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ABSTRACT
Birth-death stochastic processes are the foundation of many phylogenetic models and are widely
used to make inferences about epidemiological and macroevolutionary dynamics. There are a
large number of birth-death model variants that have been developed; these impose different
assumptions about the temporal dynamics of the parameters and about the sampling process. As
each of these variants was individually derived, it has been difficult to understand the
relationships between them as well as their precise biological and mathematical assumptions.
Without a common mathematical foundation, deriving new models is non-trivial. Here we unify
these models into a single framework, prove that many previously developed epidemiological and
macroevolutionary models are all special cases of a more general model, and illustrate the
connections between these variants. This unification includes both models where the process is
the same for all lineages and those in which it varies across types. We also outline a
straightforward procedure for deriving likelihood functions for arbitrarily complex
birth-death(-sampling) models that will hopefully allow researchers to explore a wider array of
scenarios than was previously possible. By re-deriving existing single-type birth-death sampling
models we clarify and synthesize the range of explicit and implicit assumptions made by these
models.
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Evolutionary, demographic, and epidemiological processes leave a footprint in the branch length
distribution and topology of reconstructed phylogenetic trees. This insight has inspired a huge
effort to extract information about these processes by fitting stochastic models. For example, in
molecular epidemiology, researchers have leveraged the fact that for many viral pathogens, such
as HIV and SARS-CoV-2, accumulate genetic diversity on the timescale of transmission
(Drummond et al., 2003; Dufty et al., 2008). This genetic diversity can be used to reconstruct the
evolutionary relationships between viral variants sampled from different hosts, which in turn can
help elucidate the epidemiological dynamics of a pathogen over time (Grenfell et al., 2004; Volz,
2012). Similarly, phylogenetic trees can provide unique insights into the variation in speciation
and extinction rates (Morlon, 2014).

Phylogenetic branching models can be broadly grouped into two classes. The first, based
on Kingman’s coalescent process (Kingman, 1982), has been widely used to examine changes in
the historical population size of pathogens (Pybus et al., 2000; Strimmer and Pybus, 2001;
Drummond et al., 2005; Volz et al., 2009). These coalescent methods have also been applied to
reconstruct macroevolutionary dynamics (Morlon et al., 2010). Coalescent models are well suited
for estimating deterministic population dynamics; however, fitting highly stochastic processes,
such as the dynamics of an emerging pathogen, is computationally intensive and in some cases
the assumptions of the coalescent may not be appropriate (Stadler et al., 2015; Boskova et al.,
2014; Volz and Frost, 2014). The second class of models, which are collectively referred to as
birth-death-sampling (BDS) models (Kendall, 1948; Maddison et al., 2007; Stadler, 2009, 2010),
is well suited for stochastic scenarios, and are thus becoming an increasingly favorable and
popular alternative to coalescent models in epidemiology (Stadler et al., 2012) and have long
been the foundation of most macroevolutionary studies — both for inferring speciation and
extinction dynamics (Raup, 1985; Nee et al., 1994) and for estimating divergence times
(Gernhard, 2008; Heath et al., 2014). As the name implies, the BDS process includes three types
of events: birth (pathogen transmission between hosts, or speciation in a macroevolutionary
context), death (host death or recovery, or extinction in macroevolution), and sampling (including
fossil collection in macroevolution).

In the context of epidemiology, BDS models have the additional property that the model
parameters, which can be estimated from viral sequence data, explicitly correspond to parameters
in classic structured epidemiological models that are often fit to case surveillance data. If we
re-parameterize these models, we can describe the dynamics of the basic and effective
reproductive ratios (R, and R., respectively) over time (Stadler et al., 2012, 2013) (see Box 1). A
common research aim is to describe how the frequency of birth, death, and sampling events, and
other derived variables such as R, change throughout the course of an epidemic. There has been
less work in macroevolution linking the parameters of a BDS model to those of an underlying
more mechanistic model (but see Ezard et al., 2016) but this seems like a promising avenue for
future development.

As we detail below and in the Supplementary Material, there has been an astounding rise
in the variety and complexity of BDS model variants. A key assumption in the specification of
BDS sub-models is whether all lineages alive at some time point are exchangeable (Stadler, 2013)
(such models are hereafter “single-type” models), meaning they diversify according to the same
process, or if rather the diversification process is variable (“multi-type” models; e.g., Maddison
et al., 2007; FitzJohn, 2012; Stadler and Bonhoeffer, 2013; Rasmussen and Stadler, 2019;
Barido-Sottani et al., 2018), with lineages belonging to one of multiple possible states each
characterized by a unique process. Each of these diversification processes can then be
characterized by different dynamical assumptions. In the epidemiological case, these assumptions
specity, for example, the nature of viral transmission and the sampling procedure (Stadler et al.,
2013; Kiihnert et al., 2014; Gavryushkina et al., 2014). While typically not explicitly tied to
mechanistic evolutionary processes, there are a similar abundance of dynamical assumptions
employed in the macroevolutionary context specifying the nature of biodiversity change through
time (Nee, 2006; Gernhard, 2008; Morlon et al., 2011; Stadler, 2011; Morlon, 2014; Heath et al.,
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2014; Louca, 2020).

This flourishing of methods and models has facilitated critical insights into epidemics (du
Plessis and Stadler, 2015; Joy et al., 2016) and the origins of contemporary biodiversity (Morlon,
2014; Schluter and Pennell, 2017). However, this diversity of models has made it difficult to trace
the connections between variants and to understand the precise epidemiological, evolutionary,
and sampling processes that differ between them. Furthermore, despite their apparent similarities,
these models have been derived on a case-by-case basis using different notation and techniques;
this creates a substantial barrier for researchers working to develop novel models for new
situations. And critically, it is imperative that we understand the general properties of BDS
phylogenetic models and the limits of inferences from them (Louca and Pennell, 2020a; Louca
et al., 2021) and this is difficult to do without considering the full breadth of possible scenarios.

Here we address all of these challenges by unifying the whole class of phylogenetic BDS
models. We do so by first deriving a likelihood for general single- and multi-type BDS models; in
the general case, we do not assume anything about the functional forms (i.e., temporal dynamics)
of the various parameters including the sampling rate through time, the possibility of sampling
ancestors (or not), or how the process was conditioned. While such general models may be useful
for studying the mathematical properties of BDS models as a whole (Lambert and Stadler, 2013;
Louca and Pennell, 2020a; Louca et al., 2021), statistical inference from these models requires
researchers to make further constraints on the process. We prove that existing BDS model variants
are indeed sub-models of the more general case — and thereby clarify the specific assumptions
made by different models — and provide a standardized notation and technique for deriving these
and other sub-models that have not previously been considered in the literature.

The single-type birth-death-sampling model

Model Specification: The BDS stochastic process begins with a single lineage at time 7'
before the present day. We note that this may be considerably older than the age of the most recent
common ancestor of an observed sample which is given by ¢yrca. While we focus primarily on
applications to epidemiology, our approach is agnostic to whether the rates are interpreted as
describing pathogen transmission or macroevolutionary diversification.

In the model, transmission/speciation results in the birth of a lineage and occurs at rate
A(7), where 7 (0 < 7 < T') is measured in units of time before the present day (7 = 0), such that
A can be time-dependent. We make the common assumption that lineages in the viral phylogeny
coalesce exactly at transmission events, thus ignoring the within-host coalescent processes in the
donor (Romero-Severson et al., 2016). Throughout, we will use 7 as a a general time variable and
t to denote the time at which a specific event X occurs as measured in units of time before the
present day (see Table S1). Lineage extinction, resulting from host recovery or death in the
epidemiological case or the death of all individuals in a population in the macroevolutionary case,
occurs at time-dependent rate (7). We allow for two distinct types of sampling: lineages are
either sampled according to a Poisson process through time (7) or binomially at very short
intervals, which we term “concerted sampling attempts” (CSAs), where lineages at some
specified time ¢; are sampled with probability p; (p'denotes a vector of concerted sampling events
at different time points). In macroevolutionary studies based only on extant lineages, there is no
Poissonian sampling, but a CSA at the present (py > 0). In epidemiology, CSAs correspond to
large-scale testing efforts (relative to the background rate of testing) in a short amount of time
(relative to the rates of viral sequence divergence); for full explanation, see Appendix. We call
these attempts rather than events because if p is small or the infection is rare in the population,
few or no samples may be obtained. CSAs can also be incorporated into the model by including
infinitesimally short spikes in the sampling rate ¢/ (more precisely, appropriately scaled Dirac
distributions). Hence, for simplicity, in the main text we focus on the seemingly simpler case of
pure Poissonian sampling through time except at present-day, where we allow for a CSA to
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4 MACPHERSON ET AL.

facilitate comparisons with macroevolutionary models; the resulting formulas can then be used to
derive a likelihood formula for the case where past CSAs are included (see Appendix).

In the epidemiological case, sampling may be concurrent (or not) with host treatment or
behavioural changes resulting in the effective extinction of the viral lineage. Hence, we assume
that sampling results in the immediate extinction of the lineage with probability r(7). As with the
CSA:G, this arbitrary time dependence allows for the incorporation of Dirac spikes in any of these
variables, for example with mass extinctions (x) and lagerstitten in the fossil record (¢)(1 — 7))
(Magee and Hohna, 2021). Similarly, in the case of past CSAs we must include the probability, r;,
that sampled hosts are removed from the infectious pool during the CSA at time ¢;. Poissonian
sampling without the removal of lineages (r(7) < 1) can be employed in the macroevolutionary
case to explicitly model the collection of samples from the fossil record (such as the
fossilized-birth-death process; Heath et al., 2014).

For our derivation, we make no assumption about the temporal dynamics of A, u, v, or r;
each may be constant, or vary according to any arbitrary function of time given that it is
biologically valid (non-negative and between O and 1 in the case of r). Specifically, the
time-varying functions may be any piecewise-continuous functions of time with at most finite
number of discontinuities (see 1). Note that these functions need not be differentiable. We make
the standard assumption that at any given time any given lineage experiences a birth, death or
sampling event independently of (and with the same probabilities as) all other lineages. We revisit
this assumption in Box 1 where we discus how the implicit assumptions of the single-type BDS
process are well summarized by the diversification model’s relationship to the SIR
epidemiological model. Our resulting general time-variable BDS process can be fully defined by
the parameter set Opps = {\(7), u(7), ¥ (1), (1), p}.

In order to make inference about the model parameters, we need to calculate the
likelihood, £, that an observed phylogeny, 7, is the result of a given BDS process. With respect to
the BDS process there are two ways to represent the information contained in the phylogeny 7,
both of which have been used in the literature, which we call the “edge” and “critical time”
representations, respectively. We begin by deriving the likelihood in terms of the edge
representation and later demonstrate how to reformulate the likelihood in terms of critical times.
In the edge representation, the phylogeny is summarized as a set of edges in the mathematical
graph that makes up the phylogeny, numbered 1-11 in Figure B1C, and the types of events that
occurred at each node. We define g.(7) as the probability that the edge e which begins at time s,
and ends at time ¢, gives rise to the subsequently observed phylogeny between time
T, (se < 7 < t.) and the present day. The likelihood of the model for the observed tree is then, is
by definition gy (7'): the probability density that the stem lineage (stem = 1 in Figure Blc)
gives rise to the observed phylogeny from the origin, 7', to the present day. We find that it is more
intuitive to derive the likelihood in terms of the edge representation, as we show below; from this
it is straightforward to derive the critical times formulation which results in mathematical
simplification. Below we present our five-step technique for the derivation of the tree likelihood.
Step 1. Deriving the Initial Value Problem (IVP) for g.(7): We derive the IVP for the likelihood
density g.(7) using an approach first developed by Maddison et al. (2007). We begin by deriving
the recursion equation for g. by considering all the possible events that could occur along edge e
between time 7 and 7 + A7 assuming that that A7 is small enough such that at most one event is
likely to occur.
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Ge(T+ AT) = (1 = M7)AT)(1 — p(7)AT)(1 — (T)AT) X ge(T)

nothing happens

+ AT)AT(1 — p(7)AT)(1 — (7)AT) X 2g.(T)E(T)

birth event (1 )
+ u(T)AT(1 = A(1)AT)(1 — Y(7)AT) X 0

death event

+(T)AT(1 — M7)AT)(1 — pu(7)AT) x 0+O(AT?).

sampling event

164

s Here, F/(7) is the probability that a lineage alive at time 7 leaves no sampled descendants at the
s present day. We will examine this probability in more detail below. Assuming A7 is small, we can
1w approximate the above recursion equation as the following difference equation.

