = 1 − ρ0.497

In this case the IVP for E(τ) is a Bernoulli differential equation and has a known analytical498
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solution. As given by Equation 1 in Stadler (2010) this solution is given by:499

E(τ) =
λ+ µ+ ψ

2λ
+
c1

2λ

e−c1t(1 − c2) − (1 + c2)

e−c1t(1 − c2) + (1 + c2)

c1 =
∣
∣
∣
∣

√

(λ− µ− ψ)2 + 4λψ
∣
∣
∣
∣ c2 = −

λ− µ− 2λρ0 − ψ

c1

.

(A1)500

• The Probability Flow:501

Φ(τ) = exp
[∫ τ

0
2λE(x) − (λ+ µ+ ψ) dx

]

.502

• The Likelihood:503

504

LC = SρN0

0 Φ(T )λIψn+m(1 − r)m
I∏

i=1

Φ(xi)
n∏

j=1

1

Φ(yj)
[(1 − r)E(yj) + r] (A2)505

Piecewise-constant rates506

• Model assumptions: Divide time into L+ 1 intervals defined by transition times
0 = t0 < t1 < t2 < ... < tL < tL+1 = T . Define rates and removal probabilities constant
within a given interval.

λ(τ) = λl tl < τ 6 tl+1

µ(τ) = µl tl < τ 6 tl+1

ψ(τ) = ψl tl < τ 6 tl+1

r(τ) = rl tl < τ < tl+1

• The IVP and Solution for ge(τ): Given the definitions of λ(τ), µ(τ), ψ(τ), and r(τ) within507

each time interval the IVP for ge(τ) is identical to that given in Equations (3) and (4). If508

gl,e(τ) is the probability density within time interval l than gl,e(tl) = gl−1,e(tl).509

• The IVP and Solution for E(τ): As with ge(τ), the IVP for E(τ) is given by Equation (8).510

With the piecewise-constant rate assumptions, however, the general solution for E(τ)511

between tl < τ 6 tl+1 is known (similar to Equation (A1)). Defining512

El(τ) = E(τ) where tl < τ 6 tl+1 and El(tl) = El−1(tl) we have:513

El(τ) =
λl + µl + ψl

2λl
+

c1

2λl

e−c1t(1 − c2) − (1 + c2)

e−c1t(1 − c2) + (1 + c2)

c1 =
∣
∣
∣
∣

√

(λl − µl − ψl)2 + 4λlψl

∣
∣
∣
∣ c2 = −

λl − µl − 2λl(1 − El(tl)) − ψl
c1

,

514
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where El(tl) = El−1(tl) for l > 0 and E0(t0) = 1 − ρ0.515

• The Probability Flow: We define a probability sub-flow within each time interval.516

Specifically, in the lth time interval.517

Φl(τ) = exp
[∫ τ

tl

2λlEl(x) − (λl + µl + ψl) dx
]

.518

The complete flow can be expressed as a function of the sub-flows in the following manner:519

Φ(τ) =ΦLτ
(τ)

Lτ∏

l=1

Φl−1(tl)

Φ(tk) = Φk(tk)
︸ ︷︷ ︸

1

k∏

l=1

Φl−1(tl) =
k∏

l=1

Φl−1(tl),

(A3)520

where Lt is the index of the time tl at or after time t, i.e. the largest index such that tl 6 τ .521

• The Likelihood: Given these piecewise definitions we substitute them into the general BDS522

likelihood (13).523

LPC =S ρN0

0
︸︷︷︸

extant
tips

ΦL(T )
L∏

l=1

Φl−1(tl)

︸ ︷︷ ︸

root

×
I∏

i=1



λLxi
ΦLxi

(xi)

Lxi∏

l=1

Φl−1(tl)





︸ ︷︷ ︸

births

×
n∏

j=1

ψLyj

(

(1 − rLyj
)ELyj

(yj) + rLyj

)

ΦLyj

∏Lyj

l=1 Φl−1(tl)
︸ ︷︷ ︸

extinct
tips

×
m∏

k=1

ψLzk

(

1 − rLzk

)

︸ ︷︷ ︸

ancestral
samples

,

524

where we use PC to denote the piecewise-constant assumption.525

We can simplify several of these products. Let αl be the number of birth events > tl and σl526

the number of sampling events > tl.527

I∏

i=1

Lxi∏

l=1

Φl−1(tl) =
L∏

l=1

[Φl−1(tl)]
αl

n∏

j=1

Lyj∏

l=1

1

Φl−1(tl)
=

L∏

l=1

[Φl−1(tl)]
−σl .

(A4)528

Let nl be the number of observed lineages alive at time tl. Because the number of observed529

lineages increases with each birth and decreases with each sampled tip, counting the root530

we have nl = αl − σl + 1. Substituting the expressions for the into the likelihood and using531
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the definition of nl we have:532

LPC =SρN0

0 ΦL(T )
I∏

i=1

λLxi
ΦLxi

(xi)

×
n∏

j=1

ψLyj

ΦLyj

(

(1 − rLyj
)ELyj

(yj) + rLyj

) m∏

k=1

ψLzk

(

1 − rLzk

)

×
L∏

l=1

Φl−1(tl)
nl .

(A5)533

Sampling assumptions534

Birth-death models535

• Model Assumptions: The birth-death model assumes that ψ(τ) = 0. Note that the536

probability of sampling a lineage given it is alive at the present day remains as ρ0537

(incomplete sampling).538

• IVP for ge(τ):539

540

dge(τ)

dτ
= − (λ(τ) + µ(τ))ge(τ) + 2λ(τ)ge(τ)E(τ)

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

ρ0 se = 0, edge sampled at present day

541

• IVP for E(τ):542

543

dE(τ)

dτ
= −(λ(τ) + µ(τ))E(τ) + λ(τ)E(τ)2 + µ(τ) E(0) = 1 − ρ0.544

Note in this case E(τ) equals Ê(τ), the probability a lineage leaves no sampled extant545

descendants. As demonstrated by Morlon et al. (2011) there exists a general solution to this546

initial value problem, see section for more details. This general solution is given by:547

E(τ) =1 −
ρ0 exp [

∫ τ
0 (λ(u) − µ(u)) du]

1 +
∫ τ

0 ρ0 exp [
∫ x

0 (λ(u) − µ(u)) du] dx
.548

• The Probability Flow: From (Morlon et al., 2011), the probability flow can be written as the549

following:550

Φ(τ) = exp
[∫ τ

0
(λ(σ) − µ(σ)) dσ

] [

1 +

∫ τ
0 ρ0λ(u) exp [

∫ u
0 (λ(σ) − µ(σ)) dσ] du

1 + ρ0

]−2

.551
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• The Likelihood:552

LBD = SρN0

0 Φ(T )
I∏

i=1

λ(xi)Φ(xi) (A6)553

No sampling at the present554

Here we consider the case when ρ0 = 0. The likelihood follows exactly as in the general model555

case. The resulting likelihood expression is given by:556

Lρ0=0 =SΦ(T )
I∏

i=1

λ(xi)Φ(xi)

×
n∏

j=1

ψ(yj)

Φ(yj)
[(1 − r(yj))E(yj) + r(yj)]

m∏

k=1

ψ(zk) (1 − r(zk)) .

(A7)557

Note that in this case I = n− 1.558

Concerted sampling attempts559

• Model Assumptions:Here we introduce L concerted sampling attempts (CSA) at known560

points in time, tl l ∈ {1, 2, ...L}. Like the CSA at the present day, and in contrast to the561

background Poissonian sampling rate, during the CSA at time tl every lineages is sampled562

with a fixed probability ρl. In the derivation of the likelihood below, we must distinguish563

between three different sampling event types. First, past Poissonian sampling events are564

those that do not occur during CSAs. Second, past concerted sampling events are those that565

occur during a CSA at time tl l ∈ {1, 2, ..., L}. Finally, present concerted sampling events566

are those that occur at the present day τ = 0. Past concerted sampling attempts can be567

included in the general model above by adding L Dirac distributions to the Poisson568

sampling rate function. Namely,569

ψ(τ) = ψ̄(τ) +
L∑

l=1

[wl ∗ δ(τ − tl)] , (A8)570

where ψ̄(τ) is the background Poissonian sampling rate and wl = −ln (1 − ρl). The571

definition of wl comes from solving the CDF of the exponentially distribution for the572

‘effective sampling rate’ such that the probability of a lineage being sampled is ρl.573

• IVP for ge(τ):574
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575

dge(τ)

dτ
= − (λ(τ) + µ(τ) + ψ(τ))ge(τ) + 2λ(τ)ge(τ)E(τ)

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

(1 − r(se))ψ̄(se)ge1(se) Poisson ancestral sampling event

ψ̄(se)r(se) + ψ̄(se)(1 − r(se))E(se) Poisson terminal sampling event

(1 − r(tl))ρlge1(tl) ancestral sample at tl

ρlr(tl) + ρl(1 − r(tl))E(tl) terminal sample at tl

ρ0 se = 0, edge sampled at present day

576

The solution to ge(τ) is given by Equations (5) and (6).577

• IVP for E(τ): As with ge(τ), the IVP for E(τ) is identical to that given for the general578

model in Equation (8). Except in rare cases the IVP must be solved numerically hence579

requiring numerical integration over Dirac distributions which can prove to be problematic.580