166 Age(T) = — (A7) + (7)) + V(7)) ATGe(T) + 2X(7) g (T) E(T) AT + O(AT?). (2)
1w By the definition of the derivative we have:

o dg;(_T) = —(A(7) + p(7) + U(7))ge(T) + 2XM(7)ge(T) E(T). 3)

. Equation (3) is known as the Kolmogorov backward equation of the BDS process (Feller, 1949;
2 Louca and Pennell, 2020b). Beginning at time s., the initial condition of g. depends on which
s event occurred at the beginning of edge e.

)\(Se)gel (Se)geg (Se) birth event giving rise to edges el and e2

(1 — 7“(86) )w(se)gel (Se) ancestral sampling event
174 ge<Se) = (4)

¢(86)T<Se) —+ 1/)(88)(1 — T(Se))E(Se) terminal sampling event

L0 Se = 0, extant sample

s Together Equations (3) and (4) define the initial value problem for g.(7) as a function of the
s probability £(7).

177 Because the likelihood density g, is the solution to a linear differential equation with
s initial condition at time s., we can express its solution as follows:

179 ge(T) = \11(55, T)ge(se)y (5)
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where the auxiliary function, W, is given by:

U(se, T) = exp [/T 2M(2)E(x) — (Ma) + p(x) + (x)) dz| . (6)

Se

This function, W (s, t), maps the value of ¢, at time s to its value at ¢, and hence is known as the
probability “flow” of the Kolmogorov backward equation (Louca and Pennell, 2020b).

Step 2. Deriving the IVP for FE(7): We derive the IVP for E(7) in a similar manner as above,
beginning with a difference equation.

E(t+ A1) =(1=X1)AT)(1 — u(1)AT)(1 — Y(7)AT) X E(T)

nothing happens

+AMT)AT(1 — pw(1)AT)(1 — (T)AT) x B(1)?

birth event
(7

p(T)AT(1 = A(1)AT)(1 — (1)AT) x 1

death event

+ (T)AT(1 — M7)AT)(1 — pu(7)AT) X 0.

sampling event

By the definition of a derivative we have:

D) — (M) + () + HE)ER) + MOEE)? + a(r),
. 8)
E(O) =1 - Po,

where py is the probability a lineage is sampled at the present day. The initial condition at time 0
is therefore the probability that a lineage alive at the present day is not sampled. Given an
analytical or numerical general solution to F/(7), we can find the likelihood by evaluating
gstem(T), as follows.

Step 3. Deriving the expression for gs..m(T'): Given the linear nature of the differential equation
for g.(7) and hence the representation in Equation (5)), the likelihood gstem () is given by the
product over all the initial conditions times the product over the probability flow for each edge.

n

Gstem (T') = po H Az H (1= 7(y;)) E(y;) + 9 (y;)r(y;)]
extantw_/ :
tips births extinct tips (9)
de)zk 1 —r(z) H\I/se,e
ecT

ancestral samples edges
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where z;, y; and z;, are the times at which individual birth, terminal sampling and ancestral
sampling events occur as we elaborated below.
Step 4. Representing sienm (1) in terms of critical times: Equation (9) can be further simplified by
removing the need to enumerate over all the edges of the phylogeny (the last term of Equation (9))
and writing £ in terms of the tree’s critical times (horizontal lines in Figure B1). The critical
times of the tree are made up of three vectors, 7, i/, and Z, as well as the time of origin 7". The
vector ' gives the time of each birth event in the phylogeny and has length [ = Ny +n — 1 where
Ny is the number of lineages sampled at the present day and n is the number of terminal samples.
Unless noted otherwise the elements of vector & are listed in decreasing order, such that
T1 > T > ...x; and hence x; is the time of the most recent common ancestor {yrca. The vector
y gives the timing of each terminal sample and hence has length n whereas vector 2" gives the
timing of each ancestral sample and has length m. With respect to the BDS likelihood then the
sampled tree is summarized by T = {Z, 7/, 2, T'}. We note that the critical times only contain the
same information as the edges as a result of the assumptions of the BDS process but are not
generally equivalent representations of J.

As a result of the linear nature of g.(7) it is straightforward to rewrite the likelihood in
Equation (9) in terms of the critical-time representation of the sampled tree. Defining

o(r) = 0(0,7) =exp | [ 2A@)E(a) ~ (@) + () + () da]. (10
the probability flow W can be rewritten as the following ratio:

U0, 7

KA
N

(s, 7) _ ; (1

This relationship allows us to rewrite the likelihood by expressing the product over the edges as
two separate products, one over the start of each edge and the other over the end of each edge
which in turn allows us to rearrange and cancel terms to obtain an alternative likelihood
expression. Edges begin (value of t.) at either: 1) the tree origin, 2) a birth event resulting to two
lineages, or 3) an ancestral sampling event. Edges end (values of s.) at either: 1) a birth event, 2)
an ancestral sampling event, 3) a terminal sampling event, or 4) the present day. Hence we have:

Gutem (T) = &(T) x < Po )NO ! q)(xi)?

7)< LM G0

extant tips births

root

(12)
T 5810 = )20 + i) ¢ [T prwte(1 =)
extinct tips ancestral samples

Note ®(0) = 1. While Equations (9) and (12) are numerically identical, the critical time
expression is more convenient for application as it requires numerically evaluating only a single
function ®(7) as given by Equation (10).

Step 5. Conditioning the likelihood: While Equation (12) is equal to the basic model likelihood
for the phylogeny 7, it is often appropriate to condition the tree likelihood on the tree exhibiting
some property, for example the condition there being at least sampled lineage. Imposing a
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condition on the likelihood is done by multiplying by a factor S. Various conditioning schemes
are considered in section 1 and listed in Table S3 with the value of § ranging in complexity from a
constant to a general function of the model parameters. The resulting likelihood expression for the
general BDS model is:

I
£ (©sps, 8|7, 7, 7, No) =8py " ®(T) [ [ Mwi)@ ()

i=1
(13)
e ¢(yj) M

X ]1_[1 o

(1 —7(y)Ey;) +r(y)] 1] ¢(ze) 1 —r(z))
k=1

Many existing models are special cases of this general BDS model

A large variety of previously published BDS models in epidemiology and macroevolution
are special cases of the general model presented here (for a summary of the models we
investigated see Table S2; proofs in Supplemental Material). Indeed, we can obtain the likelihood
of these models by adding mathematical constraints (i.e., simplifying assumptions) to the terms in
Equation (13). Our work thus not only provides a consistent notation for unifying a multitude of
seemingly disparate models, it also provides a concrete and numerically straightforward recipe for
computing their likelihood functions. We recognize that there are many valid approaches for
deriving tree likelihoods for BDS models with share many similarities with our own (e.g., Nee
et al., 1994; Maddison et al., 2007; Gernhard, 2008; Morlon et al., 2011; Lambert and Stadler,
2013; Lambert, 2018; Laudanno et al., 2020; Louca and Pennell, 2020b) and do not claim ours is
superior to these; however, we have found our technique to be intuitive and flexible. We have
implemented the single-type BDS likelihood in the R package castor (Louca and Doebeli,
2018), including routines for maximum-likelihood fitting of BDS models with arbitrary
functional forms of the parameters given a phylogeny and routines for simulating phylogenies
under the general BDS models (functions fit_hbds_model_on_grid,
fit_hbds_model parametrlc and generate_tree_hbds).

Figure 1 summarizes the simplifying assumptions that underlie common previously
published BDS models; these assumptions generally fall into four categories: 1) assumptions
about the functional form of birth, death, and sampling rates over time, 2) assumptions pertaining
to the sampling of lineages, 3) the presence of mass-extinction events, and 4) the nature of the
tree-conditioning as given by 8. Here we provide a brief overview of the type of
previously-invoked constraints which are consistent (or not) with our unified framework; for full
details on each specific case, we refer readers to the Supplementary Material. While we illustrate
these constraints within the single-type context, analogous assumptions can be made within the
multi-type context examined in the following section.

In regards to rate assumptions, many early BDS models (Stadler, 2009, 2010; Stadler
et al., 2012) assumed that the birth, death, and sampling rates remained constant over time. This
is mathematically and computationally convenient since an analytical solution can easily be
obtained for £(7). In the epidemiological case, holding A constant, however, implies that the
number of susceptible hosts is effectively constant throughout the epidemic and/or that the
population does not change its behavior over time; this is an unrealistic assumption given seasonal
changes or changes in response to the disease itself. As such, this assumption is only really valid
for small time periods or the early stages of an epidemic. This is useful for estimating the basic
reproductive number, Ry, of the SIR model (Box 1) but not for the effective reproductive number
R, at later time points (Stadler et al., 2012).

A similarly tractable, but more epidemiologically relevant, model is known as the
“birth-death-skyline” variant (Stadler and Bonhoeffer, 2013; Gavryushkina et al., 2014), in which
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rates are piecewise-constant functions through time (like the constant rate model, there is also an
analytical way to calculate the likelihood of this model; see Appendix). The BDS skyline model
has been implemented under a variety of additional assumptions in the Bayesian phylogenetics
software BEAST2 Bouckaert et al. (2019). The BDS skyline model has also been extended by
Kuhnert et al. (Kiihnert et al., 2014) to infer the the parameters of an underlying stochastic SIR
model. In this case the diversification model parameters © gpg are random variables that emerge
from stochastic realizations of the epidemiological model given by Og;r, see Equation (B1).
Finally, the birth-death skyline model with piecewise constant rates can also be applied in the
macroevolutionary case when no sampling occurs through time, v)(7) = 0 (Stadler, 2011).

In addition to imposing constraints on the temporal variation in the rates, previously
derived sub-models have considered a variety of different assumptions about the nature of the
sampling process. Most notably, in macroevolutionary studies, sampling of molecular data
typically occurs only at the present day (Stadler, 2009, 2011; Morlon et al., 2011) whereas past
Poissonian sampling can be introduced to include the sampling of fossil data (Heath et al., 2014).
In epidemiology, concerted sampling at the present day is likely biologically unrealistic (Stadler
et al., 2012), though in some implementations of the models, such a sampling scheme has been
imposed. These concerted sampling attempts prior to the present day as well as mass extinction
events can be incorporated via the inclusion of Dirac distributions in the sampling and death
rates, respectively. Finally, previous models often multiply the likelihood by a factor & in order to
condition on a particular observation (e.g., observing at least one lineage or exactly N, lineages),
enumerate indistinguishable trees (e.g., accounting for possible orientations or unlabeled trees)
(Gavryushkina et al., 2013, 2014; Stadler, 2009), or to reflect known uncertainties. The
“fossilized-birth-death” likelihood derived by Heath et al. (2014) for example, includes a factor
that reflects the uncertainty in the attachment and placement of fossils on the macroevolutionary
tree. This fossilized-birth-death process has been used to estimate divergence times and to model
lineage diversification (Gavryushkina et al., 2017; Landis et al., 2021). Variants of the
fossilized-birth-death process, for example including mass extinction events, are feasible and can
be derived using our approach. We also note that models similar to the time-variable
fossilized-birth-death process have been developed for cases when phylogenetic data is not
available (i.e., when only including fossil occurrence data; see Silvestro et al., 2014; Lehtonen
et al., 2017); we have not investigated how these models relate to our generalized BDS model but
we speculate that it would be possible to also bring these models into a common framework with
those that we have discussed. The Supplementary Material demonstrates how these sub-models
can be re-derived by either imposing the necessary constraints on the general likelihood formula
given in Equation (13) or, alternatively, by starting from the combinations of assumptions and
using the five-step procedure outlined above.