Note however, that when examining the integrals over the CSAs, a priori, it is a matter of581

convention whether the Dirac distribution should be considered as “integrated over” when582

located at the upper integration bound
∫ b
a δ(s− b)ds = 1 or at the lower integration bound583

∫ b
a δ(s− a)ds = 1. Whichever convention we chose, we must rigorously obey it so that the584

ratio Φ(t)/Φ(s) correctly evaluates to Ψ(s, t) whenever s 6 t. Using the former585

convention, we can rewrite the probability E(tl) at each concerted sampling time tl as:586

E(tl) = E(t−l )ewl = E(t−l )(1 − ρl),587

where t−l denotes the limit as time approaches tl from below. Hence the probability E(τ) at588

any time τ can be evaluated numerically by considering the dynamics between successive589

CSAs and at each CSA separately.590

• The Probability Flow: The probability flow is given by:591

Φ(τ) = exp

[
∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ(x) + ψ̄(x) +
L∑

l=1

wlδ(x− tl)

)

dx

]

.592

As with E(τ) integration over the dirac distributions can be problematic and hence we593

rewrite this expression separating out these terms. Let Lτ be the oldest CSA occurring at or594
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after time τ , i.e. the largest index for which tl 6 τ .595

Φ(τ) = exp

[
∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ(x) + ψ̄(x) +
Lτ∑

l=1

wlδ(x− tl)

)

dx

]

= exp
[∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ(x) + ψ̄(x)
)

dx
] Lτ∏

l=1

e−wl

= exp
[∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ(x) + ψ̄(x)
)

dx
] Lτ∏

l=1

(1 − ρl).

(A9)596

We define:597

Φ̄(τ) = exp
[∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ(x) + ψ̄(x)
)

dx
]

, (A10)598

which means that we can rewrite Equation (A9) as:599

Φ(τ) = Φ̄(τ)
Lτ∏

l=1

(1 − ρl). (A11)600

• The Likelihood: The edge representation of gstem is given by:601

gstem(T ) =ρN0

0

L∏

i=1

λ(xi)
n∏

j=1

ψ(yj) [(1 − r(yj))E(yj) + r(yj)]
m∏

k=1

ψ(zj)(1 − r(yj))

×
L∏

l=1

ρl [(1 − rl)E(tl) + rl]
Nl

L∏

l=1

[ρl(1 − rl)]
Ml

∏

edges

Ψ(se, te).

602

The critical time representation of gstem is given by:603

gstem(T ) = ρN0

0
︸︷︷︸

extant tips

Φ̄(T )
L∏

l=1

(1 − ρl)

︸ ︷︷ ︸

root

I∏

i=1

λ(xi)Φ̄(xi)





Lxi∏

l=1

(1 − ρl)





︸ ︷︷ ︸

births

×
n∏

j=1

ψ(yj)

Φ̄(yj)
[(1 − r(yj))E(yj) + r(yj)]





Lyj∏

l=1

1

1 − ρl





︸ ︷︷ ︸

Pois. extinct tips

m∏

k=1

ψ(zk)(1 − r(zk))

︸ ︷︷ ︸

Pois. ances. samples

×
L∏

l=1

(

ρl

Φ̄(tl)
[(1 − rl)E(tl) + rl]

)Nl





l∏

j=1

1

(1 − ρj)Nl





︸ ︷︷ ︸

CSA extinct tips

L∏

l=1

[ρl(1 − rl)]
Ml

︸ ︷︷ ︸

CSA ances. samples

,

604

where Nl is the number of tip samples (samples without descendants) obtained during the605
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lth CSA and Ml is the number of ancestral samples (sequences with descendants). By606

changing how we enumerate birth, death, and sampling events we can greatly simplify this607

likelihood. First, let αl be the number of branching events at or before the the lth CSA. In608

other words, αl is the number of branching events if the tree were trimmed at the lth CSA.609

Then:610

∏

i





Lxi∏

l=1

(1 − ρl)



 =
L∏

l=1

(1 − ρl)
αl . (A12)611

Second, let σl be the number of past Poissonian sampling events before time tl. Then:612

n∏

j





Lyj∏

l=1

1

(1 − ρl)



 =
L∏

l=1

1

(1 − ρl)σl
. (A13)613

Finally, let βl be the number of past lineages sampled during a CSA at or before the CSA at614

time tl. Hence, βl = Nl +Nl+1 + ... +NL. Then:615

L∏

l=1





l∏

j=1

1

(1 − ρj)Nl



 =
L∏

l=1

1

(1 − ρl)βl
. (A14)616

The likelihood hence simplifies to:617

gstem(T ) =ρN0

0 Φ̄(T )
L∏

l=1

(1 − ρl)
αl−βl−σl+1

I∏

i=1

λ(xi)Φ̄(xi)

×
n∏

j=1

ψ(yj)

Φ̄(yj)
[(1 − r(yj))E(yj) + r(yj)]

m∏

k=1

ψ(zk)(1 − r(zk))

×
L∏

l=1

(

ρl

Φ̄(tl)
[(1 − rl)E(tl) + rl]

)Nl L∏

l=1

[ρl(1 − rl)]
Ml .

618

Let nl be the number of lineages that cross tl, i.e., the number of lineages alive at time tl619

with sampled descendants at some younger age. Note that by this definition n0 = 0. Then620

bl + σl + nl is the number of tips in the tree had it been trimmed at age tl whereas αl is the621

number of branching events. Therefore we must have αl = bl + σl + nl − 1. This allows us622

to simplify the conditioned likelihood given below.623
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LCSA =SρN0

0 Φ̄(T )
L∏

l=1

(1 − ρl)
nl

I∏

i=1

λ(xi)Φ̄(xi)

×
n∏

j=1

ψ(yj)

Φ̄(yj)
[(1 − r(yj))E(yj) + r(yj)]

m∏

k=1

ψ(zk)(1 − r(zk))

×
L∏

l=1

(

ρl

Φ̄(tl)
[(1 − rl)E(tl) + rl]

)Nl L∏

l=1

[ρl(1 − rl)]
Ml

(A15)624

Mass extinction625

• Model Assumptions: In addition to the Poisson birth death and sampling events considered626

in the general model, there are L mass extinctions events occurring at times t1 > t2 > ..tL.627

During the lth mass extinction event each lineage goes extinct with probability νl. As with628

concerted sampling such mass extinction events can be introduced into the model by adding629

a set of dirac-delta functions to the Poisson death rate, µ̄(τ).630

µ(τ) = µ̄(τ) +
L∑

l=1

mlδ(τ − tl), (A16)631

where ml = −ln(1 − νl).632

• IVP for ge(τ): The initial value problem for ge(τ) is identical to that given in equation by633

Equations (3) and (4) except that µ is now includes the mass extinction events.634

• IVP for E(τ): The IVP for E(τ) to that given by Equation (8) except where the extinction635

rate is given by Equation (A16). The solution to E(τ) is obtained by numerical integration.636

Given the dirac-delta functions this numerical integration can be carried out in a piecewise637

manner integrating separately between and over each mass extinction event. Defining E(t−l )638

as the solution up to but not including the mass extinction event at time tl we have:639

E(tl) = (1 − νl)E(t−l ) + νl.640

The first term reflects the probability that a lineage that does not go extinct during the lth641

mass extinction event leaves no observable offspring (with probability E(t−l )) whereas the642

second term reflects the fact that all lineages that go extinct during the lth mass extinction643

leave no observed descendants with probability 1.644

• The Probability Flow: The solution to the IVP is once again given by645

ge(τ) = ge(se)Ψ(se, τ) = ge(se)
Φ(τ)
se

where:646

Φ(τ) = exp

[
∫ τ

0
2λ(x)E(x) −

(

λ(x) + µ̄(x) +
L∑

l=1

mlδ(x− tl) + ψ(x)

)

dx

]

.647

As with the CSAs, let Lτ be the last index l such that tl < τ . We can separate out the mass648
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extinction terms in the following way.649

Φ(τ) = exp
[∫ τ

0
2λ(x)E(x) − (λ(x) + µ̄(x) + ψ(x)) dx

] Lτ∏

l=1

e−ml

= exp
[∫ τ

0
2λ(x)E(x) − (λ(x) + µ̄(x) + ψ(x)) dx

] Lτ∏

l=1

(1 − νl)

=Φ̄(τ)
Lτ∏

l=1

(1 − νl) ,

650

where Φ̄(τ) is defined as in Equation (A10).651

• The Likelihood: Given these initial value problems the likelihood follows as in the general652

model.653

LME =SρN0

0 Φ̄(T )
L∏

l=1

(1 − νl)
I∏

i=1



λ(xi)Φ̄(xi)

Lxi∏

l=1

(1 − νl)





×
n∏

j=1




ψ(yj) [(1 − r(yj))E(yj) + r(yj)]

Φ̄(yj)
∏Lyj

l=1(1 − νl)





m∏

k=1

ψ(zk)(1 − r(zk)).

654

As with the CSAs we can use relations analogous to Equations A12-A14 to rewrite the655

likelihood:656

LME =SρN0

0 Φ̄(T )
L∏

l=1

(1 − νl)
nl

×
I∏

i=1

λ(xi)Φ̄(xi)
n∏

j=1

ψ(yj)

Φ̄(yj)
[(1 − r(yj))E(yj) + r(yj)]

m∏

k=1

ψ(zk)(1 − r(zk)),

(A17)657

where nl is defined as before as the number of lineages present at time tl.658

Alternative conditioning659

Table S3 lists a number of possible conditionings, S that can be applied to the tree likelihood.660

First, is the trivial case of no conditioning S0 = 1 which gives the probability of the observed tree661

including the stem edge between time T and tMRCA. To obtain the model likelihood excluding the662

stem edge, i.e., conditioning of the tMRCA, can be obtained by setting S = S1 = Φ(x1)
Φ(T )

. Recall that663

the elements of ~x are ordered such that x1 = tMRCA is the first (oldest) birth event.664

Acknowledging that one would not reconstruct a phylogeny without any sampled lineages,665

we can condition the likelihood on observing at least one sampled lineage (either at or before the666

present day) given the time of origin, S2 = 1
1−E(T )

. Or as with S1, conditioning on at least one667

sampled lineage given the tMRCA. In order to have at least one sampled lineage and a most recent668

common ancestor, however, each daughter lineage of the common ancestor must have at least one669
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descendent. Hence we have S3 = Φ(x1)
Φ(T )

1
(1−E(x1))2 . The general birth-death-sampling model670

assumes that all lineages alive at the present day are sampled with probability ρ0. As with671

concerted sampling attempts (CSAs) prior to the present day, this present day CSA may include672

the sampling of multiple lineages as well as possibly resulting in no sampled lineages. As with S2673

and S3 we can condition the tree likelihood on observing at least one extant lineage at the present674

day. To do so, we define Ê(τ) = E(τ |ψ = 0), the probability that a lineage alive at time τ has no675

extant descendants. Conditioning on the time of origin we have: S4 = 1
1−Ê(T )

. Conditioning on676

the time of the most recent common ancestor we have: S5 = Φ(x1)
Φ(T )

1

2(1−Ê(x1))(1−E(x1))
, where now677

at least one of the two daughter lineages of the common ancestor has a present day sample. In678

many cases S5 is modified, however, to condition on both daughter lineages having an extant679

sampled descendent: S′
5 = Φ(x1)

Φ(T )
1

(1−Ê(x1))
2 .680

As an alternative to conditioning on at least one extant sampled descent, tree likelihoods681

can be conditioned on having exactly N0 sampled (extant) descendants. Let ÊN0
(τ) be the682

probability a lineage alive at time τ has exactly N0 descendants. Although a general expression683

for ÊN0
(τ) is unknown, in the case of constant birth, death, and sampling rates (the case in which684

this form of conditioning has been applied), the expression for ÊN0
(τ) is given by (Gernhard,685

2008; Kendall, 1948) and Theorem 3.3 by Stadler Stadler (2010):686

ÊN0
(τ) =ρ0Φ̂(τ)

(

λ

µ
Ê(τ)

)N0−1

ÊN0
(τ) =ρ0Φ̂(τ)




ρ0λ

(

1 − e−(λ−µ)t
)

λρ0 + (λ(1 − ρ0) − µ) e−(λ−µ)t





N0−1

,

687

where, like Ê, Φ̂ is given by Equation (10) evaluated with where ψ = 0. Given the time of origin688

we can condition on observing exactly N0 lineages by setting S = S6 = 1
ÊN0

(T )
. When tMRCA is689

given instead, then the number of descendants of the two daughter lineages must add up to N0690

while both daughter lineages must still have at least one descendant(see Stadler (2010) Corollary691

3.9).692

S = S7 =
Φ(x1)

Φ(tor)





N0−1∑

i=1

Êi(x1)ÊN0−i(x1)





−1

=
Φ(x1)

Φ(tor)




(N0 − 1)(ρ0Φ̂(x1))

2




ρ0λ

(

1 − e−(λ−µ)t
)

λρ0 + (λ(1 − ρ0) − µ) e−(λ−µ)t





N0−2





−1

.

693

While early BDS models often employed such conditioning (Stadler, 2009, 2010), this form of694

conditioning has not been employed in many later models perhaps because the biological695

justification for such conditioning is vague.696

The final form of conditioning used in the literature, which we will represent simply as S8,697

is the multiplication of the BDS likelihood by a constant to account for the enumeration over the698

possible indistinguishable representations of a given tree. The value of this constant depends on699
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whether the tree considered is “labeled” and “oriented” (Gavryushkina et al., 2013) and whether,700

as in the derivation here, the vector of birth events, ~x, is (un)ordered. Inclusion of such a constant701

should have no effect on the maximum likelihood inference of the model parameters given a702

specified tree. In cases where the constant is a function of the critical times (Heath et al., 2014), it703

can influence the inference when the parameters and the tree are jointly estimated.704
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Figure 1: Sub-model assumptions. Rate, sampling, mass extinction, and conditioning assumptions

of existing sub-models of the general time-variable BDS process. The key points are that i) each of

the previously developed models we considered can be obtained by adding specific combinations

of constraints to the various parameters of the general BDS model; and ii) that there are many

plausible, and potentially biologically informative combinations of constraints that have not been

considered by researchers in epidemiology or macroevolution.
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Single-Type Model1

Relationships between existing models2

In the appendix, we proved that one could go from the most general case to specific3

sub-models by incorporating additional constraints to the parameters. In this section, we illustrate4

how to work in the other direction — that is, to start with the most assumptions of a particular5

sub-model and derive its likelihood function using the same five-step procedure used to derive the6

general BDS model in the Main Text. In addition to illustrating the utility of our mathematical7

technique, by deriving the likelihoods of previously developed models, we are able to unify a8

diverse and, occasionally opaque, literature using a common terminology, notation, and9

formulation.10

Stadler 200911

Here we re-derive the likelihood given by Equation 2 in (Stadler, 2009). Note throughout12

all equation, corollary, and theorem references in other publications will be placed in bold face13

type.14

• Step 1: Specify the model.15

– Constant rates: λ(τ) = λ, µ(τ) = µ.16

– Birth-death model with incomplete sampling at present day: ψ(τ) = 0 and ρ0 6 1.17

– Conditioning on there being exactly N0 lineages at the present day given the time of18

origin, S6 and un-ordered birth events S8 = (N0 − 1)!.19

• Step 2: IVP for ge(τ).20

dge(τ)

dτ
= − (λ− µ)ge(τ) + 2λge(τ)E(τ)

ge(τ) =







λge1(se)ge2(se) birth

ρ0 present day

21

• Step 3: IVP for E(τ).22

dE(τ)

dτ
= −(λ+ µ)E(τ) + λE(τ)2 + µ where E(0) = 1 − ρ0.23

Given the constant rate assumption there exists a general solution for E(τ).24

E(τ) =
λ+ µ+ c1

exp[−c1t](1−c2)−(1+c2)
exp[−c1t](1−c2)+(1+c2)

2λ

c1 =λ− µ c2 =
λ− µ− 2λρ0

λ− µ

25

• Step 4: Derive gstem(T ).26

gstem(T ) = ρN0

0 λN0−1
∏

edges

Ψ(se, te).27
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• Step 5: Calculate gstem(T ) wrt the critical time representation. Given the assumption of28

constant rates and no Poisson sampling the expression for Φ(τ) simplifies to:29

Φ(τ) =
e−x(λ−µ)(λ− µ)2

((λ(1 − ρ0) − µ)e−x(λ−µ) + λρ0)
2 .30

Hence we have:31

gstem(T ) = ρN0

0 λN0−1
N0−1∏

i=1

e−xi(λ−µ)(λ− µ)2

((λ(1 − ρ0) − µ)e−xi(λ−µ) + λρ0)
2 .32

• Step 6: Impose conditioning. The likelihood is conditioned on having exactly N0 lineages at33

the present day (S6) and a constant S8 = (N0 − 1)! as the birth events are left un-ordered.34

LS09 =
(N0 − 1)!

ÊN0
(T )

ρN0

0 λN0−1
N0−1∏

i=1

e−xi(λ−µ)(λ− µ)2

((λ(1 − ρ0) − µ)e−xi(λ−µ) + λρ0)
2 . (S1)35

Stadler 201036

• Step 1: Specify the model.37

– Constant rates: λ(τ) = λ, µ(τ) = µ, ψ(τ) = ψ.38

– No removal upon sampling, r = 0.39

– Multiple presented.40

∗ Equation 3 (Stadler, 2010): No conditioning.41

∗ Equation 4 (Stadler, 2010): Exactly N0 extant sampled tips.42

∗ Corollary 3.7 (Stadler, 2010): At least one extant tip conditioning on the time of43

origin.44

∗ Equation 5 (Stadler, 2010): At least one extant tip conditioning on the tMRCA.45

∗ Equation 6 (Stadler, 2010): N0 extant tips conditioning on the time the tMRCA.46

• Step 2: IVP for ge(τ).47

dge(τ)

dτ
= − (λ+ µ+ ψ) ge(τ) + 2λge(τ)E(τ)

ge(se) =







λge1(se)ge2(se) birth event giving rise to edges e1 and e2

ψge(se) ancestral sampling event

ψE(se) terminal sampling event

ρ0 se = 0, edge sampled at present day

48

• Step 3: IVP for E(τ). Given the constant rate assumption there exists a general solution for49

E(τ).50

dE(τ)

dτ
= − (λ+ µ+ ψ)E(τ) + λE(τ)2 + µ where E(0) = 1 − ρ0.51
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This is a Bernoulli differential equation and has a known solution as given by Stadler52

(Stadler, 2010).53

E(t) =
λ+ µ+ c1

exp[−c1t](1−c2)−(1+c2)
exp[−c1t](1−c2)+(1+c2)

2λ

c1 =
∣
∣
∣
∣

√

(λ− µ− ψ)2 + 4λψ
∣
∣
∣
∣ c2 =

λ− µ− 2λρ0 − ψ

c1

.