The multi-type birth-death-sampling model

A common extension of the single-type diversification models explored above is to
consider cases where the diversification rates (\, u, 1) and probabilities (r, p) vary among
lineages as a function of a categorical “lineage type”. This lineage type can be defined in terms of
specific (Maddison et al., 2007; Rasmussen and Stadler, 2019) or unspecified traits (Beaulieu and
O’Meara, 2016) or trait combinations (FitzJohn, 2012) (for reviews of these models see Morlon,
2014; Ng and Smith, 2014). Representing these lineage types as colours at nodes and along
branches of the tree, we first extend the the single-type model above by deriving the likelihood of
a fully coloured tree with topology J where the states along all edges of the phylogeny are known
as given by C. The resulting likelihood is an extension of the likelihood first developed by
Barido-Sottani et al. (2018), where the diversification rates and probabilities are allowed to vary
arbitrarily through time. To illustrate that our derivation is indeed quite general, we follow the
model developed (independently) by Magnuson-Ford and Otto (2012) and Goldberg and Igi¢
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(2012), where the state of lineages can change either anagenetically, with a lineage of type a
mutating to a type b at rate v, ,(7) or cladogenetically, with a lineage of type a giving rise to a
daughter lineage of type b at rate /\ayb(T). Lineages go extinct at a state-dependent rate 11, (7) and
are sampled at rate ¢, (7). As in the single-type model, upon sampling lineages are removed from
the population with probability r,(7) whereas all lineages alive at the present day are sampled
with a probability p, (7). As discussed in depth by Goldberg and Igi¢ (2012), the other discrete
variations of state-dependent diversification models (FitzJohn et al., 2009; Goldberg et al., 2011;
FitzJohn, 2012) fall out as special cases of this model. (See Ng and Smith, 2014, Caetano et al.,
2018, and Louca and Pennell, 2020b for further discussion of the connection between multi-type
models.)

We use the five-step technique specified above for the single-type case to derive the
probability of observing a given coloured tree under a general multi-type model (see
supplementary material). We first derive the initial value problem for the probability g. ,(7) that
an edge e of type a in the tree at time 7 gives rise to the subsequently observed phylogeny. The
edge e here refers not to an edge in the topological tree, but to a segment of the tree all of one
state between birth, sampling, or mutation events.

d e,a
gd ( (Z )\a b + ,ua + 1/)(1 + Z Ya, b ) ge@(T) + Z La,bAa,b(T>ge,a(T>Eb(T)
b
)\a,b(se)gel,a(se)ge2,b(5e) birth event a — a + b
(1 = 7a(5e))Va(Se)Ger,alSe) ancestral sampling event

Jea(Se) =9 1a(se)0a(se) + (1 = 74(5e))0a(se) Eq(se)  terminal sampling event

(Van(Se) + AavEa) ey b(Se) mutation/hidden birth event a — b

Pa sampled at present day

(14)

Equation (16) distinguishes between multiple types of birth events as pictured in Figure S1. Birth
events may be symmetric, with both daughter lineages inheriting the parental type. The
exchangeability of the resulting daughter lineages is reflected in the indicator variable ¢, ; which
takes on value of 2 if @ = b and 1 otherwise. In contrast asymmetric birth events the resulting
daughter lineages differ in type due to caldogenetic change. Importantly the differential equation
for g. , is linear and hence has a known general solution g, = e o(Se) W (Se, 7). As in the
single-type model W(s,, 7) is the probability flow (Louca and Pennell, 2020b) mapping the
probability g. , from the initial state at time s, to the probability at time 7.

An analogous initial value problem can be derived for the probability F,(7), that a lineage
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of type a alive at time 7 leaves no observed descendants in the sampled tree.

dE;Z( (ZAab +/1Ja +wa +Z’Yab ) )
+ D Aap(T) Ea(T) E(7) + pra(T +§;%b (15)
b
E,(0) =1-p,

This is a non-linear differential equation and must be solved numerically. Given the solution of
Je.o and E, the likelihood for the fully coloured tree is characterized by a series of critical times:
first, 7, , the times at which a lineage of type a gives birth to a lineage of type b, ¥, the ages of tip
samples of type a, 7, the ages of ancestral samples of type a, and 1, the times at which lineages
are observed to transition events from type a to type b. The resulting likelihood is given by:

1,

L(@MBDS|77 6’) =8 X (I)C*<T> X |;l;[1 pi\f“] X |:1;[ H];[b ab .T}abz (I)b<xabz>]

8

Ca
X 1:[1 11 [Q/}a(yaj)( Ta(ya,j))Ea(yaJ) + %(ya,j)ra(ya’j)] CI)a<1yaj)]
o
X | TT 11 %alzan) (1 = ra(zmk))]
a=1 k=1
10T cI)b<wabl)
x H H H Yap(Wapi) + Aap(Wap1) Ea(Wap)] <I>(w)]
Lo=1 b7a I=1 a\Wa,b,l

(16)
Here 8§ is an arbitrary form of conditioning as in Equation (13) and ®,(7) = ¥,(7,0), a complete
list of notation is given in Table S4.

Equation (16) gives the likelihood of a fully coloured tree, the tree topology plus the state
along each branch and at each node in the tree. This likelihood is a generalization of that presented
by Barido-Sottani et al. (2018; 2020). Maximizing Equation (16) while incrementally adding and
removing changes in state along the branches of the tree can be used to identify clades with
distinct diversification parameters. This method can be used, for example, to identify transmission
clusters within a disease outbreak (Barido-Sottani et al., 2018). This likelihood is distinct from
but related to post-traversal likelihood methods developed to infer state-dependent diversification
rates given the known state of sampled lineages (e.g., Maddison et al., 2007; Magnuson-Ford and
Otto, 2012; Stadler and Bonhoefter, 2013). Specifically, these methods give the likelihood
L (©wmpps|T, Cs) where Co = {C,, C,, C, } is the state of present-day, C,, past C,, and ancestral,
€., sampled lineages. The relationship between the numerically obtained post-traversal likelihood
and the closed-form fully coloured likelihood (Equation (16)) is given by:

(@MBDS|(‘T e*)
PT’(G*l‘I G., ®MBDS)

L (Owmeps|T, Co) = (17)

Here C* is one specific colouring of the tree 7T (e.g., a maximum parsimony ancestral state
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reconstruction) that is consistent with the observed states. We include Equation (17) as it clarifies
the relationship between these two different approaches that have been used to calculate
multi-type likelihoods in phylogenetics. Whether or not this is useful for inference is an open
question as Pr(C*|T, C., Oumpps) is challenging to compute (the details of which are beyond the
scope of the present paper).

Concluding remarks

In this paper we have unified a broad class of BDS models that have been widely used
both in epidemiology and macroevolution. And in doing so, we have also presented a
standardized notation and approach that can be used both for deriving the various sub-models that
have previously been studied as well as novel combinations of assumptions about the model
parameters. The unification of these models clarifies the connections between BDS variants,
facilitates the development of new variants tailored to specific scenarios, and provides a structure
for understanding how results depend on model assumptions (Kirkpatrick et al., 2002; Lafferty
et al., 2015; Louca and Pennell, 2020a). And importantly, given the recent discovery of
widespread non-identifiability in birth-death processes fit to extant-only (Louca and Pennell,
2020a) and serially-sampled (Louca et al., 2021) phylogenetic data, there is a critical need to
explore a much broader range of BDS models than were previously considered and the
mathematical generalization presented here will be enable this.
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Box 1: THE coNNECTION BETWEEN BDS AND SIR MODELS

The single-type BDS model is intimately related to the SIR compartmental model used in
classic theoretical epidemiology. This connection illustrates the explicit and implicit assumptions
of the general BDS model and its sub models. Here we define the SIR epidemiological model,
discuss how it can inform and be informed by these diversification models, and examine the
shared assumptions of the two frameworks.

The SIR model:

The SIR model partitions the host population via infection status into susceptible (S),
infected (I), and recovered (R) hosts. Infection of susceptible hosts occurs at a per-capita rate 31.
Infected hosts may recover (at rate ), die of virulent cases (at rate ), or be sampled (at rate 1)).
The cumulative number of sampled hosts is represented in the SIR model (Figure B1 top) by 7*.
Upon sampling, infected hosts may be treated and hence effectively recover with probability r.
Hosts that have recovered from infection exhibit temporary immunity to future infection which
wanes at rate 0. The special case of the SIR model with no immunity (the SIS model) is obtained
in the limit as 0 — oo. In addition to these epidemiological processes, the SIR model includes
demographic processes, such as host birth (rate ) and death from natural causes (rate ¢). While
not shown explicitly in the figure, these epidemiological and demographic rates may change over
time as a result of host behavioural change, pharmaceutical and non-pharmaceutical
interventions, or host/pathogen evolution.

The BDS Model:

The BDS model follows the number of sampled and unsampled viral lineages over time,
analogous to the [ and I* classes of the SIR model. A key element of general BDS model is that
birth and death rates may vary over time. This time dependence may be either continuous
(Morlon et al., 2011; Rabosky and Lovette, 2008b) or discrete (Stadler, 2011; Stadler and
Bonhoeffer, 2013; Gavryushkina et al., 2014; Kiihnert et al., 2014) Although arbitrarily
time-dependent, the birth, death, and sampling rates in the general BDS model are assumed to be
diversity-independent, analogous to the assumption of density-dependent transmission (pseudo
mass action) in the SIR model (Keeling and Rohani, 2008). Incorporating such diversity
dependence into macroevolutionary models has been shown to increase the accuracy of extinction
rate estimates and are necessary to accurately capture the saturation of diversity (Etienne et al.,
2012). While some forms of diversity-dependence in diversification rates may be incorporated
implicitly capturing deterministic diversity dependence as time dependence (Rabosky and
Lovette, 2008a), stochastic diversity-dependence (Etienne and Rosindell, 2012) goes beyond the
scope of the BDS models considered here.

The single-type BDS model assumes all viral lineages are exchangeable - this has several
implications. First, all viral lineages are epidemiologically identical hence all mutations between
them are neutral. Incorporating non-neutral genetic variation requires a multi-type approach as in
Equation (16). Second, transmission is independent of lineage age. In the macroevolutionary
case, such age-dependence has been suggested to reflect niche differentiation in novel species
(Hagen et al., 2015) and in the epidemiological case may reflect adaptation towards increased
transmissibility following a host species-jumping event. Third, lineage exchangeablity is reflected
in the absence of an exposed (E) class in the SIR model in which hosts can, for example, transmit
infections but not be sampled or vice versa. Finally, the single-type BDS model assumes all
lineages are sampled at random and does not include sub-models with non-random representation
of lineages (Stadler et al., 2012).
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Model Connections

Given their shared model assumptions, the single-type BDS model can be constrained
explicitly to reflect an underlying SIR epidemic by setting the viral birth rate equal to the
per-capita transmission rate of the infectious class A\(7) = 55(7) and the viral death rate to the
infectious recovery or removal rate (1) = v + ¢ + «, whereas the sampling rate ¢/(7) is identical
across models (Figure B1la). While constraining the birth, death, and sampling rates in this
manner can be used to parameterize compartmental models (Kiihnert et al., 2014) doing so is an
approximation assuming independence between the exact timing of transmission, recovery or
removal from population, and sampling events in the SIR model and birth, death, and sampling
events in the diversification model. The resulting tree likelihood in terms of the compartmental
model is given by:

PT(T’@SIR) :PT(‘I’@BDS) P(@BDS‘@SIR)- (Bl)

BDS likelihood SIR process

While they are not sub-models of the general BDS process, likelihood models have been
developed that capture the full non-independence of viral diversification and epidemiological
dynamics for the SIR model specifically (Leventhal et al., 2012) and in compartmental models in
general (Vaughan et al., 2019). The connection between the BDS process and SIR
epidemiological models can also be used after the diversification rates are inferred to estimate the
basic and effective reproductive rates (Stadler et al., 2012; Stadler and Bonhoeffer, 2013).
Specifically, the effective reproductive rate at time 7 before the present day is given by

R.(T) = W Although the SIR model is a useful epidemiological model for is

simplicity, realistically modelling epidemic dynamics requires far more complex compartmental
models. As reflected by their shared structure, the application of the single-type BDS model is
restricted, however, to the assumptions of the SIR model alone and further methodological
advances in multi-type modelling are necessary for direct inference for the larger class of
epidemiological models.
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APPENDIX: ADDING ASSUMPTIONS TO THE GENERAL MODEL

In this appendix, we demonstrate how one can obtain the likelihood of sub-models with
different sets of assumptions by applying constraints to the general likelihood. There are four
classes of assumptions that are commonly applied in epidemiological and macroevolutionary
studies. First, researchers can make assumptions about the functional form of the birth, death, and
sampling rates. Here we address two such unique assumptions: i) Birth, death, and sampling rates
are constant (see 1, , , ); and ii) birth, death, and sampling rates are piecewise-constant functions
of time (see 1 and ). The cases where birth, death, and sampling rates are defined by a stochastic
or deterministic SIR model are mathematically analogous to the cases of the piecewise-constant
and general time-variable models respectively. All additional constraints imposed will depend on
the exact compartmental model used and hence we will not discuss them in detail in this section.
The second major class of assumptions pertains to sampling. There are four such sampling
assumptions: i) sampling happens only at the present day as in a birth-death model (see 1 and , , )
or as implemented in the “Birth Death Skyline Contemporary” prior in the BDSKY package in
BEAST?2; ii) the absence of concerted present-day sampling (see 1 and ); iii) the inclusion of
ancestral samples with sampled descendants (, and ); and iv) concerted sampling attempts (CSA)
during which all lineages are sampled with a given probability (see 1 and ). The third assumption
class considers the presence of mass extinction events (see 1 and ). The fourth and final major
class of assumptions deal with the conditioning of the likelihood. The various conditioning
schemes are explored in below and summarized in Table S3.

RATE ASSUMPTIONS
Constant rates

e Model Assumptions: Constant diversification rates: A(t) = A, u(t) = u, () = 1, and
constant removal probability r(¢) = r.

e The IVP for g.(7):

dg.(T
) (0t )glr) + 220, () E(R)
)\gel (se)geg (Se) birth event giving rise to edges el and e2
1ﬂ(1 — T)gel (Se) ancestral sampling event
ge(se) =

Ur + w(l — T)E(Se) terminal sampling event

Lo Se = 0, edge sampled at present day

e The IVP for E(1):

dE(T)
dr

— (A +p+ )BT AP 4 BO) =1 po,

In this case the IVP for (1) is a Bernoulli differential equation and has a known analytical
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solution. As given by Equation 1 in Stadler (2010) this solution is given by:

Atptd  ae(l-c)=(1+e)

E(7)

2\ 2\ e‘clt(l — Cg) + (1 + 62) (A1)
A—p—2\pg —
01:’\/0‘_#—7@2"’4)@‘ =L o i ¢
The Probability Flow:
B(r) = exp UO INE(z) — (A + 11 + ) da:} .
The Likelihood:
I n 1
Lo = 8po RN (1 =) TL0G) T g5 (0= E@w) 41| (A2)
i=1 =1 @)

Piecewise-constant rates

Model assumptions: Divide time into L + 1 intervals defined by transition times
0=ty <ty <ty <..<tp <try; =1T.Define rates and removal probabilities constant
within a given interval.

)\(T):Al t <717 <Ll
w(r)=m t <1<t
Y(T) =Y 6 <T <t

r(r)=mr t <7<t

The IVP and Solution for g.(T): Given the definitions of \(7), u(7), (1), and r(7) within
each time interval the IVP for g.(7) is identical to that given in Equations (3) and (4). If
g1.(7) is the probability density within time interval [ than g .(t;) = gi—1.(t;).

The IVP and Solution for E(7): As with g.(7), the IVP for F(7) is given by Equation (8).
With the piecewise-constant rate assumptions, however, the general solution for F/(7)
between t; < 7 < t;41 is known (similar to Equation (A1)). Defining

E|(1) = E(1) where t; < 7 < t;41 and Ej(t;) = E;_1(t;) we have:

Attt o et (loce) = (e
2 2 €7 (1 =) + (14 c2)

o= —2)N(1 — Ei(t)) —
S N v T e P et 22 L)

C1

EZ(T)
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where E;(t;) = E;_1(t;) for l > 0 and Ey(to) = 1 — po.

The Probability Flow: We define a probability sub-flow within each time interval.
Specifically, in the [** time interval.

(1) =exp [/tT 2NE(z) — (N + i+ ) dx| .

The complete flow can be expressed as a function of the sub-flows in the following manner:

O(1) =P (7 H(I)l ()
(A3)

D(tk) = Pp(ty) H Oy (1) = [ ®ia(t),

1
where L; is the index of the time ¢; at or after time ¢, i.e. the largest index such that ¢, < 7

The Likelihood: Given these piecewise definitions we substitute them into the general BDS
likelihood (13).

L I Lo,
Lpe =8 py° @L(T) [ P11 (tr) < [T |Ar., ®r., () ][] i (t0)
e 1= i=1 =1
tips root births

ﬁ Vi, ((1 —r, ) EL, (y;) + TLyj)
Ly,
j=1 @, 1= D11 (tr)
ancestral

extinct samples
tips P

m
X H ¢sz (1 - Tsz>7
k=1

where we use PC to denote the piecewise-constant assumption.

We can simplify several of these products. Let o; be the number of birth events > ¢; and o,
the number of sampling events > ¢;.

I LIi
I @1 t) =TT [®—1(t)]™
1715.1 =1 (AD)

Let n; be the number of observed lineages alive at time ¢;. Because the number of observed
lineages increases with each birth and decreases with each sampled tip, counting the root
we have n; = a; — 0; + 1. Substituting the expressions for the into the likelihood and using
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532 the definition of n; we have:
I
Lpc =8py°®L(T) [] L., @, ()
i=1
YﬁLyJ m

533 H ( (1- TLy].)ELyj (yj) + TLy].) H ¢sz (1 - Tsz> (AS)

7j=1 yj k=1

L

H -1 ()"
534 SAMPLING ASSUMPTIONS
535 Birth-death models
% e Model Assumptions: The birth-death model assumes that /(1) = 0. Note that the
537 probability of sampling a lineage given it is alive at the present day remains as p
538 (incomplete sampling).
530 e [VP for g.(T):
540 dge .

) (A7) + ()i (7) + 20 () ()
4 )\(86)961 (86)962 (S€> birth event giving rise to edges el and e2
ge(se) =
Lo Se = 0, edge sampled at present day
502 e [VP for E(T):
dE(r
1T — (@) + B E) 4 MR EE 4 ulr) BO0) =1 po
55 Note in this case F(7) equals £(7), the probability a lineage leaves no sampled extant
545 descendants. As demonstrated by Morlon et al. (2011) there exists a general solution to this
547 initial value problem, see section for more details. This general solution is given by:
B —1 — 0o [l (Aw) — () ol
L+ g poexp [fg (Mu) — p(u)) du] dz

540 e The Probability Flow: From (Morlon et al., 2011), the probability flow can be written as the
550 following:

-2

T

Jo poA(u) exp [fy' (A(o) — p(o)) do] du
1+ po

B(r) = exp { /O (A(o) — ,u(a))da] l1 4
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o The Likelihood:

1
Lpp = 8py°®(T) [T M) ®(x;) (A6)

=1

No sampling at the present

Here we consider the case when py, = 0. The likelihood follows exactly as in the general model
case. The resulting likelihood expression is given by:

£ o =SO(T) ] Mai)® (1)

" i:j m (A7)
H y] 1 - T(y]))E yj +r yg H 1 - 7" Zk))
j=1 y]) k=1

Note that in this case ] = n — 1.

Concerted sampling attempts

e Model Assumptions:Here we introduce L concerted sampling attempts (CSA) at known

points in time, ¢, [ € {1,2,...L}. Like the CSA at the present day, and in contrast to the
background Poissonian sampling rate, during the CSA at time ¢; every lineages is sampled
with a fixed probability p;. In the derivation of the likelihood below, we must distinguish
between three different sampling event types. First, past Poissonian sampling events are
those that do not occur during CSAs. Second, past concerted sampling events are those that
occur during a CSA attime t; [ € {1,2,..., L}. Finally, present concerted sampling events
are those that occur at the present day 7 = 0. Past concerted sampling attempts can be
included in the general model above by adding L Dirac distributions to the Poisson
sampling rate function. Namely,

L
V() = () + 3 fw = 0(r = )], (A8)
=1
where (1) is the background Poissonian sampling rate and w; = —In (1 — p;). The

definition of w; comes from solving the CDF of the exponentially distribution for the
‘effective sampling rate’ such that the probability of a lineage being sampled is p;.

e [VP for g.(7):
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UeT) — _ (\(r) + () + ¥(7))ge(7) + 20 (7)ge(r) ()
A(Se)ge1(Se)gea(se) birth event giving rise to edges el and 2
(1 —7(5¢))0(5¢)ger(se) Poisson ancestral sampling event
(s) U(5e)7(8e) + U (5e)(1 — 7(5.))E(s.)  Poisson terminal sampling event
(Se) =
’ (1 —7r(t)p1ger (tr) ancestral sample at #;
or(t) + pi(1—7(t))E(t) terminal sample at #;
00 Se = 0, edge sampled at present day

The solution to g.(7) is given by Equations (5) and (6).

IVP for E(T): As with ¢.(7), the IVP for E/(7) is identical to that given for the general
model in Equation (8). Except in rare cases the IVP must be solved numerically hence
requiring numerical integration over Dirac distributions which can prove to be problematic.

Note however, that when examining the integrals over the CSAs, a priori, it is a matter of
convention whether the Dirac distribution should be considered as “integrated over” when

located at the upper integration bound | ; d(s — b)ds = 1 or at the lower integration bound

J f d(s — a)ds = 1. Whichever convention we chose, we must rigorously obey it so that the
ratio ®(t)/P(s) correctly evaluates to (s, t) whenever s < t. Using the former
convention, we can rewrite the probability £(t;) at each concerted sampling time ¢; as:

E(t) = E(t; )e™ = E(t;)(1 = p),

where ;" denotes the limit as time approaches ¢; from below. Hence the probability F/(7) at
any time 7 can be evaluated numerically by considering the dynamics between successive
CSAs and at each CSA separately.

The Probability Flow: The probability flow is given by:

O(7) = exp [/OT 2\(z)E(z) — </\(x) + (@) + () + > wd(x — tl)> dx] .
=1

As with E/(7) integration over the dirac distributions can be problematic and hence we
rewrite this expression separating out these terms. Let L, be the oldest CSA occurring at or



595

596

597

598

599

600

601

602

603

604

605

UNIFYING BIRTH-DEATH MODELS

after time 7, i.e. the largest index for which ¢; < 7

®(7) =exp -/72)\(x)E(x)—<)\( )+ p(x +Zwl a:—tl>d]

_0
LT

—exp /0 "N@)E(2) — (Ma) + ula) + d(a)) dx] e

L,

—exp /0 ON@)B(x) — (A(x) + ple) + b)) da

We define:

which means that we can rewrite Equation (A9) as:
— LT

O(r) = 2(7) [I(1 = ).

=1

e The Likelihood: The edge representation of g, is given by:

n

=1

11— p).

=1

O(7) = exp {/OT 2\(z)E(z) — <)\(x) + p(x) + 1/1(x)> dx] :

m

21

(A9)

(A10)

(A11)

gstem(T) =p3° 1:[1 Az:) H (1= r(y))E(y;) +r(y)] [T ()1 —r(y;))

L L
Xle[(l—Tl) tl +7“l lel—Tl lH
=1 =1

edges

The critical time representation of g, is given by:

k=1

U(Se,te)

Gstem(T') = v 1:[ (1= pu ]_:[1 (2,)®(x,) ﬁ(l —Pl)]
TG 0= ) G) + i) [H —

Pois. extinct tips

l

Pl i
((I)(tl) [(1—7"1)E(tz)+7‘z]> {H 1=,

J=1

} Hw 2k) (1 —r(zk))

Pois. ances. samples

L
]Hml—m M

CSA extinct tips

CSA ances. samples

where NV, is the number of tip samples (samples without descendants) obtained during the
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[*" CSA and M, is the number of ancestral samples (sequences with descendants). By
changing how we enumerate birth, death, and sampling events we can greatly simplify this
likelihood. First, let o; be the number of branching events at or before the the [** CSA. In

other words, «; is the number of branching events if the tree were trimmed at the It CSA.
Then:

II [ﬁ(l - pz)] =[] = p) (A12)

1 |l=1 =1

Second, let o; be the number of past Poissonian sampling events before time ¢;. Then:

I [ﬁ u—lm] gi=rn (19

j |i=1 =1

Finally, let 3; be the number of past lineages sampled during a CSA at or before the CSA at
time ¢;. Hence, 8, = N; + N;y1 + ... + Ny. Then:

[]

L
=1

[f[ —, ] 15[ — (A14)

]:]_ pl

The likelihood hence simplifies to:

L
Gstem (T) =py° ©(T) T](1 — p)* =™~ ‘”“H)\ (2;)® ()
=1 =1

X ]lill (I)E;g/j; (1 =r(y;)E(y;) + r(y;) ﬁ (1 —1r(z))
X 1:[ —/();) [(1—r)E(t) + 7"1]> l 1:[ o(1—1)] [l )

Let n; be the number of lineages that cross ?;, i.e., the number of lineages alive at time ¢,
with sampled descendants at some younger age. Note that by this definition ny = 0. Then
b; + o7 4+ n; is the number of tips in the tree had it been trimmed at age ¢; whereas «; is the
number of branching events. Therefore we must have a; = b; + 0; + n; — 1. This allows us
to simplify the conditioned likelihood given below.
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L

=1

64 |

1

Leosa =8pi°®(T) H(l — )" T Mai) @ ()

i=1
m

(L= 7)) Ey;) + )] TT ¥ (z) (X = r(z))

k=1
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(A15)

N L

(1 —r)E(t) + n]) [T (1 = )™

=1

EI
I (3

A

MASS EXTINCTION

e Model Assumptions: In addition to the Poisson birth death and sampling events considered

in the general model, there are L mass extinctions events occurring at times ¢; > to > ..t.