54

• Step 4: Derive gstem(T ).55

gstem(T ) = ρN0

0
︸︷︷︸

extant
tips

I∏

i=1

λ

︸ ︷︷ ︸

births

n∏

j=1

ψE(yj)

︸ ︷︷ ︸

extinct
tips

m∏

k=1

ψ

︸ ︷︷ ︸

ancestral
samples

∏

e∈T

Ψ(se, te)

︸ ︷︷ ︸

edges

.
56

• Step 5: Calculate gstem(T ) wrt the critical time representation. Given the assumption of57

constant rates and no Poisson sampling the expression for Φ(τ) simplifies to:58

Φ(τ) = exp
[∫ τ

0
2λE(x) − (λ+ µ+ ψ) dx

]

.59

Hence we have:60

gstem(T ) = Φ(T )
︸ ︷︷ ︸

root

ρN0

0
︸︷︷︸

extant
tips

I∏

i=1

λΦ(xi)

︸ ︷︷ ︸

births

n∏

j=1

ψ

Φ(yj)
E(yj)

︸ ︷︷ ︸

extinct
tips

m∏

k=1

ψ

︸ ︷︷ ︸

ancestral
samples

.61

• Step 6: Impose conditioning. Imposing an arbitrary conditioning we have the following62

likelihood. Note that I = N0 + n− 1.63

LS10 = SΦ(T )ρN0

0 λN0+n−1ψn+m
N0+n−1∏

i=1

Φ(xi)
n∏

j=1

E(yj)

Φ(yj)
(S2)64

– Equation 3 (Stadler, 2010): No conditioning. S = S0 = 1.65

– Equation 4 (Stadler, 2010): Exactly N0 extant sampled tips. S = S6 = 1
ÊN0

(T )
where66

in the case of constant rates we have:67

ÊN0
(T ) = φ̂(T )

(
µ

λ
E(T )

)N0−1

.68

where φ̂(τ) equals φ(τ) where ψ = 0.69

– Corollary 3.7 (Stadler, 2010): At least one extant tip conditioning on the time of70

origin. S = S4 = 1
1−Ê(T )

where Ê(T ) is given by the solution for E(τ) above given71

that ψ = 0.72

– Equation 5 (Stadler, 2010): At least one extant tip conditioning on the tMRCA,73
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S = S5′ = φ(x1)

φ(T )(1−Ê(x1)2
.74

– Equation 6 (Stadler, 2010): N0 extant tips conditioning on the time the tMRCA,75

S = S7 = Φ(x1)
Φ(tor)

(
∑N0−1
i=1 Êi(x1)ÊN0−i(x1)

)−1
,76

Morlon et al. 201177

Here we derive Equation 1 from (Morlon et al., 2011).78

• Step 1: Specify the model.79

– Time variable rates.80

– Birth-death only ψ(τ) = 0.81

– At least one extant sample S2 = S4.82

• Step 2: IVP for ge(τ).83

dge(τ)

dτ
= − (λ(τ) + µ(τ)) ge(τ) + 2λ(τ)ge(τ)E(τ)

ge(se) =







λge1(se)ge2(se) birth event giving rise to edges e1 and e2

ρ0 se = 0, edge sampled at present day

84

• Step 3: IVP for E(τ).85

dE(τ)

dτ
= − (λ(τ) + µ(τ))E(τ) + λ(τ)E(τ)2 + µ(τ) where E(0) = 1 − ρ0.86

The general solution of this differential equation is given by:87

E(τ) =1 −
ρ0 exp [

∫ τ
0 (λ(u) − µ(u)) du]

1 +
∫ τ

0 ρ0 exp [
∫ x

0 (λ(u) − µ(u)) du] dx
,88

see Equation 2 in (Morlon et al., 2011).89

• Step 4: Derive gstem(T ).90

gstem(T ) = ρN0

0
︸︷︷︸

extant
tips

I∏

i=1

λ(xi)

︸ ︷︷ ︸

births

∏

e∈T

Ψ(se, te)

︸ ︷︷ ︸

edges

,
91

where the expression for Ψ(se, te) is given by Equation 3 in (Morlon et al., 2011).92

• Step 5: Calculate gstem(T ) wrt the critical time representation. Given Φ(τ) = Ψ(0, τ) from93

Equation 3 for in (Morlon et al., 2011) we have:94

Φ(τ) = exp
[∫ τ

0
(λ(σ) − µ(σ)) dσ

] [

1 +

∫ τ
0 ρ0λ(u) exp [

∫ u
0 (λ(σ) − µ(σ)) dσ] du

1 + ρ0

]−2

.95
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Hence we have:96

gstem(T ) = Φ(T )
︸ ︷︷ ︸

root

ρN0

0
︸︷︷︸

extant
tips

N0−1∏

i=1

λ(xi)Φ(xi)

︸ ︷︷ ︸

births

.97

Note I = N0 − 1.98

• Step 6: Impose conditioning. The likelihood given by Equation 1 in (Morlon et al., 2011) is99

conditioned on the existence of at least one sampled lineage, S = S3 = 1
1−E(tor)

.100

LM11 =
ρN0

0

1 − E(tor)
Φ(T )

N0−1∏

i=1

λ(xi)Φ(xi) (S3)101

Stadler et al. 2011102

Here we derive the likelihoods given by Theorem 2.6 and 2.7 in (Stadler, 2011).103

• Step 1: Specify the model.104

– piecewise-constant Poissonian rates. λ(τ) = λl and µ̄(τ) = µ̄l if105

tl 6 τ < tl+1 l = 0, 2, ...L+ 1 where t0 = 0 and tL+1 = T .106

– No Poisson sampling, ψ(τ) = 0.107

– Mass extinction events at times tl l = 1, 2, ...L as specified above.108

µ(τ) =µ̄+
L∑

l

mlδ(τ − tl)

ml = − ln(1 − νl).

109

– Theorem 2.6 (Stadler, 2011) imposes no additional conditioning S = S0 whereas110

Theorem 2.7 (Stadler, 2011) conditions on observing at least one descendent given111

the time of the most recent common ancestor S = S2 = S4.112

• Step 2: IVP for ge(τ).113

dge(τ)

dτ
= − (λ(τ) + µ(τ))ge(τ) + 2λ(τ)ge(τ)E(τ)

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

ρ0 se = 0, edge sampled at present day,

114

where µ(τ) is given above.115

In terms of the probability flow ge(τ) = ge(se)Ψ(se, τ), where:116

Ψ(se, τ) = exp
[∫ τ

se

2λ(x)E(x) − (λ(x) + µ(x)) dx
]

.117

Here µ(τ) includes the mass extinction events.118
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• Step 3: IVP for E(τ).119

dE(τ)

dτ
= − (λ(τ) + µ(τ))E(τ) + λ(τ)E(τ)2 + µ(τ)

E(0) =1 − ρ0.

120

Given the piecewise constant nature there is a known general solution. Let E(τ) = El(τ)121

where tl < τ 6 tl+1. Then define El−1(t
−
l ) as the solution up to but not including the mass122

extinction event at time tl we have:123

El(tl) = El−1(tl) = (1 − νl)El−1(t
−
l ) + νl,124

where El(τ) is given by a solution similar to that in Equation (A1).125

El(τ) =
λl + µ̄l

2λl
+

c1

2λl

e−c1t(1 − c2) − (1 + c2)

e−c1t(1 − c2) + (1 + c2)

c1 =
∣
∣
∣
∣

√

(λl − µ̄l)2

∣
∣
∣
∣ c2 = −

λl − µ̄l − 2λl(1 − El(tl))

c1

,

126

where E0(t0) = 1 − ρ0.127

• Step 4: Derive gstem(T ). The expression for gstem(T ) is given by:128

gstem(T ) = ρN0

0
︸︷︷︸

extant tips

I∏

i=1

λ(xi)

︸ ︷︷ ︸

births

∏

e∈T

Ψ(se, te)

︸ ︷︷ ︸

edges

,
129

where λ(τ) and Ψ(se, τ) are specified above.130

• Step 5: The critical time representation. We once again define the sub-flow131

Φl(τ) where tl < τ 6 tl+1:132

Φl(τ) = exp
[∫ τ

tl

2λ(x)E(x) − (λ(x) + µ̄(x) +mlδ(x− tl)) dx
]

= exp
[∫ τ

tl

2λ(x)E(x) − (λ(x) + µ̄(x)) dx
]

(1 − νl)

=Φ̄l(τ) (1 − νl) .