During the /*" mass extinction event each lineage goes extinct with probability ;. As with
concerted sampling such mass extinction events can be introduced into the model by adding
a set of dirac-delta functions to the Poisson death rate, (7).

L

() = f(r) + Y md(r — t), (A16)

=1

where m; = —In(1 — ;).

IVP for g.(7): The initial value problem for g.(7) is identical to that given in equation by
Equations (3) and (4) except that x is now includes the mass extinction events.

IVP for E(1): The IVP for E(7) to that given by Equation (8) except where the extinction
rate is given by Equation (A16). The solution to E(7) is obtained by numerical integration.
Given the dirac-delta functions this numerical integration can be carried out in a piecewise

manner integrating separately between and over each mass extinction event. Defining E(¢;")
as the solution up to but not including the mass extinction event at time ¢; we have:

E(tl) = (1 — VZ)E(tl_) —f— V.

The first term reflects the probability that a lineage that does not go extinct during the /%"
mass extinction event leaves no observable offspring (with probability F(t,”)) whereas the

second term reflects the fact that all lineages that go extinct during the [** mass extinction
leave no observed descendants with probability 1.

The Probability Flow: The solution to the IVP is once again given by
9e(T) = ge(8e)V(8e; T) = ge(Se) = ( ) where:

B(7) = exp [ /0 "oN@)E(z) — ()\(x) + i) + émlé(:c )+ w@:)) dx] .

As with the CSAs, let L. be the last index [ such that ¢; < 7. We can separate out the mass
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extinction terms in the following way.

~
3

—my

®

o(r) =exp | [ 2A@)E(@) ~ (\@) + ila) + ¥(z)) da]

N
Il
—

=
—~
|
|
N
SN—

—exp | [ 2A@)B (@) — (@) + @) + () da]

L,

=o(7) [ (1 —w),

=1

T
I

where ®(7) is defined as in Equation (A10).

o The Likelihood: Given these initial value problems the likelihood follows as in the general
model.

M) P () ﬁ(l — Vl)]

=1

D(y;) [(1 = r(y;)Ely,) +r(y;) ]
- W(zk)(1 —r(z)).
(%)szi(l_yl) H

=il

As with the CSAs we can use relations analogous to Equations A12-A14 to rewrite the

likelihood:
L
LME :Spoo@ H 1—1/1
I _ n m
x [T A(z:)@(; H (L= 7(y;) Ey;) +r(yp)] TT () (1 = r(z)),
i=1 7j=1 k=1
(A17)

where n; is defined as before as the number of lineages present at time ;.

ALTERNATIVE CONDITIONING

Table S3 lists a number of possible conditionings, 8 that can be applied to the tree likelihood.
First, is the trivial case of no conditioning §; = 1 which gives the probability of the observed tree
including the stem edge between time 7" and t\irca. To obtain the model likelihood excluding the

stem edge, i.e., conditioning of the t\rca, can be obtained by setting § = &, = q;((?)). Recall that

the elements of ' are ordered such that x; = ty\rca is the first (oldest) birth event.
Acknowledging that one would not reconstruct a phylogeny without any sampled lineages,
we can condition the likelihood on observing at least one sampled lineage (either at or before the

present day) given the time of origin, 8o = %7 E 7 . Or as with 81, conditioning on at least one

sampled lineage given the ty\rca. In order to have at least one sampled lineage and a most recent
common ancestor, however, each daughter lineage of the common ancestor must have at least one
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— %=z

o(T) (1- E( 1))
assumes that all lineages alive at the present day are sampled with probability py. As with
concerted sampling attempts (CSAs) prior to the present day, this present day CSA may include
the sampling of multiple lineages as well as possibly resulting in no sampled lineages. As with S
and 83 we can condition the tree likelihood on observing at least one extant lineage at the present

day. To do so, we define £(7) = E(r|i) = 0), the probability that a lineage alive at time 7 has no
extant descendants. Conditioning on the time of origin we have: 84 = Conditioning on

descendent. Hence we have 83 = . The general birth-death-sampling model

1- E( )’
<I>(x1) 1
o(T) 2(1-E(21))(1-E(x1))”
at least one of the two daughter lineages of the common ancestor has a present day sample. In
many cases 85 is modified, however, to condition on both daughter lineages having an extant

Ler _ P(x) 1
sampled descendent: 8 = o(T) (143(11))2'

As an alternative to conditioning on at least one extant sampled descent, tree likelihoods

can be conditioned on having exactly N, sampled (extant) descendants. Let ENO (1) be the
probability a lineage alive at time 7 has exactly /Ny descendants. Although a general expression

for ENO (7) is unknown, in the case of constant birth, death, and sampling rates (the case in which

this form of conditioning has been applied), the expression for E N, (T) is given by (Gernhard,
2008; Kendall, 1948) and Theorem 3.3 by Stadler Stadler (2010):

i)

No—1
. . poX (1 — e~ At
Eng (1) =po®(7) ( ( )—(/\—u)t ’

the time of the most recent common ancestor we have: 85 = where now

3
5

[

)

(=]

,@

Apo + (ML = po) — ) e

where, like £, @ is given by Equation (10) evaluated with where 1) = 0. leen the time of origin
we can condition on observing exactly N, lineages by setting § = 8¢ = When tyrca i

(T)
given instead, then the number of descendants of the two daughter lineages must add up to Ny
while both daughter lineages must still have at least one descendant(see Stadler (2010) Corollary
3.9).

e O(m) (R > B
§=38; ~ (1) ; Ei(xl)ENo—i(xl))

-1

D (2 _ 2 2 poX (1 — e mt o
= ( ) (NO - 1)(pO<I>(x1)) </\,00 + ()\(1(_ /00) _ M) 2—(>\—u)t)

While early BDS models often employed such conditioning (Stadler, 2009, 2010), this form of
conditioning has not been employed in many later models perhaps because the biological
justification for such conditioning is vague.

The final form of conditioning used in the literature, which we will represent simply as Sg,
is the multiplication of the BDS likelihood by a constant to account for the enumeration over the
possible indistinguishable representations of a given tree. The value of this constant depends on



700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

26 REFERENCES

whether the tree considered is “labeled” and “oriented” (Gavryushkina et al., 2013) and whether,
as in the derivation here, the vector of birth events, %, is (un)ordered. Inclusion of such a constant
should have no effect on the maximum likelihood inference of the model parameters given a
specified tree. In cases where the constant is a function of the critical times (Heath et al., 2014), it
can influence the inference when the parameters and the tree are jointly estimated.
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Figure 1: Sub-model assumptions. Rate, sampling, mass extinction, and conditioning assumptions
of existing sub-models of the general time-variable BDS process. The key points are that i) each of
the previously developed models we considered can be obtained by adding specific combinations
of constraints to the various parameters of the general BDS model; and ii) that there are many
plausible, and potentially biologically informative combinations of constraints that have not been

considered by researchers in epidemiology or macroevolution.
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rate constraints /! N . . A
2 A= p8 N A epidemiological inference
1 . BS v
. m=7+d+a oo s Be=gmnaaw N,
’ Smw= -
a. Rates b. Full Tree c. Sampled Tree

—A\=45
—————pu=v+d+a

Ys
Yu

Figure B1: BDS-SIR model connection. Top: The SIR epidemiological model. Black (gray) lines
and classes represent rates and variables followed (in)directly by the BDS model. The SIR model
can be used to constrain the rates of the BDS model (panel a). Simulated forward in time, the
result of the BDS stochastic processes is a full tree (panel b) giving the complete genealogy of the
viral population. Pruning away extinct and unsampled lineages produces the sampled tree (panel
¢). Arising from a BDS process, this sampled tree can be summarized in two ways. First by the set
of edges (labeled 1-11) or as a set of critical times (horizontal lines) including: 1) the time of birth
events (solid, z;) 2) terminal sampling times (dashed, y;), and 3) ancestral sampling times (dotted,
zx). Given the inferred rates from a reconstructed sampled tree, these rates can be used to estimate
characteristic parameters of the SIR model, for example the basic or effective reproductive number.
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Single-Type Model

RELATIONSHIPS BETWEEN EXISTING MODELS

In the appendix, we proved that one could go from the most general case to specific
sub-models by incorporating additional constraints to the parameters. In this section, we illustrate
how to work in the other direction — that is, to start with the most assumptions of a particular
sub-model and derive its likelihood function using the same five-step procedure used to derive the
general BDS model in the Main Text. In addition to illustrating the utility of our mathematical
technique, by deriving the likelihoods of previously developed models, we are able to unify a
diverse and, occasionally opaque, literature using a common terminology, notation, and
formulation.

Stadler 2009

Here we re-derive the likelihood given by Equation 2 in (Stadler, 2009). Note throughout
all equation, corollary, and theorem references in other publications will be placed in bold face

type.
e Step 1: Specify the model.
— Constant rates: \(7) = \, u(7) = p.
- Birth-death model with incomplete sampling at present day: ¢(7) = 0 and py < 1.

— Conditioning on there being exactly NV, lineages at the present day given the time of
origin, 8¢ and un-ordered birth events Sg = (Ny — 1)!.

e Step 2: IVP for g.(7).

dg;@ =~ (A= 1)ge(7) + 2Age() E(7)

Ge(T) = {/\gel(se)gez(se) birth

P0 present day

e Step 3: IVP for E(7).

dE(T)
dr

Given the constant rate assumption there exists a general solution for £(7).

=~ AN+ E(T) + AE(1)* + 1 where E(0) = 1 — po.

exp[—c1t](1—ca)—(1+4c2)
:>\ + H +a exp[—ét](l—cz)-&-(l-‘rcz)

2A

A— 1 —2Xpg
CL=A—p cg=—1—"—"—

T

A—p
e Step 4: Derive gsiem (7).

gSt6m<T) = péVOAN()il H \I](Se7te>'

edges
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e Step 5: Calculate gy, (1) wrt the critical time representation. Given the assumption of
constant rates and no Poisson sampling the expression for ®(7) simplifies to:

Hence we have:

Istem (T) = p(]JV()>‘N(]_1 H

e AT\ — p)?

O(1) = o 5
(\(T = po) — e + Apy)

No—1 e—a:,-()\—u) ()\ _ ,u)2

1 (AT = o) = p)e==0=0 -+ 2pg)”

e Step 6: Impose conditioning. The likelihood is conditioned on having exactly N, lineages at
the present day (S¢) and a constant 8g = (/Ny — 1)! as the birth events are left un-ordered.

Loy = (NO 1)' No No—1 Nlo—Il e_xi(/\_ﬂ)()\ _ ’u)z ) 1)
Stadler 2010

e Step 1: Specify the model.

— Constant rates: A\(7) = \, u(7) = p, (1) = 1.

— No removal upon sampling, r = 0.

— Multiple presented.
+x Equation 3 (Stadler, 2010): No conditioning.
x Equation 4 (Stadler, 2010): Exactly N, extant sampled tips.
* Corollary 3.7 (Stadler, 2010): At least one extant tip conditioning on the time of

origin.

+x Equation 5 (Stadler, 2010): At least one extant tip conditioning on the tj;zcA.
+x Equation 6 (Stadler, 2010): N, extant tips conditioning on the time the ;o 4.

e Step 2: IVP for g.(7).

dge(7)
=~ A1) ge(T) + 2A9¢(7) E(7)
)\gel (Se) Ge2 (Se) birth event giving rise to edges el and e2
( ) 1/1 e (Se) ancestral sampling event
elSe) =
I QZJE (Se) terminal sampling event
£o Se = 0, edge sampled at present day

e Step 3: IVP for F(7). Given the constant rate assumption there exists a general solution for

E(7).

dE(T) _

dr

~ A+ pu+Y)E(T) + AE(T)*+ 1 where E(0) = 1 — py.
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This is a Bernoulli differential equation and has a known solution as given by Stadler

(Stadler, 2010).

exp[—ci1t](1—ca2)—(14c2)
/\ tuta Texp[— cit](l—cz)—i-(l—&-cz)

2\

:A—M—Q/\Po—f/f

== -0+ axg

e Step 4: Derive gsiem (T).

gstem _IOO H)\Hwa] HwH‘I]

extantZ 1 j=1 k=1 ecT

8]

867 e

tips births extinct ancestral edges

tips samples

e Step 5: Calculate gy, (T') wrt the critical time representation. Given the assumption of
constant rates and no Poisson sampling the expression for ®(7) simplifies to:

O(7) = exp [/OATQ)\E(x) — ()\+M+@D)d4 .

Hence we have:

n m
gstem(T NO H )\CI) H ¢ .
root extdnt;,_/ =1 kil,_/
tips births extinct ancestral
tips samples

e Step 6: Impose conditioning. Imposing an arbitrary conditioning we have the following

likelihood. Note that I/ = Ny +n — 1.

No+n—1
Lo = SO(T)ppeANotn=tymtm TT @ ()

=1

"E

(52)

P@*

J=1

— Equation 3 (Stadler, 2010): No conditioning. § = &y = 1.

- Equation 4 (Stadler, 2010): Exactly N, extant sampled tips. § = 8§ = =L where

in the case of constant rates we have:

Eny (T)

B (1) = ) (SE)

where ¢(7) equals ¢(7) where ¢ = 0.

— Corollary 3.7 (Stadler 2010): At least one extant tip conditioning on the time of

origin. 8 = 8§, =
that ¢» = 0.

lE(

where E(T) is given by the solution for £(7) above given

— Equation 5 (Stadler, 2010): At least one extant tip conditioning on the ¢y;zc 4,
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B(z1)

S(T)(1-E(x1)?”

— Equation 6 (Stadler, 2010): N, extant tips conditioning on the time the t\rca,

1
§ =8y = Yo (SN By () Enyi(an))

Morlon et al. 2011

Here we derive Equation 1 from (Morlon et al., 2011).

Step 1: Specify the model.

— Time variable rates.
— Birth-death only ¢ (7) =

— At least one extant sample Sy = 8.

Step 2: IVP for g.(7).

dge(T)
dr

£o

ge(se) - {Agel (56)962(86)

Step 3: IVP for E(r).

dE(T)
dr

— (A7) + u(1) E(7) + A7) E(7)* + u(7)

= — (A7) + (7)) ge(T) + 2X(7) ge(T) E(7)

birth event giving rise to edges el and e2

Se = 0, edge sampled at present day

The general solution of this differential equation is given by:

E(r)=1-

poexp [ (M) — pu(uw)) dui]

see Equation 2 in (Morlon et al., 2011).

Step 4: Derive gsiem(T).

where the expression for W(s,,

Step 5: Calculate gger, (7') wrt the critical time representation. Given ®(7) =

T+ J7 poexp [Jg (Nw) — p(u)) du da”

gstem _100 H)\xz H\I[Seae7

births edges

Equation 3 for in (Morlon et al., 2011) we have:

O(7) = exp {/o

T

(Mo) — (o)) da] ll +

Jo poA(u) exp [[5' (A(o)

where F(0) =1 — py.

t.) is given by Equation 3 in (Morlon et al., 2011).

— ilo)) do] du

L+ po

U (0, 7) from

-2
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% Hence we have: -
o—

97 gstem<T) = CI)<T) péVO H )\(iL',L)CI)(iL',L) .

root e;gn/t =1

tips births
98 Note [ = N() — 1.
% e Step 6: Impose conditioning. The likelihood given by Equation 1 in (Morlon et al., 2011) is
100 conditioned on the existence of at least one sampled lineage, § = 83 = ﬁ(to)
P N
101 L = 7@ T )\ 1 (I) 1 S3
i = =y o0 1L A (53
102 Stadler et al. 2011
103 Here we derive the likelihoods given by Theorem 2.6 and 2.7 in (Stadler, 2011).
104 e Step 1: Specify the model.
105 — piecewise-constant Poissonian rates. A(7) = A; and ji(7) = i if
106 L <T< ti4+1 l = 0, 2, ...LL +1 where ty = 0 and tr+1 = T.
107 — No Poisson sampling, ¢(7) = 0.
108 — Mass extinction events at times ¢; [ = 1,2, ...L as specified above.
L
pu(T) =i+ Y mid (T — )
109 l
my =—In(1l —y).
110 — Theorem 2.6 (Stadler, 2011) imposes no additional conditioning 8 = 8§, whereas
m Theorem 2.7 (Stadler, 2011) conditions on observing at least one descendent given
12 the time of the most recent common ancestor 8 = 8o = 8,.
s e Step 2: IVP for g.(7).
dge(T)
B = — () + 1)) ge(7) + 2A(7)ge(T)E(7)
" )\(Se)gel (Se)geg (Se) birth event giving rise to edges el and e2
ge(se) =
Po Se = 0, edge sampled at present day,

1 where 1i(7) is given above.
" In terms of the probability flow g.(7) = ge(s.)¥(se, T), where:
U(s,,7) = exp { [ 22@) () — (@) + () |

1 Here 4(7) includes the mass extinction events.
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1 e Step 3: IVP for E(7).

dE(T)

=T = — (A7) + H()E(T) + D) E(r)? + ()

E(O) =1- £o-
w1 Given the piecewise constant nature there is a known general solution. Let F (1) = E;(7)
122 where ¢; < 7 < t;41. Then define £;_;(¢; ) as the solution up to but not including the mass
123 extinction event at time ¢; we have:
124 El(tl) = El—l(tl) = (1 — Vl)El—l(tl_) + vy,
125 where E;(7) is given by a solution similar to that in Equation (A1).

N+ | ae(l-c)—(1+c)
2\ 2N\ et (1 —co) 4+ (1 + ¢2)
A — = 2X0(1 = Eqy(t)

Cy = — )
C1

EZ(T) =

126

@] :‘ (N — m)?

127 where Ey(tg) = 1 — po.

128 e Step 4: Derive ggem (T'). The expression for gge,,,(T') is given by:

gstem = H)\ Z; H\I[ Seyt e ’

129

ecT
extant tlps h P—
births edges
130 where A(7) and ¥(s,, 7) are specified above.
11 e Step 5: The critical time representation. We once again define the sub-flow

132 ®,(7) where t; < 7 < t41:

By(r) = exp { | 2@) () = (@) + i) + mid (e — 1) da

t

s = exp U 2Mz)E(z) — (A(2) + i) dff] (1—w)
17}
:(I)Z(T) (1 — Vl) .
134 Note 1y = 0. The complete flow is, as given by Equation (A3).

(1) =0y () [[ (k) (1 — 1)

l 1

k
(I)(tk) H(I)lltl 1—I/l :H 1_Vl)

1 =1

135

136 where L. is once again the largest index [ such that ¢; < 7.
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137 The critical time representation of g, then is:
L I Lz,

138 gstem(T) = H (1 —1 H (z; @LI T H D1 (t)(1 — 1)
-1 i=1 =1

139 Defining «; as the number of observed birth events > ¢; we can rewrite the product:

(‘i)l—l(tz))al

—
—
i
\Nﬁ/
S

.
Il
—
—
|
—
o~
Il
—

140

—
=t
|
W
=

(1 — l/l)al

@
Il
—
—
Il
—
o~
Il
—

1 Hence we have:

142

=1 =1

13 where n; is the number of lineages in the observed phylogeny at time ¢; then n; = a; + 1.

144 e Step 6: Likelihood conditioning.

1s For Theorem 2.6 (Stadler, 2011) the likelihood is given by:

L n
146 Lsi = po@r(T)[] (‘Dz ()1 =y ) 11 [ T (I)Lz (331)}

=1 =1
17 For Theorem 2.7 (Stadler, 2011) the likelihood is given by:

[ (¢ V(IS
148 ,5511 = 5 Lzl .CEl (I)l 1 tl 1 — Vl l’l (I)LI QS'Z>
(1— E(ar))’ =1 i1

149 Stadler et al. 2012
150 Here we derive Equation 1 in (Stadler et al., 2012).

151 e Step 1: Specify the model.

152 — Constant birth, death, and sampling rates.
153 — No present day sampling. All lineages removed upon sampling » = 1.

154 — No conditioning.
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Step 2: IVP for g.(7).

dg.(T
) (3t )alr) + 20 (E()
( ) )\(se)gel (Se)geg (Se) birth event giving rise to edges el and e2
e\Se) =
J 77/1 (Se) terminal sampling event

Step 3: IVP for E(r).

dE(T)
dr

The solution to this differential equation is given by:

exp[—ci1t](1—c2)—(14c2)

t :A T AT Ot (1=e) (1)
2\
\— y—
¢ :’\/(A—u—¢)2+4)\¢‘ cy = Zw

Step 4: Derive gsiem(T).

gstem(T) = H A ﬁ ¢ H \IJ(Sea te)

=1 j=1 eeT
——

R el
births extinct edges
tips
n—1_/n
=\ 1/} H\Il(seute)a
eeT

where [ =n — 1.

=—AN+pu+)E(T) +AE(T)* + 1 where E(0) = 0.

Step 5: Critical time representation. Given the assumption of constant rates and no Poisson

sampling the expression for ®(¢) simplifies to:

®(7) = exp [/OTQAE@?)—()\-F,U—Fw)dm :

Hence we have:

n—1 n 1
gstem(T) = CI)(T) /\n—1¢n (I)<xz>
— 11 }¥¢(yﬁ
births extinct
tips
Step 6: Impose conditioning & = §.
n—1 n 1

Con =X L6 g,

S4)
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Stadler et al. 2013 and Gavryushkina et al. 2014

Here we derive the tree likelihood given by Theorem 1 in (Stadler and Bonhoeffer, 2013)
and due to their shared the likelihood given by Equation 4 in (Gavryushkina et al., 2014).

e Step 1: Specify the model.

Piecewise constant Poissonian birth, death, and sampling rates.
* define transition times 0 =ty < t; < ... < tpy 1 =1T.
* )\(T) =\t <7< ti41-
* (1) =ty <7 <ty

w( )= ity <7 < < iy

Fossils/Ancestral sampling:

x (Stadler and Bonhoefter, 2013): No fossils r = 1.
* (Gavryushkina et al., 2014): piecewise-constant rate 7(7) = r;t; < 7 < t141.

*

— Concerted sampling attempts at each internal transition time ¢; where [ = 1,2...L.

x The probability of a lineage being sampled during the CSA at time ¢, is p;.
* The resulting total sampling rate is given by:

(1) =0(7) + D wid(T — 1)

=1
— ln(l — pl).
— Conditioning:
x Stadler et al. (Stadler and Bonhoeffer, 2013)—At least one sampled lineage,
S - 52.