133

Note ν0 = 0. The complete flow is, as given by Equation (A3).134

Φ(τ) =Φ̄Lτ
(τ)

Lτ∏

l=1

Φ̄l−1(tl) (1 − νl)

Φ(tk) = Φ̄k(tk)
︸ ︷︷ ︸

1

k∏

l=1

Φ̄l−1(tl)(1 − νl) =
k∏

l=1

Φ̄l−1(tl) (1 − νl) ,

135

where Lτ is once again the largest index l such that tl < τ .136
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The critical time representation of gstem then is:137

gstem(T ) =ρN0

0 Φ̄L(T )
L∏

l=1

Φ̄l−1(tl)(1 − νl)
I∏

i=1



λ(xi)Φ̄Lxi
(xi)

Lxi∏

l=1

Φ̄l−1(tl)(1 − νl)



 .138

Defining αl as the number of observed birth events > tl we can rewrite the product:139

I∏

i=1

Lxi∏

l=1

Φ̄l−1(tl) =
L∏

l=1

(

Φ̄l−1(tl)
)αl

I∏

i=1

Lxi∏

l=1

(1 − νl) =
L∏

l=1

(1 − νl)
αl

140

Hence we have:141

gstem(T ) =ρN0

0 Φ̄L(T )
L∏

l=1

(

Φ̄l−1(tl)(1 − νl)
)αl+1

I∏

i=1

[

λ(xi)Φ̄Lxi
(xi)

]

=ρN0

0 Φ̄L(T )
L∏

l=1

(

Φ̄l−1(tl)(1 − νl)
)nl

I∏

i=1

[

λ(xi)Φ̄Lxi
(xi)

]

,

142

where nl is the number of lineages in the observed phylogeny at time tl then nl = αl + 1.143

• Step 6: Likelihood conditioning.144

For Theorem 2.6 (Stadler, 2011) the likelihood is given by:145

LS11 = ρN0

0 Φ̄L(T )
L∏

l=1

(

Φ̄l−1(tl)(1 − νl)
)nl

I∏

i=1

[

λ(xi)Φ̄Lxi
(xi)

]

146

For Theorem 2.7 (Stadler, 2011) the likelihood is given by:147

LS11 =
ρN0

0

(1 − E(x1))
2 Φ̄Lx1

(x1)
L∏

l=1

(

Φ̄l−1(tl)(1 − νl)
)nl

I∏

i=1

[

λ(xi)Φ̄Lxi
(xi)

]

148

Stadler et al. 2012149

Here we derive Equation 1 in (Stadler et al., 2012).150

• Step 1: Specify the model.151

– Constant birth, death, and sampling rates.152

– No present day sampling. All lineages removed upon sampling r = 1.153

– No conditioning.154
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• Step 2: IVP for ge(τ).155

dge(τ)

dτ
= − (λ+ µ+ ψ)ge(τ) + 2λge(τ)E(τ)

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

ψ(se) terminal sampling event

156

• Step 3: IVP for E(τ).157

dE(τ)

dτ
= −(λ+ µ+ ψ)E(τ) + λE(τ)2 + µ where E(0) = 0.158

The solution to this differential equation is given by:159

E(t) =
λ+ µ+ c1

exp[−c1t](1−c2)−(1+c2)
exp[−c1t](1−c2)+(1+c2)

2λ

c1 =
∣
∣
∣
∣

√

(λ− µ− ψ)2 + 4λψ
∣
∣
∣
∣ c2 =

λ− µ− ψ

c1

.

160

• Step 4: Derive gstem(T ).161

gstem(T ) =
I∏

i=1

λ

︸ ︷︷ ︸

births

n∏

j=1

ψ

︸ ︷︷ ︸

extinct
tips

∏

e∈T

Ψ(se, te)

︸ ︷︷ ︸

edges

=λn−1ψn
∏

e∈T

Ψ(se, te),

162

where I = n− 1.163

• Step 5: Critical time representation. Given the assumption of constant rates and no Poisson164

sampling the expression for Φ(t) simplifies to:165

Φ(τ) = exp
[∫ τ

0
2λE(x) − (λ+ µ+ ψ) dx

]

.166

Hence we have:167

gstem(T ) = Φ(T )
︸ ︷︷ ︸

root

λn−1ψn
n−1∏

i=1

Φ(xi)

︸ ︷︷ ︸

births

n∏

j=1

1

Φ(yj)
︸ ︷︷ ︸

extinct
tips

168

• Step 6: Impose conditioning S = S0.169

LS12 = λn−1ψnΦ(T )
n−1∏

i=1

Φ(xi)
n∏

j=1

1

Φ(yj)
(S4)170
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Stadler et al. 2013 and Gavryushkina et al. 2014171

Here we derive the tree likelihood given by Theorem 1 in (Stadler and Bonhoeffer, 2013)172

and due to their shared the likelihood given by Equation 4 in (Gavryushkina et al., 2014).173

• Step 1: Specify the model.174

– Piecewise constant Poissonian birth, death, and sampling rates.175

∗ define transition times 0 = t0 < t1 < ... < tL+1 = T .176

∗ λ(τ) = λltl < τ 6 tl+1.177

∗ µ(τ) = µltl < τ 6 tl+1.178

∗ ψ̄(τ) = ψ̄ltl < τ 6 tl+1.179

– Fossils/Ancestral sampling:180

∗ (Stadler and Bonhoeffer, 2013): No fossils r = 1.181

∗ (Gavryushkina et al., 2014): piecewise-constant rate r(τ) = rl tl < τ 6 tl+1.182

– Concerted sampling attempts at each internal transition time tl where l = 1, 2...L.183

∗ The probability of a lineage being sampled during the CSA at time tl is ρl.184

∗ The resulting total sampling rate is given by:185

ψ(τ) =ψ̄(τ) +
L∑

l=1

wlδ(τ − tl)

wl = − ln(1 − ρl).

186

– Conditioning:187

∗ Stadler et al. (Stadler and Bonhoeffer, 2013)—At least one sampled lineage,188

S = S2.189

∗ Gavryushkina et al. (Gavryushkina et al., 2014)— At least one sample (S2) and a190

constant giving the number of un-oriented phylogenies S = S8.191

• Step 2: Derive IVP for ge(τ). As in section 1 we have:192

dge(τ)

dτ
= − (λ(τ) + µ(τ) + ψ(τ))ge(τ) + 2λ(τ)ge(τ)E(τ)

ge(se) =







λ(se)ge1(se)ge2(se) birth event giving rise to edges e1 and e2

(1 − r(se))ψ̄(se)ge1(se) Poisson ancestral sampling event

ψ̄(se)r(se) + ψ̄(se)(1 − r(se))E(se) Poisson terminal sampling event

(1 − r(tl))ρlge1(tl) ancestral sample at tl

ρlr(tl) + ρl(1 − r(tl))E(tl) terminal sample at tl

ρ0 se = 0, edge sampled at present day

193

• Step 3: Derive IVP for E(τ). The IVP for E(τ) follows from Equation (8).194

dE(τ)

dτ
= − (λ(τ) + µ(τ) + ψ(τ))E(τ) + λ(τ)E(τ)2 + µ(τ)

E(0) =1 − ρ0.

195
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Given the piecewise constant nature there is a known general solution. Let E(τ) = El(τ)196

where tl < τ 6 tl+1. Then define El−1(t
−
l ) as the solution up to but not including the CSA197

at time tl we have:198

El(tl) = El−1(tl) = (1 − ρl)El−1(t
−
l ),199

where El(τ) is given by a solution similar to that in Equation (A1).200

El(τ) =
λl + µl + ψ̄l

2λl
+

c1

2λl

e−c1t(1 − c2) − (1 + c2)

e−c1t(1 − c2) + (1 + c2)

c1 =
∣
∣
∣
∣

√

(λl − µl − ψ̄l)2 + 4λl + ψ̄l

∣
∣
∣
∣ c2 = −

λl − µl − 2λl(1 − El(tl)) − ψ̄l
c1

,

201

where E0(t0) = 1 − ρ0.202

• Step 4: Derive gstem(T ). As in section 1 the edge representation of gstem is given by:203

gstem(T ) =ρN0

0

L∏

i=1

λ(xi)
n∏

j=1

ψ(yj) [(1 − r(yj))E(yj) + r(yj)]
m∏

k=1

ψ(zj)(1 − r(yj))

×
L∏

l=1

ρl [(1 − rl)E(tl) + rl]
Nl

L∏

l=1

[ρl(1 − rl)]
Ml

∏

edges

Ψ(se, te),

204

where Ψ(se, te) is given by Equation (6).205

• Step 5: Critical time representation. We once again define the sub-flow206

Φl(τ) where tl < τ 6 tl+1:207

Φl(τ) = exp
[∫ τ

tl

2λ(x)E(x) −
(

λ(x) + µ(x) + ψ̄(x) + wlδ(x− tl)
)

dx
]

= exp
[∫ τ

tl

2λ(x)E(x) −
(

λ(x) + µ(x) + ψ̄(s)
)

dx
]

(1 − ρl)

=Φ̄l(τ) (1 − ρl) .