* Gavryushkina et al. (Gavryushkina et al., 2014)— At least one sample (82) and a
constant giving the number of un-oriented phylogenies & = Ss.

e Step 2: Derive IVP for g.(7). As in section 1 we have:

BeT) —_ (\(r) + () + ¥(r))gelr) + 20 (r)ge () E(7)
)\(se)gel ( e)g ( ) birth event giving rise to edges el and e2
(1 — 7“( ))7])( ) Ge1( S ( ) Poisson ancestral sampling event
- ( e) ( e) + ( )(1 — T(Se))E(Se) Poisson terminal sampling event
ge<86) N (1 — 7’( ))plgel (tl ancestral sample at ¢;
pﬂ’(tl) + pl(l — T(tl))E(tl) terminal sample at ¢,
Lo Se = 0, edge sampled at present day

e Step 3: Derive IVP for E(7). The IVP for E(7) follows from Equation (8).

dE(T)

T =~ Q@)+ ulr) + () ET) + AT E(T) + p(7)
E(0) =1 — po.
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Given the piecewise constant nature there is a known general solution. Let E(7) = E;(7)
where ¢; < 7 < t;41. Then define £;_;(¢; ) as the solution up to but not including the CSA

at time ¢; we have:
E(t) = Ea(t) = (1= p)Era(t)),

where E;(7) is given by a solution similar to that in Equation (A1).

Nt e el =co) = (1+e)
2N 2N 6_01t<1 — 02) + (1 + CQ)

El(T):
Cq :‘\/(Al_ul_wl>2+4/\l+¢l . _)\l—lul_Q)\l(l_El(tl))_djl’

C1

where Eo(to) =1- £Po-

Step 4: Derive gsiem (7). As in section 1 the edge representation of gy, is given by:

n

grenT) =5 T Aw) TT00) (1= P EC) + 1) kf” (1))

L L
><le[(l—TZ)E(tl)—f—Tl]NlH[pl1—7’1 H\PS@,E,
=1 =1 edges

where W(s,, t.) is given by Equation (6).

Step 5: Critical time representation. We once again define the sub-flow
®,(7) where t; < 7 < t41:

By(7) = exp UTQ)\(J;)E(:c) — (Ma) + ) + () + wd(x — 1)) d

t

—exp | [ 2A@)E@) — (Aw) + ula) + 9(s)) da] (1 = )

=Py(7) (1= py).

The complete flow is, as given by Equation (A3).

(r) =by, (1) [[ @11 (1) (1 — )

l 1

O(ty) = H(I)l ()1 —p) =

=1

) (1 —p),

||':]w

1

where L. is once again the largest index [ such that ; < 7. The critical time representation



212

213

214

216

221

223

224

225

REFERENCES 11

of gsiem from the previous stem gives the following.

Ystem(T) Pooq)L 1:[ )(1 =) 1:[ /\(iﬁi)@in (:) 1:[ ﬁ‘DZ—l(tl)(l - pz)]
xg%[(l—r(%))E y;) +r(y)) ]1;[1 lﬁl@l - )1(1_pl)] 1;[ (z1) (1 —7r(z1))
L o Ny 1 N, i
T (5 0o+ ) 1 [[I (1= )50 ],:Hl[’”(l_”” '

We can then simplify the likelihood using the relationships similar to those given by
Equation (A4).

qﬁ@l—l(h) zl:[ [(I)l 1(750] l
n Ly]' 1 —oy
H ZZHI prow g )
Qﬁ(l ~p =110 -

n Lyj 1

L l 1 L 1
H[Hu—wlzﬂu—w

=1 |j=1

where «; is the number of birth events before time ¢; and o; is the number of Poisson
sampling events before time ¢; and [3; is the number of lineages sampled during the CSAs
up to and including at time {;.

The resulting simplified likelihood is given by:

~

« —o;—f
Gstem(T) =po® (T )11 {‘I)z 1(tr) 1—191)} e

e Step 6: Conditioned likelihood.

— Stadler et al. (Stadler and Bonhoeffer, 2013) conditions on observing at least one
sample. In addition the likelihood given by Stadler et al. assumes that all lineages are
removed upon sampling r; = 1 an assumption we will apply now. The likelihoods can
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226 be simplified by letting n; = a; + 1 — 0; — [5; be the number of lineages that are alive
27 immediately following the concerted sampling attempt at time ¢,

__ A et T ) (e )"
LSl3_1—E( l:r[l{q)lltl )1 pl} 1;[&) (yJ)H<CT>l(tl>> '

28 (S5)
229 — Gavryushkina et al. (Gavryushkina et al., 2014) also condition on observing at least
230 one lineage as well as multiply by a constant giving the number of un-oriented trees.
Po S L ™
Laua :887 i1 (t) (L —po)|
I |
< [T == [0 =r@)E(;) + ;)] [T ()1 = r(z)) (S6)
j=1 q>Lyj (yj) k=1

2% Heath et al. 2014
233 e Step 1: Specify the model.

224 — Constant rates: A\(7) = A, u(7) = p, (1) = 9.

235 * Here 1) denotes the sampling rate of fossils.

236 — Birth-death model with fossils, » = 0.

257 — Conditioned on observing > 1 sample given t3;rc 4 (S3) and enumerated over all

238 possible attachments of fossils (terminal sampling events before the present day (Sg)).

2% e Step 2: Derive IVP for g.(7.

dge(T)
57 =— (A +pu+1Y)ge(T) + 2Xge(T)E(T)
/\gel (Se)ge2 (Se) birth event giving rise to edges el and e2
o ( ) ¢ Gel (Se) ancestral sampling event
S —=
JelSe wE (Se) terminal sampling event
£0 Se = 0, edge sampled at present day

21 e Step 3: Derive IVP for E(r.

22 d]fly) =~ A+ pu+V)E(T) +AE(T)? + 1
E(O) =1 — £o-

23 This has the same general solution as given above in section .
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24 e Step 4: Derive gsiem (T).

I n m
gstern(T) = (p0)" TIANTL 0 E () [T w0 TT Wse,te).
i=1 j=1 k=1 edges
246 e Step 5: Critical time representation.
N 1 n w m
Gstem(T) =2(T) (po) ™ [T @ (i) [ o= E i) 11 ¢-
i=1 j=1 (5) k=1

28 e Step 6: Conditioned likelihood. Conditioning on the probability that both daughter clades

249 of the MRCA have at least one sampled extant descendant. 8}. The general solution to E(T)
250 is known as given by the solution to £(7) in section . Conditioning on all the possible
251 attachments of the fossils (terminal samples before the present day). This requires
252 multiplication by a constant Sg. Let y(7) be the number of lineages alive at time 7. The the
253 resulting number of fossil trees is.
54 8 = [12v(y;) IT 7(z)- (S7)
i=1 k=1
P(x ! e 29(y;)Y "
S = ) (o) T () TT 229 ) [T 2m0w | o9
(1 — E(:L‘l)) i=1 j=1 (y5) k=1
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General Birth-Death-Sampling Model Notation

L
L,
t
2
,'?
N,
M,
ny

67/

o (B)

Variable | Definition
A(T) | The rate at which lineages speciate at time 7. A : R — [0, 00)
wu(7) | The rate at which lineages go extinct at time 7. p : R — [0, 00)
(7)) | The rate at which lineages are sampled at time 7. ¢ : R — [0, 00)
r(7) The probability that sampling is associated with host recovery/viral extinction at
time 7. 7:R —[0,1]
Po The probability of sampling a lineage alive at the present day. py : R — (0, 1]
T The time of origin of the phylogeny/epidemic.
T The vector of I branching times. ¥ = {xy, 22, .., T4, .., 11} 9
y The vector of n internal (Poisson) sampling times without sampled descendants (ter-
minal nodes). ¥ = {y1, Y2, -, Yj, -, Yn }
Z The vector of m internal (Poisson) sampling times of lineages with sampled descen-
dants (sampled ancestors). Z = {z1, 22, ., 2k, -, Zm }
Ny The number of lineage sampled at the present day.
ge(T) | Thelikelihood density of observing a given phylogeny by the present day descending
from a single edge e alive at age 7 °.
E(T) The probability that a lineage alive at time 7 leaves no sampled descendants in the
phylogeny'.
S The conditioning of the phylogeny.

®BDS — {)\(7_)7 N(T)a w(T)a T(T)7 Tv PO}

The total number of past concerted sampling events.

The index of the time ¢; at or after time ¢, i.e. the largest index such that ¢; < 7.
Vector of times of CSAs in order of most recent to oldest t; < &y < ... < tf.
{: {th 2y s Uy s tL} ¢

Vector of sampling probabilities of lineages sampled during each CSA. p; : R —
(0,1]. 0= {po; p1, s P15 s PL}

The probability that a lineage that is sampled during each CSA is removed upon
sampling. 7, : R — [|0,1]. ¥ = {ry,re, ., 71y 7L}

The number of tips sampled during the CSA at time ¢;.

The number of ancestral samples during the CSA at time ¢;.

The number of lineages that cross time ¢;.

The number of observed birth events prior to time ¢; (x; > ;).

The number of Poissonian (concerted) sampled lineages prior to or at time 7 > ;.

Ocsa = {\7), (1), (1), (1), T, T, 5, 7}

Table S1: model notation.

¥Throughout 7 is measured in units of time before the present day (7 = 0).

® CSA: Concerted Sampling Attempt.

¢ When used ¢, indicates the present day and ¢;,; = T

4 When used z; indicates the time of the most recent common ancestor Tyirca
¢ The edge e spans time 7, s, > 7 > t,

" E(7) is the special case where (1) = 0
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Model A7), p(7),9(7) r(7) po | o | | Wy S Section
Stadler 2009 constant, 1) = 0 NA >0 0 [NA| O SS3
Stadler 2010 constant 0 >0 0 | NA| O | multiple
Morlon et al. 2011 P =0 NA >0 0 |[NA| O | 8§ =389
Stadler 2011 piecewise, ) = 0 NA >0 0 | NA | > 83 = 85
Stadler et al. 2012 constant 1 0 0 NA 0 SH
Stadler and Bonhoeffer 2013 piecewise 1 >01]>=0 1 0 S
Gavryushkina et al. 2014 piecewise piecewise | >0 | >0 =>0| 0 | 8§ x &
Kiihnert et al. 2014 stochastic SIR constant 0 0O [NA| O 7
Heath et al. 2014 constant 0 >0 0 |[NA| O S

Table S2: Relationship of single-type sub-models to the general BDS model.
4 No specific conditioning mentioned.
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Condition Description Examples
Sg=1 No conditioning Eq.3(Stadler,
2010),
Eq.1(Stadler et al.,
2012) & Thrm.
2.6(Stadler, 2011)
81 = 2((?)) Likelihood given the tyrca rather
than on the time of origin.
Sy = 1= Jé(T) At least one sampled descendent ei- | Eq.2Morlon
ther at or before the present day | et al. (2011),
(given T). Thrm.1Stadler
and  Bonhoeffer
(2013)

O(z1)
(T)2(1-E(21))(1-E(21))

85:¢)

@(xlA)
O(T)(1-E(z1))?

s, =

86:71

Eny (T)

d(x — el A —1
S7 = <I’((tolr)) (Zf’iol 1 Ei(xl)ENofz’(xl))

Sg = constant

At least one sampled descendent
at or before the present day given
TMRCA = T1

At least one extant sampled lineage
(given T).

At least one extant sampled lineage
given Tvrca = 71

Both daughters of MRCA have at
least one extant sampled lineage
Exactly Ny extant sampled lineages
(given T).

Exactly Ny extant sampled lineages

given {\RrcA-
Multiply by a constant

(Heath et al., 2014)

Cor.3.7 (Stadler,
2010) & Thrm.2.7
(Stadler, 2011)

Eq. §
(2010)
Eq.2Stadler
(2009),
Eq.4(Stadler,
2010) &Cor.3.6
Stadler (2010)

Eq.6Stadler
(2010)

Stadler (2009)
&  Gavryushkina
et al. (2014) * &
Heath et al. (2014)

Stadler

Table S3: Alternative conditioning of tree likelihood.
® See Gavryushkina et al. (2013) for algorithms for enumerating trees.
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The multi-type model

THE MULTI-TYPE DIVERSIFICATION MODEL

Here we consider the diversification of lineages of A discrete types. Lineages of type
a € {1,2,...A} speciate/give birth to lineages of type b € {1, 2,...A} at the time-variable rate
Aap(7) at time 7 before the present day. As above we will use 7 to denote time moving backward
from the present day (7 = 0) to the origin of the phylogeny 7 = 7. When a = b speciation occurs
without cladogenetic change, when a # b speciation is coincident with state change. In addition
to the lineages changing state at birth events, lineages can mutate anagenetically from state a to
state b at rate 7, (7). Lineages of type a alive at time 7, go extinct/die at rate ji,(7). For 7 > 0
lineages are sampled at rate ¢, (7). Upon sampling a lineage may be removed from the population
(e.g., sampling is coincident with treatment) with the state-dependent probability r,(7). Finally,
all lineages alive at the present day are sampled with a state-dependent probability p,. Model
notation is summarized in Table S4.