208

The complete flow is, as given by Equation (A3).209

Φ(τ) =Φ̄Lτ
(τ)

Lτ∏

l=1

Φ̄l−1(tl) (1 − ρl)

Φ(tk) = Φ̄k(tk)
︸ ︷︷ ︸

1

k∏

l=1

Φ̄l−1(tl)(1 − ρl) =
k∏

l=1

Φ̄l−1(tl) (1 − ρl) ,

210

where Lτ is once again the largest index l such that tl < τ . The critical time representation211
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of gstem from the previous stem gives the following.212

gstem(T ) =ρN0

0 Φ̄L(T )
L∏

l=1

Φ̄l−1(tl)(1 − ρl)
I∏

i=1

λ(xi)Φ̄Lxi
(xi)

I∏

i=1





Lxi∏

l=1

Φ̄l−1(tl)(1 − ρl)





×
n∏

j=1

ψ(yj)

Φ̄Lyj
(yj)

[(1 − r(yj))E(yj) + r(yj)]
n∏

j=1





Lyj∏

l=1

1

Φ̄l−1(tl)(1 − ρl)





m∏

k=1

ψ(zk)(1 − r(zk))

×
L∏

l=1

(

ρl

Φ̄l(tl)
[(1 − rl)E(tl) + rl]

)Nl L∏

l=1





l∏

j=1

1

(1 − ρj)Φ̄j−1(tj)

Nl





L∏

l=1

[ρl(1 − rl)]
Ml .

213

We can then simplify the likelihood using the relationships similar to those given by214

Equation (A4).215

I∏

i=1

Lxi∏

l=1

Φ̄l−1(tl) =
L∏

l=1

[

Φ̄l−1(tl)
]αl

n∏

j=1

Lyj∏

l=1

1

Φ̄l−1(tl)
=

L∏

l=1

[

Φ̄l−1(tl)
]−σl

.

I∏

i=1

Lxi∏

l=1

(1 − ρl) =
L∏

l=1

(1 − ρl)
αl

n∏

j=1

Lyj∏

l=1

1

(1 − ρl)
=

L∏

l=1

(1 − ρl)
−σl

L∏

l=1





l∏

j=1

1

(1 − ρj)Nl



 =
L∏

l=1

1

(1 − ρl)βl
,

216

where αl is the number of birth events before time tl and σl is the number of Poisson217

sampling events before time tl and βl is the number of lineages sampled during the CSAs218

up to and including at time tl.219

The resulting simplified likelihood is given by:220

gstem(T ) =ρN0

0 Φ̄L(T )
L∏

l=1

[

Φ̄l−1(tl)(1 − ρl)
]αl+1−σl−βl

×
n∏

j=1

ψ(yj)

Φ̄Lyj
(yj)

[(1 − r(yj))E(yj) + r(yj)]
m∏

k=1

ψ(zk)(1 − r(zk))

×
L∏

l=1

(

ρl

Φ̄l(tl)
[(1 − rl)E(tl) + rl]

)Nl L∏

l=1

[ρl(1 − rl)]
Ml .

221

• Step 6: Conditioned likelihood.222

– Stadler et al. (Stadler and Bonhoeffer, 2013) conditions on observing at least one223

sample. In addition the likelihood given by Stadler et al. assumes that all lineages are224

removed upon sampling rl = 1 an assumption we will apply now. The likelihoods can225
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be simplified by letting nl = αl + 1 − σl − βl be the number of lineages that are alive226

immediately following the concerted sampling attempt at time tl227

LS13 =
ρN0

0

1 − E(T )
Φ̄L(T )

L∏

l=1

[

Φ̄l−1(tl)(1 − ρl)
]nl

n∏

j=1

ψ(yj)

Φ̄Lyj
(yj)

L∏

l=1

(

ρl

Φ̄l(tl)

)Nl

.

(S5)228

– Gavryushkina et al. (Gavryushkina et al., 2014) also condition on observing at least229

one lineage as well as multiply by a constant giving the number of un-oriented trees.230

LG14 =S8
ρN0

0

1 − E(T )
Φ̄L(T )

L∏

l=1

[

Φ̄l−1(tl)(1 − ρl)
]nl

×
n∏

j=1

ψ(yj)

Φ̄Lyj
(yj)

[(1 − r(yj))E(yj) + r(yj)]
m∏

k=1

ψ(zk)(1 − r(zk))

×
L∏

l=1

(

ρl

Φ̄l(tl)
[(1 − rl)E(tl) + rl]

)Nl L∏

l=1

[ρl(1 − rl)]
Ml

(S6)231

Heath et al. 2014232

• Step 1: Specify the model.233

– Constant rates: λ(τ) = λ, µ(τ) = µ, ψ(τ) = ψ.234

∗ Here ψ denotes the sampling rate of fossils.235

– Birth-death model with fossils, r = 0.236

– Conditioned on observing > 1 sample given tMRCA (S3) and enumerated over all237

possible attachments of fossils (terminal sampling events before the present day (S8)).238

• Step 2: Derive IVP for ge(τ .239

dge(τ)

dτ
= − (λ+ µ+ ψ)ge(τ) + 2λge(τ)E(τ)

ge(se) =







λge1(se)ge2(se) birth event giving rise to edges e1 and e2

ψge1(se) ancestral sampling event

ψE(se) terminal sampling event

ρ0 se = 0, edge sampled at present day

240

• Step 3: Derive IVP for E(τ .241

dE(τ)

dτ
= − (λ+ µ+ ψ)E(τ) + λE(τ)2 + µ

E(0) =1 − ρ0.

242

This has the same general solution as given above in section .243
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• Step 4: Derive gstem(T ).244

gstem(T ) = (ρ0)
N0

I∏

i=1

λ
n∏

j=1

ψE(yj)
m∏

k=1

ψ
∏

edges

Ψ(se, te).245

• Step 5: Critical time representation.246

gstem(T ) =Φ(T ) (ρ0)
N0

I∏

i=1

λΦ(xi)
n∏

j=1

ψ

Φ(yj)
E(yj)

m∏

k=1

ψ.247

• Step 6: Conditioned likelihood. Conditioning on the probability that both daughter clades248

of the MRCA have at least one sampled extant descendant. S′
5. The general solution to Ê(τ)249

is known as given by the solution to E(τ) in section . Conditioning on all the possible250

attachments of the fossils (terminal samples before the present day). This requires251

multiplication by a constant S8. Let γ(τ) be the number of lineages alive at time τ . The the252

resulting number of fossil trees is.253

S =
n∏

i=1

2γ(yj)
m∏

k=1

γ(zk). (S7)254

LH14 =
Φ(x1)

(

1 − Ê(x1)
)2 (ρ0)

N0

I∏

i=1

λΦ(xi)
n∏

j=1

2γ(yj)ψ

Φ(yj)
E(yj)

m∏

k=1

γ(zk)ψ (S8)255
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Tables256

General Birth-Death-Sampling Model Notation

Variable Definition

λ(τ) The rate at which lineages speciate at time τ a. λ : R → [0,∞)
µ(τ) The rate at which lineages go extinct at time τ . µ : R → [0,∞)
ψ(τ) The rate at which lineages are sampled at time τ . ψ : R → [0,∞)
r(τ) The probability that sampling is associated with host recovery/viral extinction at

time τ . r : R → [0, 1]
ρ0 The probability of sampling a lineage alive at the present day. ρ0 : R → (0, 1]
T The time of origin of the phylogeny/epidemic.

~x The vector of I branching times. ~x = {x1, x2, ..., xi, ..., xI}
d

~y The vector of n internal (Poisson) sampling times without sampled descendants (ter-

minal nodes). ~y = {y1, y2, ..., yj, ..., yn}
~z The vector ofm internal (Poisson) sampling times of lineages with sampled descen-

dants (sampled ancestors). ~z = {z1, z2, ..., zk, ..., zm}
N0 The number of lineage sampled at the present day.

ge(τ) The likelihood density of observing a given phylogeny by the present day descending

from a single edge e alive at age τ e.

E(τ) The probability that a lineage alive at time τ leaves no sampled descendants in the

phylogenyf.

S The conditioning of the phylogeny.

ΘBDS = {λ(τ), µ(τ), ψ(τ), r(τ), T, ρ0}
CSA b, mass extinctions, and piecewise constant models

L The total number of past concerted sampling events.

Lt The index of the time tl at or after time t, i.e. the largest index such that tl 6 τ .
~t Vector of times of CSAs in order of most recent to oldest t1 < t2 < ... < tL.

~t = {t1, t2, ..., tl, ..., tL} c

~ρ Vector of sampling probabilities of lineages sampled during each CSA. ρl : R →
(0, 1]. ~ρ = {ρ0, ρ1, ..., ρl, ..., ρL}

~r The probability that a lineage that is sampled during each CSA is removed upon

sampling. rl : R → []0, 1]. ~r = {r1, r2, ..., rl, ..., rL}
Nl The number of tips sampled during the CSA at time tl.
Ml The number of ancestral samples during the CSA at time tl.
nl The number of lineages that cross time tl.
αl The number of observed birth events prior to time tl (xi > tl).