As with the single-type model, the result of the mutli-type diversification process is a full
and a sampled tree. Now however the tree is characterized by its topology J and the colouring of
the tree C denoting the states of each lineage through time. Below we first derive an expression for
the likelihood of a given coloured tree, £ (T, C|Ox5ps). However, as plausibly attainable data
consists of knowledge at only some or all the sampled ancestral nodes and/or tips, we must then
integrate the likelihood £ (7, C|©,pps) over all possible tree colourings consistent with the
observed data.

Derivation of £ (T, C|Onps) L(T,C)

We derive the likelihood using the steps used above for the single-type birth death
sampling model. As with the single-type model for the likelihood calculation be begin by
representing the phylogeny as a series of edges. However, as we are now referring to the coloured
phylogeny we consider the set of all coloured edges, with each edge being a a segment of the
phylogeny that is all of one colour beginning and ending at birth, sampling, or mutation events.
Specifically, moving backward in time towards the tree origin let edge e start at time s, before the
present at a birth event, sampling (ancestral or tip), or mutation event, and continue toward the
tree origin until time 7, ending at either a birth event, ancestral sampling event, mutation event or
at the tree origin.

As with the single-type model the tree likelihood depends on two different functions.
First, g. ,(7) is the probability that an edge e with state a alive at time 7 (hence t. > 7 > s.) gives
rise to the subsequently observed phylogeny between 7 and the present day. Second, F,(7) is the
probability a lineage of type a alive at time 7 has no sampled descendants between 7 and the
present day. We begin below by first deriving the initial value problems for these two functions.
Step 1: Derive the Initial Value Problem for g. (7).

To simplify the notation we define the total birth and mutation rates of a given type
Ao =2y Aapand I'y = 37, 744 and the relative probability a birth or mutation event was of a

.  Nab -
given type, py,, = 31* and p,,, =

equation for g, ,(7) is given by:

I‘?’b. For some small amount of time A7 the recursion
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ge,a<7— + AT) ~ ((1 - AaAT)(l - MaAT)(l - ¢aAT)(1 - FaAT)) ge,a(T)

No Event

+ (ALAT)(1 — p AT)(1 — P, AT)(1 — T AT)) X Zp)\a’bLa’bg&a(T)Eb(T)

Birth Events
+ (1 = AGAT) (e AT)(1 — P, AT)(1 — T AT)) X 0 (S9)
Death Event
+ ((1 - AaAT)(l - ﬂaAT)(waAT)<1 - FaAT)) x 0
Sampling Event

+ (1 = AAT) (1 — o AT)(1 — o, AT) (TR AT)) x 0+O(AT?)

Mutation Events

where ¢, 5 is an indicator variable that has value 2 when a = b and 1 otherwise. This recursion
equation uses the fact that edges are all in state with mutation events resulting in the end of an
edge and the origin of a daughter edge with a different state. This is reflected by the initial
conditions of g. ,(7) as given below in equation (S11).

As above we can then use the definition of a derivative to obtain the corresponding
differential equation

dGe.a (T) _
dr

— (Mg + pta +%a +Ta) ge,a(T) + Z La,b)‘a,bge,a(T)Eb(T) (S10)
b

The initial conditions for g. , at the start of the edge, time s., depend on the event that occurs in
the sampled tree at that time. Specifically there are five types of events in the observed tree. 1)
Observed birth events where a lineage of type a speciates producing a new lineage of type 0. 2)
Ancestral sampling events where a lineage of type a is sampled, is not removed from the
population, and then has subsequently observed descendants. 3) Terminal sampling events where
a lineage of type a is sampled and then either is immediately removed from the population or
remains in the population but has no sampled descendants. 4) Transition events where a lineage of
type a transitions to a lineage of type b. There are two possible ways a transition event can occur.
First, a lineage can switch states due to a anagenetic mutation event or second an apparent
transition can arise due to a birth event with cladogenetic state change followed by subsequent
extinction of the parental lineage. We refer to this second form of transition event as a hidden
birth event.

)\a7b(86)gel a( )gez b( ) birth event a — a + b
(1 —74(5¢))%a(Se)gey alSe) ancestral sampling event
ge,a(se) = Ta(Se)%( e) (1 - ra(se»wa(se)Ea(Se) terminal Sampling event
(Vap(Se) + AapvEa) ey b(Se) mutation/hidden birth event @ — b
Pa sampled at present day

(S11)
Importantly, as the ODES in equation (S10) are linear the corresponding IVP has the
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following general solution given the initial conditions above.
ge,a(T) :gE,a(Se)\I}a(Se, 7), where

U, (s, 7) =exp [/S: — (Aa(2) + pra(x) + () + Tolx)) + Z Lapdap(T) Ep(z)dz (S12)

The IVP for the function £, (7) can be derived in an analogous manner.
Step 2: Derive the Initial Value Problem for F,(7) Once again we begin by deriving a
recursion equation for the change in £,(7) over from time 7 to 7 + Ar.

Eo (T + A7) = ((1 = AJAT)(1 — po AT)(1 — p AT)(1 — T, AT)) Eo(7)

No Event

A
+ ((AJAT)(1 — o AT)(1 — Y, AT)(1 — T,AT)) X Zp)\a’bEa(T)Eb(T)

Birth Events
+ (1 = AGAT) (1 AT) (1 — P AT)(1 — T,AT)) x 1
Death Event
+ ((1 - AaAT)(l - MaAT)<¢aAT>(1 - FaAT>) x 0
Sampling Event

+ (1 = AGAT)(1 — o AT)(1 — o AT)(TLAT)) va LEu(T) +O(AT?).

Mutation Events
(S13)
Using the definition of a derivative we have:
dE,(T)
dr

— (Mg + pta + Vo + T0) Bo(7) + D Nap Ba(T)EW(T) + fa + D YapBo(T),  (S14)
b b

with initial conditions given at the present day by:
E,(0) =1 = pa (S15)

Step 3: Derive Expression for gy.,,(7") As in equation (9) for the single-type model, the tree
likelihood is given by the value of the function ¢ of the stem edge evaluated at the time of the
origin of the phylogeny, 7". From the solution to the initial value problem given by equation (S12)
and the initial conditions (S11) we can write gy, (1) as a product over the events in the tree and
all the probability flow W of the edges in-between. To do so let 7, be a vector of length 7, 5,
giving the time before the present day of all the observed birth events where lineages of type a
give rise to lineages of type b. Let ¢, be a vector of length J, giving the sampling time of tips of
type a and Z, a vector of length K, the sampling type of sampled ancestors of type a. Finally let
W, be the time of observed transition events where a edge of type a transitions becomes an edge
of type b. Once again, transition events can arise due to both direct mutation and hidden birth
events. The resulting expression for the likelihood gy, (7') is given by:
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A N Alab
gsemT = Paa X )\a xa 7,
W@ =10 e o ke

birth events

% T a0as) (1= 7al025)) Ealng) + Yalas) o) * TT Yalas) (1= ralzan)

terminal samples ancestral samples

H Yab(Wapi) + Aap(Wap)Ea(waps)] [  Valse, 7e)

edges of type a

transitions

(S16)

= Step 4: Rewrite ¢, (1) in Terms of Critical Times

334 Rather than enumerate ¥ over the edges of the phylogeny we can rewrite equation (S16) in
= terms of only the critical times 7, ¥/, 2 @ Written in this form the likelihood also depends on ¢* the
= colour of the phylogeny at the origin. To do so we define ®,(7) = ¥,(0, 7) and rewrite the

= probability flow ¥, (s., 7) as a ratio:

P, (1)
U, (5. S17
(Se,T) B.(5.) (S17)
1 Substitution into equation (S16).
A A A lap M@ ( )
a,b,i b\ Lab z)
YGstem,c* (T) = [H PiV“] X [Cbc* (T>] X )\a b xabz — —
5’_/ (lrzll g =1 @ a7b7i
N—_———— stem
present day sampling birth events
A Jg 1
X H H [Ya(Yai) (1 = Ta(Yai)) Ea(Yas) + Ya(Ya,i)Ta(Yay)] W
La=1j=1 a\Ya,;j
terminal sampling events ( S1 8)

Pl wa(za,k)(l “a (Za,k))M

ancestral sampling events

B te]

A Lab
¢ (I)b(’wabz)
X a a + >\a a Ea a —
a];[l 1 [Vab(Wa,p,1) + Aap(Wayp1) Ba(Wa,p1)] Do (100s1)

transition sampling events

»  Step 5: Condition the Likelihood
340 We conclude, as in the single type model by multiplying the likelihood by including a
s general form of conditioning S.
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A A A Ia,b
L(@MBDS|77 e) =38 X [H piva] X H H H a,b xabz (I)b(xabz)
a=1 a=1b=11i=1
(4 J, 1
X H [wa(yau)(l - ra(ya,j))Ea(ya,j) + wa(yad)ra(ya,j)] W
la=1j=1 a ya,])
rA K,
X H wa<za,k)(1 - ra(za,k))
La=1 k=1
(A A Lap
. Dy (w,
1 TETT T Droalutens) + daolutens) Bulun )] vt
|a=1b#a =1 o(Wa,p1)
(S19)

Due to the combination of cladogenetic change and different possibility of hidden birth
events due to extinction and sampling, there are six different types of birth events included in the
likelihood of the sampled tree. The following diagram summarizes these different birth events and

how each is included in the equation (S19).

Sampled

Cald tic Ch.
NSRS M Descendants

Both Samp.

P Parent Samp.

Symmetric Birth
Birth Event
a—a+b
Rate: Ay

Offspring Samp.

Both Samp.
Asymmetric Birth

S Parent Samp.

Offspring Samp.

Term

Birth events in L, a =10

2nd term of ¥V, a=1>

2nd term of ¥, a=1»

Birth events in L, a # b

2nd term of ¥, a #b

Hidden birth events in L

Figure S1: The six possible birth events in the sampled tree and how each in included in the likeli-

hood given by equation (S19).
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TABLES
Vari- Definition
able
A The number of discrete lineage types.
The time-varying rate at which lineage of type a gives rise to daughter lineages of
Aa,fb,c} (T)| type b and c at time 7.
ta(7T) | The time varying rate at which lineages of type a go extinct at time 7
1,(7) | The time varying rate at which lineages of type a are sampled.
r4(T) The time varying probability that upon sampling lineages are removed.
Yap(7) | The time varying rate at which lineages of type a transition to type b.
Pa The probability a lineage of type a alive at the present day is sampled.
N, The number of lineages of type a sampled at the present day.
= A vector of length I, giving the timing of speciation events where a lineage of
abe | type a gives rise to a daughter of type b.
. A vector of length .J, giving the times at which lineages of type a are sampled for
Ya which there are no sampled descendants (sampled tips).
> A vector of length K, giving the times at which lineages of type a are sampled for
“ which there are sampled descendants (sampled ancestors).
i A vector of length L, giving the times at which lineages of type a mutate to
ab lineages of type b.
c The state at the origin (stem node) of the phylogeny.
T The tree topology.
¢ The colouring of the tree.
The probability an edge e of type a alive at time 7 gives rise to the subsequently
9e(a,7) observed phylogeny
Ey(r) The probability a lineage of type a alive at time 7 has no sampled descendants
¢ between time 7 and the present day.
Lab An indicator variable with value 2 if ¢ = b and 1 otherwise.
6 The known tip states
C. The known states of sampled ancestors
Omeps | The parameters of the multi-type BDS model
| SSE Algorithm
e The probability the stem node has state ¢
The probability a “topological” edge N of type a at time 7 gives rise to the
D N,a (T )
subsequently observed phylogeny.

Table S4: Notation for the general multi-type model. Throughout ¢ represents time moving for-
ward from the origin (¢ = 0) of the tree to the tips (f = 1) and 7 represents time moving backward
from the tips (7 = 0) to the origin (7 = T'). The indices a, b denote lineage types and can take on
integer values between 1 and A.