σl (βl) The number of Poissonian (concerted) sampled lineages prior to or at time τ > tl.
ΘCSA = {λ(τ), µ(τ), ψ(τ), r(τ), T, ~τ , ~ρ, ~r}

Table S1: model notation.
aThroughout τ is measured in units of time before the present day (τ = 0).
b CSA: Concerted Sampling Attempt.
c When used t0 indicates the present day and tL+1 = T .
d When used x1 indicates the time of the most recent common ancestor τMRCA
e The edge e spans time τ , se > τ > te
f Ê(τ) is the special case where ψ(τ) = 0
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Model λ(τ), µ(τ), ψ(τ) r(τ) ρ0 ρl rl νl S Section

Stadler 2009 constant, ψ = 0 NA > 0 0 NA 0 S6S8

Stadler 2010 constant 0 > 0 0 NA 0 multiple

Morlon et al. 2011 ψ = 0 NA > 0 0 NA 0 S1 = S2

Stadler 2011 piecewise, ψ = 0 NA > 0 0 NA > 0 S3 = S5

Stadler et al. 2012 constant 1 0 0 NA 0 S1

Stadler and Bonhoeffer 2013 piecewise 1 > 0 > 0 1 0 S1

Gavryushkina et al. 2014 piecewise piecewise > 0 > 0 > 0 0 S1 × S7

Kühnert et al. 2014 stochastic SIR constant 0 0 NA 0 ?a

Heath et al. 2014 constant 0 > 0 0 NA 0 S6

Table S2: Relationship of single-type sub-models to the general BDS model.
a No specific conditioning mentioned.
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Condition Description Examples

S0 = 1 No conditioning Eq.3(Stadler,

2010),

Eq.1(Stadler et al.,

2012) & Thrm.

2.6(Stadler, 2011)

S1 = Φ(x1)
Φ(T )

Likelihood given the tMRCA rather

than on the time of origin.

S2 = 1
1−E(T )

At least one sampled descendent ei-

ther at or before the present day

(given T ).

Eq.2Morlon

et al. (2011),

Thrm.1Stadler

and Bonhoeffer

(2013)

S3 = Φ(x1)
Φ(T )(1−E(x1))2 At least one sampled descendent

at or before the present day given

τMRCA = x1

(Heath et al., 2014)

S4 = 1
1−Ê(T )

At least one extant sampled lineage

(given T ).

Cor.3.7 (Stadler,

2010) & Thrm.2.7

(Stadler, 2011)

S5 = Φ(x1)

Φ(T )2(1−Ê(x1))(1−E(x1))
At least one extant sampled lineage

given τMRCA = x1

S
′
5 = Φ(x1)

Φ(T )(1−Ê(x1))2
Both daughters of MRCA have at

least one extant sampled lineage

Eq. 5 Stadler

(2010)

S6 = 1
ÊN0

(T )
Exactly N0 extant sampled lineages

(given T ).

Eq.2Stadler

(2009),

Eq.4(Stadler,

2010) &Cor.3.6

Stadler (2010)

S7 = Φ(x1)
Φ(tor)

(
∑N0−1
i=1 Êi(x1)ÊN0−i(x1)

)−1
Exactly N0 extant sampled lineages

given tMRCA.

Eq.6Stadler

(2010)

S8 = constant Multiply by a constant Stadler (2009)

& Gavryushkina

et al. (2014) a &

Heath et al. (2014)

Table S3: Alternative conditioning of tree likelihood.
a See Gavryushkina et al. (2013) for algorithms for enumerating trees.
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The multi-type model257

The multi-type diversification model258

Here we consider the diversification of lineages of A discrete types. Lineages of type259

a ∈ {1, 2, ...A} speciate/give birth to lineages of type b ∈ {1, 2, ...A} at the time-variable rate260

λa,b(τ) at time τ before the present day. As above we will use τ to denote time moving backward261

from the present day (τ = 0) to the origin of the phylogeny τ = T . When a = b speciation occurs262

without cladogenetic change, when a 6= b speciation is coincident with state change. In addition263

to the lineages changing state at birth events, lineages can mutate anagenetically from state a to264

state b at rate γa,b(τ). Lineages of type a alive at time τ , go extinct/die at rate µa(τ). For τ > 0265

lineages are sampled at rate ψa(τ). Upon sampling a lineage may be removed from the population266

(e.g., sampling is coincident with treatment) with the state-dependent probability ra(τ). Finally,267

all lineages alive at the present day are sampled with a state-dependent probability ρa. Model268

notation is summarized in Table S4.269

As with the single-type model, the result of the mutli-type diversification process is a full270

and a sampled tree. Now however the tree is characterized by its topology T and the colouring of271

the tree C denoting the states of each lineage through time. Below we first derive an expression for272

the likelihood of a given coloured tree, L (T,C|ΘMBDS). However, as plausibly attainable data273

consists of knowledge at only some or all the sampled ancestral nodes and/or tips, we must then274

integrate the likelihood L (T,C|ΘMBDS) over all possible tree colourings consistent with the275

observed data.276

Derivation of L (T,C|ΘMBDS)L(T,C)277

We derive the likelihood using the steps used above for the single-type birth death278

sampling model. As with the single-type model for the likelihood calculation be begin by279

representing the phylogeny as a series of edges. However, as we are now referring to the coloured280

phylogeny we consider the set of all coloured edges, with each edge being a a segment of the281

phylogeny that is all of one colour beginning and ending at birth, sampling, or mutation events.282

Specifically, moving backward in time towards the tree origin let edge e start at time se before the283

present at a birth event, sampling (ancestral or tip), or mutation event, and continue toward the284

tree origin until time τe ending at either a birth event, ancestral sampling event, mutation event or285

at the tree origin.286

As with the single-type model the tree likelihood depends on two different functions.287

First, ge,a(τ) is the probability that an edge e with state a alive at time τ (hence te > τ > se) gives288

rise to the subsequently observed phylogeny between τ and the present day. Second, Ea(τ) is the289

probability a lineage of type a alive at time τ has no sampled descendants between τ and the290

present day. We begin below by first deriving the initial value problems for these two functions.291

Step 1: Derive the Initial Value Problem for ge,a(τ).292

To simplify the notation we define the total birth and mutation rates of a given type293

Λa =
∑

b λa,b and Γa =
∑

b γa,b and the relative probability a birth or mutation event was of a294

given type, pλa,b
=

λa,b

Λa
and pγa,b

=
γa,b

Γa
. For some small amount of time ∆τ the recursion295

equation for ge,a(τ) is given by:296
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ge,a(τ + ∆τ) ≈ ((1 − Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ)) ge,a(τ)
︸ ︷︷ ︸

No Event

+ ((Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ)) ×
A∑

b

pλa,b
ιa,bge,a(τ)Eb(τ)

︸ ︷︷ ︸

Birth Events

+ ((1 − Λa∆τ)(µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ)) × 0
︸ ︷︷ ︸

Death Event

+ ((1 − Λa∆τ)(1 − µa∆τ)(ψa∆τ)(1 − Γa∆τ)) × 0
︸ ︷︷ ︸

Sampling Event

+ ((1 − Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(Γa∆τ)) × 0
︸ ︷︷ ︸

Mutation Events

+O(∆τ 2)

(S9)

where ιa,b is an indicator variable that has value 2 when a = b and 1 otherwise. This recursion297

equation uses the fact that edges are all in state with mutation events resulting in the end of an298

edge and the origin of a daughter edge with a different state. This is reflected by the initial299

conditions of ge,a(τ) as given below in equation (S11).300

As above we can then use the definition of a derivative to obtain the corresponding301

differential equation302

dge,a(τ)

dτ
= − (Λa + µa + ψa + Γa) ge,a(τ) +

∑

b

ιa,bλa,bge,a(τ)Eb(τ) (S10)

The initial conditions for ge,a at the start of the edge, time se, depend on the event that occurs in303

the sampled tree at that time. Specifically there are five types of events in the observed tree. 1)304

Observed birth events where a lineage of type a speciates producing a new lineage of type b. 2)305

Ancestral sampling events where a lineage of type a is sampled, is not removed from the306

population, and then has subsequently observed descendants. 3) Terminal sampling events where307

a lineage of type a is sampled and then either is immediately removed from the population or308

remains in the population but has no sampled descendants. 4) Transition events where a lineage of309

type a transitions to a lineage of type b. There are two possible ways a transition event can occur.310

First, a lineage can switch states due to a anagenetic mutation event or second an apparent311

transition can arise due to a birth event with cladogenetic state change followed by subsequent312

extinction of the parental lineage. We refer to this second form of transition event as a hidden313

birth event.314

ge,a(se) =







λa,b(se)ge1,a(se)ge2,b(se) birth event a → a+ b

(1 − ra(se))ψa(se)ge1,a(se) ancestral sampling event

ra(se)ψa(se) + (1 − ra(se))ψa(se)Ea(se) terminal sampling event

(γa,b(se) + λa,bEa) ge1,b(se) mutation/hidden birth event a → b

ρa sampled at present day

(S11)
Importantly, as the ODES in equation (S10) are linear the corresponding IVP has the315
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following general solution given the initial conditions above.316

ge,a(τ) =ge,a(se)Ψa(se, τ), where

Ψa(se, τ) =exp

[
∫ τ

se

− (Λa(x) + µa(x) + ψa(x) + Γa(x)) +
∑

b

ιa,bλa,b(x)Eb(x)dx

]

.
(S12)

The IVP for the function Ea(τ) can be derived in an analogous manner.317

Step 2: Derive the Initial Value Problem for Ea(τ) Once again we begin by deriving a318

recursion equation for the change in Ea(τ) over from time τ to τ + ∆τ .319

Ea(τ + ∆τ) ≈ ((1 − Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ))Ea(τ)
︸ ︷︷ ︸

No Event

+ ((Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ)) ×
A∑

b

pλa,b
Ea(τ)Eb(τ)

︸ ︷︷ ︸

Birth Events

+ ((1 − Λa∆τ)(µa∆τ)(1 − ψa∆τ)(1 − Γa∆τ)) × 1
︸ ︷︷ ︸

Death Event

+ ((1 − Λa∆τ)(1 − µa∆τ)(ψa∆τ)(1 − Γa∆τ)) × 0
︸ ︷︷ ︸

Sampling Event

+ ((1 − Λa∆τ)(1 − µa∆τ)(1 − ψa∆τ)(Γa∆τ)) ×
∑

b

pγa,b
Eb(τ)

︸ ︷︷ ︸

Mutation Events

+O(∆τ 2).

(S13)
Using the definition of a derivative we have:320

dEa(τ)

dτ
= − (Λa + µa + ψa + Γa)Ea(τ) +

∑

b

λa,bEa(τ)Eb(τ) + µa +
∑

b

γa,bEb(τ), (S14)

with initial conditions given at the present day by:321

Ea(0) = 1 − ρa (S15)

Step 3: Derive Expression for gstem(T ) As in equation (9) for the single-type model, the tree322

likelihood is given by the value of the function g of the stem edge evaluated at the time of the323

origin of the phylogeny, T . From the solution to the initial value problem given by equation (S12)324

and the initial conditions (S11) we can write gstem(T ) as a product over the events in the tree and325

all the probability flow Ψ of the edges in-between. To do so let ~xa,b be a vector of length Ia,b,326

giving the time before the present day of all the observed birth events where lineages of type a327

give rise to lineages of type b. Let ~ya be a vector of length Ja giving the sampling time of tips of328

type a and ~za a vector of length Ka the sampling type of sampled ancestors of type a. Finally let329

~wa,b be the time of observed transition events where a edge of type a transitions becomes an edge330

of type b. Once again, transition events can arise due to both direct mutation and hidden birth331

events. The resulting expression for the likelihood gstem(T ) is given by:332
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gstem(T ) =
A∏

a=1









ρNa

a
︸︷︷︸

present day sampling

×
A∏

b=1

Ia,b∏

i=1

λa,b(xa,b,i)

︸ ︷︷ ︸

birth events

×
Ja∏

j=1

ψa(ya,j) (1 − ra(ya,j))Ea(ya,j) + ψa(ya,j)ra(ya,j)

︸ ︷︷ ︸

terminal samples

×
Ka∏

k=1

ψa(za,k)(1 − ra(za,k))

︸ ︷︷ ︸

ancestral samples

×
La,b∏

l=1

[γa,b(wa,b,l) + λa,b(wa,b,l)Ea(wa,b,l)]

︸ ︷︷ ︸

transitions

∏

edges of type a

Ψa(se, τe)









(S16)

Step 4: Rewrite gstem(T ) in Terms of Critical Times333

Rather than enumerate Ψ over the edges of the phylogeny we can rewrite equation (S16) in334

terms of only the critical times ~x, ~y, ~z, ~w Written in this form the likelihood also depends on c∗ the335

colour of the phylogeny at the origin. To do so we define Φa(τ) = Ψa(0, τ) and rewrite the336

probability flow Ψa(se, τ) as a ratio:337

Ψa(se, τ) =
Φa(τ)

Φa(se)
(S17)

Substitution into equation (S16).338

gstem,c∗(T ) =

[
A∏

a=1

ρNa

a

]

︸ ︷︷ ︸

present day sampling

× [Φc∗(T )]
︸ ︷︷ ︸

stem

×





A∏

a=1

A∏

b=1

Ia,b∏

i=1

λa,b(xa,b,i)
✘✘✘✘✘
Φa(xa,b,i)Φb(xa,b,i)

✘✘✘✘✘
Φa(xa,b,i)





︸ ︷︷ ︸

birth events

×





A∏

a=1

Ja∏

j=1

[ψa(ya,j)(1 − ra(ya,j))Ea(ya,j) + ψa(ya,j)ra(ya,j)]
1

Φa(ya,j)





︸ ︷︷ ︸

terminal sampling events

×

[
A∏

a=1

Ka∏

k=1

ψa(za,k)(1 −a (za,k))
✘✘✘✘✘Φa(za,k)

✘✘✘✘✘Φa(za,k)

]

︸ ︷︷ ︸

ancestral sampling events

×





A∏

a=1

La,b∏

l=1

[γa,b(wa,b,l) + λa,b(wa,b,l)Ea(wa,b,l)]
Φb(wa,b,l)

Φa(wa,b,l)





︸ ︷︷ ︸

transition sampling events

(S18)

Step 5: Condition the Likelihood339

We conclude, as in the single type model by multiplying the likelihood by including a340

general form of conditioning S.341
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L(ΘMBDS|T,C) =S ×

[
A∏

a=1

ρNa

a

]

× [Φc∗(T )] ×





A∏

a=1

A∏

b=1

Ia,b∏

i=1

λa,b(xa,b,i)Φb(xa,b,i)





×





A∏

a=1

Ja∏

j=1

[ψa(ya,j)(1 − ra(ya,j))Ea(ya,j) + ψa(ya,j)ra(ya,j)]
1

Φa(ya,j)





×

[
A∏

a=1

Ka∏

k=1

ψa(za,k)(1 − ra(za,k))

]

×





A∏

a=1

A∏

b6=a

La,b∏

l=1

[γa,b(wa,b,l) + λa,b(wa,b,l)Ea(wa,b,l)]
Φb(wa,b,l)

Φa(wa,b,l)





(S19)
Due to the combination of cladogenetic change and different possibility of hidden birth342

events due to extinction and sampling, there are six different types of birth events included in the343

likelihood of the sampled tree. The following diagram summarizes these different birth events and344

how each is included in the equation (S19).345

Caldogenetic Change
Sampled

Descendants
Term

Birth Event

a → a+ b

Rate: λa,b

Symmetric Birth

Asymmetric Birth

Both Samp. Birth events in L, a = b

Parent Samp. 2nd term of Ψ, a = b

Offspring Samp. 2nd term of Ψ, a = b

Both Samp. Birth events in L, a 6= b

Parent Samp. 2nd term of Ψ, a 6= b

Offspring Samp. Hidden birth events in L

Figure S1: The six possible birth events in the sampled tree and how each in included in the likeli-

hood given by equation (S19).
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Tables346

Vari-

able
Definition

A The number of discrete lineage types.

λa,{b,c}(τ)
The time-varying rate at which lineage of type a gives rise to daughter lineages of

type b and c at time τ .

µa(τ) The time varying rate at which lineages of type a go extinct at time τ
ψa(τ) The time varying rate at which lineages of type a are sampled.

ra(τ) The time varying probability that upon sampling lineages are removed.

γa,b(τ) The time varying rate at which lineages of type a transition to type b.
ρa The probability a lineage of type a alive at the present day is sampled.

Na The number of lineages of type a sampled at the present day.

~xa,b,c
A vector of length Ia,b giving the timing of speciation events where a lineage of

type a gives rise to a daughter of type b.

~ya
A vector of length Ja giving the times at which lineages of type a are sampled for

which there are no sampled descendants (sampled tips).

~za
A vector of length Ka giving the times at which lineages of type a are sampled for

which there are sampled descendants (sampled ancestors).

~wa,b
A vector of length La,b giving the times at which lineages of type a mutate to

lineages of type b.
c The state at the origin (stem node) of the phylogeny.

T The tree topology.

C The colouring of the tree.

ge(a, τ)
The probability an edge e of type a alive at time τ gives rise to the subsequently

observed phylogeny

Ea(τ)
The probability a lineage of type a alive at time τ has no sampled descendants

between time τ and the present day.

ιa,b An indicator variable with value 2 if a = b and 1 otherwise.

Cy The known tip states

Cz The known states of sampled ancestors

ΘMBDS The parameters of the multi-type BDS model

SSE Algorithm

πc The probability the stem node has state c

DN,a(τ)
The probability a “topological” edge N of type a at time τ gives rise to the

subsequently observed phylogeny.

Table S4: Notation for the general multi-type model.Throughout t represents time moving for-

ward from the origin (t = 0) of the tree to the tips (t = T ) and τ represents time moving backward

from the tips (τ = 0) to the origin (τ = T ). The indices a, b denote lineage types and can take on

integer values between 1 and A.


